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EXISTENCE OF OPTIMAL NONANTICIPATING CONTROLS IN PIECEWISE
DETERMINISTIC CONTROL PROBLEMS

Atle Seierstad1

Abstract. Optimal nonanticipating controls are shown to exist in nonautonomous piecewise deter-
ministic control problems with hard terminal restrictions. The assumptions needed are completely
analogous to those needed to obtain optimal controls in deterministic control problems. The proof is
based on well-known results on existence of deterministic optimal controls.
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1. Introduction

In this paper, optimal nonanticipating controls are shown to exist in nonautonomous piecewise deterministic
control problems. The assumptions needed for obtaining existence are completely analogous to those needed to
obtain optimal controls in the simplest cases in deterministic control problems, namely a common bound on
admissible solutions, compactness of the control region and, essentially, convexity of the velocity set. The proof
mainly involves standard arguments and include the use of well-known results on existence of deterministic
optimal controls.

In a certain sense, the nonautonomy in the problem means that existence arguments, carried out once in
the stationary case, now have to be repeated an infinite number of time. The hard restrictions means that the
optimal value functions used in the proof take on the value −∞, in case the restrictions cannot be met.

Normally, one can transform a nonautonomous problem to a stationary one, but in the present context, it
does not seem to give any great advantages, and the proof would be less transparent.

Existence theorems for nonrelaxed controls involving convexity condition are given in Dempster and Ye [7],
and for another type of condition in Forwick et al. [8], (for relaxed controls, see e.g. Davis [3]). In contrast to the
works mentioned, the present paper treats nonautonomous problems and hard terminal restrictions (restrictions
required to hold a.s.), and obtains existence of optimal controls dependent on previous jump times, so-called
nonanticipating controls2. The references include also works treating necessary and/or sufficient conditions
(including verification principles).
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First, systems where there are no jumps in the state variable are treated (there are then sudden changes in
the differential equation).

2. Sudden stochastic changes in the differential equation, continuous
solutions

Consider the following control problem

max u(.,.)E

[∫ T

0

f0(t, xu(.,.)(t, τ), u(t, τ), τ)dt + h∗(x(T, τ))

]
(2.1)

subject to
ẋ = f(t, x, u(t, τ), τ), t ∈ J := [0, T ], x(0) = x0 ∈ R

n, u(t, τ) ∈ U ⊂ R
r, (2.2)

and, a.s.,
xi(T, τ) = x̄i, i = 1, . . . , n1, (2.3)

xi(T, τ) ≥ x̄i, i = n1 + 1, . . . , n2 ≤ n. (2.4)

Here f0 : J × R
n × U × Ω → R, (Ω defined in a moment), h∗ : R

n → R, and f : J × R
n × U × Ω → R

n,
are fixed functions, moreover, the control region U, the initial point x0, and the terminal time T are also
fixed, whereas the control functions u(t, τ) are subject to choice. Certain stochastic time-points τi, i = 1, 2, . . . ,
τi < τi+1, influence both the right hand side of the differential equation as well as the integrand in the cri-
terion, as τ = (τ0, τ1,τ2, . . .) ∈ Ω = {(τ0, τ1,τ2, . . .) : τi ∈ [0,∞)}, τ0 = 0, τi < τi+1. Thus in this type of
systems, the right hand side of the differential equation (as well as the integrand in the criterion) exhibits
sudden changes at stochastic points in time τi. In concrete (economic) situations, these changes may be the
result of earthquakes, inventions, sudden currency devaluations etc. Given u(., .) and τ, the differential equation
is an ordinary deterministic equation with continuous solution t→ xu(.,.)(t, τ). (More details are given below).
The solution depends of course on τ , (the stochastic variable), and what we obtain is pathwise solutions. The
present type of systems might be termed continuous, piecewise deterministic. The points τi are random variables
taking values in [0,∞), with probability properties as follows: conditional probability densities μ(τj+1|τ0, . . . , τj)
are given, (for j = 0, the density is simply μ(τ1), sometimes written μ(τ1|τ0), τ0 = 0). The conditional den-
sity μ(τj+1|τ0, . . . , τj) is assumed to be integrable with respect to τj+1, with integral 1. (We use the following
conventions: Measurable = Lebesgue measurable, meas(A) = Lebesgue measure of A, integrable = Lebesgue
integrable). We assume μ(τj+1|τ0, . . . , τj) = 0 if τj+1 < max1≤i≤j τi, for j ≥ 1. This means that we need only
consider the set Ω∗ of nondecreasing sequences τ = (τ0, τ1,τ2, . . .), or even the set Ω′ of strictly increasing
sequences. The conditional density μ(τj+1|τ0, . . . , τj) is assumed to be continuous with respect to (τ1, . . . , τj),
0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τj ≤ τj+1, for each τj+1. Moreover, the existence of integrable functions μ∗

