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DYNAMIC PROGRAMMING PRINCIPLE FOR STOCHASTIC RECURSIVE
OPTIMAL CONTROL PROBLEM WITH DELAYED SYSTEMS ∗
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Abstract. In this paper, we study one kind of stochastic recursive optimal control problem for the
systems described by stochastic differential equations with delay (SDDE). In our framework, not only
the dynamics of the systems but also the recursive utility depend on the past path segment of the
state process in a general form. We give the dynamic programming principle for this kind of optimal
control problems and show that the value function is the viscosity solution of the corresponding infinite
dimensional Hamilton-Jacobi-Bellman partial differential equation.
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1. Introduction

The classical stochastic control system is governed by a nonlinear stochastic differential equation (SDE). This
kind of stochastic optimal control problems has been studied extensively, both by the dynamic programming
approach and by the Pontryagin stochastic maximum principle. In our paper, we are concerned with the dynamic
programming principle. There are many works concerning this subject. Such as Yong and Zhou [13] for the
classical stochastic control system, and Peng [10, 11], Wu and Yu [12] for the stochastic recursive case.

The research of many natural and social phenomena shows that the future development of many processes
depends not only on their present state but also essentially on their previous history. Such processes can be de-
scribed by the stochastic differential delayed equation (SDDE). Many examples can be found in Mohammed [8, 9].
Whereas the dynamic programming principle can also be extended to stochastic control problems with delay
(see e.g. [6]), most problems remain practically intractable because of the complex infinite-dimensional state
space framework. In [7], Larssen and Risebro consider a class of optimal consumption problems with the stochas-
tic delayed systems for some special cases, which shows that the financial application of this kind of dynamic
programming principle.
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However, Duffien and Epstein [2] showed that the personal utility at time t is not only a function of the
instantaneous consumption rate, but also of the future utility (corresponding to the future consumption). Also,
from [3], we know that this kind of recursive utility can be described by backward stochastic differential equa-
tion(BSDE), and the stochastic differential recursive utility is an extension of the standard additive one. So one
of our goals in this paper is to obtain the dynamic programming principle for the delayed stochastic optimal
control problem with the recursive utility.

For this, we study one kind of delayed stochastic recursive optimal control problem with the cost functional
described by the solution of a BSDE. We prove that the celebrated dynamic programming principle for this
kind of optimal control problem still holds. Because of the absence of Itô’s formula for the function of the
history state and the infinite-dimensional difficulty, it is not easy to obtain the Hamilton-Jacobi-Bellman (HJB)
equation which the optimal value function satisfies. To overcome this difficulty, with the help of the theory of
generator for the operator and the semigroup properties, we obtain the corresponding HJB equation and show
that the value function of the recursive optimal control problem is the viscosity solution of HJB equation.

The paper is organized as follows. In Section 2, we present some notations which will be used throughout
the paper, and we formulate the recursive optimal control problem with delay. In Section 3, we prove that
the celebrated dynamic programming principle still holds under our framework. In Section 4, we give some
properties of the optimal value function. We obtain the corresponding HJB equation and show that the optimal
value function is the viscosity solution of the HJB equation in this section. Moreover, in some special case, we
can get the uniqueness result of the viscosity solution.

2. Notations and formulation of the problem

Let (Ω,F , P ) be a probability space. Given 0 ≤ T < ∞ denoting a fixed terminal time. Let 0 ≤ δ < ∞ be
a fixed constant, and [−δ, 0] be the duration of the bounded delay of the systems considered in our paper. For
the sake of simplicity, denote C := C([−δ, 0]; Rn), the Banach space of continuous paths γ : [−δ, 0] → R

n with
norm ‖ γ ‖C := sup

−δ≤s≤0
|γ(s)|, where | · | is the Euclidean norm on R

n. And let n, d ≥ 1 be integer.

If ϕ ∈ C([−δ, T ]; Rn) and 0 ≤ t ≤ T , let ϕt be defined by

ϕt(θ) = ϕ(t + θ), −δ ≤ θ ≤ 0. (2.1)

We note that ϕt is the segment of the path of ϕ from t − δ to t.
Throughout the end, let {W (t)}0≤t≤T be a d-dimensional Brownian motion on completed filtered probability

space (Ω,F , P ; {Ft}t≥0), where Ft is the natural filtration of {W (t)} with F0 contains all P -null sets of F .
We also use the following notations in our paper:

L2(Ω,F , P ) =
{
ξ is anFT − measurable random variable s.t. E|ξ|2 < +∞}

,

H2
F (0, T ) =

{
(ϕt, 0 ≤ t ≤ T ) is an adapted process s.t. E

∫ T

0

|ϕt|2dt < +∞
}

,

S2
F (0, T ) =

{
(ϕt, 0 ≤ t ≤ T ) is an adapted process s.t. E

(
sup

0≤t≤T
|ϕt|2

)
< +∞

}
,

L2(Ω, C;Ft) =
{

ϕ : Ω → C isFt − measurable s.t. ‖ ϕ ‖2
L2(Ω,C):= E[‖ ϕ(ω) ‖2

C ] < ∞
}

.

Moreover, we denote by (·|·) the inner product in L2(Ω, C;Ft), and 〈·, ·〉 the inner product in R
n. Given ϕ

and φ in C, we have defined as follows,

(ϕ|φ) =
∫ 0

−δ

〈ϕ(θ), φ(θ)〉 dθ, and ‖ ϕ ‖2= (ϕ|ϕ)
1
2 .
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We introduce the admissible control set Uad defined by

Uad := {v(·) ∈ H2
F(0, T )|v(·) takes value in U ⊂ R

k}.

Here U is a compact subset of R
k, an element of Uad is called an admissible control.

For a given admissible control, we consider the following system of controlled stochastic functional differential
equations with a bounded memory:{

dX(t) = b(t, Xt, v(t))dt + σ(t, Xt, v(t))dW (t), t ∈ [s, T ],
Xs = ϕs.

(2.2)

Here Xs and ϕs are defined similarly as in (2.1), i.e., for any 0 ≤ s ≤ T , Xs = X(s + θ), ϕs = ϕ(s + θ),
−δ ≤ θ ≤ 0, and ϕ ∈ L2(Ω, C;Fs) is regarded as the initial path. The maps

b : [0, T ]× C × U → R
n; σ : [0, T ]× C × U → R

n×d

satisfy the following assumptions:
(A1) b and σ are continuous in t;
(A2) for each integer m ≥ 1, there is a constant Lm > 0 (independent of t) such that

|b(t, φ, v) − b(t, φ̂, v̂)| + |σ(t, φ, v) − σ(t, φ̂, v̂)| ≤ Lm(‖ φ − φ̂ ‖C +|v − v̂|),

for any 0 ≤ t ≤ T, φ, φ̂ ∈ C with ‖ φ ‖C≤ Lm, ‖ φ̂ ‖C≤ Lm and v, v̂ ∈ U ;
(A3) there is a constant K > 0 such that

|b(t, φ, v)| + |σ(t, φ, v)| ≤ K(1+ ‖ φ ‖C +|v|),

for any 0 ≤ t ≤ T, φ ∈ C, v ∈ U.
Under the above assumptions, for any v(·) ∈ Uad, the control system (2.2) with the aftereffect has a unique

strong solution {Xs,ϕ;v(t), 0 ≤ s ≤ t ≤ T }, and also we have the following estimates by the existence and
uniqueness theorem of SDDE in Mohammed [8, 9]:

Proposition 2.1. For all s ∈ [0, T ], ϕ, ϕ̂ ∈ L2(Ω, C;Fs), v(·), v̂(·) ∈ Uad,

E
Fs [‖ Xs,ϕ;v

t ‖2
C ] ≤ Λ(1+ ‖ ϕ ‖2

C). (2.3)

If we define the following mapping

T s
t : L2(Ω, C;Fs) × U → L2(Ω, C;Ft),

(ϕ, v) → Xs,ϕ;v
t ,

then we have

E
Fs [‖ T s

t (ϕ, v) − T s
t (ϕ̂, v̂) ‖2

C ] ≤ Λ

(
‖ ϕ − ϕ̂ ‖2

C +E
Fs

[∫ T

s

|v(t) − v̂(t)|2dt

])
. (2.4)

Remark 2.2. From now on, let Λ be a constant which can be changed line by line throughout our paper.

