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SINGLE INPUT CONTROLLABILITY OF A SIMPLIFIED FLUID-STRUCTURE
INTERACTION MODEL
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Abstract. In this paper we study a controllability problem for a simplified one dimensional model for
the motion of a rigid body in a viscous fluid. The control variable is the velocity of the fluid at one end.
One of the novelties brought in with respect to the existing literature consists in the fact that we use a
single scalar control. Moreover, we introduce a new methodology, which can be used for other nonlinear
parabolic systems, independently of the techniques previously used for the linearized problem. This
methodology is based on an abstract argument for the null controllability of parabolic equations in the
presence of source terms and it avoids tackling linearized problems with time dependent coefficients.
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1. Introduction

In this work we study the boundary null controllability of a simplified one dimensional model for the motion
of a solid in a viscous fluid. More precisely, we consider the initial-boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt(t, x) − vxx(t, x) + v(t, x)vx(t, x) = 0 (t � 0, x ∈ [−1, 1] \ {h(t)}),
v(t, h(t)) = ḣ(t) (t � 0),

Mḧ(t) = [vx](t, h(t)) (t � 0),

v(t,−1) = u(t), v(t, 1) = 0 (t � 0),

h(0) = h0, ḣ(0) = h1,

v(0, x) = v0(x) x ∈ [−1, 1] \ {h0}.

(1.1)

In the above equations, v stands for the velocity field of the fluid, M is the mass of the solid, whereas h
denotes the trajectory of the mass point moving in the fluid. The system is controlled by imposing the velocity
of the fluid at the left-end of the tube and the corresponding control function is denoted by u(t). The symbol
[f ](x) represents the jump of f at x, i.e.

[f ](x) = f(x+) − f(x−)
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where f(x−) and f(x+) denote the left and right limits of f at x, respectively. We write vt, vx, vxx for the
derivatives of v with respect to t, x and for the second derivative of v with respect to x. If a function only
depends on t, we just write ḣ and ḧ for the first and second derivatives of h with respect to t.

This simplified model has been introduced by Vázquez and Zuazua in [17], where the well-posedness (with
(−1, 1) replaced by R) has been considered (see also [16]). The null controllability with controls at both ends
has been considered by Doubova and Fernández-Cara in [4]. In this work the authors use a linearized problem
with variable time-dependent coefficients, which is tackled by using the global Carleman estimates for the heat
equation (see Imanuvilov and Fursikov [6]). As stated in [4], Remark 1.2, this methodology does not allow to
extend the obtained results to the case of a control acting at only one end, due to the lack of connectivity of
the fluid domain. In this work we tackle the case of controls acting at only one end by using a quite different
strategy, which does not appeal at any Carleman estimate. Firstly, our linearized problem is with constant
coefficients, so it can be tackled by spectral calculations combined with a classical method due to Fattorini and
Russell. Secondly, we introduce a new iterative algorithm for the null-controllability in presence of source terms.
The proposed iterative method for null-controllability in presence of source terms is of independent interest and
therefore it is presented in an abstract setting. Note that this iterative method uses an idea going back to Lebeau
and Robbiano [10], which consists in controlling a part of the state trajectory and using the dissipative character
of parabolic equations to steer the remaining part to zero (see also Miller [11], Tenenbaum and Tucsnak [13]).
Finally, we use a fixed point method introduced in Imanuvilov [9] and also used in Imanuvilov and Takahashi [8].

We also mention that similar controllability questions for the “full model” (i.e., involving two or three
dimensional Navier-Stokes equations coupled with Newton’s laws for rigid bodies) have been investigated in
Boulakia and Osses [2] and in [8].

The main result in this paper asserts that the system (1.1) is locally null controllable in a neighborhood of
zero and it can be stated as follows.

Theorem 1.1. Let τ > 0. There exists r > 0 such that for every h0 ∈ (−1, 1), h1 ∈ R, v0 ∈ H1
0 (−1, 1),

v0(h0) = h1, satisfying |h0| + |h1| + ‖v0‖H1
0 (−1,1) ≤ r, there exists u ∈ C[0, τ ] such that the solution of (1.1)

satisfies
v ∈ L2([0, τ ], H2((−1, 1) \ {h(t)}) ∩ C([0, τ ], H1(−1, 1)), h ∈ C1[0, τ ],

together with
ḣ(τ) = 0, v(τ, ·) = 0 and h(τ) = 0. (1.2)

Remark 1.2. The above result can be extended to show that, given τ > 0, any initial state

⎡⎣v0h0

h1

⎤⎦ with small

enough norm in L2(−1, 1) × R × R can be steered to rest in time τ . To prove this fact, we take the control u
equal to zero for t ∈ [0, τ/2] and we note that, by classical results on parabolic equations, we have

v(τ/2, ·) ∈ H1
0 (−1, 1), v(τ/2, h(τ/2)) = ḣ(τ/2).

We can thus conclude by controlling the system for t ≥ τ/2 (this fact is possible due to the above regularity
property and to Thm. 1.1).

The outline of the remaining part of this work is the following. In Section 2 we first recall some known results
on null-controllability of parabolic equations and then we introduce a new iterative method for null controllability
in the presence of source terms. This method, whose precise statement is given in Proposition 2.3, gives a general
iterative framework to tackle source terms and, when applied to a given PDE system, does not require the use
of Carleman estimates. In Section 3 we prove the null internal controllability for an auxiliary linear system,
associated to (1.1), by combining some spectral estimates with the results from Section 2. Finally, Section 4 is
devoted to the proof of the main result.
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2. Some background on null-controllability

We begin this section by briefly recalling some basic facts on the null-controllability of systems with negative
generator. We next give the main result in this section, which concerns the controllability of these systems in
the presence of a source term.

Throughout this section, X and U are Hilbert spaces which are identified with their duals, T is a strongly
continuous semigroup on X , with generator A : D(A) → X and B ∈ L(U,X). The inner product and the norm
in X are simply denoted by 〈·, ·〉 and ‖ · ‖, respectively. We first consider classical linear control systems of the
form {

ż = Az +Bu,

z(0) = z0 ∈ X.
(2.1)

Definition 2.1. For τ > 0, the pair (A,B) is said null-controllable in time τ if for every z0 ∈ X there exists
u ∈ L2([0, τ ], U) such that the solution of (2.1) satisfies z(τ) = 0.

This means that for every z0 ∈ X , the set

Cτ,z0 :=
{
u ∈ L2([0, τ ], U) | z(τ) = 0

}
,

is non empty. The quantity
K(τ) := sup

‖z0‖=1

inf
u∈Cτ,z0

‖u‖L2([0,τ ],U)

is then called the control cost in time τ . If the pair (A,B) is null-controllable in any time τ > 0, then it is known
(see, for instance, [7], Thm. 3.1) that

K : R
+ → R

+ is continuous, non-increasing and lim
τ→0+

K(τ) = +∞. (2.2)

The above definition for the control cost implies that for every function γ : R
+ → R

+, with K(t) < γ(t) for
every t > 0, and for every τ > 0, there exists a control driving the solution of (2.1) to rest in time τ such that

‖u‖L2([0,τ ],U) ≤ γ(τ)‖z0‖ (z0 ∈ X). (2.3)

We first recall a result which essentially goes back to Fattorini and Russell [5]. However, in order to have
the precise statement we need in this work and in order to make the control cost precise, we give a short proof
below.

Proposition 2.2. Assume that A is a negative operator, admitting an orthonormal basis of eigenvectors
(ϕk)k�1 and with the corresponding decreasing sequence of eigenvalues (−λk)k�1 satisfying

inf
k�0

(λk+1 − λk) = s > 0, (2.4)

λk = rk2 +O(k) (k → ∞), (2.5)

for some r > 0. Moreover, assume that U is a separable Hilbert space and that there exists a constant m > 0
such that the adjoint operator B∗ satisfies

‖B∗ϕk‖U � m (k � 1). (2.6)

Then the pair (A,B) is null-controllable in any time τ > 0 and there exist positive constants M,C, depending
only on (λk)k≥1 and on m, such that the control cost K satisfies

K(τ) < Ce
M
τ (τ > 0).
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Proof. According to a classical result, which goes back to Dolecki and Russell [3] (see also Tucsnak and Weiss [15],
Sect. 11.2), the pair (A,B) is null-controllable in time τ at cost K(τ) iff (A∗, B∗) is final state observable in
time τ at the same cost, i.e., if for every K > K(τ) we have

K2

∫ τ

0

‖B∗
T
∗
t z0‖2

Udt � ‖T
∗
τz0‖2 (z0 ∈ X), (2.7)

where T
∗
t is the adjoint of Tt, whose generator is A∗. Simple calculations show that

B∗
T
∗
t z0 = B∗

Ttz0 =
∑
k�1

e−λkt〈z0, ϕk〉B∗ϕk.

