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ON SPECTRUM AND RIESZ BASIS PROPERTY FOR ONE-DIMENSIONAL
WAVE EQUATION WITH BOLTZMANN DAMPING ∗

Bao-Zhu Guo
1,2,4

and Guo-Dong Zhang
2,3

Abstract. In this paper, we study the one-dimensional wave equation with Boltzmann damping.
Two different Boltzmann integrals that represent the memory of materials are considered. The spectral
properties for both cases are thoroughly analyzed. It is found that when the memory of system is
counted from the infinity, the spectrum of system contains a left half complex plane, which is sharp
contrast to the most results in elastic vibration systems that the vibrating dynamics can be considered
from the vibration frequency point of view. This suggests us to investigate the system with memory
counted from the vibrating starting moment. In the latter case, it is shown that the spectrum of
system determines completely the dynamic behavior of the vibration: there is a sequence of generalized
eigenfunctions of the system, which forms a Riesz basis for the state space. As the consequences, the
spectrum-determined growth condition and exponential stability are concluded. The results of this
paper expositorily demonstrate the proper modeling the elastic systems with Boltzmann damping.
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1. Introduction

The dynamics and control of vibration for elastic structures with or without viscoelasticity have at-
tracted much attention over the past three decades, see for instance [10, 11, 14, 16, 23, 24] for beam equations,
and [13,17, 21, 25] for wave equations. A special property reported in [10, 11] for elastic systems says that even
under the feedback control, the closed-loop system shares the same basis property as the free (uncontrolled)
counterpart: there is a sequence of generalized eigenfunctions, which forms a Riesz basis for the state space.
This shows that the dynamics of the vibrating system is determined completely by the vibration frequencies.
Other studies from different aspects for elastic structures can also be found in [1, 3–5,7, 8, 15, 18, 20].

Among of these works, one of the most widely used models for viscoelasticity is the Boltzmann integral
model, see [2, 17, 21, 23] and the references therein. This kind of passive control can now be accomplished as
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active vibration control through piezoelectric actuator/sensor ([22]). The Boltzmann type models attempt to
capture the viscosity of the material and the history dependence of the stress on the strain and/or strain rate,
which can be reduced easily to some well-known differential models, e.g., Kelvin-Voigt and Maxwell. Basically,
there are two types of Boltzmann integrals. One is with the infinite entire memory ([2,15,17,18,23]), and another
is with finite memory ([3, 8, 21]).

In this paper, we are interested in the difference between these two different types of Boltzmann integrals
for the dynamics of vibrating systems. We use the one-dimensional wave equation with Boltzmann model of
the viscoelasticity for expository demonstration. It is assumed that the instantaneous stress depends on the
instantaneous strain and history of strain rate linearly. When the history is entire, that is, the memory is
counted from −∞ to t, then the stress σ at time t and position x is ([17]):

σ(x, t) =
∫ t

−∞
η(x, t− s)εt(x, s)ds (ε(x,−∞) = 0)

= η(x,∞)ε(x, t) −
∫ ∞

0

ηs(x, s)[ε(x, t) − ε(x, t− s)]ds

= a(x)ε(x, t) − b(x)
∫ ∞

0

gs(s)[ε(x, t) − ε(x, t− s)]ds,

(1.1)

while the memory is finite, that is, the memory is counted from the vibration starting moment 0 to t, the stress
is:

σ(x, t) =
∫ t

0

η(x, t− s)εt(x, s)ds (ε(x, 0) = 0)

= η(x, 0)ε(x, t) +
∫ t

0

ηt(x, t− s)ε(x, s)ds

= [a(x) + b(x)g(0)]ε(x, t) +
∫ t

0

b(x)gt(t− s)ε(x, s)ds,

(1.2)

where we take the relaxation function in the form of ([17])

η(x, s) = a(x) + b(x)g(s), g(∞) = 0. (1.3)

So, the corresponding governing equation to infinite memory is ([17]):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
utt(x, t) =

(
a(x)ux(x, t) − b(x)

∫ ∞

0

gs(s)[ux(x, t) − ux(x, t− s)]ds
)

x

,

u(0, t) = u(1, t) = 0, t > 0, 0 < x < 1,

u(x, t) = u0(x, t), ut(x, t) = u1(x, t), t ≤ 0, 0 < x < 1,

(1.4)

and the equation to finite memory is ([21]):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
utt(x, t) =

(
a(x)ux(x, t) + b(x)

∫ t

0

gt(t− s)ux(x, s)ds
)

x

, x ∈ (0, 1), t > 0,

u(0, t) = u(1, t) = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x),

(1.5)

where in (1.5), we replace a(x) + b(x)g(0) by a(x) for the sake of simplicity. Hereafter, we use prime “′” to
represent the derivative with respect to x.
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In order to compare the models (1.4) and (1.5) qualitatively, we take the kernel simply as the finite sum of
exponential polynomials, and both a and b are positive constant functions:⎧⎪⎪⎨⎪⎪⎩

g(s) =
N∑

j=1

aje−bjs, 0 < aj , bj ∈ R, 1 ≤ N ∈ N,

a(x) ≡ a > 0, b(x) ≡ b > 0,

(1.6)

where it is assumed that
0 < b1 < b2 < · · · < bN . (1.7)

It is noted that since we replace a+ bg(0) by a in (1.5) and a > 0 in modeling (1.2), it is natural to assume in
(1.6) that

a− bg(0) = a− b

N∑
j=1

aj > 0. (1.8)

The system (1.4) has been formulated into an abstract evolution equation in [17] based on the idea of [6].
In next section, Section 2, the spectral analysis for this system with kernel (1.6) is thoroughly performed.
The asymptotic distribution of eigenvalues is presented. It is shown that the spectrum of the system operator
contains a half complex plane, which is an unexpected result for an elastic vibrating system.

Section 3 is devoted to the analysis of system (1.5), (1.6). We adapt the methods used in [23] for the heat
equation with finite memory. The spectral analysis for the system operator that is not of resolvent compact
shows that there is a sequence of generalized eigenfunctions of the system operator, which forms a Riesz basis
for the state space. This is sharp contrast with the heat equation with memory discussed in [23], but coincides,
in reflecting the dynamic behavior of system via the vibrating frequencies, with those presented in [10,11] where
the system operators are of compact resolvent. As the consequences, the spectrum-determined growth condition
as well as the exponential stability of the system is concluded.

2. Infinite memory

In this section, we analyze the spectrum of system (1.4) with kernel (1.6). Special attention would be paid
to the distribution of the spectrum on the complex plane and the asymptotic behavior of the eigenvalues.

2.1. System operator setup

The following general formulation comes from [17] for general kernel satisfying
(g1) g ∈ C2(0,∞) ∩ C[0,∞), and gs ∈ L1(0,∞);
(g2) g > 0, gs < 0, gss > 0 on (0,∞);
(g3) −kgs ≤ gss ≤ −Kgs on (0,∞) for some k,K > 0;
(g4) g(∞) = 0.

It is easily seen that the special kernel (1.6) satisfies the above four conditions. Let

y(x, t, s) = u(x, t) − u(x, t− s), v = ut.