Now for any admissible control v(·) ∈ Uad, 0 ≤ s ≤ t ≤ T , we consider the following BSDE:

Y s,ϕ;v(t) = Φ(Xs,ϕ;v
T ) +

∫ T

t

f(r, Xs,ϕ;v
r , Y s,ϕ;v(r), Zs,ϕ;v(r), v(r))dr −

∫ T

t

Zs,ϕ;v(r)dW (r), (2.5)
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where
f : [0, T ]× C × R × R

d × U → R, Φ : C → R

satisfy the following conditions:
(A4) f is Ft measurable and it is continuous in t;
(A5) for some constant L > 0, and for any φ, φ̂ ∈ C, y, ŷ ∈ R, z, ẑ ∈ R

d, v, v̂ ∈ U, a.s.

|f(t, φ, y, z, v) − f(t, φ̂, ŷ, ẑ, v̂)| + |Φ(φ) − Φ(φ̂)| ≤ L(‖ φ − φ̂ ‖C +|y − ŷ| + |z − ẑ| + |v − v̂|),
and ∀(φ, v) ∈ C × U , we have

|f(t, φ, 0, 0, v)| + |Φ(φ)| ≤ K(1+ ‖ φ ‖C).

Then from the result of the classical BSDE, we have that BSDE (2.5) has a unique solution triple
(Y s,ϕ;v, Zs,ϕ;v) ∈ S2

F(0, T ) × H2
F(0, T ). Moreover we get the estimates for the solution of (2.5).

Proposition 2.3. (A1)–(A5) hold, we have

E
Fs

{
sup

s≤t≤T
|Y s,ϕ;v(t)|2 +

∫ T

s

|Zs,ϕ;v(t)|2dt

}
≤ Λ(1+ ‖ ϕ ‖2

C) (2.6)

and

E
Fs

{
sup

s≤t≤T
|Y s,ϕ;v(t) − Y s,ϕ̂;v̂(t)|2 +

∫ T

s

|Zs,ϕ;v(t) − Zs,ϕ̂;v̂(t)|2dt

}

≤ Λ ‖ ϕ − ϕ̂ ‖2
C +ΛE

Fs

{∫ T

s

|v(t) − v̂(t)|2ds

}
.

(2.7)

Given a control process v(·) ∈ Uad, we introduce the associated cost functional

J(s, ϕ; v(·)) := Y s,ϕ;v(t)|t=s, (s, ϕ) ∈ [0, T ]× C, (2.8)

For each initial datum (s, ϕ) ∈ [0, T ] × C, the optimal control problem is to find v(·) ∈ Uad so as to maximize
the objective function J .

Remark 2.4. The problem we formulated is one kind of stochastic recursive optimal control problem with
delay. In the financial market, Xs,ϕ;v(t) can represent the wealth of the investor and Y s,ϕ;v(t) represents the
recursive utility cost functional, (see, for example, Ref. [3]).

3. Dynamic programming principle of the problem

In this section, we will prove that the dynamic programming principle still holds for the above optimization
problem.

We define the value function of the optimal control problem

u(s, ϕ) := esssupv(·)∈Uad
J(s, ϕ; v(·)), (s, ϕ) ∈ [0, T ]× C. (3.1)

For each s > 0, we denote by {Fs
t , s ≤ t ≤ T } the natural filtration of the Brownian motion {W (t)−W (s), s ≤

t ≤ T } augmented by the P-null sets of F . Also we introduce the following subspaces of Uad:

Us
ad := {v(·) ∈ Uad| v(t) isFs

t progressively measurable,∀ s ≤ t ≤ T },

Ūs
ad :=

⎧⎨
⎩v(t) =

N∑
j=1

vj(t)1Aj | vj(t) ∈ Us
ad, {Aj}N

j=1 is a partition of (Ω,Fs), N = 1, 2, · · ·
⎫⎬
⎭ .
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Lemma 3.1.

X
s,ϕ;

∑N
j=1 vj1Aj

t =
N∑

j=1

1Aj X
s,ϕ;vj

t ,

Y s,ϕ;
∑N

j=1 vj1Aj (t) =
N∑

j=1

1Aj Y
s,ϕ;vj

(t),

Zs,ϕ;
∑N

j=1 vj1Aj (t) =
N∑

j=1

1Aj Z
s,ϕ;vj

(t).

Proof. The main idea of the proof is essentially the same as that in Peng [11], hence we only give sketch for the
different points. If v =

∑N
j=1 1Aj v

j , for each j we denote

(Xj(t), Y j(t), Zj(t)) = (Xs,ϕ;v(t), Y s,ϕ;v(t), Zsϕ;v(t))|v=vj , and Xj
r = Xr|v=vj .

We can see that Xj(t), Y j(t), Zj(t) are the solutions of the following SDDE and BSDE respectively,

Xj(t) = ϕ(s) +
∫ t

s

b(r, Xj
r , vj(r))dr +

∫ t

s

σ(r, Xj
r , vj(r))dW (r), t ∈ [s, T ],

Y j(t) = Φ(Xj
T ) +

∫ T

t

f(r, Xj
r , Y j(r), Zj(r), vj(r))dr −

∫ T

t

Zj(r)dW (r), t ∈ [s, T ].

Multiplying 1Aj on both sides of the above functions, we have

N∑
j=1

1Aj X
j(t) =

N∑
j=1

1Aj ϕ(s) +
∫ t

s

b

⎛
⎝r,

N∑
j=1

1AjX
j
r ,

N∑
j=1

1Aj v
j(r)

⎞
⎠ dr

+
∫ t

s

σ

⎛
⎝r,

N∑
j=1

1AjX
j
r ,

N∑
j=1

1Aj v
j(r)

⎞
⎠ dW (r),

N∑
j=1

1AjY
j(t) = Φ

⎛
⎝ N∑

j=1

1AjX
j
T

⎞
⎠ +

∫ T

t

f

⎛
⎝r,

N∑
j=1

1AjX
j
r ,

N∑
j=1

1Aj Y
j(r),

N∑
j=1

1Aj Z
j(r)

⎞
⎠ dr

−
∫ T

t

N∑
j=1

1Aj Z
j(r)dW (r),

by the virtue of
∑

j Φ(xj)1Aj = Φ(
∑

j xj1Aj ). Since
∑N

j=1 1Ajϕ = ϕ and the uniqueness of solutions for SDDE
and BSDE, we have

Xs,ϕ;v(t) = Xs,ϕ;
∑N

j=1 1Aj
vj

(t) =
N∑

j=1

1Aj X
j(t),

Y s,ϕ;v(t) = Y s,ϕ;
∑N

j=1 1Aj
vj

(t) =
N∑

j=1

1Aj Y
j(t),

Zs,ϕ;v(t) = Zs,ϕ;
∑N

j=1 1Aj
vj

(t) =
N∑

j=1

1Aj Z
j(t).
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And also we have

Xs,ϕ;v
t = X

s,ϕ;
∑N

j=1 1Aj
vj

t =
N∑

j=1

1AjX
j
t . �

Proposition 3.2. Under the assumptions (A1)–(A5), the value function u(s, ϕ) defined in (3.1) is a determin-
istic function.

Proof. Firstly, we will prove that

esssupv(·)∈Uad
J(s, ϕ; v(·)) = esssupv(·)∈Ūs

ad
J(s, ϕ; v(·)). (3.2)

From the fact that Ūs
ad is a subset of Uad, we have

esssupv(·)∈Uad
J(s, ϕ; v(·)) ≥ esssupv(·)∈Ūs

ad
J(s, ϕ; v(·)).

Consequently, we only need to prove the inverse inequality. For any v(·), v̂(·) ∈ Uad, we have

E{|Y s,ϕ;v(s) − Y s,ϕ;v̂(s)|} ≤ ΛE

∫ T

s

|v(t) − v̂(t)|2dt

by Proposition 2.3. Note that Ūs
ad is dense in Uad under the norm of H2

F(0, T ), so we know that, for each
v(·) ∈ Uad, there exists a sequence {vn(·)}∞n=1 ∈ Ūs

ad such that

lim
n→∞ E{|Y s,ϕ;vn(s) − Y s,ϕ;v(s)|2} = 0.

Thence, there exists a subsequence, we also denote {vn(·)}∞n=1, such that

lim
n→∞ Y s,ϕ;vn(s) = Y s,ϕ;v(s), a.s.

i.e.,
lim

n→∞J(s, ϕ; vn(·)) = J(s, ϕ; v(·)), a.s.