The above formula, combined with the fact that U admits an orthonormal basis (ψl)l�1, implies that

∫ τ

0

‖B∗
T
∗
t z0‖2

Udt =
∑
l�1

∫ τ

0

∣∣∣∣∣∣
∑
k�1

e−λkt〈z0, ϕk〉X〈B∗ϕk, ψl〉U

∣∣∣∣∣∣
2

dt (τ > 0, z0 ∈ X). (2.8)

On the other hand, it is known (see, for instance, Tenenbaum and Tucsnak [14], Cor. 3.6, and references therein)
that, under the assumptions (2.4) and (2.5), there exist constants M1, M2 > 0 (depending only on s and on r)
such that

M1e
M2
τ

∫ τ

0

∣∣∣∣∣∣
∑
k�1

ake−λkt

∣∣∣∣∣∣
2

dt �
∑
k�1

|ak|2e−2λkτ (τ > 0, (ak) ∈ l2).

The above estimate combined with (2.8) implies that

M1e
M2
τ

∫ τ

0

‖B∗
T
∗
t z0‖2

Udt �
∑
l�1

∑
k�1

e−2λkτ |〈z0, ϕk〉X |2 |〈B∗ϕk, ψl〉U |2 (τ > 0, z0 ∈ X).

The last inequality, together with (2.6), gives

M1e
M2
τ

∫ τ

0

‖B∗
T
∗
t z0‖2

Udt � m2‖T
∗
τz0‖2 (z0 ∈ X),

so that (2.7) holds with K =
√

M1e
M2
2τ

m . This fact clearly implies the conclusion of the proposition. �

Assume that (A,B) is null controllable in any time τ > 0. In the remaining part of this section we study a
null-controllability problem associated to (A,B) in the presence of source terms, i.e., we consider the system{

ż = Az +Bu+ f,
z(0) = z0,

(2.9)

where f : [0,∞) → X .
We show below, roughly speaking, that if f vanishes, with a prescribed decay rate, for some τ > 0, then

there exists a control u such that the solution of (2.9) tends to zero at a similar rate when t→ τ . To make this
assertion precise, we need some notation.

Let q > 1 be a constant, let γ : (0,∞) → [0,∞) be a continuous non increasing function with limt→0 γ(t) =
+∞ and let τ > 0. Consider a continuous function ρF : [0, τ ] → [0,∞) with

ρF non increasing and ρF(τ) = 0, (2.10)
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such that the function ρ0 :
[
τ
(
1 − 1

q2

)
, τ
]
→ [0,∞) defined by

ρ0(t) := ρF(q2(t− τ) + τ)γ ((q − 1)(τ − t))
(
t ∈

[
τ

(
1 − 1

q2

)
, τ

])
, (2.11)

is non increasing and
ρ0(τ) = 0. (2.12)

The fact that, for each γ as above, such a function ρF exists is easy to check. Indeed, we can take, for instance,

ρF(q2(t− τ) + τ) = (γ ((q − 1)(τ − t)))−(1+p)

(
t ∈

[
τ

(
1 − 1

q2

)
, τ

])
,

with p > 0. We associate to the functions ρF and ρ0 the Hilbert spaces F , U and Z defined by

F =
{
f ∈ L2([0, τ ], X)

∣∣∣∣ f

ρF
∈ L2([0, τ ], X)

}
, (2.13a)

U =
{
u ∈ L2([0, τ ], U)

∣∣∣∣ u

ρ0
∈ L2([0, τ ], U)

}
, (2.13b)

Z =
{
z ∈ L2([0, τ ], X)

∣∣∣∣ z

ρ0
∈ L2([0, τ ], X)

}
, (2.13c)

where ρ0 is any extension of the function in (2.11) (also denoted by ρ0), initially defined on
[
τ
(
1 − 1

q2

)
, τ
]
, to

a function which is continuous and non increasing on [0, τ ]. We can take, for instance,

ρ0(t) = ρ0

(
τ

(
1 − 1

q2

)) (
t ∈

[
0, τ

(
1 − 1

q2

)])
,

but the choice of this extension plays no role in what follows.
The inner product in F is defined by

〈f1, f2〉F =
∫ τ

0

ρ−2
F (t)〈f1(t), f2(t)〉dt

and similar definitions are used for U and for Z. The induced norms are denoted by ‖ · ‖F , ‖ · ‖Z and ‖ · ‖U ,
respectively.

We are now in a position to prove the main result in this section.

Proposition 2.3. Assume that the pair (A,B) is null-controllable in any time t > 0, with control cost K(t).
Let γ : (0,∞) → [0,∞) be a continuous non increasing function such that

K(t) < γ(t) (t > 0). (2.14)

Let τ > 0 and let ρF and ρ0 be two functions satisfying (2.10)−(2.12) and let (F ,Z,U) be the corresponding
Hilbert spaces, defined according to (2.13). Then, for every z0 ∈ X and f ∈ F , there exists u ∈ U such that
the solution of (2.9) satisfies z ∈ Z. Furthermore, there exists a positive constant C, not depending on f and
on z0, such that ∥∥∥∥ zρ0

∥∥∥∥
C([0,τ ],X)

+ ‖u‖U ≤ C (‖f‖F + ‖z0‖X) . (2.15)

In particular, since ρ0 is a continuous function satisfying ρ0(τ) = 0, the above relation yields z(τ) = 0.
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Remark 2.4. Note that the statement of the above proposition depends on an arbitrary constant q > 1. The
choice of this constant is important in applications to PDE systems. For instance to obtain Theorem 1.1, we
will assume that q4 < 2.

Before proving the above proposition, we recall the following classical result (see, for instance, Lem. 3.3 and
Thm. 3.1 of [1], p. 80).

Lemma 2.5. Assume that A is negative and f : [0,∞) → X. Let τ1, τ2 > 0 and let z be the solution of{
ż = Az + f t ∈ (τ1, τ2),

z(τ1) = a ∈ X.

There exists a positive constant C, depending only on A, such that

‖z‖2
C([τ1,τ2],X) +

∥∥∥(−A)1/2z
∥∥∥2

L2([τ1,τ2],X)
≤ ‖a‖2

X + C ‖f‖2
L2([τ1,τ2],X) (a ∈ X, f ∈ L2([τ1, τ2], X)). (2.16)

Furthermore, if a ∈ D((−A)
1
2 ), then we have

‖z‖2
H1((τ1,τ2),X) +

∥∥∥(−A)
1
2 z
∥∥∥2

C([τ1,τ2],X)
+ ‖Az‖2

L2([τ1,τ2],X) ≤ ‖a‖2

D((−A)
1
2 )

+ C ‖f‖2
L2([τ1,τ2],X)

(a ∈ D((−A)
1
2 ), f ∈ L2([τ1, τ2], X)).

Proof of Proposition 2.3. Consider the sequence

Tk = τ − τ

qk
(k � 0).