Then
yt = ut − ys,

and
y(·, ·, 0) = 0. (2.1)

The energy function of the system (1.4) is given by

E(t) =
1
2

∫ 1

0

(a|ux(x, t)|2 + |ut(x, t)|2)dx+
1
2

∫ ∞

0

|gs(s)|
∫ 1

0

b|yx(x, t, s)|2dxds. (2.2)
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Let W = H1
0 (0, 1) with the inner product:

〈w1, w2〉 = b

∫ 1

0

w′
1(x)w′

2(x)dx, ∀ w1, w2 ∈W. (2.3)

Define the energy state Hilbert space
H = V ×H × Y, (2.4)

where

V = H1
0 (0, 1), ‖u‖2

V = a

∫ 1

0

|u′(x)|2dx,

H = L2(0, 1), ‖v‖2
H =

∫ 1

0

|v(x)|2dx,

Y = L2((0,∞);W ), ‖y‖2
Y =

∫ ∞

0

|gs(s)‖|y‖2
Wds.

(2.5)

Define the system operator A : D(A)(⊂ H) → H as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Az =

(
v,

(
au′ − b

∫ ∞

0

gs(s)y′(·, s)ds
)′
, v − ys

)
, ∀ z = (u, v, y) ∈ D(A),

D(A) =
{
z ∈ H| v ∈ V, ys ∈ Y, y(·, 0) = 0, au′ − b

∫ ∞

0

gs(s)y′(·, s)ds ∈ H1(0, 1)
}
.

(2.6)

Then system (1.4) can be formulated as an abstract evolution equation in H ([17]):

d
dt
z(t) = Az(t), z(0) = z0, (2.7)

where z(t) = (u(·, t), ut(·, t), y(·, t, ·)) is the state variable and z0(x) = (u0(x, 0), u1(x, 0), u0(x, 0)− u0(x,−s)) is
the initial value.

Proposition 2.1 below justifies A∗, the adjoint operator of A. The proof is straightforward and we omit it in
detail.

Proposition 2.1. Let A be defined by (2.6). Then its adjoint A∗ has the following form:⎧⎪⎪⎨⎪⎪⎩
A∗z =

(
−v, −

(
au′ − b

∫ ∞

0

gs(s)y′(·, s)ds
)′
, −(v − ys − gss(s)

gs(s)
y)

)
, z = (u, v, y),

D(A∗) =
{
z ∈ H| u, v ∈ V, y, ys ∈ Y, y(·, 0) = 0, au′ − b

∫∞
0 gs(s)y′(·, s)ds ∈ H1(0, 1)

}
.

(2.8)

The next Lemma 2.2 comes from Lemma 2.1 in [15].

Lemma 2.2. Suppose that y ∈ Y , Reλ > −k
2 , g satisfies conditions (g1)–g(4),

h(s) =
∫ s

0

e−λ(s−τ)y(τ)dτ.

Then

(i) h ∈ Y ∩ C([0,∞),W ), hs ∈ Y , and

‖h‖2
Y ≤ 1

δ
(2Reλ+ k − δ)−1‖y‖2

Y for δ ∈ (0, 2Reλ+ k); (2.9)
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(ii)

Re
∫ ∞

0

gs(s)〈hs(s), h(s)〉W ds ≤ −k
2
‖h‖2

Y .

It was explained shortly in [17] that A is invertible and generates a C0-semigroup. Here, we give a simple
proof.

Proposition 2.3. Let A be defined by (2.6). Then A−1 is given by

A−1

⎛⎜⎝u

v

y

⎞⎟⎠ (x, s) =

⎛⎜⎜⎝
h1(x) + h2(x) − [h1(1) + h2(1)]x

u(x)

u(x)s− ∫ s

0
y(x, ζ)dζ

⎞⎟⎟⎠ , (2.10)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
h1(x) =

b

a
u(x)

∫ ∞

0

sgs(s)ds− b

a

∫ x

0

[∫ ∞

0

gs(s)
∫ s

0

yx(τ, ζ)dζds
]

dτ,

h2(x) =
1
a

∫ x

0

[∫ τ

0

v(ζ)dζ
]

dτ.
(2.11)

And hence 0 ∈ ρ(A), the resolvent set of A. Moreover, A is dissipative, and thus A generates a C0-semigroup
of constructions eAt on H.

Proof. Let (u, v, y) ∈ H. By A(ũ, ṽ, ỹ) = (u, v, y), it has⎧⎪⎪⎪⎨⎪⎪⎪⎩
ṽ(x) = u(x),(
aũx(x) − b

∫ ∞

0

gs(s)ỹx(x, s)ds
)

x

= v(x),

ṽ(x) − ỹs(x, s) = y(x, s).

This together with the boundary conditions shows that ṽ = u, ỹ = us− ∫ s

0
y(·, ζ)dζ, and⎧⎪⎨⎪⎩

(
aũ′(x) − b

∫ ∞

0

gs(s)
[
u′(x)s−

∫ s

0

y′(x, ζ)dζ
]

ds
)′

= v(x),

ũ(0) = ũ(1) = 0.

A direct computation gives

ũ(x) = h1(x) + h2(x) +
C

a
x,

where h1(x), h2(x) are given by (2.11), and C is a constant to be determined. Using the boundary condition
ũ(1) = 0 gives

C = −a[h1(1) + h2(1)].

Therefore
ũ(x) = h1(x) + h2(x) − [h1(1) + h2(1)]x.

By Lemma 2.2, it has ỹ ∈ Y . And hence, (ũ, ṽ, ỹ) ∈ D(A), (2.10) holds.
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By Lemma 2.2, for each z = (u, v, y) ∈ D(A), it has

Re〈Az, z〉 = Re〈(v, (au′ − b

∫ ∞

0

gs(s)y′(·, s)ds)′, v − ys)), (u, v, y)〉

= Re

{∫ 1

0

av′(x)u′(x)dx+
∫ 1

0

(
au′(x) − b

∫ ∞

0

gs(s)y′(x, s)ds
)′
v(x)dx

+
∫ ∞

0

|gs(s)|
∫ 1

0

b(v(x) − ys(x, s))′y′(x, s)dxds

}

= bRe
∫ 1

0

∫ ∞

0

gs(s)y′s(x, s)y′(x, s)dsdx

≤− k

2
‖y‖2

Y .

Therefore, A is dissipative. By the Lumer-Phillips theorem, A generates a C0-semigroup of contractions on H.
The proof is complete. �

2.2. Spectral analysis for system operator

In this subsection, we analyze the spectrum of A with the kernel (1.6). Firstly, consider the eigenvalue
problem. Suppose Az = λz for 0 �= λ ∈ C and 0 �= z = (u, v, y) ∈ D(A). Then⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v(x) = λu(x),(
au′(x) − b

∫ ∞

0

gs(s)y′(x, s)ds
)′

= λv(x),

v(x) − ys(x, s) = λy(x, s),

u(0) = u(1) = 0.

(2.12)

From the third equation of (2.12) and y(·, 0) = 0, we have

y(x, s) =
1
λ

(1 − e−λs)v(x). (2.13)

We claim that v can not be identical to a constant. Actually, if this is the case, it follows from (2.12) that
(u, v, y) = 0. Hence y /∈ Y for any Reλ ≤ − b1

2 . Therefore,

σp(A) ⊂ D1 =
{
λ ∈ C | −b1

2
< Reλ < 0

}
, (2.14)

where σp(A) denotes, as usual, the set of point spectrum of A. By this fact, we always assume that λ ∈ D1

when we mention the eigenvalues of A in what follows. Collecting these facts just mentioned, we find, from
(2.12) and (2.13), that λ ∈ σp(A) if and only if (λ, u), u �= 0, satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎝a+ b
N∑

j=1

aj − b
N∑

j=1

ajbj
λ+ bj

⎞⎠u′′(x) − λ2u(x) = 0,

u(0) = u(1) = 0.