j+1(.) is assumed,
such that, for all (τ0, . . . , τj), μ(τj+1|τ0, . . . , τj) ≤ μ∗

j+1(τj+1) a.e. For τ j := (τ0, τ1, . . . , τj), the conditional den-
sities define simultaneous conditional densities μ(τj+1, . . . , τm|τ j) (μ(τ1, . . . , τm|τ0) = μ(τ1, . . . , τm)), assumed
to satisfy: for some k∗ ∈ (0, 1), and some positive number Φ∗(t),

Pr[t ∈ (τm, τm+1]|τ j ] ≤ Φ∗(t)(k∗)m−j for any given t ∈ [0,∞). (2.5)

Assume Φ∗ := supt∈[0,T ] Φ
∗(t) <∞. Property (2.5), used for j = 0, means that with probability 1, the sequences

(τ0, τ1, τ2, . . .) has the property that τi → ∞. The set of τ ’s in Ω′ such that τi → ∞ is denoted Ω′′. Below, it is
assumed that any τ belongs to Ω′′.

Let the term “nonanticipating function” mean a function y(t, τ) = y(t, τ0, τ1, . . .) that for each given t ∈ [0, T ],
depends only on τi’s ≤ t. (Formally, we require y(t, τ ′0, τ ′1, . . .) = y(t, τ0, τ1, . . .) if {i : τ ′i ≤ t} = {i : τi ≤ t} and
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τ ′i = τi for i ∈ {i : τi ≤ t}). Here, y(., .) is assumed to take values in a Euclidean space Ȳ . Let Mnonant(J×
Ω′′, Ȳ ) be the set of functions being nonanticipating and simultaneous measurable on each set J × Ωi, Ωi :=
{τ ∈ Ω′:τi ≤ T, τi+1 > T }, i = 1, 2, . . . 3.

Define Ωi := {τ i : τ ∈ Ωi} and U ′ := {u(., .) ∈ Mnonant(J× Ω′′,Rr): u(t, τ) ∈ U for all (t, τ)}. From now on,
all control functions u(t, τ) belong to U ′, they are called admissible if in addition corresponding solutions on
[0, T ] of (2.2) exist a.s., that satisfy (2.3) and (2.4) a.s., (“a.s.” here taken to mean for all τ ∈ Ω′′∩(∪i{Ωi \Ni})
for some P-null sets Ni in Ωi). For any given u(., .) ∈ U ′ and for any given τ ∈ Ω′′, the differential equation
in (2.2) is an ordinary deterministic equation, and it is assumed that solutions on [0, T ] of (2.2) are unique, for
any given u(., .) ∈ U ′.

As functions of (t, τ), for all (x, u) f0 and f are now assumed to be nonanticipating. Furthermore, t 
→
f(t, x, u, τ) and t → f0(t, x, u, τ) have one-sided limits at each point and is right continuous, and for each i,
f(t, x, u, τ i, T +1, T +2, . . .) and f0(t, x, u, τ i, T +1, T +2, . . .) are continuous in {(t, x, u, τ i) : t ∈ J, x ∈ R

n, u ∈
U, τ i ∈ Ωi, τi ≤ t}4, (τi = (τ i)i). Finally, h∗ is C1 with bounded derivative. Let us call the above assumptions
on f0, h∗, and f for the general assumptions. (These assumptions imply that e.g. f can essentially be written as
f(t, x, u, τ) =

∑
i≥0 f

i(t, x, u, τ i)1[τi,τi+1)(t), τ = (τ0, τ1, . . .) ∈ Ω′ for certain continuous functions f i(t, x, u, τ i),
i = 0, 1, . . .).