By the arbitrariness of v(·) and the definition of essential supremum, we get

esssupv(·)∈Ūs
ad

J(s, ϕ; v(·)) ≥ esssupv(·)∈Uad
J(s, ϕ; v(·)).

Then (3.2) is proved.
Secondly, we want to prove

esssupv(·)∈Ūs
ad

J(s, ϕ; v(·)) = esssupv(·)∈Us
ad

J(s, ϕ; v(·)). (3.3)

Obviously,
esssupv(·)∈Ūs

ad
J(s, ϕ; v(·)) ≥ esssupv(·)∈Us

ad
J(s, ϕ; v(·)).

On the other hand, from Lemma 3.1, we have

J(s, ϕ; v(·)) = J

⎛
⎝s, ϕ;

N∑
j=1

1Ajv
j(·)

⎞
⎠ =

N∑
j=1

1Aj J(s, ϕ; vj(·))

for all v(·) ∈ Ūs
ad. Note that vj(·)(j = 1, 2, . . . , N) are {Fs

t } progressively measurable, then J(s, ϕ; vj(·))(j =
1, 2, . . . , N) are deterministic. Without loss of generality, we assume that

J(s, ϕ; v1(·)) ≥ J(s, ϕ; vj(·)), ∀ j = 2, 3, . . . , N.
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Then
J(s, ϕ; v(·)) ≤ J(s, ϕ; v1(·)) ≤ esssupv(·)∈Us

ad
J(s, ϕ; v(·)).

Since v(·) is arbitrary, we obtain that

esssupv(·)∈Ūs
ad

J(s, ϕ; v(·)) ≤ esssupv(·)∈Us
ad

J(s, ϕ; v(·)).

The desired equality (3.3) is obtained.
From the definition of Us

ad, we know that the cost functional J(s, ϕ; v(·)) is deterministic when v(·) ∈ Us
ad.

Hence we get
u(s, ϕ) = sup

v(·)∈Us
ad

J(s, ϕ; v(·))

is deterministic which is our desired result. �

Next, we will explore the continuity of value function u(s, ϕ) with respect to ϕ.

Lemma 3.3. For each s ∈ [0, T ], and ϕ, ϕ̂ ∈ C, we have

(i) |u(s, ϕ) − u(s, ϕ̂)|2 ≤ Λ ‖ ϕ − ϕ̂ ‖2
C ;

(ii) |u(s, ϕ)| ≤ Λ(1+ ‖ ϕ ‖C).

Proof. From Proposition 2.3, for each admissible control v(·) ∈ Uad, we have

|J(s, ϕ; v(·))| ≤ Λ(1+ ‖ ϕ ‖C), (3.4)

|J(s, ϕ; v(·)) − J(s, ϕ̂; v(·))|2 ≤ Λ ‖ ϕ − ϕ̂ ‖2
C . (3.5)

On the other hand, for each ε > 0, there exists a v(·), v̂(·) ∈ Uad s.t.

J(s, ϕ; v̂(·)) ≤ u(s, ϕ) ≤ J(s, ϕ; v(·)) + ε, J(s, ϕ̂; v(·)) ≤ u(s, ϕ̂) ≤ J(s, ϕ̂; v̂(·)) + ε.

Then from (3.4) , we get

−Λ(1+ ‖ ϕ ‖C) ≤ J(s, ϕ; v̂(·)) ≤ u(s, ϕ) ≤ J(s, ϕ; v(·)) + ε ≤ Λ(1+ ‖ ϕ ‖C) + ε.

Then (ii) comes from the arbitrariness of ε. Similarly,

J(s, ϕ; v̂(·)) − J(s, ϕ̂; v̂(·)) − ε ≤ u(s, ϕ) − u(s, ϕ̂) ≤ J(s, ϕ; v(·)) − J(s, ϕ̂; v(·)) + ε,

|u(s, ϕ) − u(s, ϕ̂)|
≤ max{|J(s, ϕ; v(·)) − J(s, ϕ̂; v(·))|, |J(s, ϕ; v̂(·)) − J(s, ϕ̂; v̂(·))|} + ε,

|u(s, ϕ) − u(s, ϕ̂)|2
≤ 2 max{|J(s, ϕ; v(·)) − J(s, ϕ̂; v(·))|2, |J(s, ϕ; v̂(·)) − J(s, ϕ̂; v̂(·))|2} + 2ε2

≤ 2Λ ‖ ϕ − ϕ̂ ‖2
C +2ε2.

So (i) holds. �
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From (2.8), we know Y s,ϕ;v(s) = J(s, ϕ; v(·)) for deterministic ϕ ∈ C. About ζ ∈ L2(Ω, C;Fs), we need the
following result:

Lemma 3.4. For any bounded ζ ∈ L2(Ω, C;Fs), we can find a sequence

ηm =
m∑

j=1

1Ajϕ
j (3.6)

converges to ζ in L2(Ω, C;Fs), where ϕj is a function defined on [−δ, 0] for 1 ≤ j ≤ m and {Aj}m
j=1 is a

partition of (Ω,Fs).

Proof. For any bounded ζ ∈ L2(Ω, C;Fs), we also denote it by ζ(r, ω), r ∈ [s − δ, s]. We define

ζm(r, ω) =
−1∑

i=−2m

ζ

(
i

2m
δ, ω

)
1[ i

2m δ, i+1
2m δ)(r), −δ ≤ r ≤ 0.

For every ω ∈ Ω, since the trajectory is continuous on a closed interval [s − δ, s], so the continuity is uniform.
We have

lim
m→∞ ‖ζm(·, ω) − ζ(·, ω)‖C = 0, for any ω ∈ Ω.

Since ζm is uniformly bounded, by Lebesgue’s dominated convergence theorem, we have

lim
m→∞ ‖ζm − ζ‖2

L2(Ω,C) = lim
m→∞ E

[
‖ζm(·, ω) − ζ(·, ω)‖2

C

]
= 0.

So, for any given ε > 0, there exists M > 0 such that, whenever m > M , we have

‖ζm − ζ‖L2(Ω,C) ≤
ε

3
· (3.7)

For each i and m, let us turn to analyze the Fs-measurable random variable ζ
(

i
2m δ, ω

)
. It is easy to know

that there exists a partition {Ai,m
j }Ni,m

j=1 of (Ω,Fs), and there exists a sequence of φi,m
j ∈ R

n, j = 1, 2, . . . , Ni,m,
such that ∣∣∣∣∣∣

Ni,m∑
j=1

1Ai,m
j

(ω)φi,m
j − ζ

(
i

2m
δ, ω

)∣∣∣∣∣∣ ≤
ε

3
, for any (i, m). (3.8)

We notice that the partitions above depend on (i, m). Without loss of generality, we will use a thinner partition
{Am

j }Nm

j=1 of (Ω,Fs) to keep (3.8) to hold for all i, and the new partition is generated by the all partitions

{Ai,m
j }Ni,m

j=1 . The advantage of the thinnest partition is that only depending on m. Then we have∣∣∣∣∣∣
Nm∑
j=1

1Am
j

(ω)φi,m
j − ζ

(
i

2m
δ, ω

)∣∣∣∣∣∣ ≤
ε

3
, for any (i, m).

We define

ηm(r, ω) =
−1∑

i=−2m

Nm∑
j=1

φi,m
j 1Am

j
(ω)1[ i

2m δ, i+1
2m δ)(r)

=
Nm∑
j=1

1Am
j

(ω)
−1∑

i=−2m

φi,m
j 1[ i

2m δ, i+1
2m δ)(r)

=
Nm∑
j=1

1Am
j

(ω)ϕ̃m
j (r).
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And for any m, we calculate

|ηm(r, ω) − ζm(r, ω)| =

∣∣∣∣∣∣
−1∑

i=−2m

Nm∑
j=1

φi,m
j 1Am

j
(ω)1[ i

2m δ, i+1
2m δ)(r) −

−1∑
i=−2m

ζ

(
i

2m
δ, ω

)
1[ i

2m δ, i+1
2m δ)(r)

∣∣∣∣∣∣
≤

−1∑
i=−2m

∣∣∣∣∣∣
Nm∑
j=1

φi,m
j 1Am

j
(ω) − ζ

(
i

2m
δ, ω

)∣∣∣∣∣∣ 1[ i
2m δ, i+1

2m δ)(r)

≤ ε

3

−1∑
i=−2m

1[ i
2m δ, i+1

2m δ)(r)

=
ε

3
·

Moreover
‖ηm − ζm‖L2(Ω,C) ≤

ε

3
· (3.9)

Combining (3.7) and (3.9), we obtain the conclusion: for any given ε > 0, there exists M > 0 such that, whenever
m > M , ‖ηm − ζ‖L2(Ω,C) ≤ ε. We complete the proof. �

Lemma 3.5. We have
J(s, ζ; v(·)) = Y s,ζ;v(s) (3.10)

for any s ∈ [0, T ], v(·) ∈ Uad and for any ζ ∈ L2(Ω, C;Fs).