First of all, let us remark that in that case, (2.11) yields

ρ0(Tk+2) = ρF(Tk)γ (Tk+2 − Tk+1) . (2.17)

We define the sequence {ak}k�0 by a0 = z0 and

ak+1 = z1(Tk+1−) (k � 0), (2.18)

where z1 satisfies {
ż1 = Az1 + f t ∈ (Tk, Tk+1),

z1(Tk+) = 0,
(k ≥ 0). (2.19)

On the other hand, for each k � 0 we consider the control system{
ż2 = Az2 +Buk (t ∈ (Tk, Tk+1)),

z2(Tk+) = ak ∈ X,
(k � 0),

where uk ∈ L2([Tk, Tk+1], U) is such that

z2(Tk+1−) = 0 (k � 0),

‖uk‖2
L2([Tk,Tk+1],U) � γ2 (Tk+1 − Tk) ‖ak‖2

X (k � 0). (2.20)

The fact that such a control uk exists for every k ∈ N follows from the null-controllability of (A,B) with a cost
satisfying (2.14).
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To estimate the solution z1 of (2.19), we note that from Lemma 2.5 it follows that

‖z1‖2
C([Tk,Tk+1];X) +

∥∥∥(−A)1/2z1

∥∥∥2

L2([Tk,Tk+1],X)
≤ C ‖f‖2

L2([Tk,Tk+1],X) (k ≥ 0).

In particular, recalling (2.18), we have

‖ak+1‖2
X ≤ C ‖f‖2

L2([Tk,Tk+1],X) (k � 0). (2.21)

Combining (2.20), (2.21) and the fact that ρF is not increasing, we obtain that, for every k � 0,

‖uk+1‖2
L2([Tk+1,Tk+2],U) ≤ γ2 (Tk+2 − Tk+1) ‖ak+1‖2

X

≤ Cγ2

(
(q − 1)

τ

qk+2

)
ρ2
F (Tk)

∥∥∥∥ f

ρF

∥∥∥∥2

L2([Tk,Tk+1],X)

·

Recalling the definition of ρ0(t) in (2.11) and using (2.17), we obtain

‖uk+1‖2
L2([Tk+1,Tk+2],U) � Cρ2

0(Tk+2)
∥∥∥∥ f

ρF

∥∥∥∥2

L2([Tk,Tk+1],X)

(k � 0).

Since ρ0 is non-increasing, it follows that there exists a positive constant, still denoted by C, such that∥∥∥∥uk+1

ρ0

∥∥∥∥2

L2([Tk+1,Tk+2],U)

≤ C

∥∥∥∥ f

ρF

∥∥∥∥2

L2([Tk,Tk+1],X)

(k � 0). (2.22)

We define the control u by

u :=
∞∑

k=0

uk1[Tk,Tk+1),

where 1I is the characteristic function of the set I. Combining (2.22) with (2.20) (for k = 0) implies that there
exists a positive constant C such that∥∥∥∥ uρ0

∥∥∥∥
L2([0,τ ],U)

≤ C

(∥∥∥∥ f

ρF

∥∥∥∥
L2([0,τ ],X)

+ ‖z0‖
)

(z0 ∈ X, f ∈ F). (2.23)

If we set z := z1 + z2 then, for every k � 0, we have{
ż = Az +Buk + f (t ∈ [Tk, Tk+1]),

z(Tk) = ak.
(2.24)

Moreover,
z(Tk−) = z1(Tk−) + z2(Tk−) = ak = z1(Tk+) + z2(Tk+) = z(Tk+) (k ≥ 1),

so that z is continuous at Tk for every k � 0. Consequently, z satisfies (2.9) for t ∈ [0, τ ].
Furthermore, applying Lemma 2.5 to (2.24), we obtain the existence of a positive constant C (depending

only on A and B) such that

‖z‖2
C([Tk,Tk+1],X) ≤ ‖ak‖2

X + C ‖u‖2
L2([Tk,Tk+1],X) + C ‖f‖2

L2([Tk,Tk+1],X) (k � 0). (2.25)

The above estimate, combined with (2.20) imply that

‖z‖2
C([Tk,Tk+1],X) ≤ ‖ak‖2

X + Cγ2 (Tk+1 − Tk) ‖ak‖2
X + C ‖f‖2

L2([Tk,Tk+1],X) (k � 0).
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The above inequality and (2.21) imply that there exists a positive constant C, depending only on A and B,
such that

‖z‖2
C([Tk,Tk+1],X) ≤ Cγ2(Tk+1 − Tk)‖f‖2

L2([Tk−1,Tk+1],X) (k � 1),

and thus, since ρF is not increasing (recall also (2.17)),

‖z‖2
C([Tk,Tk+1],X) ≤ Cγ2(Tk+1 − Tk)ρ2

F (Tk−1)
∥∥∥∥ f

ρF

∥∥∥∥2

L2([Tk−1,Tk+1],X)

= Cρ2
0(Tk+1)

∥∥∥∥ f

ρF

∥∥∥∥2

L2([Tk−1,Tk+1],X)

(k � 1). (2.26)

Since ρ0 is not increasing, we deduce from (2.26) that∥∥∥∥ zρ0
(t)
∥∥∥∥ � C

∥∥∥∥ f

ρF

∥∥∥∥
L2([Tk−1,Tk+1],X)

(k � 1, t ∈ [Tk, Tk+1]). (2.27)

The above estimate, combined with (2.20) and (2.25) (both for k = 0), implies that∥∥∥∥ zρ0

∥∥∥∥
C([0,τ ],X)

≤ C

(∥∥∥∥ f

ρF

∥∥∥∥
L2([0,τ ],X)

+ ‖z0‖X

)
.

The above estimate and (2.23) imply the conclusion (2.15). �

Consider the backwards system {
−ζ̇(t) = Aζ(t) + g (t ∈ (0, τ)),

ζ(τ) = 0.
(2.28)

By a duality argument (see, for instance, Thm. 4.1 in [8]), we obtain the following consequence of Proposition 2.3.

Corollary 2.6. Under the assumptions and notation of Proposition 2.3, for every g ∈ L2([0, τ ], X) the solution
of (2.28) satisfies:

‖ζ(0)‖2 +
∫ τ

0

‖ρFζ‖2dt ≤ C

(∫ τ

0

‖ρ0g‖2 dt+
∫ τ

0

‖ρ0B
∗ζ‖2

Udt
)
. (2.29)

Remark 2.7. Looking to estimate (2.29), one can easily think to Carleman estimates, such as those obtained in
a PDE context in [8,9]. However, the way in which we obtained (2.29) is very far from Carleman estimates based
strategies. Indeed, our only assumption is the pair (A,B) is null controllable, without needing any knowledge
on the methodolgy used to prove this controllability. In the application to our PDE system this gives the full
choice of the method used to prove the null controllability of the pair (A,B). In our application it turns out
that a spectral method gives results which seem better than those obtained via Carleman estimates (see the
next section).

The next proposition gives more information on the regularity of the controlled trajectory obtained in Propo-
sition 2.3.

Proposition 2.8. Under the notation and assumptions in Proposition 2.3, assume that there exists a continuous
not increasing function ρ : [0, τ ] → R

+ satisfying ρ(τ) = 0 and the inequalities

ρ0 ≤ Cρ, ρF ≤ Cρ, |ρ̇| ρ0 ≤ Cρ2 (t ∈ [0, τ ]) (2.30)
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for some positive constant which does not depend on t. Then for every z0 ∈ D((−A)
1
2 ) there exists u ∈ U such

that the solution z ∈ Z of (2.9) satisfies

z

ρ
∈ L2([0, τ ],D(A)) ∩H1((0, τ), X) ∩ C

(
[0, τ ],D

(
(−A)

1
2

))
.

Moreover, there exists a positive constant C, depending only on A and on B, such that∥∥∥∥zρ
∥∥∥∥

C([0,τ ],D((−A)1/2))∩H1((0,τ),X)∩L2([0,τ ],D(A))

≤ C
(‖z0‖D((−A)1/2) + ‖f‖F

)
. (2.31)

Proof. Let u be the control constructed in the proof of Proposition 2.3 and let z be the corresponding trajectory.
Then w := z

ρ satisfies

ẇ = Aw +
Bu

ρ
+
f

ρ
− ρ̇ρ0

ρ2

z

ρ0
· (2.32)

Conditions (2.30) imply
Bu

ρ
+
f

ρ
− ρ̇ρ0

ρ2

z

ρ0
∈ L2([0, τ ], X).

so that the conclusion easily follows by applying Lemma 2.5. �

In the remaining part of this section we consider a system obtained from (2.9) by adding a simple integrator.
More precisely, we consider the equations ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ż = Az +Bu+ f,

ḣ = Cz,

z(0) = z0,

h(0) = h0,

(2.33)

where Y is a Hilbert space and C ∈ L(X,Y ). Consider the adjoint system of (2.33){
−ξ̇(t) = Aξ(t) + g(t) + C∗r,

ξ(τ) = 0,
(2.34)

where g : [0,∞) → X and r ∈ Y . The last result in this section is a characterization by duality of the fact
that the solutions of (2.33) can be steered to rest at a prescribed decay rate. Using the notation introduced
in (2.11)–(2.13), this result reads as follows.