The specific conditions needed in the first existence theorem are as follows:
there exists an admissible pair

x(., .), u(., .), (x(., .) = xu(.,.)(., .)), thus (x(., .), u(., .)) satisfies (2.2), (2.3), and (2.4), with u(., .) in U ′, (2.6)

U is compact, (2.7)

and
N(t, x, τ) = {(f0(t, x, u, τ) + γ, f(t, x, u, τ)) : u ∈ U, γ ≤ 0} is convex for all (t, x, τ). (2.8)

Moreover, there exist positive numbers Ki and positive continuous functions r∗i (t), and a number k̄ ∈ (1, 1/k∗),
(for k∗ , see (2.5)) with supKi/k̄

i <∞, such that (2.9) and (2.10) below hold.

|f(t, x, u, τ)| ≤ Ki, |f0(t, x, u, τ)| ≤ Ki, for all (x, u, τ) ∈ clB(x0, r
∗
i (t)) × U ×Ω′′, all t ∈ (τi, τi+1) ∩ J. (2.9)

For any control u(., .) ∈ U ′ and any τ ∈ Ω′′, any solution t 
→ x(t, τ ; τi, x̄) on [τi, T ] of ẋ = f(t, x, u(t, τ), τ)
starting at (τi, x̄), x̄ ∈ clB(x0, r

∗
i−1(τi)) is unique and satisfies, for j ≥ i ≥ 1, x(t, τ ; τi, x̄) ∈ clB(x0, r

∗
j (t)) for all

t ∈ [τj , τj+1]∩ J. Moreover, a solution x(t, τ ; τ0, x0), t ∈ [0, T ], corresponding to any control in U ′ is unique and
satisfies

x(t, τ ; τ0, x0) ∈ clB(x0, r
∗
j (t)) for all t ∈ [τj , τj+1] ∩ J, j ≥ 0. (2.10)

Theorem 2.1. If the general assumptions are satisfied, and (2.6)–(2.10) hold, then an optimal admissible control
exists.

Proof. It suffices to consider the special case where axu(T ) is maximized, a a fixed nonzero vector in R
n 5. For

simplicity, let x0 = 0. Define τ̂k = min{T, τk}.
3These properties are essentially equivalent to progressive measurability with respect to the subfields Φt defined as follows: let

Φt, t ∈ [0, T ], be the σ-algebra generated by sets of the form A = AB,i := {τ := (τ1, τ2, . . .) ∈ Ω′′ : τi ∈ B}, where B is either a

measurable set in [0, t], or B = (t,∞), i ∈ {1, 2, . . .}. A probability measure P , corresponding to the conditional densities μ̇(τi+1|τ i),
is defined on (Ω′′, Φ), Φ := ΦT .

4Here we can replace t ∈ J, by t ∈ J\{a1, . . . , am}, where ai are fixed numbers. In fact, concerning the dependence on t, much
weaker conditions are actually needed, the continuity conditions above were chosen in order to be able to refer to the classical,
simple results of Cesari [2], Sections 9.2, 9.3.

5In case of the criterion (2.1), two addition states x0 and xn+1 and an auxiliary control u0 ∈ [0, 1], can be introduced, with
ẋ0 = f0(t, x, u0, u, τ) := u0 · (f0(t, x, u, τ)+Ki)−Ki, for t ∈ (τi, τi+1), x0(0) = 0, ẋn+1 = fn+1(t, x, u, τ) := h∗

x(x(t, τ))f(t, x, u, τ),
xn+1(0) = h∗(x0), in which case the criterion in (2.1) equals a · (xu

0 (T ), xu(T ), xu
n+1(T )), a = (1, 0n, 1), 0n the origin in R

n).

(Concavity of {(f0(t, x, u0, u, τ), f(t, x, u, τ), fn+1(t, x, u, τ)) : (u0, u) ∈ [0, 1] × U} then holds. Also f0 ≤ f0, with equality if
u0 = 1).
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Outline of proof. In proofs of existence theorems in the stationary case, existence results from deterministic
control theory is combined with proving certain smoothness properties of the optimal value function in order
to obtain an existence proof, (see e.g. Davis [3]). Below, such an argument is recursively repeated in the
nonautonomous case.