Proof. First, we consider a simple case that ζ =
∑N

j=1 1Ajϕ
j with {Aj}N

j=1 is a finite partition of (Ω,Fs), and
ϕj ∈ C[−δ, 0]n, for 1 ≤ j ≤ N. The similar argument in Lemma 3.1, we deduce that

Y s,ζ;v(s) =
N∑

j=1

1Aj Y
s,ϕj ;v(s) =

N∑
j=1

1Aj J(s, ϕj ; v(·)) = J

⎛
⎝s,

N∑
j=1

1Aj ϕ
j ; v(·)

⎞
⎠ = J(s, ζ; v(·)).

That implies (3.10) holds for the above simple case.
Next, given a bounded ζ ∈ L2(Ω, C;Fs), we can choose a sequence of simple process {ζj} similar to the form

of (3.6) such that {ζj} converges to ζ in L2(Ω, C;Fs). Then, from Proposition 2.3 we can derive

E[|Y s,ζ;v(s) − Y s,ζj ;v(s)|2] ≤ Λ ‖ ζ − ζj ‖L2(Ω,C)→ 0, as j → ∞.

At the same time, form (3.5) we have the following result about J

E[|J(s, ζ; v(·)) − J(s, ζj ; v(·))|2] ≤ Λ ‖ ζ − ζj ‖L2(Ω,C)→ 0, as j → ∞.

As a result of Y s,ζj ;v(s) = J(s, ζj ; v(·)), we get our desired conclusion. If ζ is unbounded, we can define ζn =
(ζ

∧
n)

∨
(−n), then ζn is bounded and

E[|Y s,ζ;v(s) − Y s,ζn;v(s)|2] ≤ Λ ‖ ζ − ζn ‖L2(Ω,C)→ 0, as n → ∞.

Repeat the processes similarly as the bounded case, and we can also get our desired results. �
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In order to prove the dynamic programming principle, we need the following lemma:

Lemma 3.6. For each v(·) ∈ Uad, fixed s ∈ [0, T ) and ζ ∈ L2(Ω, C;Fs), we have

u(s, ζ) ≥ Y s,ζ;v(s). (3.11)

On the other hand, for each ε > 0, there is an admissible control v(·) ∈ Uad, such that

u(s, ζ) ≤ Y s,ζ;v(s) + ε, a.s. (3.12)

Proof. Same as that in the proof of Lemma 3.5, we first consider the case: ζ =
∑N

j=1 1Aj ϕ
j . Then, for each

v(·) ∈ Uad, we have

Y s,ζ;v(s) = Y s,
∑N

j=1 1Aj
ϕj ;v(s) =

N∑
j=1

1Aj Y
s,ϕj;v(s) ≤

N∑
j=1

1Aj u(s, ϕj) = u(s, ζ).

Furthermore, if ζ ∈ L2(Ω, C;Fs), we can also choose a sequence of simple process {ζj} which converges to ζ
in L2(Ω, C;Fs). So,

E[|Y s,ζ;v(s) − Y s,ζj ;v(s)|2] → 0; E[|u(s, ζ) − u(s, ζj)|2] → 0, (j → ∞).

Then there exists a subsequence which we also denote it by {ζj} such that

lim
j→∞

Y s,ζj ;v(s) = Y s,ζ;v(s), a.s., lim
j→∞

u(s, ζj) = u(s, ζ), a.s.

With the help of Y s,ζj ;v(s) ≤ u(s, ζj), j = 1, 2, . . . , we get (3.11).
We can use the similar method to prove (3.12). We first consider that ζ ∈ L∞(Ω, C;Fs) with ‖ ζ ‖C≤ M ,

then we can construct a random variable η ∈ L∞(Ω, C;Fs) with the form η =
∑N

j=1 1Aj ϕ
j , ϕj ∈ C, {Aj}N

j=1

is also the partition of (Ω,Fs) such that

‖ ζ − η ‖L2(Ω,C)≤ ε

3Λ
·

For any v(·) ∈ Uad, we have

|Y s,ζ;v(s) − Y s,η;v(s)| ≤ ε

3
, |u(s, ζ) − u(s, η)| ≤ ε

3
· (3.13)

Then, For each ϕj , we can choose an Fs
t -adapted admissible control vj(·) such that

u(s, ϕj) ≤ Y s,ϕj ;vj

(s) +
ε

3
·

If we set v(·) =
∑N

j=1 1Aj v
j(·), we can derive the following result with (3.13):

Y s,ζ;v(s) ≥ −|Y s,η;v(s) − Y s,ζ,v(s)| + Y s,η;v(s) ≥ − ε

3
+

N∑
j=1

1Aj Y
s,ϕj ;vj

(s)

≥ − ε

3
+

N∑
j=1

1Aj (u(s, ϕj) − ε

3
) = −2

3
ε +

N∑
j=1

1Aj u(s, ϕj)

= −2
3
ε + u(s, η) ≥ −ε + u(s, ζ).

That is to say that (3.12) holds for any ζ ∈ L∞(Ω, C;Fs).
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For the general case ζ ∈ L2(Ω, C;Fs), fortunately we know that ζ can be decomposed as

ζ =
∞∑

j=1

1Aj ζj ,

where {Aj}∞j=1 is also a partition of (Ω,Fs) and ζj ∈ L∞(Ω, C;Fs) with ‖ ζj ‖C≤ j, j = 1, 2, · · ·. Thence, for
each ζj , there exists vj(·) ∈ Uad such that

u(s, ζj) ≤ Y s,ζj ;v
j

(s) + ε.

Denoting v(·) =
∑∞

j=1 1Aj v
j(·), we get

u(s, ζ) = u(s,
∞∑

j=1

1Aj ζj) =
∞∑

j=1

1Aju(s, ζj) ≤
∞∑

j=1

1Aj (Y
s,ζj ;vj

(s) + ε)

=
∞∑

j=1

1Aj Y
s,ζj ;v

j

(s) + ε = Y s,ζ;v(s) + ε.

Then we complete our proof. �

Next, we will introduce a family of backward semigroups which is embedded in [11].
Given the initial condition (s, ϕ) ∈ [0, T )×C, and an admissible control v(·) ∈ Uad. If τ ≤ T − s is a positive

number, and ζ ∈ L2(Ω, C;Fs+τ ), we denote

Gs,ϕ;v
s,s+τ [ζ] := Y s,ϕ;v(s),

where (Y s,ϕ;v(t), Zs,ϕ;v(t)s≤t≤s+τ is the solution of the following BSDE

{ − dY s,ϕ;v(t) = f(t, Xs,ϕ;v
t , Y s,ϕ;v(t), Zs,ϕ;v(t), v(t))dt − Zs,ϕ;v(t)dW (t), t ∈ [s, s + τ ],

Y s,ϕ;v(s + τ) = ζ.

Obviously,
Gs,ϕ;v

s,T [Φ(Xs,ϕ;v
T )] = Gs,ϕ;v

s,s+τ [Y s,ϕ;v(s + τ)]. (3.14)

Then we can get the main result of this section, the generalized dynamic programming principle for our
stochastic recursive optimal control problem with delayed system.

Theorem 3.7 (the generalized dynamic programming principle). Let (A1)–(A5) hold. Then the value function
u(s, ϕ) defined by (3.1) for our optimal control problem with the delayed system has the following property: for
each 0 ≤ τ ≤ T − s,

u(s, ϕ) = esssupv(·)∈Uad
Gs,ϕ;v

s,s+τ [u(s + τ, Xs,ϕ;v
s+τ )]. (3.15)

Proof. We have

u(s, ϕ) = esssupv(·)∈Uad
Gs,ϕ;v

s,T [Φ(Xs,ϕ;v
T )] = esssupv(·)∈Uad

Gs,ϕ;v
s,s+τ [Y s,ϕ;v(s + τ)]

= esssupv(·)∈Uad
Gs,ϕ;v

s,s+τ [Y s+τ,Xs,ϕ;v
t+τ ;v(s + τ)].