(2.15)
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Lemma 2.4. Let A be defined by (2.6) and

p(λ) = a+ b

N∑
j=1

aj − b

N∑
j=1

ajbj
λ+ bj

· (2.16)

Then there exists a unique solution λc ∈ {λ| − b1 < Reλ < 0} to p(λ) = 0. Moreover, λc is real, and

λc /∈ σp(A). (2.17)

Proof. Obviously, for any j = 1, 2, . . . , N , λ = −bj is not the zero point of p(λ). Thus, p(λ) = 0 is equivalent to
p̃(λ) = 0, where

p̃(λ) = p(λ)
N∏

j=1

(λ+ bj) =

⎛⎝a+ b

N∑
j=1

aj

⎞⎠ N∏
j=1

(λ + bj) − b

N∑
j=1

ajbj

N∏
k=1,k �=j

(λ + bk).

However, p̃(λ) is an N -th order polynomial, and hence there are at most N number of zeros for p(λ). Now we
find these zeros. Notice that p(λ) is continues in

(∪N−1
j=1 (−bj+1,−bj)

) ∪ (−b1,∞), and

lim
λ→−b−j

p(λ) = +∞, lim
λ→−b+j

p(λ) = −∞, p(0) > 0, j = 1, 2, . . . , N.

It follows that there exists a solution to p(λ) = 0 in (−bj+1,−bj), j = 0, 1, 2, . . . , N − 1, here we set b0 = 0.
Moreover, when λc > − b1

2 and p(λ) = 0, it follows from (2.15) that u ≡ 0. This together with (2.12) gives
(u, v, y) = 0. Hence (2.17) is valid. The proof is complete. �

By Lemma 2.4, the eigenvalue problem (2.15) can be written as⎧⎪⎪⎨⎪⎪⎩
u′′(x) =

λ2

p(λ)
u(x),

u(0) = u(1) = 0.
(2.18)

The nonzero solution of (2.18) is found to be

u(x) = e
√

λ2
p(λ)x − e−

√
λ2

p(λ)x
, (2.19)

where λ satisfies

e
√

λ2
p(λ) − e−

√
λ2

p(λ) = 0. (2.20)

That is

e2
√

λ2
p(λ) = 1,

or
λ2

p(λ)
= −n2π2, n = 1, 2, . . . (2.21)

Substituting (2.21) into (2.19) gives the corresponding eigenfunction (u(x), λu(x), (1 − e−λs)u(x)), where

u(x) = sinnπx, (2.22)

for some n ∈ N+.
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Set

ã = a+ b

N∑
j=1

aj . (2.23)

When |λ| is large enough, since

λ2

p(λ)
=

1
ã

⎛⎜⎝λ2 +
b

ã

N∑
j=1

ajbjλ− b

ã

N∑
j=1

ajb
2
j +

b2

ã2

⎛⎝ N∑
j=1

ajbj

⎞⎠2
⎞⎟⎠ + O(|λ|−1),

we obtain that

λ2 +
b

ã

N∑
j=1

ajbjλ− b

ã

N∑
j=1

ajb
2
j +

b2

ã2

⎛⎝ N∑
j=1

ajbj

⎞⎠2

+ ãn2π2 + O(|λ|−1) = 0.

Thus, the eigenvalues of A are found to be

λn = − b

2ã

N∑
j=1

ajbj ± i
√
ãnπ + O(n−1), n→ ∞.

When λ→ λc, μ = λ− λc → 0. Since

p(λ) = a+ b

N∑
j=1

aj − b

N∑
j=1

ajbj
λ+ bj

= a+ b
N∑

j=1

aj − b
N∑

j=1

ajbj
λc + bj

1

1 + (λ−λc)
λc+bj

= μb

N∑
j=1

ajbj

[
1

(λc + bj)2
− μ

(λc + bj)3
+ O(μ2)

]
,

it has
λ2

p(λ)
=
λ2

c + 2λcμ+ μ2

p(λ)

=
1
μ

λ2
c∑N

j=1
bajbj

(λc+bj)2

·
(

1 +
2
λc
μ+

1
λ2

c

μ2

)
·
⎛⎝1 −

∑N
j=1

ajbj

(λc+bj)3∑N
j=1

ajbj

(λc+bj)2

μ+ O(μ2)

⎞⎠−1

=
1
μ

λ2
c∑N

j=1
bajbj

(λc+bj)2

·
(

1 +
2
λc
μ+

1
λ2

c

μ2

)
·
⎛⎝1 +

∑N
j=1

ajbj

(λc+bj)3∑N
j=1

ajbj

(λc+bj)2

μ

⎞⎠ + O(μ)

=
1
μ

λ2
c

Δ

[
1 +

(
2
λc

+
Δ1

Δ

)
μ

]
+ O(μ),

where

Δ =
N∑

j=1

bajbj
(λc + bj)2

, Δ1 =
N∑

j=1

ajbj
(λc + bj)3

· (2.24)
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This together with (2.21) yields

1
μ

λ2
c

Δ

[
1 +

(
2
λc

+
Δ1

Δ

)
μ

]
+ O(μ) = −n2π2, n→ ∞.

Thus

μn = − 1
n2π2

λ2
c

Δ
+ O(n−3), n→ ∞

or

λn = λc − 1
n2π2

λ2
c

Δ
+ O(n−3), n→ ∞.

We summarize these results as Theorem 2.5 following.

Theorem 2.5. Let A be defined by (2.6). Then the eigenvalues of A must be located inside of D1 that is given
by (2.14). The eigenfunction corresponding to λ is (u(x), λu(x), (1 − e−λs)u(x)) with

u(x) = sinnπx, (2.25)

for some n ∈ N+. More precisely,
(i) When λc > − b1

2 , where λc is given in Lemma 2.4, there is a sequence of eigenvalues {λn} of A, which
have the following asymptotic expression:

λn = λc − 1
n2π2

λ2
c

Δ
+ O(n−3), n→ ∞, (2.26)

where Δ is given by (2.24). Furthermore, the corresponding eigenfunctions (un(x), λnun(x), (1 − e−λns)un(x))
are of the form:

un(x) = sinnπx, n→ ∞. (2.27)

(ii) When |λ| → ∞ and

− b

2ã

N∑
j=1

ajbj > −b1
2
,

the eigenvalues of A have the following asymptotic expressions:

λn = − b

2ã

N∑
j=1

ajbj ± i
√
ãnπ + O(n−1), n→ ∞, (2.28)

where ã is given by (2.23). In particular,

Reλn → − b

2ã

N∑
j=1

ajbj < 0, n→ ∞, (2.29)

that is, Reλ = − b
2ã

∑N
j=1 ajbj is the asymptote of the eigenvalues specified by (2.28). Furthermore, the corre-

sponding eigenfunctions (un(x), λnun(x), (1 − e−λns)un(x)) satisfy (2.27).