The central part of the proof of the theorem is the following: let V k,∞(x, τk) be the supremum over “admis-
sible” controls of the conditional expectation of the criterion axu(T, τ) given τk and given that the solutions
start at (τk, x), i.e. τk has just occurred, and the state at which we start at that time is x. (Here admissible
means the existence of solutions satisfying the terminal conditions (2.3) and (2.4). If no such controls exists, we
let the supremum be equal to −∞). Then, as shown below, a relationship similar to the optimality equation in
dynamic programming holds:

V k,∞(x, τk) = sup u Eτk+1

[
a

∫ τ̂k+1

τ̂k

f(s, xu(s), u(s), τ)ds + V k+1,∞(xu(τ̂k+1), τk+1)|τk

]
, (2.11)

(Eτk+1 means expectation with respect to τk+1, i.e., with τk+1 as integration variable). Here the supremum is
taken over all deterministic functions u(.) for which the corresponding deterministic solutions xu(t) satisfy the
terminal conditions in case Pr[τk+1 > T |τk] > 0, and start at (τ̂k, x). Generally, V k,∞(x, τk) = 0 if τk ≥ T
⇔ τ̂k = T. Let us then construct the optimal controls by induction. (Below, this construction is repeated,
with more detailed arguments.) By existence theorems for deterministic control (more precisely Remark 2.3
below), there exists a control u0(t) = u0,τ0(t) with corresponding solution x0,τ0(t), (x0,τ0(0) = x0), yielding
the supremum in (2.11) for k = 0, and satisfying the terminal conditions if Pr[τ1 > T ] > 0. By induction, for
each τk−1 such that τk−1 ∈ (τk−2, T ), assume uk−1,τk−1(t) defined, with corresponding solution xk−1,τk−1(t)
yielding supremum in (2.11) and satisfying xk−1,τk−1(τk−1) = xk−2,τk−2(τk−1) and the terminal conditions if
Pr[τk > T |τk−1] > 0. By existence theorems in deterministic control theory, (Rem. 2.3 below), for each τk such
that τk ∈ (τk−1, T ), there exists a control function uk,τk(t) with corresponding solution xk,τk(t), starting at
(τk, xk−1,τk−1(τk)) and satisfying the terminal conditions if Pr[τk+1 > T |τk] > 0, that yields the supremum in
(2.11). So uk,τk(t) exists for all k. Using (2.11) for k = 0, 1, 2, . . ., for any given k,

V 0,∞(0, 0) = E

⎡
⎣a k∑

j=0

∫ τ̂ j+1

τ̂ j

f(s, xj,τ j (s), uj,τ j(s), τ)ds + V k+1,∞
(
xk,τk(τ̂k+1), τk+1

)⎤
⎦ .

When k → ∞, as E[V k+1,∞ (xk,τk
(τ̂k+1), τk+1)] → 0, we get V 0,∞(0, 0) = E[a

∑∞
j=0

∫ τ̂ j+1

τ̂ j

f(s, xj,τ j (s), uj,τ j(s), τ)ds]. Hence, the pair (x∗(t, τ), u∗(t, τ)) defined by (x∗(t, τ), u∗(t, τ)) = (xk,τk(t), uk,τk(t))
for t ∈ (τk,τk+1) ∩ [0, T ] is optimal. (It is admissible because if T ∈ (τk,τk+1), then x∗(T ,τ) = xk,τk(T ) satisfies
the terminal conditions if Pr[τk+1 > T |τk] > 0, hence x∗(T, τ) a.s. satisfies these conditions if T ∈ (τk,τk+1)).

Detailed proof. First we need a proposition, with a related remark. The proposition is an existence result from
deterministic control theory, contained in results appearing in Chapters 8–10 in Cesari [2]. For convenience of
the reader a brief proof is included, making use of wellknown elementary properties taken from deterministic
existence proofs.

Consider the following deterministic system: define Ũ to be the set of measurable functions from [0, T ] into
U . Let f(t, x, u) : J × R

n × U → R
n be continuous in S × U , S a compact set in J × R

n. Let (t0, x0) ∈ S, and
define the set A(t0, x0) to consist of all pairs x(.), u(.), u(.) ∈ Ũ that satisfy (t, x(t)) ∈ S for all t ∈ [t0, T ] and
the following differential equation with side conditions:

for a.e. t ∈ [t0, T ], ẋ = f(t, x, u(t)), x(t0) = x0, x(T ) ∈ B, (2.12)
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where B is a closed set in R
n. Let h(x) : R

n → R ∪ {−∞} be upper semicontinuous, (abbreviated usc), and let
g(t, x) : J × R

n → R ∪ {−∞} be usc in S. Consider the problem

max x(.),u(.)