From Lemma 3.6 and the comparision theorem of BSDE, we have

u(s, ϕ) ≤ esssupv(·)∈Uad
Gs,ϕ;v

s,s+τ [u(s + τ, Xs,ϕ;v
s+τ )].
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Moreover, also by Lemma 3.6, we can conclude that: for every ε > 0, we can find an admissible control
v̂(·) ∈ Uad such that

u(s + τ, Xs,ϕ;v
s+τ ) ≤ Y s+τ,Xs,ϕ;v

s+τ ;v̂(s + τ) + ε.

For each v(·) ∈ Uad, we denote v̄(t) = 1{t≤s+τ}v(t)+1{t>s+τ}v̂(t). From the above inequality and the comparison
theorem, we get

Y s+τ,Xs,ϕ;v̄
s+τ ;v̄(s + τ) ≥ u(s + τ, Xs,ϕ;v̄

s+τ ) − ε, u(s, ϕ) ≥ esssupv̄(·)∈U v̂
ad

Gs,ϕ;v̄
s,s+τ [u(s + τ, Xs,ϕ;v̄

s+τ ) − ε],

and here
U v̂

ad := {v̄(·) ∈ Uad|v̄(t) = 1{t≤s+τ}v(t) + 1{t>s+τ}v̂(t) for some v(·) ∈ Uad}.
From the estimates of BSDE, there exists a positive constant Λ0 such that

u(s, ϕ) ≥ esssupv̄(·)∈U v̂
ad

Gs,ϕ;v̄
s,s+τ [u(s + τ, Xs,ϕ;v̄

s+τ )] − Λ0ε.

Letting ε ↓ 0, we obtain
u(s, ϕ) ≥ esssupv̄(·)∈U v̂

ad
Gs,ϕ;v̄

s,s+τ [u(s + τ, Xs,ϕ;v̄
s+τ )].

From the definition of v̄(·) and the arbitrariness of v(·) ∈ Uad, we know

u(s, ϕ) ≥ esssupv(·)∈Uad
Gs,ϕ;v

s,s+τ [u(s + τ, Xs,ϕ;v
s+τ )].

Then (3.15) is obtained. �

Remark 3.8. (3.15) implies that the value function u(s, ϕ) obeys the dynamic programming principle which
holds also for the usual optimization case without the recursive utility (see Refs. [6, 7]).

4. The Hamilton-Jacobi-Bellman equations

We call (3.15) the dynamic programming equation. It seems impossible to solve such an equation directly.
In this section, we will prove that, under some smooth conditions, the value function u(·, ·) defined by (3.1)
satisfies a kind of partial differential equations-HJB equations.

4.1. The notions and definitions

We first introduce some notations and definitions which also used in [1, 4, 5, 9].
Let Cb be the Banach space of all bounded uniformly continuous functions Φ : C → R with the sup norm

‖ Φ ‖Cb
:= sup

η∈C
|Φ(η)|, Φ ∈ Cb.

Define the operator Pt : Cb → Cb, t ≥ 0, on Cb by

Pt(Φ)(η) := E[Φ(Xη
t )], t ≥ 0, Φ ∈ Cb, η ∈ C.

For any Φ ∈ Cb and any finite Borel measure μ on C, define the pairing

〈Φ, μ〉 :=
∫

η∈C

Φ(η)dμ(η).

We also define a generator A : D(A) ⊂ Cb → Cb of {Pt}t≥0 by the weak limit

A(Φ)(η) := w − lim
t→0+

Pt(Φ) − Φ

t
,

here Φ belongs to the domain D(A) of A if and only if the above weak limit exists in Cb.
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Then we can easily obtain:

Lemma 4.1.
d
dt

Pt(Φ) = A(Pt(Φ)) = Pt(A(Φ)), t ≥ 0,

for any Φ ∈ D(A).

Let Fn := {κ1{0} : κ ∈ R
n} and C ⊕ Fn := {η + κ1{0} : η ∈ C, κ ∈ R

n} with norm
‖ η + κ1{0} ‖:=‖ η ‖C +|κ| for η ∈ C, κ ∈ R

n, where 1{0} : [−δ, 0] → R is defined by

1{0}(θ) =
{

0, for θ ∈ [−δ, 0),
1, for θ = 0.

For a Borel measurable function Φ : C → R, we also define

S(Φ)(η) := lim
t→0

Φ(η̃t) − Φ(η)
t

for all η ∈ C, where η̃ : [−δ, T ] → R
n is an extension of η defined by

η̃(t) :=
{

η(t),t ∈ [−δ, 0),
η(0),t ≥ 0,

and η̃t ∈ C is defined by η̃t(θ) := η̃(t + θ), θ ∈ [−δ, 0]. Let D̂(S), the domain of S, be the set of Φ : C → R such
that the above limit exists for each η ∈ C. Define D(S) as the set of all functions Φ : [0, T ]× C → R such that
Φ(t, ·) ∈ D̂(S), ∀t ∈ [0, T ].

In addition, for each sufficiently smooth function Φ, we will denote its first and second Fréchet derivative
with respect to η ∈ C by DΦ and D2Φ. And let C1,2

lip ([0, T ]×C) be the set of functions Φ : [0, T ]×C → R such
that ∂Φ

∂t , DΦ and D2Φ exist and they are globally bounded and Lipschitz.
Then we can derive a formula for the generator A.

Theorem 4.2 (([9]). Suppose that Φ ∈ C1,2
lip ([0, T ] × C) ∩ D(S). Let v(·) ∈ Uad, and {X(t), t ∈ [s, T ]} be the

C−valued Markov solution process of equation (2.2) with the initial data (s, ηs) ∈ [0, T ]×C. Then for Φ ∈ D(A),

A(Φ)(Xt) =
∂

∂t
Φ(t, Xt) + S(Φ)(Xt) + DΦ(t, Xt)(b(t, Xt, v(t))1{0})

+
1
2

d∑
i=1

D2Φ(t, Xt)(σ(t, Xt, v(t))ei1{0}, σ(t, Xt, v(t))ei1{0}),
(4.1)

where DΦ : C ⊕ Fn → R, D2Φ : (C ⊕ Fn) × (C ⊕ Fn) → R are the continuous linear and bilinear extensions of
DΦ, D2Φ respectively, and {ei}d

i=1 is the standard basis in R
d.

4.2. Some properties of the value function

We will explore some more properties of the value function defined in previous subsection.

Lemma 4.3. Under the assumptions (A1)–(A5), for any (s, ζ) ∈ [0, T )× L2(Ω, C;Fs) and v ∈ Uad, we have

lim
t→s+

‖ Xs,ζ;v
t − ζ ‖L2(Ω,C)= 0. (4.2)

Proposition 4.4. Suppose (A1)–(A5) hold, then the value function u(s, ϕ) is continuous in (s, ϕ) ∈ [0, T ]×C.
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Proof. By Lemma 3.3, u(s, ϕ) is uniformly continuous in ϕ with respect to s. Therefore we only need to show
that u(s, ϕ) is continuous in s for each ϕ.

Let us start by fixing ϕ ∈ C. We desire to know the difference between u(s1, ϕ) and u(s2, ϕ) for 0 ≤
s1 ≤ s2 ≤ T. From the generalized dynamic programming principle in Theorem 3.7, for all ε > 0, there exist
v1(·), v2(·) ∈ Uad such that

Gs1,ϕ;v2
s1,s2

[u(s2, X
s1,ϕ;v2
s2

)] ≤ u(s1, ϕ) ≤ Gs1,ϕ;v1
s1,s2

[u(s2, X
s1;ϕ;v1
s2

)] + ε. (4.3)

Then
u(s1, ϕ) − u(s2, ϕ) ≤ I1 + I2 + ε

where
I1 = Gs1,ϕ;v1

s1,s2
[u(s2, X

s1,ϕ;v1
s2

)] − Gs1,ϕ;v1
s1,s2

[u(s2, ϕ)]

I2 = Gs1,ϕ;v1
s1,s2

[u(s2, ϕ)] − u(s2, ϕ).

By the virtue of G (see Refs. Peng [11] or Wu and Yu [12]) and Lemma 3.3, we have

|I1| ≤ (ΛE
Fs1 [|u(s2, X

s1,ϕ;v1
s2

) − u(s2, ϕ)|2]) 1
2

≤ (ΛE
Fs1 [‖ Xs1,ϕ;v1

s2
− ϕ ‖2

L2(Ω,C)])
1
2 .