Theorem 2.6. Let A be defined by (2.6), and λc be given in Lemma 2.4. Then

σ(A) = σp(A) ∪
{
λc} ∪ {λ| Reλ ≤ −b1

2

}
· (2.30)
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Proof. Let λ /∈ σp(A). If λ = 0, by Proposition 2.3, λ ∈ ρ(A). So we need only consider the case of λ �= 0. For
any z̃ = (ũ, ṽ, ỹ) ∈ H. Solve (λI −A)z = z̃ for z = (u, v, y), that is,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λu(x) − v(x) = ũ(x),

λv(x) −
(
au′(x) − b

∫ ∞

0

gs(s)y′(x, s)ds
)′

= ṽ(x),

λy(x, s) − (v(x) − ys(x, s)) = ỹ(x, s),

u(0) = u(1) = 0,

(2.31)

to get ⎧⎪⎨⎪⎩
v(x) = λu(x) − ũ(x),

y(x, s) =
1
λ

(1 − e−λs)v(x) + e−λs

∫ s

0

eλτ ỹ(x, τ)dτ (2.32)

and ⎧⎪⎪⎨⎪⎪⎩
(
au′(x) − b

∫ ∞

0

gs(s)y′(x, s)ds
)′

− λ2u(x) + λũ(x) + ṽ(x) = 0,

u(0) = u(1) = 0.
(2.33)

There are three cases:
Case I: Reλ ≤ − b1

2 . We claim that λ ∈ σ(A). In fact, take

z̃ = (ũ, ṽ, ỹ) = (0, ṽ, 0), ∀ṽ ∈ H, ṽ �= 0.

It follows from (2.32) and (2.33) that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v(x) = λu(x),

y(x, s) = (1 − e−λs)u(x),(
au′(x) − b

∫ ∞

0

gs(s)(1 − e−λs)u′(x)ds
)′

− λ2u(x) + ṽ(x) = 0,

u(0) = u(1) = 0.

(2.34)

If (2.34) admits a solution, it must have y ∈ Y . This together with Reλ ≤ − b1
2 shows that u′ ≡ 0. Thus, u ≡ 0,

and so ṽ ≡ 0. This is a contradiction. Therefore, there is no solution to equation (2.34), which means that
λ ∈ σ(A).
Case II: Reλ > − b1

2 and λ �= λc. We show that λ ∈ ρ(A). By Lemma 2.2, it has y ∈ Y . (2.33) is equivalent to⎧⎪⎪⎪⎨⎪⎪⎪⎩
η′(x) − λ2u(x) + λũ(x) + ṽ(x) = 0,

η(x) = p(λ)u′(x) +
1
λ

(a− p(λ))ũ′(x) − b

∫ ∞

0

gs(s)
[∫ s

0

e−λ(s−τ)ỹ′(x, τ)dτ
]

ds,

u(0) = u(1) = 0.

(2.35)

We write above equation as the following first order system of differential equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
d
dx

(
u(x)

η(x)

)
=

⎛⎝ 0 1
p(λ)

λ2 0

⎞⎠⎛⎝u(x)

η(x)

⎞⎠ +

⎛⎝ 1
p(λ)U(x)

−λũ(x) − ṽ(x)

⎞⎠ ,

u(0) = u(1) = 0,

(2.36)
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where

U(x) = − 1
λ

(a− p(λ))ũ′(x) + b

∫ ∞

0

gs(s)
[∫ s

0

e−λ(s−τ)ỹ′(x, τ)dτ
]

ds. (2.37)

Let

A(λ) =

⎛⎝ 0 1
p(λ)

λ2 0

⎞⎠ .

Then

eA(λ)x =

⎛⎝a11(λ, x) a12(λ, x)

a21(λ, x) a22(λ, x)

⎞⎠ ,

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a11(λ, x) = cosh

(
λ√
p(λ)

x

)
,

a21(λ, x) = λ
√
p(λ) sinh

(
λ√
p(λ)

x

)
,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a12(λ, x) = 1

λ
√

p(λ)
sinh

(
λ√
p(λ)

x

)
,

a22(λ, x) = cosh
(

λ√
p(λ)

x

)
·

The general solution of (2.36) is given by(
u(x)

η(x)

)
= eA(λ)x

(
u(0)

η(0)

)
−

∫ x

0

eA(λ)(x−γ)

⎛⎝ 1
p(λ)U(γ)

−λũ(γ) − ṽ(γ)

⎞⎠ dγ.

By u(0) = 0, it has,

u(x) = a12(λ, x)η(0) −
∫ x

0

[
1

p(λ)
a11(λ, x− γ)U(γ) + a12(λ, x− γ)(−λũ(γ) − ṽ(γ))

]
dγ (2.38)

and

η(x) = a22(λ, x)η(0) −
∫ x

0

[
1

p(λ)
a21(λ, x− γ)U(γ) + a22(λ, x− γ)(−λũ(γ) − ṽ(γ))

]
dγ. (2.39)

Since λ /∈ σp(A), it follows from (2.20) that

a12(λ, 1) =
1

λ
√
p(λ)

sinh

(
λ√
p(λ)

)
�= 0.

By the boundary condition u(1) = 0, it has

η(0) =
1

a12(λ, 1)

∫ 1

0

[
1

p(λ)
a11(λ, 1 − γ)U(γ) + a12(λ, 1 − γ)(−λũ(γ) − ṽ(γ))

]
dγ. (2.40)

Hence u is uniquely determined by (2.38). By the second equation of (2.35) and (2.39), it has u′ ∈ L2(0, 1).
This together with (2.32) shows that (λI −A)−1 exists and is bounded, or λ ∈ ρ(A).

Case III: λ = λc > − b1
2 . In this case, it follows from (2.33) that⎧⎪⎨⎪⎩

u(x) =
1
λ2

[λũ(x) + ṽ(x) − U ′(x)] ,

u(0) = u(1) = 0,
(2.41)
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where U is given by (2.37). Since ũ ∈ H1
0 (0, 1), (2.41) means that (2.31) admits a solution if and only if U is

differentiable and
ṽ(0) − U ′(0) = ṽ(1) − U ′(1) = 0.

Thus λ /∈ ρ(A).
Combing all these cases completes the proof. �

3. Finite memory

In this section, we turn to the system (1.5) with kernel (1.6). We analyze the spectrum of the system operator
first, and then prove the Riesz basis property for the system. The idea comes from [23] but the result is different,
particularly for the basis property.

3.1. System operator setup

In what follows, we always assume (1.8). Set

hj(x, t) = ajbj

∫ t

0

e−bj(t−s)ux(x, s)ds, j = 1, 2, . . . , N. (3.1)

Then it has ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(hj)t(x, t) = ajbjux(x, t) − bjhj(x, t),

(hj)x(x, t) = ajbj

∫ t

0

e−bj(t−s)uxx(x, s)ds,

hj(x, 0) = 0.

(3.2)

Thus we can rewrite the system (1.5),(1.6) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt(x, t) =

⎛⎝aux(x, t) − b

N∑
j=1

hj(x, t)

⎞⎠
x

, x ∈ (0, 1), t > 0,

(hj)t(x, t) = ajbjux(x, t) − bjhj(x, t), j = 1, 2, . . . , N,

u(0, t) = u(1, t) = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), hj(x, 0) = 0, j = 1, 2, . . . , N.