[∫ T

t0

g(t, x(t))dt + h(x(T ))

]
.

Assume that U is compact, that f(t, x, U) is convex for all (t, x) ∈ S, that there exist a positive integrable
function ψ(t) and a positive number K such that |f(t, x, u)| ≤ K and g(t, x) ≤ ψ(t) for all (t, x, u) ∈ S × U .

Define the set C ⊂ S to be the set of points (t0, x0) in S for which a pair (x.), u(.)), u(.) ∈ Ũ exists,
satisfying (t, x(t)) ∈ S for all t ∈ [t0, T ] and (2.12). Let V (t0, x0) := sup(x(.),u(.))∈A(t0,x0) V

x(.),u(.), where

V x(.),u(.)(t0, x0) =
∫ T

t0
g(t, x(t))dt+ h(x(T )), and where (t0, x0) belongs to C. The following result holds for this

system:

Proposition 2.2. For any (t0, x0) ∈ C, an optimal pair (x(.), u(.)), u(.) ∈ Ũ exists, satisfying (2.12) and
(t, x(t)) ∈ S, (perhaps the corresponding value of the criterion is −∞). Moreover, C is closed, and V (t0, x0) is
usc in (t0, x0) ∈ C. �

Proof of Proposition 2.2. For k = 1, 2, . . . , when k → ∞, let (tk0 , x
k
0) → (t0, x0), (t0, x0), (tk0 , t

k
0) ∈ S. Let Ik :=

[tk0 , T ], I = [t0, T ] . Assume (A) that a sequence (xk(.), uk(.)) is given that satisfies (2.12) for (t0, x0) = (tk0 , xk
0)

and (t, xk(t)) ∈ S for t ∈ Ik , and (B) that V xk(.),uk(.) → lim sup(t̃0,x̃0)→(t0,x0) V (t̃0, x̃0) =: γ, (t̃, x̃0) ∈ C. By
standard arguments, (see e.g. Cesari [2], Sects. 9.2, 9.3), there exists a subsequence xkj (.), a control function
u∗(.) ∈ Ũ , and a continuous function x∗(.) such that supt∈Ikj

∩I |xkj (t)−x∗(t)| → 0, and such that (x∗(.), u∗(.))
satisfies (2.12) and (t, x∗(t)) ∈ S. By slight misuse of notation, by upper integrable boundedness of g and Fatou’s
lemma,

γ = lim sup
j

[∫ T

t
kj
0

g(t, xkj (t))dt+ h(xkj (T ))

]

≤
∫

J

(
lim sup

j
g
(
t, xkj (t))1Ikj

)
dt+ lim sup

j
h(xkj (T )

)

≤
∫

J

g(t, x∗(t))1Idt+ h(x∗(T )).

Hence, V (t0, x0) is usc. Dropping the assumption (B), we get that C is closed. If all tk0 = t0, x
k
0 = x0, and

we (instead of (B)), assume that V xk(.),uk(.) → V (t0, x0), then the above arguments give that V (t0, x0) ≤∫
J g(t, x

∗(t))1Idt+ h(x∗(T )), hence (x∗(.), u∗(.)) is optimal. �

If V is defined to be equal to −∞, for (t0, x0) ∈ S\C, then V is usc in S.

Remark 2.3. In Proposition 2.2, assume that f , g and h contain an additional parameter y ∈ R
ı̂, f =

f(t, x, u, y), g = g(t, x, y), h = h(x, y), and that (2.12) is augmented by:

ẏ = 0, y(t0) = y0, y(T ) free. (2.13)

Assume that the conditions in Proposition 2.2 are satisfied in this augmented system, (for x replaced by (x, y),
hence for (t, x, y) in a compact subset S). The conclusions of Proposition 2.2 hold for this system, in particular,
the value function V (t0, x0, y0) in this system is usc in (t0, x0, y0) ∈ S.

Continued proof of Theorem 2.1.