Proposition 2.9. The following two statements are equivalent

(1) For every (g, r) ∈ L2([0, τ ], X) × Y , the solution of (2.34) satisfies

‖r‖2
Y + ‖ξ(0)‖2 +

∫ τ

0

‖ρFξ‖2dt ≤ C

(∫ τ

0

‖ρ0g‖2dt+
∫ τ

0

‖ρ0B
∗ξ‖2

Udt
)

; (2.35)

(2) there exists a bounded linear operator Eτ : X × Y ×F → U such that for any (z0, h0, f) ∈ X × Y ×F , the
control u = Eτ (z0, h0, f) is such that the solution of (2.33) satisfies z ∈ Z and h(τ) = 0.

For the proof of this proposition, we refer to [8], Theorem 4.1.
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3. Internal null controllability for a linear coupled problem

In this section, we apply the result from Section 2 to obtain the internal null controllability of a linear system
coupling the heat equation with some simple ODE’s. This result will be used as a first step in the proof of
Theorem 1.1. More precisely, we begin by studying a “fictitious” internal controllability problem in order to
be able to apply the techniques in Section 2. Since, in the proof of Theorem 1.1, we will just need the spatial
domain in which the heat equation holds to be of the form (c, 0) ∪ (0, 1) with c < −1, we choose c here to our
best convenience, i.e., we take c = −2. In this context, Propositions 3.1 and 3.2 show that this linear system
satisfies the assumptions of Proposition 2.2 which allows to obtain its null-controllability (Prop. 3.3). Then in
Proposition 3.4, we show that we can control this linear system when coupled with a simple integrator (which
corresponds to the position of the particle here) as in system (2.33). The last result, given in Corollary 3.5, gives
some regularity properties of the controlled solution obtained in Proposition 3.4.

Denote
X = L2(−2, 1) × R,

and consider the operator A : D(A) → X defined by

D(A) =
{
z =

[
ϕ
g

]
∈ H1

0 (−2, 1)× R
∣∣ϕ(0) = g, ϕ|(−2,0)

∈ H2(−2, 0), ϕ|(0,1)
∈ H2(0, 1)

}
,

A

[
ϕ
g

]
=

[
ϕxx

M−1[ϕx](0)

]
. (3.1)

In the above formula ϕxx is not understood in the distribution sense but it is just the function in L2(−2, 1)
whose restrictions to (−2, 0) and to (0, 1) coincide with the second derivative of ϕ on each of those intervals.
The space X is endowed with the inner product

〈z1, z2〉 =
∫ 1

−2

ϕ1(x)ϕ2(x) dx +Mg1g2, where zi =
[
ϕi

gi

]
, i = 1, 2. (3.2)

We simply denote by ‖ · ‖ the induced norm.
The proof of the following result is quite standard so that we omit it.

Proposition 3.1. The operator A is negative in X (this means that A is self-adjoint and that there exists
m1 > 0 such that 〈Az, z〉 � −m1‖z‖2 for every z ∈ D(A)).

The last proposition implies, according to the Lumer-Phillips theorem, that A generates a contraction semi-
group on X. Furthermore, since A obviously has compact resolvents, it follows that there exists an orthonormal
basis (Φk) in X formed by eigenvectors of A such that the corresponding eigenvalues form a non-increasing
sequence (−λk) with λk → ∞.

The result below gives more information about the eigenvectors and the eigenvalues of A. To give the precise
statement we introduce the Hilbert space U = L2

(−2,− 3
2

)
and the operator B ∈ L(U,X) defined by

Bu =

[
�(−2,− 3

2 )u

0

]
(u ∈ U), (3.3)

where �(−2,− 3
2 ) stands for characteristic function of the interval

(−2,− 3
2

)
. Note here, for later use, that the

adjoint B∗ of B is given by

B∗
[
ϕ

r

]
= ϕ|(−2,− 3

2 )

[
ϕ

r

]
∈ X. (3.4)
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Proposition 3.2. The sequence (−λk)k≥1 is regular (i.e., infk�1(λk+1 − λk) > 0) and we have

λk =
k2π2

9
+O(k) (k → ∞). (3.5)

Furthermore, there exists a positive constant c1 such that

c1 ≤ ‖B∗Φk‖U (k � 1). (3.6)

Proof. Since A is negative, all its eigenvalues are negative numbers. Let −μ2, with μ > 0 be an eigenvalue of A.

This means that there exists a vector
[
ϕ
r

]
∈ D(A) \ {0} such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ϕxx = μ2ϕ(x) x ∈ (−2, 0) ∪ (0, 1),

ϕ(−2) = ϕ(1) = 0,

ϕ(0) = − 1
Mμ2

[ϕx](0).

(3.7)

From the first two equations in (3.7) we deduce that

ϕ(x) =
{
C sin (μ(2 + x)) , x ∈ (−2, 0),
D sin (μ(1 − x)) , x ∈ (0, 1),

(3.8)

with C,D ∈ R and C2 +D2 �= 0. In order to use the continuity of ϕ at x = 0 and the last equation in (3.7), we
distinguish two cases.

The first case corresponds to the situation in which ϕ(0) = 0. In this case, by the continuity of ϕ at x = 0
we obtain

C sin 2μ = 0, D sinμ = 0. (3.9)

The above equation and the last equation in (3.7) yield

C cos 2μ = D cosμ.

From the above formula and (3.9), it easily follows that

C2 = D2. (3.10)

This, combined with the fact that C2 +D2 �= 0 and with (3.9), indicates that we have a first family (−λ(1)
m )m�1

of eigenvalues of A given by
λ(1)

m = (μ(1)
m )2 = m2π2 (m ∈ N

∗) . (3.11)

The second case corresponds to the situation in which ϕ(0) �= 0. In this case, we have

sin(2μ) �= 0, sinμ �= 0,

and the constants C and D in the expression (3.8) of the eigenvectors can be chosen such that

D = C
sin 2μ
sinμ

= 2C cosμ. (3.12)

With this choice, the last condition in (3.7) yields the characteristic equation

Mμ = cotanμ+ cotan 2μ. (3.13)
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All the eigenvalues of A not belonging to the family (−λ(1)
m ), obtained in our first case, are of the form λ = −μ2,

where μ is a positive root of (3.13). To locate the roots of this transcendental equation, note first that the
expression in the right hand side of (3.13), suggests to study the function f(μ) = cotan 2μ + cotanμ, which
is defined on the union of all intervals of the form

(
(m− 1)π, (m− 1)π + π

2

)
and

(
(m− 1)π + π

2 ,mπ
)
, with

m ∈ N
∗. Moreover, f is decreasing on each of these intervals and

lim
μ→(m−1)π
μ>(m−1)π

f(μ) = +∞, f
(
(m− 1)π +

π

3

)
= 0, lim

μ→(m−1)π+π/2
μ<(m−1)π+π/2

f(μ) = −∞,

lim
μ→(m−1)π+ π

2
μ>(m−1)π+π

2

f(μ) = +∞, f

(
(m− 1)π +

2π
3

)
= 0, lim

μ→mπ
μ<mπ

f(μ) = −∞.