(3.3)

The system energy is given by

E(t) =
1
2

∫ 1

0

⎡⎣a|ux(x, t)|2 + |ut(x, t)|2 +
N∑

j=1

|hj(x, t)|2
⎤⎦dx. (3.4)

We consider the system (3.3) in the energy state Hilbert space H = H1
0 (0, 1) × (L2(0, 1))N+1 with the inner

product:
〈(u, v, h1, . . . , hN ), (ũ, ṽ, h̃1, . . . , h̃N )〉

=
∫ 1

0

au′(x)ũ′(x)dx+
∫ 1

0

v(x)ṽ(x)dx+
N∑

j=1

∫ 1

0

hj(x)h̃j(x)dx,

∀ (u, v, h1, . . . , hN ), (ũ, ṽ, h̃1, . . . , h̃N) ∈ H.

(3.5)
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Define the system operator B : D(B)(⊂ H) → H as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

u

v

h1

...

hN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v

(au′ − b

N∑
j=1

hj)′

a1b1u
′ − b1h1

...

aNbNu
′ − bNhN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

,

D(B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

u

v

h1

...

hN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

�∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u, v ∈ H1
0 (0, 1),

hj ∈ L2(0, 1), j = 1, . . . , N,

au′ − b

N∑
j=1

hj ∈ H1(0, 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(3.6)

Then (3.3) can be formulated into an abstract evolution equation in H:

d
dt
U(t) = BU(t), U(0) = U0, (3.7)

where U(t) = (u(·, t), ut(·, t), h1(·, t), . . . , hN (·, t)) is the state variable and U0 = (u0(·), u1(·), 0, . . . , 0) is the
initial value.

Lemma 3.1. Let B be defined by (3.6). Then 0 ∈ ρ(B).

Proof. Let Ũ = (ũ, ṽ, h̃1, . . . , h̃N ) ∈ H. Solve BU = Ũ for U = (u, v, h1, . . . , hN ), that is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(x) = ũ(x),⎛⎝au′(x) − b

N∑
j=1

hj(x)

⎞⎠′

= ṽ(x),

ajbju
′(x) − bjhj(x) = h̃j(x), j = 1, 2, . . . , N,

u(0) = u(1) = 0,

(3.8)

to give

v(x) = ũ(x), hj(x) = aju
′(x) − 1

bj
h̃j(x), j = 1, 2, . . . , N (3.9)

and ⎛⎝a− b

N∑
j=1

aj

⎞⎠u′(x) + b

N∑
j=1

1
bj
h̃j(x) =

∫ x

0

ṽ(τ)dτ + C1, (3.10)

where C1 is a constant to be determined. By the boundary condition u(0) = 0, it follows from (3.10) that

u(x) = − b

A

∫ x

0

N∑
j=1

1
bj
h̃j(τ)dτ +

1
A

∫ x

0

∫ s

0

ṽ(τ)dτds +
C1

A
x, (3.11)
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where

A = a− b

N∑
j=1

aj .

Using the other boundary condition u(1) = 0, it gives

C1 = b

∫ 1

0

N∑
j=1

1
bj
h̃j(x)dx −

∫ 1

0

∫ s

0

ṽ(τ)dτds. (3.12)

This together with (3.9) and (3.11) gives the unique solution U ∈ D(B) to equation (3.8). Hence B−1 exists and
is bounded, or 0 ∈ ρ(B). �

3.2. Spectrum of system operator

In this subsection, we consider the spectrum of B. As in previous section, we first consider the eigenvalue
problem. Suppose BU = λU for λ ∈ C and 0 �= U = (u, v, h1, . . . , hN) ∈ D(B), that is,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(x) = λu(x),⎛⎝au′(x) − b
N∑

j=1

hj(x)

⎞⎠′

= λv(x),

ajbju
′(x) − bjhj(x) = λhj(x), j = 1, 2, . . . , N,

u(0) = u(1) = 0.

(3.13)

Proposition 3.2. Let B be defined by (3.6). Then λ = −bj, j = 1, 2, . . . , N are eigenvalues of B, which
corresponding to eigenfunctions ej+2, j = 1, 2, . . . , N respectively, where ej is a constant function whose element
is the jth element of the canonical basis of RN+2. Moreover, each of these eigenvalues is algebraically simple.

Proof. We only give the proof for λ = −b1 because other cases can be treated similarly. Let λ = −b1 and
U = (u, v, h1, . . . , hN ) ∈ D(B). Since λ = −b1, (3.13) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(x) = −b1u(x)⎛⎝au′(x) − b

N∑
j=1

hj(x)

⎞⎠′

= −b1v(x),

a1b1u
′(x) = 0,

(bj − b1)hj(x) = ajbju
′(x), j = 2, . . . , N,

u(0) = u(1) = 0.

(3.14)

This together with (1.7) yields

u(x) = v(x) = hj(x) = 0, j = 2, . . . , N. (3.15)

By the second equation of (3.14), it has
h′1(x) = 0.
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Therefor, e3 is an eigenfunction of B corresponding to −b1. Further computation of (b1I + B)U1 = −e3, where
U1 = (ũ, ṽ, h̃1, . . . , h̃N) ∈ D(B), gives⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṽ(x) = −b1ũ(x),⎛⎝aũ′(x) − b

N∑
j=1

h̃j(x)

⎞⎠′

= −b1ṽ(x),

a1b1ũ
′(x) = −1,

(bj − b1)h̃j(x) = ajbj ũ
′(x), j = 2, . . . , N,

ũ(0) = ũ(1) = 0.

(3.16)

(3.16) has no solution since otherwise, ũ satisfies

a1b1ũ
′(x) = −1, ũ(0) = ũ(1) = 0,

which is impossible. This shows that −b1 is algebraically simple. The proof is complete. �

When λ �= −bj, j = 1, 2, . . . , N , it follows from (3.13) that⎧⎪⎨⎪⎩
v(x) = λu(x),

hj(x) =
ajbj
λ+ bj

u′(x), j = 1, 2, . . . , N
(3.17)

and u satisfies ⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎝a− b
N∑

j=1

ajbj
λ+ bj

⎞⎠ u′′(x) = λ2u(x),

u(0) = u(1) = 0.

(3.18)

The following Lemma 3.3 is straightforward.

Lemma 3.3. Let B be defined by (3.6) and

Λ =

⎧⎨⎩λ ∈ C

∣∣∣∣∣∣ a− b

N∑
j=1

ajbj
λ+ bj

= 0

⎫⎬⎭ . (3.19)

Then
Λ ∩ σp(B) = ∅. (3.20)

Lemma 3.4. Let B be defined by (3.6). Λ is given by (3.19). Then

Λ = {λc1, λc2, . . . , λcN}, (3.21)

where λc1 ∈ (−b1, 0), and λck ∈ (−bk,−bk−1), k = 2, . . . , N .

Proof. Since −bj /∈ Λ, j = 1, 2, . . . , N , p(λ) = 0 is equivalent to q(λ) = 0, where

p(λ) = a− b

N∑
j=1

ajbj
λ+ bj

, q(λ) = p(λ)
N∏

j=1

(λ+ bj). (3.22)
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However, q(λ) is an Nth order polynomial, and hence there are at most N number of zeros for p(λ). Now we
find all these zeros.

Since p(λ) is continues in (−b1,∞) ∪ (∪N−1
j=1 (−bj+1,−bj)), by the fact

lim
λ→−b+1

p(λ) = −∞

and (1.8), we see that there exists a solution to p(λ) = 0 in (−b1, 0). For any j = 1, 2, . . . , N − 1, it has

lim
λ→−b+j+1

p(λ) = −∞, lim
λ→−b−j

p(λ) = +∞.