Let B∗ = {x ∈ R
n : xi = x̄i, i = 1, . . . , n1, x

i ≥ x̄i, i = n1 + 1, . . . , n2}. For any deterministic control u(.) ∈ Ũ
and for any τ ∈ Ωk, write x(t) = xu(t, τ ; τk, x) for the solution x(t) on [τk, T ] that satisfies ẋ = f(t, x, u(t), τ),
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x(τk) = x. Let Uk,x,τ , τ ∈ Ωk, be the set of deterministic controls in Ũ for which there exists a solution
xu(t, τ ; τk, x) of the differential equation in (2.2) on [τk, T ] that satisfies xu(T, τ ; τk, x) ∈ B∗ if Pr[τk+1 >
T |τk] > 0, with no terminal condition on xu(T, τ ; τk, x) if this inequality fails. Below, we will need the following
definitions: let lk(τk) :=

∫ ∞
T
μ(τk+1|τk)dτk+1, and let

Bk = {(x, τk) ∈ R
n ×Ωk : (xi − x̄i)lk(τk) = 0, i = 1, . . . , n1, (xi − x̄i)lk(τk) ≥ 0, i = n1 + 1, . . . , n2}.

(By continuity of lk(.), Bk is relatively closed in R
n ×Ωk). For

u(.) ∈ UN,x,τ , τ ∈ ΩN , letV N,N
u (x, τN ) : = EτN+1

[
a

∫ T

τ̂N

1[T,∞)(τN+1)f(š, xu(š, τ ; τN , x), u(š), τ)dš|τN

]
,

(2.14)

V N,N(x, τN ) = sup u∈UN,x,τV N,N
u (x, τN ). (2.15)

For k ≤ N, by backwards induction, for u(.) ∈ Uk−1,x,τ , τ ∈ Ωk−1, define

V k−1,N
u (x, τk−1) := Eτk

[
a

∫ τ̂k

τ̂k−1
f(š, xu(š, τ ; τk−1, x), u(š), τ)dš+ V k,N (xu(τ̂k, τ ; τk−1, x), τk)|τk−1

]
, (2.16)

V k−1,N (x, τk−1) := sup u∈Uk−1,x,τV k−1,N (x; τk−1). (2.17)

All the time, the convention is used that when taking supremum over an empty set, we get −∞.

Define Bk := {(x, τk) : x ∈ clB(0, r∗k−1(τk)), τk ∈ Ωk}. With the “specifications”

S = {(t, x) : t ∈ [τN , T ], x ∈ clB(0, r∗N (t))} ×ΩN × clB(0, r∗N−1(τN )),

B = BN ×R
n, g = 0, h(x, y) = a(x−y2) Pr[τN+1 > T |y1], y = (y1, y2), y1 = τN , y2 ∈ R

n, ẋ(s) = f(s, x, u(s), y1),
t0 = τN , x(τN ) = x̃, y2(τN ) = x̃, Remark 2.3 yields that V N,N(x̃, τN ) is usc in (x̃, τN ) ∈ BN , ((x̃, τN ) ∈ BN ⇒
(τN , x̃, τN , x̃) ∈ S, by (2.10)). Now, S as here defined is not compact, nor is BN closed, but for any (t, x, τN , y2)
in S we can replace ΩN in the definitions of S and BN by a compact neighborhood Ω∗ of τN in ΩN , and obtain
compactness, respectively closedness, of these redefined sets, and in particular usc in the redefined set S, and
so in the original set S.

By backwards induction, assume that (x, τk) → V k,N (x, τk) is usc on Bk. Letting y = (y1, y2), y2 ∈ R
n,

y1 = τk−1, g(t, x, y) = [a(x − y2) + V k,N (x, y1, t)]μ(t|y1) (τk = (y1, t)), h(x, y) = a(x − y2) Pr[τk > T |y1],
B = Bk−1 × R

n, ẋ(s) = f(s, x, u(s), y1), t0 = τk−1, x(τk−1) = x̃, y2(τk−1) = x̃ and S := {(t, x) : t ∈
[τk−1, T ], x ∈clB(0, r∗k−1(t))} ×Ωk−1×clB(0, r∗k−2(τk−1)), Remark 2.3 yields that (x̃, τk−1) 
→ V k−1,N (x̃, τk−1)
is usc in (x̃, τk−1) ∈ Bk−1. (When (x̃, τk−1) belongs to Bk−1, then automatically (t, xu(t, τ ; τk−1, x̃), τk−1, x̃)
belongs to S, by (2.10)). The set S as here defined is not compact, nor is Bk−1 closed, but for any (t, x, τk−1, y2)
in S we can replace Ωk−1 in the definitions of S and Bk−1 by a compact neighborhood Ω∗ of τk−1 in Ωk−1, and
obtain compactness, respectively closedness, of these redefined sets. In particular, usc holds in the redefined set
S, and so in the original set S.