Therefore, we have two other families of eigenvalues of A, denoted (−λ(2)
m )m�1 and (−λ(3)

m )m�1 where

λ(j)
m = (μ(j)

m )2 (j ∈ {2, 3}, m ∈ N
∗)

and μ(2)
m , μ

(3)
m can be written

μ(2)
m =

π

2
+ (m− 1)π + ω(2)

m (m ∈ N
∗), (3.14)

and
μ(3)

m = (m− 1)π + ω(3)
m (m ∈ N

∗), (3.15)

where ω(2)
m ∈ (

0, π
6

)
, ω(3)

m ∈ (
0, π

3

)
and

lim
m→∞ω(i)

m = 0, i ∈ {2, 3}. (3.16)

It is easily seen from (3.11), (3.14) and (3.15) that, for each m ∈ N
∗,

μ(3)
m < μ(2)

m < μ(1)
m < μ

(3)
m+1 < μ

(2)
m+1 < . . . , (3.17)

which implies that the sequences (μ(j)
m )m�1, with j ∈ {1, 2, 3} have no elements in common. Furthermore, using

that ω(2)
m ∈ (

0, π
6

)
, ω(3)

m ∈ (
0, π

3

)
, we obtain that for each m ∈ N

∗ we have

μ(2)
m − μ(3)

m ≥ π

2
+ ω(2)

m − ω(3)
m >

π

6
, (3.18a)

μ(1)
m − μ(2)

m ≥ π

2
− ω(2)

m >
π

3
, (3.18b)

μ
(3)
m+1 − μ(1)

m ≥ ω
(3)
m+1. (3.18c)

In order to give a lower bound for ω(3)
m we note that using (3.15), equation (3.13) writes

M((m− 1)π + ω(3)
m ) = cotan ((m− 1)π + ω(3)

m )

+ cotan [2((m− 1)π + ω(3)
m )] = cotan (ω(3)

m ) + cotan (2ω(3)
m ) (m ∈ N

∗). (3.19)

Since
cotanx =

1
x
− 1

3
x+ o(x2) (x→ 0), (3.20)

equation (3.19) writes

M
[
(m− 1)π + ω(3)

m

]
=

3

2ω(3)
m

− ω(3)
m + o

((
ω(3)

m

)2
)
. (3.21)
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Multiplying both sides of the above formula by ω(3)
m /M we get

(m− 1)πω(3)
m =

3
2M

+O

((
ω(3)

m

)2
)

(m→ ∞).

Dividing both sides of the above formula by (m− 1)π we obtain

ω(3)
m =

3
2πM(m− 1)

+ o

(
1
m

)
(m → ∞), (3.22)

which gives the desired lower bound for ω(3)
m .

Let now (μm)m≥1 denote the increasing sequence formed by rearranging all the values of the sequences
(μ(i)

m )m≥1, with i ∈ {1, 2, 3}. The the spectrum of A is the set −Λ, where Λ = (λm)m≥1 := (μ2
m)m≥1. Combin-

ing (3.17), (3.18) and (3.22), we can see that Λ is regular, which yields the first conclusion of our proposition.
We still have to show that Λ satisfies (3.5). To achieve this goal denote

ν(K) = max{m | μm � K} (K � 0).

It is clear that

ν(K) =
3∑

i=1

ν(i)(K) (K � 0), (3.23)

where
ν(i)(K) = max

{
m | μ(i)

m � K
}

(i ∈ {1, 2, 3}, K � 0).

From (3.11), (3.14) and (3.15), it follows that

ν(i)(K) =
K

π
+O(1) (i ∈ {1, 2, 3}, K → ∞). (3.24)

Combining (3.23) with (3.24), it follows that

ν(K) =
3K
π

+O(1) (K → ∞). (3.25)

Using the fact that
μν(K) = K +O(1) (K → ∞),

setting ν(K) = m in the last formula and using (3.25) we obtain that

μm =
mπ

3
+O(1) (m→ ∞), (3.26)

which clearly implies (3.5).
We finally check estimate (3.6). For everym ∈ N

∗, the unitary eigenvector associated to the eigenvalue (−μ2
m)

is given by Φm =
[
ϕm

ϕm(0)

]
with

ϕm(x) =
{
Cm sin (μm(2 + x)) , x ∈ (−2, 0),
Dm sin (μm(1 − x)) , x ∈ (0, 1),

(3.27)

where, in order to ensure the normalization condition, we have

C2
m

(
1 − sin 4μm

4μm

)
+D2

m

(
1
2
− sin 2μm

4μm

)
+MC2

m sin2(2μm) = 1. (3.28)
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We deduce from (3.4) that
B∗Φm = ϕm|(−2,− 3

2 )

so that

‖B∗Φm‖2
U =

C2
m

4

(
1 − sinμm

μm

)
· (3.29)

From (3.26), we deduce that there exists d1 > 0 such that

d1 < 1 − sinμm

μm
(m ∈ N

∗). (3.30)

Therefore, we see from (3.29) and (3.30) that, in order to obtain (3.6), it suffices to estimate the sequence
(Cm)m≥1. This will be done by distinguishing two cases.

First case. Assume that μm is a term of the sequence (μ(1)
k ), which has been defined in (3.11). We deduce

from (3.10) and from (3.28) that C2
m = 2/3. This fact, combined with (3.29) implies that (3.6) holds in the

considered case.

Second case. Assume that μm is not a term of the sequence (μ(1)
k ). In this case, we know from (3.12) that

Dm = 2Cm cosμm. Using this information in (3.28) it follows that

C2
m =

[
1 − sin 4μm

4μm
+ 2 cos2(μm) − cos2(μm)

sin 2μm

μm
+M sin2(2μm)

]−1

. (3.31)

On the other hand, by using (3.14), (3.15) and (3.16), we deduce

sin2(2μ(i)
m ) → 0,

sin 4μ(i)
m

4μ(i)
m

→ 0, cos2(μ(i)
m )

sin 2μ(i)
m

μ
(i)
m

→ 0 (i ∈ {2, 3}) (3.32)

1 + 2 cos2
(
2μ(2)

m

)
→ 1, 1 + 2 cos2

(
2μ(3)

m

)
→ 3. (3.33)

Gathering (3.31) and (3.32) yields
|Cm| � c1 (m ∈ N

∗)

for some constant c1 > 0.
We conclude that (3.6) holds for the two cases and the proof is now complete. �

Combining Propositions 2.2, 3.1 and 3.2, we conclude

Proposition 3.3. The pair (A,B) is null-controllable in any time τ > 0 with control cost K(τ) < M0e
M1
τ for

some positive constants M0 and M1.

Now we turn to the controllability of the system (2.33) in the particular case where A,B are defined by (3.1)
and (3.3) and C : X → R is defined by

C

[
ϕ

g

]
= g

([
ϕ

g

]
∈ X

)
, (3.34)

i.e. we consider the controllability of the nonhomogeneous system⎧⎪⎪⎪⎨⎪⎪⎪⎩
ż = Az +Bu+ f,

ḣ = Cz,

z(0) = z0,

h(0) = h0.

(3.35)
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Proposition 3.4. With the above notation for A, B and C, let τ > 0 and let M0, M1 be the constants in
Proposition 3.3. Let ρF , ρ0 : [0, τ) → [0,∞)⎧⎨⎩

ρF (t) = exp(− α
(τ−t)2 ),

ρ0(t) = M0 exp
(

M1
(q−1)(τ−t) − α

q4(τ−t)2

)
,

(3.36)

where the parameters q, α satisfy:

q > 1, α >
M1q

4

2(q − 1)
τ. (3.37)

Let (F ,U ,Z) be the spaces obtained from ρF and ρ0 according to (2.13). Then there exists a bounded linear
operator

Eτ : X × R ×F → U (3.38)

such that for any (z0, h0, f) ∈ X × R × F , the control u = Eτ (z0, h0, f) is such that the solution of (3.35)
satisfies z ∈ Z and h(τ) = 0.