Therefore, there exists a solution to p(λ) = 0 in (−bj+1,−bj). The proof is complete. �

By Lemma 3.3, the eigenvalue problem (3.18) is equivalent to the following problem:⎧⎪⎪⎨⎪⎪⎩
u′′(x) =

λ2

p(λ)
u(x),

u(0) = u(1) = 0,
(3.23)

where p(λ) is given by (3.22). Hence

u(x) = e
√

λ2
p(λ)x − e−

√
λ2

p(λ)x
. (3.24)

By the boundary condition u(1) = 0, (3.23) has non-trivial solution if and only if

e
√

λ2
p(λ) − e−

√
λ2

p(λ) = 0. (3.25)

That is

e2
√

λ2
p(λ) = 1,

which is equivalent to
λ2

p(λ)
= −n2π2, n = 1, 2, . . . (3.26)

Substituting (3.26) into (3.24), we obtain the eigenfunction
(
u(x), λu(x), a1b1

λ+b1
u′(x), . . . , aN bN

λ+bN
u′(x)

)
correspond-

ing to λ, where
u(x) = sinnπx, (3.27)

for some n ∈ N+.
When |λ| is large enough, since

λ2

p(λ)
=

1
a

⎛⎜⎝λ2 +
b

a

N∑
j=1

ajbjλ− b

a

N∑
j=1

ajb
2
j +

b2

a2

⎛⎝ N∑
j=1

ajbj

⎞⎠2
⎞⎟⎠ + O(|λ|−1),

it has

λ2 +
b

a

N∑
j=1

ajbjλ− b

a

N∑
j=1

ajb
2
j +

b2

a2

⎛⎝ N∑
j=1

ajbj

⎞⎠2

+ an2π2 + O(|λ|−1) = 0.
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Thus, the eigenvalues of B is this case are found to be

λn = − b

2a

N∑
j=1

ajbj ± i
√
anπ + O(n−1), n→ ∞.

For any λc ∈ Λ, when λ→ λc, μ = λ− λc → 0. Notice that

p(λ) = μb

N∑
j=1

ajbj

[
1

(λc + bj)2
− μ

(λc + bj)3
+ O(μ2)

]
.

We have
λ2

p(λ)
=

1
μ

λ2
c

Δ

[
1 +

(
2
λc

+
Δ̃

Δ

)
μ

]
+ O(μ),

where

Δ =
N∑

j=1

bajbj
(λc + bj)2

, Δ̃ =
N∑

j=1

ajbj
(λc + bj)3

·

This together with (3.26) yields

1
μ

λ2
c

Δ

[
1 +

(
2
λc

+
Δ̃

Δ

)
μ

]
+ O(μ) = −n2π2, n→ ∞.

Thus,

μn = − 1
n2π2

λ2
c

Δ
+ O(n−3), n→ ∞.

Hence, the eigenvalues of B in this case are given by

λn = λc − 1
n2π2

λ2
c

Δ
+ O(n−3), n→ ∞.

We summarize these results as Proposition 3.5 following.

Proposition 3.5. Let B be defined by (3.6), λ be an eigenvalue of B, satisfying λ �= −bj, j = 1, 2, . . . , N . Then
the eigenfunction corresponding to λ is of the form(

u(x), λu(x),
a1b1
λ+ b1

u′(x), . . . ,
aNbN
λ+ bN

u′(x)
)
,

where
u(x) = sinnπx, (3.28)

for some n ∈ N+. Furthermore,
(i) For any 1 ≤ k ≤ N , there is a sequence of eigenvalues {λnk} of B, which have the following asymptotic

expressions:

λnk = λck − 1
n2π2

λ2
ck

Δk
+ O(n−3), n→ ∞, (3.29)

where

Δk =
N∑

j=1

bajbj
(λck + bj)2

· (3.30)
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The corresponding eigenfunctions
(
un(x), λun(x), a1b1

λ+b1
u′n(x), . . . , aN bN

λ+bN
u′n(x)

)
satisfy

un(x) =
1
nπ

sinnπx, n→ ∞. (3.31)

(ii) When |λ| → ∞, the eigenvalues {λn0, λn0} of B have the following asymptotic expressions:

λn0 = − b

2a

N∑
j=1

ajbj + i
√
anπ + O(n−1), n→ ∞, (3.32)

where λn0 denotes the complex conjugate of λn0. In particular,

Reλn0 → − b

2a

N∑
j=1

ajbj < 0, n→ ∞, (3.33)

that is, Reλ = − b
2a

∑N
j=1 ajbj is the asymptote of the eigenvalues λn0 given by (3.32). Furthermore, the corre-

sponding eigenfunctions
(
un(x), λun(x), a1b1

λ+b1
u′n(x), . . . , aN bN

λ+bN
u′n(x)

)
satisfy (3.31).

Combing Propositions 3.2 and 3.5, we obtain the following Theorem 3.6.

Theorem 3.6. Let B be defined by (3.6). Then
(i) B has the eigenvalues

{−bj, j = 1, 2, . . . , N} ∪
{
λn1, λn2, . . . , λnN , λn0, λn0, n ∈ N

+

}
, (3.34)

where λnk, k = 1, 2, . . . , N and λn0 have the asymptotic expressions (3.29) and (3.32), respectively.
(ii) The eigenfunction corresponding to −bj is ej+2 for any j = 1, 2, . . . , N .
(iii) The eigenfunctions corresponding to λnk, k = 1, 2, . . . , N , are given by

Unk(x) =
(

1
nπ

sinnπx, 0,
a1b1

λnk + b1
cosnπx, . . . ,

aNbN
λnk + bN

cosnπx
)

+ (0,O(n−1), . . . ,O(n−1)), n→ ∞. (3.35)

(iv) The eigenfunctions corresponding to λn0 and λn0, are given by

Un0(x) =
(

1
nπ

sinnπx, i
√
a sinnπx, 0, . . . , 0

)
+ (0,O(n−1), . . . ,O(n−1)), n→ ∞ (3.36)

and

Un0(x) =
(

1
nπ

sinnπx,−i√a sinnπx, 0, . . . , 0
)

+ (0,O(n−1), . . . ,O(n−1)), n→ ∞ (3.37)

respectively.

Concerning about σ(B), we have the following Theorem 3.7.