And I2 can be rewritten as

I2 = E
Fs1 [u(s2, ϕ) +

∫ s2

s1

f(r, Xs1,ϕ;v1
r , Y s1,ϕ;v1(r), Zs1,ϕ;v1(r))dr

+
∫ s2

s1

Zs1,ϕ;v1(r)dW (r)] − u(s2, ϕ)

= E
Fs1 [

∫ s2

s1

f(r, Xs1,ϕ;v1
r , Y s1,ϕ;v1(r), Zs1,ϕ;v1(r))dr],

by the fact that E
Fs1 [u(s2, ϕ)] = u(s2, ϕ).

Applying the Schwartz′s inequality, and by (A5), Proposition 2.3, we can deduce that

|I2| ≤ (s2 − s1)
1
2

(
E

∫ s2

s1

|f(r, Xs1,ϕ;v1
r , Y s1,ϕ;v1(r), Zs1,ϕ;v1(r))|2dr

) 1
2

≤ C(s2 − s1).

So, letting s2 ↓ s1, we can get

u(s1, ϕ) − u(s2, ϕ) ≤ (CE
Fs1 [‖ Xs1,ϕ;v1

s2
− ϕ ‖2

L2(Ω,C)])
1
2 + C(s2 − s1) + ε → 0

as a result of Lemma 4.3 and the arbitrariness of ε.

Similarly, we can prove u(s2, ϕ) − u(s1, ϕ) → 0, when s2 ↓ s1. Then the continuity of u is proved. �

4.3. HJB equation

Now we desire to obtain the HJB equation for u.
By Lemma 4.1, we have

E[u(t + ε, Xt+ε) − u(t, ϕ)] =
∫ t+ε

t

E

[
∂

∂r
u(r, Xr) + Au(r, Xr)

]
dr,
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i.e.

E[u(t, Xs,ϕ
t )] = E

[
u(T, X

t,Xs,ϕ
t

T )
]
− E

∫ T

t

[
∂

∂r
u(r, Xr) + Au(r, Xr)

]
dr.

Since Xt,Xt
r is independent of Ft for t ≤ r ≤ T. Then by the uniqueness of the solution for SDDE, the above

equation can be rewritten as

u(t, Xs,ϕ
t ) = E

Ft [u(T, X
t,Xs,ϕ

t

T )] − E
Ft

∫ T

t

[
∂

∂r
u(r, Xr) + Au(r, Xr)

]
dr

= E
Ft [u(T, Xs,ϕ

T )] − E
Ft

∫ T

t

[
∂

∂r
u(r, Xr) + Au(r, Xr)

]
dr

= E
Ft [u(T, Xs,ϕ

T )] − E
Ft

∫ T

s

[
∂

∂r
u(r, Xr) + Au(r, Xr)

]
dr

+ E
Ft

∫ t

s

[
∂

∂r
u(r, Xr) + Au(r, Xr)

]
dr

= E
Ft [η∗] + E

Ft

∫ t

s

[
∂

∂r
u(r, Xr) + Au(r, Xr)

]
dr,

where η∗ = u(T, Xs,ϕ
T ) − ∫ T

s
[ ∂
∂r u(r, Xr) + Au(r, Xr)]dr. We can see that E

Ft [η∗] is a martingale, then by the
representation theorem of martingales, there exists a predictable process Z̃ ∈ H2, such that

E
Ft [η∗] = E

Fs [EFt [η∗]] +
∫ t

s

Z̃(r)dW (r)

= u(s, ϕ) +
∫ t

s

Z̃(r)dW (r),

i.e.

u(t, Xs,ϕ
t ) = u(s, ϕ) +

∫ t

s

[
∂

∂r
u(r, Xs,ϕ

r ) + Au(r, Xs,ϕ
r )

]
dr +

∫ t

s

Z̃(r)dW (r). (4.4)

Then we compute the joint quadratic variation with W i of the processes occurring at both sides of the above
equality on an interval [s, T ′] ⊂ [s, T ). Considering the right-hand side, we obtain

∫ T ′

s
Z̃i(r)dr by the rule of

stochastic calculus. By the Theorem 3.7 in [5], we have

〈
u(·, Xs,ϕ

· ), W i
〉
[s,T ′] =

∫ T ′

s

σi(r, Xs,ϕ
r )∇0u(r, Xs,ϕ

r )dr.

Therefore we have Z̃(r) = ∇0u(r, Xs,ϕ
r )σ(r, Xs,ϕ

r ).

Remark 4.5. Suppose E = C([a, b]; Rn), where a, b ∈ R, a < b. We recall that the dual space of C([a, b]) is
the space of finite Borel measures on [a, b]. Let u : [0, T ] × C → R be a function such that u(t, ·) is Gâteaux
differentiable on C for every t ∈ [0, T ]. Then the gradient ∇xu(t, x) at point (t, x) ∈ [0, T ]× C is an n-tuple of
finite Borel measures on [−δ, 0], we denote ∇xu(t, x)({0}) by ∇0u(t, x).

Then (4.4) can be rewritten as

u(t, Xs,ϕ
t ) = u(s, ϕ) +

∫ t

s

[
∂

∂r
u(r, Xs,ϕ

r ) + Au(r, Xs,ϕ
r )

]
dr +

∫ t

s

σ(r, Xs,ϕ
r )∇0u(r, Xs,ϕ

r )dW (r). (4.5)
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Also we have

u(s, ϕ) = u(s + τ, Xs,ϕ
s+τ ) +

∫ s+τ

s

[
− ∂

∂r
u(r, Xs,ϕ

r ) −Au(r, Xs,ϕ
r )

]
dr

−
∫ s+τ

s

∇0u(r, Xs,ϕ
r )σ(r, Xs,ϕ

r )dW (r).

Now let us consider the following BSDE:

Y s,ϕ;v(s) = u(s + τ, Xs,ϕ
s+τ ) +

∫ s+τ

s

f(r, Xs,ϕ
r , Y s,ϕ;v(r), Zs,ϕ;v(r), v(r))dr −

∫ s+τ

s

Zs,ϕ;v(r)dW (r), (4.6)

and

Y 1(s) =
∫ s+τ

s

F (r, Xs,ϕ
r , Y 1(r), Z1(r), v(r))dr −

∫ s+τ

s

Z1(r)dW (r). (4.7)

Here F (t, x·, y, z, v) = ∂
∂tu(t, x·) + Au(t, x·) + f(t, x·, y + u(t, x·), z + ∇0u(t, x·)σ, v).

Proposition 4.6. For any t ∈ [s, s + τ ], the following relationship holds

Y 1(t) = Y s,ϕ;v(t) − u(t, Xs,ϕ
t ).

Proof. Firstly, we have

Y s,ϕ;v(s) − u(s, ϕ) =
∫ s+τ

s

[
f(r, Xs,ϕ

r , Y s,ϕ;v(r), Zs,ϕ;v(r), v(r)) +
∂

∂r
u(r, Xs,ϕ

r ) + Au(r, Xs,ϕ
r )

]
dr

−
∫ s+τ

s

[Zs,ϕ;v(r) −∇0u(r, Xs,ϕ
r )σ(r, Xs,ϕ

r , v(r))]dW (r), (4.8)

Y 1(s) =
∫ s+τ

s

[
∂

∂r
u(r, Xs,ϕ

r ) + Au(r, Xs,ϕ
r ) + f(r, Xs,ϕ

r , Y 1(r) + u(r, Xs,ϕ
r ),

Z1(r) + ∇0u(r, Xs,ϕ
r )σ(r, Xs,ϕ

r , v(r)), v(r))
]

dr −
∫ s+τ

s

Z1(r)dW (r). (4.9)

If we let Y s,ϕ;v(·) − u(·, ϕ) = Y 2(·), Zs,ϕ;v(·) −∇0u(·, Xs,ϕ
· )σ = Z2(·), equation (4.8) can be written as

Y 2(s) =
∫ s+τ

s

[
∂

∂r
u(r, Xs,ϕ

r ) + Au(r, Xs,ϕ
r ) + f(r, Xs,ϕ

r , Y 2(r) + u(r, Xs,ϕ
r ),

Z2(r) + ∇0u(r, Xs,ϕ
r )σ(r, Xs,ϕ

r , v(r)), v(r))
]

dr −
∫ s+τ

s

Z2(r)dW (r). (4.10)

Then by the uniqueness of the solution for BSDE we get

Y 2(t) = Y 1(t), Z2(t) = Z1(t), t ∈ [s, s + τ ] a.s. �

Moreover, we can turn to a more simple BSDE than (4.9)

Y 3(s) =
∫ s+τ

s

[
∂

∂r
u(r, ϕ) + Au(r, ϕ) + f(r, ϕ, Y 3(r) + u(r, ϕ),

Z3(r) + ∇0u(r, ϕ)σ(r, ϕ, v(r)), v(r))
]

dr −
∫ s+τ

s

Z3(r)dW (r). (4.11)

Then we can derive the following estimate about the solutions of (4.9) and (4.11).