Proof. We consider the adjoint system (see (2.34)) of (3.35){
−ξ̇(t) = Aξ(t) + g(t) + C∗r,
ξ(τ) = 0,

(3.39)

where g : [0,∞) → X and r ∈ R. It is not difficult to check that our assumptions (3.37) imply that the functions
defined in (3.36) satisfy (2.10)–(2.12). This fact, combined with Proposition 2.3 (with γ(t) = M0e

M1
t ) and

Corollary 2.6 yields that there exists a C > 0 with

‖ξ(0)‖2
X +

∫ τ

0

‖ρFξ‖2
Xdt ≤ C

(∫ τ

0

‖ρ0(g + C∗r)‖2
Xdt+

∫ τ

0

‖ρ0B
∗ξ‖2

Udt
)
, (3.40)

for every solution of (3.39). In order to eliminate r from the right-hand side of the above inequality, we show
that

|r|2 ≤ C

(∫ τ

0

‖ρ0g‖2
Xdt+

∫ τ

0

‖ρ0B
∗ξ‖2

Udt
)
, (3.41)

for every solution of (3.39). This is done by employing a compactness-uniqueness argument. Assume that (3.41)
is false, then there exists a sequence (gn, rn) ∈ L2([0, τ ], X) × R such that |rn|2 = 1 for every n � 1 and∫ τ

0

‖ρ0gn‖2
Xdt+

∫ τ

0

‖ρ0B
∗ξn‖2

Udt→ 0, (3.42)

where ξn, gn and rn satisfy {
−ξ̇n(t) = Aξn(t) + gn(t) + C∗rn,
ξn(τ) = 0.

(3.43)

By compactness we deduce that, up to the extraction of a subsequence,

rn → r, |r| = 1. (3.44)

Moreover, (3.42) implies that
ρ0gn → 0 strongly in L2([0, τ ], X). (3.45)

Let

ρ1(t) = M0 exp
(

M1

(q − 1)(τ − t)
− 2α

(τ − t)2

)
(t ∈ (0, τ)).
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It can be easily verified that
ρ1(t) � ρ0(t) t ∈ [0, τ ],

so that, using (3.45), we obtain that

ρ1gn → 0 strongly in L2([0, τ ], X). (3.46)

On the other hand, it is not difficult to check that there exists a C1 > 0 with

|ρ̇1(t)| ≤ C1ρF (t) t ∈ [0, τ ].

This last estimate, combined with (3.40) and (3.42), implies that

‖ρ̇1ξn‖L2([0,τ ],X) ≤ C1‖ρFξn‖L2([0,τ ],X) ≤ C (n � 1), (3.47)

for some positive constant C. Multiplying both sides of (3.43) by ρ1(t), we deduce that{
−(ρ1ξn)t = A(ρ1ξn(t)) + ρ1gn(t) + ρ1C

∗rn − ρ̇1ξn(t),

ξn(τ) = 0.
(3.48)

Let fn = ρ1gn+ρ1C
∗rn−ρ̇1ξn. Combining (3.44), (3.46) and (3.47) implies that (fn) is bounded in L2([0, τ ], X).

Hence, using Lemma 2.5 for (3.48), we deduce that (ρ1ξn) is bounded in L2([0, τ ],D(A))∩H1((0, τ), X). Since ρ1

is bounded away from zero on [0, τ − ε] for every ε > 0, we have

ξn → ξ weakly in L2([0, τ − ε],D(A)) ∩H1((0, τ − ε), X),

up to the extraction of a subsequence. The function ξ above obviously satisfies the first equation (3.39) for

t ∈ [0, τ − ε]. Therefore denoting ξ =
[
φ

k

]
, after passing to the limit in (3.43), we have

ξ ∈ L2([0, τ − ε],D(A)) ∩H1((0, τ − ε), X), (3.49)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−φt(t, x) = φxx(t, x), (0, τ − ε) × {(−2, 0) ∪ (0, 1)}
−Mk̇(t) = [φx](t, 0) + r,

k(t) = φ(t, 0),

φ(t,−2) = 0,

φ(t, 1) = 0.

(3.50)

Recalling the relation (3.42), the definition (3.36) of ρ0 and the formula (3.4) for B∗, we see that for every
ε > 0, φ = 0 in (0, τ − ε) × (−2,−3/2). Using a unique continuation property for the heat equation (see, for
instance, [12], Thm. 1.1), we deduce that φ = 0 on (0, τ − ε) × (−2, 0). Recalling the definition of A and D(A)
from (3.1) together with (3.49), we see that

φ(t, 0+) = φ(t, 0−) = 0, (3.51)

for almost every t ∈ (0, τ − ε), so that φ satisfies the heat equation with homogeneous Dirichlet boundary
conditions for t ∈ (0, τ − ε) and x ∈ (0, 1). It follows that φ can be written

φ(t, x) =
∞∑

n=1

an sin(nπx)e−π2n2(τ−t−ε) (t ∈ [0, τ − ε], x ∈ (0, 1)), (3.52)

for some real sequence (an) with (nan) ∈ l2.
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On the other hand, using the third equation in (3.50) and (3.51), it follows that k(t) = 0 for every t ∈ [0, τ−ε).
By using the second equation of (3.50) and the fact that φ vanishes for x < 0, yields

φx(t, 0+) = −r (t ∈ [0, τ − ε]).

The above equation and (3.52) give

r + π

∞∑
n=1

nane−π2n2(τ−t−ε) = 0 (t ∈ [0, τ − ε]),

which clearly implies that an = 0 for every n � 1 and that r = 0. The last assertion contradicts (3.44). We can
thus conclude that (3.41) holds.

Using next (3.41) in (3.40) it follows that there exists a positive constant C such that

|r|2 + ‖ξ(0)‖2 +
∫ τ

0

‖ρFξ‖2dt ≤ C

(∫ τ

0

‖ρ0g‖2dt+
∫ τ

0

‖ρ0B
∗ξ‖2

Udt
)
,

for every solution of (3.39). By applying Proposition 2.9 (with Y = R) we obtain the desired result. �

Corollary 3.5. With the assumptions and notation in Proposition 3.4, denote

ρ(t) = e−
β

(τ−t)2 (t ∈ [0, τ)), (3.53)

where the positive constant β is such that β < α
q4 . Then, for every z0 ∈ D((−A)1/2), f ∈ F and h0 ∈ R, the

trajectory z obtained by solving (3.35) with u = Eτ (z0, h0, f) is in C([0, τ ],D((−A)1/2)). Moreover, there exists
a positive constant C such that∥∥∥∥zρ

∥∥∥∥
C([0,τ ];D((−A)1/2))∩H1((0,τ),X)∩L2([0,τ ],D(A))

≤ C

(
‖z0‖D((−A)1/2) + |h0| +

∥∥∥∥ f

ρF

∥∥∥∥
L2([0,τ ],X)

)
, (3.54)

for every z0 ∈ D((−A)1/2), f ∈ F and h0 ∈ R. Finally, if the parameter q from the definition (3.36) of ρ0

satisfies q4 < 2 then
ρ2

ρF
∈ C[0, τ ]. (3.55)

Proof. Since β < α
q4 , we see that the functions ρ0, ρF and ρ satisfy (2.30). Therefore (3.54) follows by applying

Proposition 2.8.
Furthermore, if we choose q such that 1 < q4 < 2, then ρ2

ρF
∈ C[0, τ ] since

ρ2

ρF
(t) = exp

(
α− 2β
(τ − t)2

)
,

is bounded on [0, τ ] if α − 2β < 0. Using again the fact that β < α
q4 , we deduce that we can achieve this by

choosing such a β iff q4 < 2. �

4. Proof of the main result

This section is devoted to the proof of Theorem 1.1. Using a standard methodology for parabolic control
problems we first study, instead of the boundary control problem (1.1), a distributed control problem (see (4.1)
below). To deal with this system with moving boundary, we first use a change of variable to transform it
(see (4.4) below). This system can be written as system (3.35) but with a right-hand side f depending on z
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and h. Lemma 4.1 gives properties of this nonlinear term and thus using a fixed-point argument and the results
of the previous section, we deduce the null-controllability of (4.4) for small initial data. Using our change of
variables, it implies the null-controllability of (4.4) for small initial data of the distributed control problem (4.1)
(Thm. 4.3). We end this section by proving that the controllability of (4.1) implies the controllability of (1.1),
which proves Theorem 1.1.