Theorem 3.7. Let B be defined by (3.6). Λ is given by (3.19). Then

σ(B) = Λ ∪ σp(B). (3.38)
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Proof. Let λ /∈ σp(B). For any Ũ = (ũ, ṽ, h̃1, . . . , h̃N ) ∈ H. Solve (λI −B)U = Ũ for U = (u, v, h1, . . . , hN ), that
is, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λu(x) − v(x) = ũ(x),

λv(x) −
⎛⎝au′(x) − b

N∑
j=1

hj(x)

⎞⎠′

= ṽ(x),

λhj(x) − (ajbju
′(x) − bjhj(x)) = h̃j(x), j = 1, 2, . . . , N,

u(0) = u(1) = 0,

(3.39)

to get ⎧⎪⎨⎪⎩
v(x) = λu(x) − ũ(x),

hj(x) =
1

λ+ bj
(ajbju

′(x) + h̃j(x)), j = 1, 2, . . . , N (3.40)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θ′(x) = λ2u(x) − λũ(x) − ṽ(x),

θ(x) = p(λ)u′(x) −
N∑

j=1

b

λ+ bj
h̃j(x),

u(0) = u(1) = 0,

(3.41)

where p(λ) is given by (3.22). There are two cases:

Case I: λ /∈ Λ. In this case, p(λ) �= 0. Since by Lemma 3.1, 0 ∈ ρ(B), we only need consider the case of λ �= 0.
Now, we can rewrite (3.41) as the following first order system of differential equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

d
dx

(
u(x)

θ(x)

)
=

⎛⎝ 0 1
p(λ)

λ2 0

⎞⎠⎛⎝u(x)

θ(x)

⎞⎠ +

⎛⎝ 1
p(λ)V (x)

−λũ(x) − ṽ(x)

⎞⎠ ,

u(0) = u(1) = 0,

(3.42)

where

V (x) =
N∑

j=1

b

λ+ bj
h̃j(x). (3.43)

Let

A(λ) =

⎛⎝ 0 1
p(λ)

λ2 0

⎞⎠ ·

Then

eA(λ)x =

⎛⎝a11(λ, x) a12(λ, x)

a21(λ, x) a22(λ, x)

⎞⎠ ,

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a11(λ, x) = cosh

(
λ√
p(λ)

x

)
,

a21(λ, x) = λ
√
p(λ) sinh

(
λ√
p(λ)

x

)
,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a12(λ, x) = 1

λ
√

p(λ)
sinh

(
λ√
p(λ)

x

)
,

a22(λ, x) = cosh
(

λ√
p(λ)

x

)
.
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The general solution of (3.42) is given by

(
u(x)

θ(x)

)
= eA(λ)x

(
u(0)

θ(0)

)
−

∫ x

0

eA(λ)(x−γ)

⎛⎝ 1
p(λ)V (γ)

−λũ(γ) − ṽ(γ)

⎞⎠ dγ.

By u(0) = 0, it has,

u(x) = a12(λ, x)θ(0) −
∫ x

0

[
1

p(λ)
a11(λ, x− γ)V (γ) + a12(λ, x− γ)(−λũ(γ) − ṽ(γ))

]
dγ (3.44)

and

θ(x) = a22(λ, x)θ(0) −
∫ x

0

[
1

p(λ)
a21(λ, x − γ)V (γ) + a22(λ, x − γ)(−λũ(γ) − ṽ(γ))

]
dγ. (3.45)

Since λ /∈ σp(B), by (3.25)

a12(λ, 1) =
1

λ
√
p(λ)

sinh

(
λ√
p(λ)

)
�= 0.

By the boundary condition u(1) = 0, it has

θ(0) =
1

a12(λ, 1)

∫ 1

0

[
1

p(λ)
a11(λ, 1 − γ)V (γ) + a12(λ, 1 − γ)(−λũ(γ) − ṽ(γ))

]
dγ. (3.46)

Hence u is uniquely determined by (3.44). By the second equation of (3.41) and (3.45), we know that u′ ∈
L2(0, 1). This together with (3.40) shows that (λI − B)−1 exists and is bounded, or λ ∈ ρ(B).

Case II: λ ∈ Λ. In this case, λ �= 0. By (3.41),⎧⎨⎩u(x) =
1
λ2

(λũ(x) + ṽ(x) − V ′(x)) ,

u(0) = u(1) = 0,
(3.47)

where V is given by (3.43). Since ũ ∈ H1
0 (0, 1), (3.47) means that (3.39) admits a solution if and only if V is

differentiable, and
ṽ(0) − V ′(0) = ṽ(1) − V ′(1) = 0.

Thus λ /∈ ρ(B). The result follows by combining of these two cases. �

In order to investigate the residual and continuous spectrum of B, we need the adjoint operator B∗.

Lemma 3.8. Let B be defined by (3.6). Then

B∗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

u

v

h1

...

hN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−v + 1
a

∑N
j=1 ajbj

∫ x

0
hj(τ)dτ

−au′′
bv′ − b1h1

...

bv′ − bNhN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

, (3.48)
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with

D(B∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

u

v

h1

...

hN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

�∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u, v,
∑N

j=1 ajbj
∫ x

0
hj(τ)dτ ∈ H1

0 (0, 1),

u′′, hj ∈ L2(0, 1), j = 1, . . . , N.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3.49)

Theorem 3.9. Let B be defined by (3.6). Then

σr(B) = ∅, σc(B) = Λ, (3.50)

where σr(B) and σc(B) denotes the set of residual and continuous spectrum of B, respectively.

Proof. By Lemma 3.3 and Theorem 3.7, we only need to prove Λ∩σr(B) = ∅. Since λ ∈ σr(B) implies λ ∈ σp(B∗),
it suffices to show that Λ ∩ σp(B∗) = ∅. Suppose that B∗U = λU for λ ∈ C and 0 �= U = (u, v, h1, . . . , hN ) ∈
D(B∗). Then ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−v(x) +
1
a

N∑
j=1

ajbj

∫ x

0

hj(τ)dτ = λu(x),

−au′′(x) = λv(x),

bv′(x) − bjhj(x) = λhj(x), j = 1, 2, . . . , N,

v(0) = v(1) = 0.

When λ �= −bj, j = 1, 2, . . . , N , v satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎝a− b

N∑
j=1

ajbj
λ+ bj

⎞⎠ v′′(x) = λ2v(x),

v(0) = v(1) = 0.

(3.51)

For any λ ∈ Λ, it has v = 0. This implies that U = 0. Therefore, λ /∈ σp(B∗). So, Λ ∩ σp(B∗) = ∅. The proof is
complete. �

3.3. Riesz basis property

Now, we study the Riesz basis property for system (3.3). To this purpose, we need the following Theorem 3.10,
which was originally proved in [12]. Since [12] is not published, we attach its brief proof as appendix in this
paper.

Theorem 3.10. Let A be a densely defined closed linear operator in a Hilbert space H with isolated eigenvalues
{λi}∞1 and σr(A) = ∅. Let {φn}∞1 be a Riesz basis for H. Suppose that there are N0 ≥ 1 and a sequence of
generalized eigenvectors {ψn}∞N0

of A such that

∞∑
n=N0

‖ψn − φn‖2
H <∞. (3.52)

Then there exist M(≥ N0) number of generalized eigenvectors {ψn0}M
1 such that {ψn0}M

1 ∪ {ψn}∞M+1 forms a
Riesz basis for H.
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Theorem 3.11. Let B be defined by (3.6). Then
(i) There is a sequence of generalized eigenfunctions of B, which forms a Riesz basis for the state space H.
(ii) All eigenvalues except finitely many are algebraically simple.
(iii) B generates a C0-semigroup eBt on H.
Therefore, for the semigroup eBt, the Spectrum-determined growth condition holds: ω(B) = s(B), where

ω(B) = limt→∞ 1
t ‖eBt‖ is the growth order of eBt and s(B) = sup{Reλ | λ ∈ σ(B)} is the spectral bound

of B.

Proof. Since from Theorem 3.6, all eigenvalues are located in some left half complex plane, the other parts
follow directly from (i) and (ii). So we only need to prove (i) and (ii). For any n ∈ N+, set

Vn0 =
(

1
nπ

sinnπx, i
√
a sinnπx, 0, . . . , 0

)
, (3.53)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕn0 =

(√
a cosnπx, i

√
a sinnπx, 0, . . . , 0

)
+ (0, 1, 1, . . . , 1)O(n−1),

ϕnk =
(√

a, 0,
a1b1

λnk + b1
, . . . ,

aNbN
λnk + bN

)
cosnπx+ (0, 1, 1, . . . , 1)O(n−1),

k = 1, 2, . . . , N.