For any given admissible control u(t, τ) ∈ U ′ with corresponding solution xu(t, τ), let us prove the following
inequality by backwards induction on k.

E[axu(T, τ)] ≤E

[ ∑
0≤j≤k−1

∫ τ̂ j+1

τ̂ j

af(s, xu(s, τ), u(s, τ), τ)ds

]

+ E[V k,N (xu(τ̂k, τ), τk)] +E[σN+1(τN+1)], k ≤ N, (2.18)
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where σN+1(τN+1) := E[σN+1(τ)|τN+1],

σN+1(τ) :=
∑

N+1≤j<∞

∫ τ̂ j+1

τ̂ j

af(s, xu(s, τ), u(s, τ), τ)ds + 1[0,T ](τN+1)
∫ τ̂N+1

τ̂N

af(s, xu(s, τ), u(s, τ), τ)ds.

Proof of (2.18). Let us first show that, for all τ ∈ Ωk, a.s., u(t, τ) belongs to Uk,xu(τk,τ),τ . Let the deterministic
û(.) equal u(t, τ), for t ∈ [τk, T ], τk+1 ≥ T. Since xu(T, τ) ∈ B∗ a.s., then for all τ ∈ Ωk, a.s., if Pr[τk+1 >
T |τk] > 0, we have that xû(T, τ ; τk, xu(τk, τ)) = xu(T, τ) ∈ B∗. Then, for all τk, a.s., û(.) ∈ Uk,xu(τk,τ),τ and,
evidently, the assertion follows.

Now, using (2.14), (2.15), a.s. in τ ∈ ΩN , V
N,N(xu(τ̂N , τ), τN ) ≥ E[1(T,∞)(τN+1)

∫ τ̂N+1

τ̂N af(s, xu(s, τ),
u(s, τ), τ)ds|τN ], since, a.s., û(.) ∈ UN,xu(τN ,τ),τ , where û(.) is the deterministic control that equals u(t, τ), for
t ∈ [τN , T ] when τN+1 ∈ [T,∞). Furthermore, we have

E[axu(T, τ)|τN ] =E

⎡
⎣ ∑

0≤j<∞

∫ τ̂ j+1

τ̂ j

af(s, xu(s, τ), u(s, τ), τ)ds|τN

⎤
⎦

=E

⎡
⎣ ∑

0≤j<N−1

∫ τ̂ j+1

τ̂ j

af(s, xu(s, τ), u(s, τ), τ)ds|τN

⎤
⎦

+ E

⎡
⎣ ∑

N+1≤j<∞

∫ τ̂ j+1

τ̂ j

af(s, xu(s, τ), u(s, τ), τ)ds|τN

⎤
⎦

+ E

[
1[0,T ](τN+1)

∫ τ̂N+1

τ̂N

af(s, xu(s, τ), u(s, τ), τ)ds|τN

]

+ E

[
1(T,∞)(τN+1)

∫ τ̂N+1

τ̂N

af(s, xu(s, τ), u(s, τ), τ)ds|τN

]

=E

⎡
⎣ ∑

0≤j<N−1

∫ τ̂ j+1

τ̂ j

af(s, xu(s, τ), u(s, τ), τ)ds|τN ] + E[σN+1(τN+1)|τN

⎤
⎦

+ E

[
1(T,∞)(τN+1)

∫ τ̂N+1

τ̂N

af(s, xu(s, τ), u(s, τ), τ)ds|τN

]
.

Replacing the last term by the greater term V N,N(xu(τ̂N , τ), τN ), (see the last inequality), we get, for τ ∈ ΩN ,
that, a.s.,

E[axu(T, τ)|τN ] ≤ E

[ ∑
0≤j≤N−1

∫ τ̂ j+1

τ̂ j

af(s, xu(s, τ), u(s, τ), τ)ds|τN ]

+ V N,N(xu(τ̂N , τ), τN ) + E[σN+1(τN+1)|τN

]
.