First, let us consider a distributed control problem associated to (1.1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt(t, x) − vxx(t, x) + v(t, x)vx(t, x) = û(t, x) (t � 0, x ∈ [−2, 1] \ {h(t)}),
v(t, h(t)) = ḣ(t) (t � 0),

Mḧ(t) = [vx](t, h(t)) (t � 0),
v(t,−2) = 0, v(t, 1) = 0 (t � 0),

h(0) = h0, ḣ(0) = h1,

v(0, x) = v0(x) x ∈ [−2, 1] \ {h0},

(4.1)

where û(t, x) is the input function, supported in the subinterval (−2,−5/4), and the state of the system is the

triple

⎡⎣vh
ḣ

⎤⎦. The study of the above internal controllability problem should be seen only as a tool in the proof

of our main boundary controllability result. Therefore, we choose here the very particular interval [−2, 1] for
technical purposes (as already explained in the previous section), but this will be enough to obtain the proof of
our main result.

To study the control problem (4.1) we reduce it to a problem in a fixed domain by using an appropriate
change of variables. More precisely, let τ > 0 and let h : [0, τ ] → (−1, 1) be a function in H1(0, τ). For every
t ∈ [0, τ ] we define a diffeomorphism η(t, ·) from (−2, h(t)) ∪ (h(t), 1) onto (−2, 0) ∪ (0, 1) by

y = η(t, x) =

⎧⎨⎩
x−h(t)
1−h(t) , x > h(t),
2(x−h(t))

2+h(t) , x < h(t).
(4.2)

We define a new function ϕ by setting

ϕ(t, η(t, x)) = v(t, x) (t ∈ [0, τ ], x ∈ (−2, h(t)) ∪ (h(t), 1)). (4.3)

It is not difficult to check that, using the change of variables defined by (4.2) and (4.3), the system (4.1) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕt −
(
ηx ◦ η−1

)2
ϕyy + (ηx ◦ η−1)ϕyϕ+ (ηt ◦ η−1)ϕy = u, (t � 0, y ∈ [−2, 1] \ {0}),

Mġ(t) = [(ηx ◦ η−1)ϕy](0, t), (t � 0),
ϕ(t, 0) = g(t), (t � 0),

ḣ(t) = g(t), (t � 0),
ϕ(t,−2) = 0, ϕ(t, 1) = 0, (t � 0),
h(0) = h0, g(0) = h1,

ϕ(0, y) = ϕ0(y) y ∈ [−2, 1] \ {0},

(4.4)

where u is a new input function and

[(ηx ◦ η−1)ϕy ](t, 0) = [(ηx ◦ η−1)](t, 0)ϕy(t, 0+) + (ηx ◦ η−1)(t, 0−)[ϕy](t, 0).
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We note that, since the function η is given by (4.2), we have

(ηx ◦ η−1)(t, y) =
1

1 − κ(y)h(t)
=

{
1

1−h(t) , y > 0,
2

2+h(t) , y < 0.
(4.5)

(ηt ◦ η−1)(t, y) = −g(t) 1 − κ(y)y
1 − κ(y)h(t)

=

{− 1−y
1−h(t)g(t) for y > 0,

− 2+y
2+h(t)g(t) for y < 0.

(4.6)

where

κ(y) =

{
1 for y > 0,

− 1
2 for y < 0.

(4.7)

Moreover, we have

[ηxϕy ](t, 0) =
(

1
1 − h(t)

− 2
2 + h(t)

)
ϕy(t, 0+) +

2
2 + h(t)

[ϕy](t, 0).

Using the above formula, combined with (4.5) and (4.6), we obtain that (4.4) writes in the more explicit form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕt = ϕyy +
[(

1
1−κh

)2

− 1
]
ϕyy −

(
1

1−κh

)
ϕyϕ− 1−κy

1−κhgϕy + u (t � 0, y ∈ [−2, 1] \ {0}),
Mġ = [ϕy](t, 0) − h(t)

2+h(t) [ϕy](t, 0) +
(

1
1−h(t) − 2

2+h(t)

)
ϕy(t, 0+) (t � 0),

ϕ(t, 0) = g(t) (t � 0),

ḣ(t) = g(t),

ϕ(t,−2) = 0, ϕ(t, 1) = 0 (t � 0),

h(0) = h0, g(0) = h1,

ϕ(0, y) = ϕ0(y) (y ∈ [−2, 1] \ {0}).

(4.8)

The above system suggests the introduction of the nonlinear operator

N : D(A) × (−2, 1) → X

defined by

N

[
z
h

]
=

⎡⎢⎣
[(

1
1−κh

)2

− 1
]
ϕyy −

(
1

1−κh

)
ϕyϕ− 1−κy

1−κhgϕy

− h
2+h [ϕy](0) +

(
1

1−h − 2
2+h

)
ϕy(0+)

⎤⎥⎦ ,
where z =

[
ϕ
g

]
is a generic element of D(A). Lemma below yields some important properties of N .

Lemma 4.1. For every a ∈ (0, 1), there exists a positive constant C = C(a) such that∥∥∥∥N [
z
h

]∥∥∥∥
X

≤ C
(|g|2 + ‖ϕ‖2

H1 + |h| ‖ϕyy‖L2

) ([
z
h

]
∈ D(A) × (−a, a)

)
, (4.9)

∥∥∥∥N [
z1
h1

]
−N

[
z2
h2

]∥∥∥∥
X

≤ C
(
(|h1 − h2| + |g1 − g2|)

(‖ϕ1,yy‖L2 + ‖ϕ1‖2
H1 + ‖ϕ2‖H1

)
+ |h2|‖ϕ1 − ϕ2‖H2 + ‖ϕ2

1 − ϕ2
2‖H1

) ([
zi

hi

]
∈ D(A) × (−a, a), i = 1, 2

)
. (4.10)
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Proof. The proof of (4.9) follows easily from standard embedding and trace results for Sobolev spaces.
To prove (4.10), we note that

N =

[
F1 + F2 + F3

F4

]
, (4.11)

where

F1

[
z
h

]
=

[(
1

1 − κh

)2

− 1

]
ϕyy, F2

[
z
h

]
= −

(
1

1 − κh

)
ϕyϕ, (4.12)

F3

[
z
h

]
= −1 − κy

1 − κh
gϕy, (4.13)

F4

[
z
h

]
= − h

2 + h
[ϕy](0) +

(
1

1 − h
− 2

2 + h

)
ϕy(0+). (4.14)

Simple calculations, combined with standard embedding and trace results for Sobolev spaces, imply that there

exists a constant C > 0, depending only on a, such that for every
[
z1
h1

]
,

[
z2
h2

]
∈ D(A) × (−a, a) we have

∥∥∥∥F1

[
z1
h1

]
− F1

[
z2
h2

]∥∥∥∥
L2

� C (|h1 − h2| ‖ϕ1,yy‖L2 + |h2| ‖ϕ1,yy − ϕ2,yy‖L2) , (4.15)

∥∥∥∥F2

[
z1
h1

]
− F2

[
z2
h2

]∥∥∥∥
L2

� C
(|h1 − h2| ‖ϕ1‖2

H1 + ‖ϕ2
1 − ϕ2

2‖H1

)
, (4.16)

∥∥∥∥F3

[
z1
h1

]
− F3

[
z2
h2

]∥∥∥∥
L2

� C (|h1 − h2| |g1| ‖ϕ1‖H1 + |g1| ‖ϕ1 − ϕ2‖H1 + |g1 − g2| ‖ϕ2‖H1) , (4.17)

∣∣∣∣F4

[
z1
h1

]
− F4

[
z2
h2

]∣∣∣∣ � C (|h1 − h2| ‖ϕ1,yy‖L2 + |h2| ‖ϕ1,yy − ϕ2,yy‖L2) . (4.18)

The above estimates clearly imply the conclusion. �

The main step in the proof of Theorem 1.1 is the following result.

Proposition 4.2. Let τ > 0. Then there exists r > 0 such that for every h0, h1, ϕ0 satisfying

|h0| + |h1| + ‖ϕ0‖H1
0 (−2,1) � r, (4.19)

ϕ0(0) = h1.