DPP FOR SDDE RECURSIVE OPTIMIZATION PROBLEM 1021

Lemma 4.7. For BSDEs (4.9) and (4.11), we have

|Y 1(s) − Y 3(s)| ≤ Λτρ1(τ)

where ρ1(·) : R
+ → R is a function such that ρ1(τ) ↓ 0 when τ ↓ 0 and ρ1(·) is independent of the control v(·).

Proof. From Proposition 2.1, we have

‖ Xs,ϕ;v
t ‖2

L2(Ω,C)= E
Fs [‖ Xs,ϕ;v

t ‖2
C ] ≤ Λ(1+ ‖ ϕ ‖2

C).

And from Lemma 4.3, we have

‖ Xs,ϕ;v
t − ϕ ‖2

L2(Ω,C)→ 0, when t → s+.

For BSDEs (4.9) and (4.11), we have the following estimates

E
Fs

∫ s+τ

s

[∣∣Y 1(t) − Y 3(t)|2 + |Z1(s) − Z3(t)
∣∣2]dt

≤ ΛE
Fs

∫ s+τ

s

[
ρ2 (‖ Xs,ϕ;v

t − ϕ ‖C)
]2

dt

≤ ΛτE
Fsρ2(βτ ),

where ρ(·) satisfies ρ(ε) → 0 when ε → 0 and ρ(ε) ≤ C(1 + ε) for all ε ≥ 0. And βτ = sup
t∈[s,s+τ ]

‖ Xs,ϕ;v
t − ϕ ‖C .

By Lemma 4.3, we have βτ ↓ 0 when t ↓ s+.
On the other hand, since Y 1(s) and Y 3(s) are Fs-measurable, then

|Y 1(s) − Y 3(s)| = |EFs
(
Y 1(s) − Y 3(s)

) |
=

∣∣∣∣EFs

∫ s+τ

s

[
F

(
t, Xs,ϕ;v

t , Y 1(t), Z1(t), v(t)
) − F

(
t, ϕ, Y 3(t), Z3(t), v(t)

)]
dt

∣∣∣∣
≤ E

Fs

∫ s+τ

s

[
ρ(‖ Xs,ϕ;v

t − ϕ ‖C) + Λ
∣∣Y 1(t) − Y 3(t)

∣∣ + Λ
∣∣Z1(t) − Z3(t)

∣∣] dt

≤ τE
Fsρ(βτ ) + Λτ

1
2

{
E
Fs

∫ s+τ

s

(|Y 1(t) − Y 2(t)|2 + |Z1(t) − Z2(t)|2)dt

} 1
2

.

So
|Y 1(s) − Y 3(s)| ≤ Λτ

{
E
Fs [ρ(βτ )] + {E

Fs [ρ2(βτ )]} 1
2

}
.

Notice that ρ(βτ ) is square-integrable for each τ > 0, then we have

|Y 1(s) − Y 3(s)| ≤ Λτρ1(τ). �

Lemma 4.8. We have
sup

v(·)∈Uad

Y 3(s) = Y 0(s),

where Y 0(·) is the solution of the following ordinary differential equation{
− Ẏ 0(t) = F0(t, ϕ, Y 0(t), 0), t ∈ [s, s + τ ],
Y 0(s + τ) = 0,

here F0(t, ϕ, y, z) = sup
v∈U

F (t, ϕ, y, z, v).



1022 L. CHEN AND Z. WU

Proof. By the definition of F0, we know

F0(t, ϕ, y, z) ≥ F (t, ϕ, y, z, v(t)), ∀v(·) ∈ Uad, ∀ϕ, y, z, t.

From the comparison theorem of BSDE, we have

Y 3(t) ≤ Y 0(t), t ∈ [s, s + τ ], ∀v(·) ∈ Uad,

where (Y 0, Z0) is the solution of the following BSDE{
− dY 0(t) = F0(t, ϕ, Y 0(t), Z0(t))dt − Z0(t)dW (t), t ∈ [s, s + τ ],

Y 0(s + τ) = 0.
(4.12)

Noticing that F0 is a deterministic function, we have the solution of (4.12) is (Y 0(t), 0), where Y 0(t) satisfies{
− Ẏ 0(t) = F0(t, ϕ, Y 0(t), 0), t ∈ [s, s + τ ],
Y 0(s + τ) = 0.

By the above analysis, we know that, if we can prove

Y 0(s) = sup
v(·)∈U0

Y 3(s),

U0 is the collection of deterministic admissible controls, then the desired conclusion can be obtained. In fact,
for each v(·) ∈ U0, Y 3(t) is the solution of{

− Ẏ 3(t) = F (t, ϕ, Y 3(t), 0, v(t)), t ∈ [s, s + τ ],
Y 3(s + τ) = 0.

So our lemma can be obtained obviously. �

Now we can obtain our HJB equations from the dynamic programming principle for the delayed system.

Theorem 4.9. If we assume that the value function u(s, ϕ) ∈ C1,2
lip ([0, T ]×C)∩D(S) in our stochastic recursive

optimal control problem, then u(s, ϕ) solves the following Hamilton-Jacobi-Bellman partial differential equation

∂

∂s
u(s, ϕ) + sup

v∈U
{Au(s, ϕ) + f(s, ϕ, u(s, ϕ),∇0u(s, ϕ)σ, v)} = 0, (4.13)

with the terminal condition u(T, ϕ) = Φ(ϕ).

Proof. From the general dynamic programming principle-Theorem 3.7, we have

u(s, ϕ) = sup
v(·)∈Uad

Gs,ϕ
s,s+τ [u(s + τ, Xs,ϕ;v

s+τ )]

= sup
v(·)∈Uad

Y s,ϕ;v(s).

So we can get Y 2(s) ≤ 0 in (4.10) and sup
v(·)∈Uad

Y 2(s) ≤ 0, i.e.

sup
v(·)∈Uad

∫ s+τ

s

F (t, Xs,ϕ;v
t , Y 2(t), Z2(t), v(t))dt ≤ 0.
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By the fact that F is Lipsichtz with respect to (ϕ, y, z) and Lemma 4.7, we have

E

∫ s+τ

s

F (r, ϕ, Y 3(r), Z3(r), v(r))dr − ρ1(τ) ≤ E

∫ s+τ

s

F (r, Xs,ϕ;v(r), Y 2(r), Z2(r), v(r))dr

≤ 0.

This will lead to
sup

v(·)∈Uad

Y 3(s) ≤ ρ1(τ).

From Lemma 4.8, we have
Y 0(s) ≤ 0, τ ↓ 0,

and
F0(s, ϕ, 0, 0) = sup

v∈U
F (s, ϕ, 0, 0, v) ≤ 0.

On the other hand, there exists a v(·) s.t. for a small enough τ ,

u(s, ϕ) ≤ Y 3(s) + ετ,

i.e.
Y 2(s) ≥ −ετ.

That implies

sup
v(·)∈Uad

E

∫ s+τ

s

F (r, ϕ, Y 3(r), Z3(r), v(r))dr ≥ −ετ − Cρ1(τ),

sup
v(·)∈Uad

Y 3(s) ≥ 0,

and F0(s, ϕ, 0, 0) = sup
v∈U

F (s, ϕ, 0, 0, v) ≥ 0.

Then
sup
v∈U

F (s, ϕ, 0, 0, v) = 0,

i.e.
∂

∂s
u(s, ϕ) + sup

v∈U
{Au(s, ϕ) + f(s, ϕ, u(s, ϕ),∇0u(s, ϕ)σ, v)} = 0. �

4.4. Viscosity solution of the HJB equation

In this section, we will show that the value function u defined by (3.1) is actually a viscosity solution of the
HJB equation (4.13). Firstly, let us define the viscosity solution of (4.13) as follows.