(3.54)

Define the reference sequence:⎧⎪⎪⎨⎪⎪⎩
ψn0 =

(√
a cosnπx, i

√
a sinnπx, 0, . . . , 0

)
,

ψnk =
(

0, 0,
a1b1

λnk + b1
, . . . ,

aNbN
λnk + bN

)
cosnπx, k = 1, 2, . . . , N. (3.55)

Since bj �= bk, λnj �= λnk, 1 ≤ j < k ≤ N , a direct computation shows that

det

⎛⎜⎜⎜⎜⎜⎜⎝

a1b1
λn1+b1

a1b1
λn2+b1

· · · a1b1
λnN +b1

a2b2
λn1+b2

a2b2
λn2+b2

· · · a2b2
λnN +b2

· · · · · · · · · · · ·
aN bN

λn1+bN

aN bN

λn2+bN
· · · aN bN

λnN+bN

⎞⎟⎟⎟⎟⎟⎟⎠ �= 0.

Hence,
{ψn0, ψn0, ψn1, ψn2, . . . , ψnN}∞1 (3.56)

forms a Riesz basis for H1 = (L2(0, 1))N+2. By (3.54), (3.55) and Theorem 3.6, there exists an N0 ∈ N+, such
that,

∞∑
n=N0

[
‖Un0 − Vn0‖2

H + ‖Un0 − Vn0‖2
H +

N∑
k=1

∥∥∥∥Unk − Un0 + Un0

2
− ψnk

∥∥∥∥2

H

]

=
∞∑

n=N0

[
‖ϕn0 − ψn0‖2

H1
+ ‖ϕn0 − ψn0‖2

H1
+

N∑
k=1

∥∥∥∥ϕnk − ϕn0 + ϕn0

2
− ψnk

∥∥∥∥2

H1

]
<∞.

(3.57)

By Theorem 3.10, (i) and hence (ii) hold true. The proof is complete. �

Combing Theorems 3.6, 3.7 and 3.11, we conclude the exponential stability of system (3.3).
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Theorem 3.12. System (3.3) is exponentially stable, that is,

E(t) ≤Me−ωtE(0), (3.58)

for some M,ω > 0, where E(t) is given by (3.4).

Appendix A. Proof of Theorem 3.10

Let sp(A) denote the root subspace of A that is a closed linear span of all generalized eigenfunctions of A.
Let E(λi, A) denote the projection on the space of generalized eigenvectors of A corresponding to λi, that is,
the subspace spanned by all those φi satisfying (λi −A)nφi = 0 for some positive integer n. We have following
lemmas.
Lemma A.1. Let A be a linear operator in a Hilbert space H with isolated eigenvalues and residual spectrum
{λi}∞1 , ρ(A) �= ∅. Let

σ∞ = {x | E(λi, A)x = 0, i ≥ 1}. (A.1)

Then σ∞ is either 0 or infinite dimensional.

Proof. Suppose first that A is bounded and 0 < dimσ∞ < ∞. Since σ∞ is invariant subspace of A, that is,
Aσ∞ ⊂ σ∞, A has at least one eigenvector x∞ ∈ σ∞ such that Ax∞ = ηx∞ for some constant η. So η = λi for
some i, and hence,

x∞ = E(λi, A)x∞ = 0,

which is a contradiction. So (A.1) holds true.
If A is unbounded. Take λ0 ∈ ρ(A) such that | λ0 − λi |≥ ε > 0 for all i ≥ 1. Let T = (λ0 − A)−1,

μi = (λ0 − λi)−1, i = 1, 2, . . . Then it is well-known that

λi ∈ σp(A) if and only if μi ∈ σp(T ), λi ∈ σr(A) if and only if μi ∈ σr(T )

and
E(λi, A) = E(μi, T ), for all i ≥ 1.

Hence
σ∞ = {x | E(μi, T )x = 0, μi ∈ σp(T ) ∪ σr(T )}.

Since T is bounded, σ∞ is either 0 or infinite dimensional. �

Lemma A.2. Let A be a densely defined closed operator in a Hilbert space H with isolated eigenvalues {λi}∞1 .
Then

H = sp(A) ⊕ σ∗
∞, (A.2)

where
σ∗
∞ = {x | E(λi, A

∗)x = 0, λi ∈ σp(A)}. (A.3)

Proof. By a well-known fact σ(A∗) = {λ | λ ∈ σ(A)}, λi is an isolated spectral point of A∗ and so E(λi, A
∗)

makes sense. For any f ∈ E(λi, A)H , g∗ ∈ σ∗∞, we have E(λi, A)f = f . And hence

〈f, g∗〉 = 〈E(λi, A)f, g∗〉 = 〈f,E(λi, A
∗)g∗〉 = 0.

So sp(A) ⊂ (σ∗
∞)⊥. If f �∈ sp(A), then there exists a functional g∗ such that

〈f, g∗〉 = 1, 〈h, g∗〉 = 0, for all h ∈ sp(A).
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For any w ∈ H , it follows from E(λi, A)w ∈ sp(A) that

〈w,E(λi, A
∗)g∗〉 = 〈E(λi, A)w, g∗〉 = 0.

By the arbitrary of w, it has E(λi, A
∗)g∗ = 0. That is g∗ ∈ σ∗∞. Hence f �∈ (σ∗∞)⊥. Therefore, sp(A) = (σ∗∞)⊥,

proving (A.2). �

The next Lemma A.3 comes from [19].
Lemma A.3. Let {φn}∞1 be a Riesz basis for a Hilbert space H. Suppose there are N0 ≥ 1 and an ω-linearly
independent sequence {ψn}∞N0

such that

∞∑
n=N0

‖ψn − φn‖2 <∞.

Then {ψn}∞N0
forms a Riesz basis for the subspace spanned by itself.

Proof of Theorem 3.10. Condition (3.52) implies that there exists an M ≥ N0 such that {φn}M
1 ∪ {ψn}∞M+1

forms a Riesz basis for H . In particular, (sp(A))⊥ is finite dimensional. This together with (A.2) shows that σ∗
∞

is finite dimensional. It is known that λ ∈ σp(A∗)∪σr(A∗) if and only if λ ∈ σp(A)∪σr(A). By our assumption,
σp(A∗) ∪ σr(A∗) = {λi}∞1 . By Lemma A1, it follows that σ∗∞ = {0}. Therefore,

sp(A) = H. (A.4)

Suppose that {ψα} ∪ {ψn}∞M is the “maximal” ω-linearly independent set of generalized eigenvector of A,
that is, {ψα} ∪ {ψn}∞M is an ω-linearly independent set and if adding another extra generalized eigenvector of
A to {ψα} ∪ {ψn}∞M , the extended set is not ω-linearly independent anymore. By Lemma A.3, {ψα} ∪ {ψn}∞M
forms a Riesz basis for the subspace spanned by itself, which is the whole space as we just proved.

Since a proper subset of a Riesz basis can not be a Riesz basis, it follows from condition (3.52) and Bari’s
theorem (see Sect. 2 of [9] in p. 309) that the number of {ψα} is just M . The proof is complete. �
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