The nonlinear system (4.8) is null controllable in time τ with a control u supported in (−2,−3/2): there exists
u ∈ L2([0, τ ] × [−2,−3/2]) such that the corresponding solution satisfies

ϕ(τ, ·) = 0, h(τ) = 0, ḣ(τ) = 0. (4.20)

Moreover, the control u can be chosen so that

−1 < h(t) < 1 (t ∈ [0, τ ]). (4.21)
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Proof. Since we look for controls such that u(t, ·) is supported in (−2,−3/2), the problem can be rewritten⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ż = Az +N

[
z
h

]
+Bu,

ḣ = Cz,

z(0) = z0,

h(0) = h0,

(4.22)

with the same choice of the operators A, B and C as in Section 3 (see (3.1), (3.3) and (3.34)).
In order to prove the null controllability of (4.22) we consider the linearized problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ż = Az +Bu+ f,

ḣ = Cz,

z(0) = z0,

h(0) = h0,

(4.23)

with f : [0, τ ] → X . Let ρF , ρ0, ρ be the functions introduced in Proposition 3.4 and in Corollary 3.5 and
let (F ,U ,Z) be the corresponding function spaces, defined according to (2.13). According to Proposition 3.4
and Corollary 3.5 there exists a control u = Eτ (z0, h0, f) such that the corresponding trajectory (z, h) satisfies
h(τ) = 0 together with (3.54). It follows that, denoting

Fr = {f ∈ F | ‖f‖F ≤ r}, (4.24)

with r > 0 small enough, we can define an operator N acting on Fr by

N (f)(t) := N

[
z(t)

h(t)

]
(t ∈ [0, τ ]),

where
[
z
h

]
is the state trajectory of (4.23) corresponding to the input u = Eτ (z0, h0, f). Indeed, the fact that,

provided that r is small enough, we have h(t) ∈ (−1, 1) for every t ∈ [0, τ ] (so that N is well-defined on Fr)
follows from Corollary 3.5. More precisely, let ρ the function defined in (3.53). Since ρ(τ) = h(τ) = 0 and
ρ̇(t) = − β

(τ−t)3 ρ(t), by the Cauchy mean value theorem, for every t ∈ [0, τ ] we have∣∣∣∣h(t)
ρ(t)

∣∣∣∣ =
∣∣∣∣h(t) − h(τ)
ρ(t) − ρ(τ)

∣∣∣∣ �
∥∥∥∥gρ̇

∥∥∥∥
C[0,τ ]

≤ C

∥∥∥∥gρ
∥∥∥∥

C[0,τ ]

, (4.25)

where C is a constant depending only on β and on τ . By (3.54), if we choose r small enough, we have (4.21),
so that N is indeed well defined.

In order to obtain the conclusion of the proposition, it suffices to check that, for r > 0 small enough, N
is contractive mapping from Fr into itself. We first check that Fr is invariant for N , provided that r is small
enough. This follows from Lemma 4.1, noting that, for almost every t ∈ [0, τ ], we have∥∥∥∥N (f)

ρF
(t)
∥∥∥∥

X

≤ C

∣∣∣∣ ρ2(t)
ρF (t)

∣∣∣∣
(∣∣∣∣g(t)ρ(t)

∣∣∣∣2 +
∣∣∣∣h(t)
ρ(t)

∣∣∣∣ ∥∥∥∥ϕ(t, ·)
ρ(t)

∥∥∥∥
H2

+
∥∥∥∥ϕ(t, ·)
ρ(t)

∥∥∥∥2

H1

)
·

Since ρ and ρ2

ρF
are continuous functions on [0, τ ] (see (3.36) and (3.55)), it follows that

‖N (f)‖F ≤ C

(∥∥∥∥gρ
∥∥∥∥2

C[0,τ ]

+
∥∥∥∥hρ

∥∥∥∥
C[0,τ ]

∥∥∥∥ϕρ
∥∥∥∥

L2([0,τ ],H2)

+
∥∥∥∥ϕρ

∥∥∥∥2

C([0,τ ],H1)

)
· (4.26)
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Using (3.54), (4.19), (4.25) and (4.26), it follows that

‖N (f)‖F ≤ Cr2 (f ∈ Fr),

for some positive constant C. The last estimate implies indeed that N invariates Fr for r > 0 small enough.
We still have to show that N is contracting for r small enough. Using (4.10) it follows that there exists C > 0,

independent of r > 0, such that the inequality

1
ρF

‖N (f1) −N (f2)‖X ≤ Cρ2

ρF

( |h1 − h2|
ρ

+
|g1 − g2|

ρ

)(∥∥∥∥ϕ1,yy

ρ

∥∥∥∥
L2

+ ρ

∥∥∥∥ϕ1

ρ

∥∥∥∥2

H1

+
∥∥∥∥ϕ2

ρ

∥∥∥∥
H1

)

+
Cρ2

ρF
|h2| + |g1|

ρ

(∥∥∥∥ϕ1,yy − ϕ2,yy

ρ

∥∥∥∥
L2

+ ρ

∥∥∥∥ϕ2
1 − ϕ2

2

ρ2

∥∥∥∥
H1

)
(f1, f2 ∈ Fr), (4.27)

holds for t ∈ [0, τ ]. Integrating the last estimate on [0, τ ] and using (4.25) it follows that there exists r∗ > 0 and
a constant C > 0, not depending on r ∈ (0, r∗), such that

‖N (f1) −N (f2)‖F ≤ Cr

(∥∥∥∥g1 − g2
ρ

∥∥∥∥
C[0,τ ]

+
∥∥∥∥ϕ1,yy − ϕ2,yy

ρ

∥∥∥∥
L2([0,τ ],L2)

+
∥∥∥∥ϕ1 − ϕ2

ρ

∥∥∥∥
C([0,τ ],H1)

)
· (4.28)

Since z = z1 − z2, h = h1 − h2 satisfy (3.35), with z0 = 0, h0 = 0 and f = f1 − f2, we can use (3.54) to obtain
that N is indeed contracting on Fr, provided that r is small enough. �

As a consequence of the last proposition we obtain the following result:

Theorem 4.3. The system (4.1) is locally null controllable in any time τ > 0. More precisely, for every τ > 0
there exists r > 0 such that every initial data h0, h1, v0 satisfying

|h0| + |h1| + ‖v0‖H1
0 (−2,1) ≤ r, v0(h0) = h1,

can be steered to rest by means of a control, û ∈ L2([0, τ ], L2(−2,−5/4)). Moreover, û can be chosen such that
h ∈ C[0, τ ] and

−1 < h(t) < 1 (t ∈ [0, τ ]). (4.29)

Proof. According to Proposition 4.2, we can find u ∈ L2(0, τ ;L2(−2,−3/2)) such that the solution of (4.8)
satisfies h ∈ C[0, τ ], together with (4.29) and

ϕ(τ, ·) = 0, g(τ) = h(τ) = 0.

Using the change of variables (4.2), we obtain a controlled trajectory of the system (4.1), which is vanishing for
t = τ and with a control û such that

supp û(t, ·) ⊂ (−2, â) (t ∈ [0, τ ]).

It can be seen by (4.2) that
2(â− h(t))
2 + h(t)

= η(t, â) ≤ −3
2
·

This, combined with (4.29) implies that â ≤ − 5
4 , which finishes the proof. �

We are now in a position to prove our main result.
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Proof of Theorem 1.1. Since v0 ∈ H1
0 (−1, 1), we can extend it by zero on (−2,−1) such that v0 ∈ H1

0 (−2, 1).
We consider system (4.1) with initial data (v0, h0, h1). Then, there exists a constant r > 0 such that if

|h0| + |h1| + ‖v0‖H1
0 ((−2,1)\{h0}) ≤ r,

there exists a control
û ∈ L2([0, τ ], L2(−2,−5/4))

such that the solution of (4.1) satisfies (4.29) and

v ∈ L2
(
[0, τ ], H2(−2, 1)

) ∩ C (
[0, τ ], H1(−2, 1)

) ∩H1
(
(0, τ), L2(−2, 1)

)
,

v(τ, ·) = 0, h(τ) = ḣ(τ) = 0.

Define
u(t) = v(−1, t) t ∈ [0, τ ].

We clearly have u ∈ C[0, τ ] and u drives the system (1.1) to rest in time τ . �
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