Definition 4.10. Let Ψ ∈ C([0, T ] × C).
(a) We say that Ψ is a viscosity subsolution of (4.13) if

Ψ(T, ϕ) ≤ Φ(ϕ), for all ϕ ∈ C

and for any Γ ∈ C1,2
lip ([0, T ]× C) ∩ D(S), whenever Γ − Ψ attains a local minimum at (s, ϕ), we have

∂

∂s
Γ (s, ϕ) + sup

v∈U
{AΓ (s, ϕ) + f(s, ϕ, Γ (s, ϕ),∇0Γ (s, ϕ)σ, v)} ≥ 0.
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(b) We say that Ψ is a viscosity supersolution of (4.13) if

Ψ(T, ϕ) ≥ Φ(ϕ), for all ϕ ∈ C

and for any Γ ∈ C1,2
lip ([0, T ]× C) ∩ D(S), whenever Γ − Ψ attains a local maximum at (s, ϕ), we have

∂

∂s
Γ (s, ϕ) + sup

v∈U
{AΓ (s, ϕ) + f(s, ϕ, Γ (s, ϕ),∇0Γ (s, ϕ)σ, v)} ≤ 0.

(c) Ψ ∈ C([0, T ]×C) is said to be a viscosity solution of (4.13) if it is both a viscosity sub- and supersolution.

Theorem 4.11. u(s, ϕ) defined by (3.1) is a viscosity solution of HJB equation (4.13).

Proof. The proof of Theorem 4.11 is similar to the Theorem 4.9. We will outline the proof.
Let us define

H(s, ϕ, y, z, v) =
∂Γ (s, ϕ)

∂s
+ AΓ (s, ϕ) + f(s, ϕ, y + Γ (s, ϕ), z + ∇0Γ (s, ϕ)σ, v).

We also consider the following BSDE defined on [s, s + τ ],⎧⎪⎨
⎪⎩

−dY 4(t) = H(t, Xs,ϕ;v
t , Y 4(t), Z4(t), v(t))dt

−Z4(t)dW (t), t ∈ [s, s + τ ],

Y 4(s + τ) = 0.

Same as Proposition 4.6, we have the following relationship holds

Y 4(t) = Gs,ϕ;v
t,s+τ [Γ (s + τ, Xs,ϕ;v

s+τ )] − Γ (t, Xs,ϕ;v
t ), a.s., (4.14)

for any t ∈ [s, s + τ ]. We also have
|Y 4(s) − Y 5(s)| ≤ Cτρ1(τ),

here ρ1(τ) is the same as Lemma 4.7, and{
−dY 5(t) = H(t, ϕ, Y 5(t), Z5(t), v(t))dt − Z5(t)dW (t), t ∈ [s, s + τ ],

Y 5(s + τ) = 0,
(4.15)

with ϕ ∈ C.
We can also prove that

sup
v(·)∈Uad

Y 5(s) = Y 6(s), (4.16)

where {
−Ẏ 6(t) = H0(t, ϕ, Y 6(t), 0), t ∈ [s, s + τ ],

Y 6(s + τ) = 0.

with H0(s, ϕ, y, z) ≡ sup
v∈U

H(s, ϕ, y, z, v).

Let Γ ∈ C1,2
lip ([0, T ] × C) ∩ D(S) and Γ − u attains minimum (maximum) at (s, ϕ), and Γ (s, ϕ) = u(s, ϕ).

Then from the dynamic programming principle-Theorem 3.7, we have

Γ (s, ϕ) = u(s, ϕ) = sup
v(·)∈Uad

Gs,ϕ;v
s,s+τ [u(s + τ, Xs,ϕ;v

s+τ )].
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From Γ ≥ u (resp., Γ ≤ u) and the monotone of G we have

sup
v(·)∈Uad

{Gs,ϕ;v
s,s+τ [u(s + τ, Xs,ϕ;v

s+τ )] − Γ (s, ϕ)} ≥ 0, (resp., ≤ 0).

From (4.14), we can get
sup

v(·)∈Uad

Y 4(s) ≥ 0 (resp., ≤ 0).

Then
sup

v(·)∈Uad

Y 5(s) ≥ −τρ1(τ) (resp., ≤ τρ1(τ)).

Moreover, by (4.16),
Y 6(s) ≥ −τρ1(τ) (resp., ≤ τρ1(τ)).

Consequently,
H0(s, ϕ, 0, 0) = sup

v∈U
H(s, ϕ, 0, 0, v) ≥ 0 (resp., ≤ 0).

Then from the definition of H we know that u is a viscosity subsolution (resp., supersolution) of HJB equa-
tion (4.13). Thus u is the viscosity solution of (4.13). �

Remark 4.12. The uniqueness for the viscosity solution of equation (4.13) is not easy to be obtained. However,
for some special case, we can prove that the value function defined by (3.1) is the unique viscosity solution of
the corresponding HJB equation.

We consider the controlled delayed system (2.2) with coefficients satisfying (A1)–(A3). The cost functional
is given by J(s, ϕ; v(·)) = Y (t)|t=s, (s, ϕ) ∈ [0, T ]× C, where Y is a solution of the BSDE{−dY (t) = [a(t, Xt, v(t)) + b(t)Y (t) + g(t)Z(t)]dt − Z(t)dW (t),

Y (T ) = Φ(XT ).
(4.17)

We also need the following assumptions:
(A6) a(·, ·, ·) : [0, T ]×C×U → R and Φ(·) : C → R satisfy (A4)–(A5). Moreover, b(·), g(·) are given uniformly

bounded deterministic functions with respect to t ∈ [0, T ].
Then, by the Girsanov’s theorem, we can rewrite (2.2) and (4.17) as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dX(t) = [b(t, Xt, v(t)) + σ(t, Xt, v(t))g(t)]dt + σ(t, Xt, v(t))dW̄ (t), t ∈ [s, T ],

Xs = ϕs,

−dY (t) = [a(t, Xt, v(t)) + b(t)Y (t)]dt − Z(t)dW̄ (t),

Y (T ) = Φ(XT ).

(4.18)

Here W̄ (t) = W (t) − ∫ t

0 g(s)ds. We define a probability measure Q on (Ω,F) by

dQ

dP
= exp

{∫ T

0

g(t)dW (t) − 1
2

∫ T

0

g2(t)dt

}
.

Obviously, W̄ (t) is a standard Brownian motion on (Ω,F , Q). By the definition of Uad, we known that there
exists a unique solution of (4.18).

Under the new probability measure Q, the cost functional can be written as

J(s, ϕ; v(·)) = EQ

[∫ T

s

e
∫ t

s
b(r)dra(t, Xt, v(t))dt + e

∫ T
s

b(r)drΦ(XT )

]
.
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Then we have the following result:

Proposition 4.13. We define the value function of the above recursive optimal control problem with delay by
u(s, ϕ) = esssup

v(·)∈Uad

J(s, ϕ; v(·)), (s, ϕ) ∈ [0, T ]× C. Then u(s, ϕ) is a viscosity solution of the following equation

∂

∂s
u(s, ϕ) + sup

v∈U
{Au(s, ϕ) + a(s, ϕ, v)} = 0 (4.19)

with u(T, ϕ) = e
∫ T

s
b(r)drΦ(ϕ). Moreover, there exists unique viscosity solution of HJB equation (4.19) in the

class of continuous functions with at most a polynomially growth.

Proof. First, by Theorem 4.11, we know that the value function u(s, ϕ) is a viscosity solution of (4.19). And
from Lemma 3.3 and Proposition 4.4 we can see that equation (4.19) has at least one solution in the class of
continuous functions with at most a polynomial growth.

On the other hand, if u1(s, ϕ) and u2(s, ϕ) are both continuous viscosity solutions of (4.19) which grow at
most polynomially, i.e. there exists a constant Λ > 0 and a positive integer k > 0 such that

|ui(s, ϕ)| ≤ Λ(1+ ‖ ϕ ‖2)k, (s, ϕ) ∈ [0, T ]× C, i = 1, 2.

By the definition of viscosity solution, without loss of generality, we can suppose u1(s, ϕ) and u2(s, ϕ) are respec-
tively viscosity subsolution and supersolution of (4.19). Then applying the comparison principle in Theorem 5.1
of [1], we have

u1(s, ϕ) ≤ u2(s, ϕ), (s, ϕ) ∈ [0, T ]× C.

Conversely, we also have
u1(s, ϕ) ≥ u2(s, ϕ), (s, ϕ) ∈ [0, T ]× C.

We have u1(s, ϕ) = u2(s, ϕ) immediately. The proof is completed. �
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