Using that V N,N(xu(τ̂N , τ), τN ) vanishes when τN ≥ T, (in which case the inequality is an equality), by taking
expectations on both sides, (2.18) follows for k = N . Now, for τ ∈ Ωk, a.s. u(t, τ) ∈ Uk,xu(τk,τ),τ for τk+1 > T.
Then evidently, for all τ ∈ Ωk, a.s.,

V k,N (xu(τ̂k, τ), τk) ≥ E

[
a

∫ τ̂k+1

τ̂k

af(s, xu(s, τ), u(s, τ), τ)ds + V k+1,N (xu(τ̂k+1, τ), τk+1)|τk

]
. (2.19)
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In fact, (2.19) holds for all τ ∈ Ω′′ a.s., since both sides of (2.19) are zero if τk > T. Assume now that (2.18)
holds for k replaced by k + 1, k + 1 ≤ N, and let us prove (2.18) as written. The induction hypothesis implies
the first inequality below, and (2.19) implies the second one:

E[axu(T )] ≤ E

⎡
⎣ ∑

0≤j≤k−1

∫ τ̂ j+1

τ̂ j

af(s, xu(s, τ), u(s, τ), τ)ds

⎤
⎦

+ E

[
E

[∫ τ̂k+1

τ̂k

af(s, xu(s, τ), u(s, τ), τ)ds|τk

]]

+ E
[
E

[
V k+1,N (xu(τ̂k+1, τ), τk+1)|τk

]]
+ E

[
σN+1(τN+1)

]

≤ E

⎡
⎣ ∑

0≤j≤k−1

∫ τ̂ j+1

τ̂ j

af(s, xu(s, τ), u(s, τ), τ)ds

⎤
⎦

+ E
[
V k,N (xu(τ̂k, τ), τk)

]
+ E

[
σN+1(τN+1)

]
So (2.18) has been proved by induction.
Proof of (2.11) (i.e. (2.26) below). For u ∈ Ũ , (x, τN ) ∈ BN , define

V̂ N,N
u (x, τN ) := E

[∫ τ̂N+1

τ̂N

af(s, xu(s, τN ; τN , x), u(s), τ)ds|τN

]
.

Also, define K̂i = |a|Ki, (for Ki see (2.9)). For any (x, τN ) ∈ BN , note that

|V N,N
u (x, τN ) − V̂ N,N

u (x, τN )| ≤ E[TK̂N1[0,T ](τN+1)|τN ].

Similarly, for any (x, τN+1) ∈ BN+1,

|V N+1,N+1
u (x, τN+1) − V̂ N+1,N+1

u (x, τN+1)| ≤ E[TK̂N+11[0,T ](τN+2)|τN+1].

Also,
|V N+1,N+1

u (x, τN+1)| ≤ TK̂N+11[0,T ](τN+1),

(V N+1,N+1
u vanishes if τN+1 > T ), so V N+1,N+1(x, τN+1) ≤ TK̂N+1[1[0,T ](τN+1)],

and we also have
V N+1,N+1(x, τN+1) ≥ −TK̂N+1[1[0,T ](τN+1)],

if V N+1,N+1(x, τN+1) is finite (⇔ UN+1,x,τ = ∅). Hence, if V N+1,N+1(x, τN+1) is finite, then, for (x, τN+1) ∈
BN+1,

|V N+1,N+1(x, τN+1)| ≤ TK̂N+1[1[0,T ](τN+1)]. (2.20)

By (2.16), for (x, τN ) ∈ BN ,

V N,N+1
u (x, τN ) = V̂ N,N

u (x, τN ) + E[V N+1,N+1(xu(τ̂N+1, τ ; τN , x), τN+1)|τN ],
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so for β(x, τN ) := E[V N+1,N+1(xu(τ̂N+1, τ ; τN , x), τN+1)|τN ], if β(x, τN ) is finite, then

|V N,N+1
u (x, τN ) − V N,N

u (x, τN )| = |V N,N+1
u (x, τN ) − V̂ N,N

u (x, τN )

+ V̂ N,N
u (x, τN ) − V N,N

u (x, τN )|
= |β(x, τN ) + V̂ N,N

u (x, τN ) − V N,N
u (x, τN )|

≤ |β(x, τN )| + E[TK̂N1[0,T ](τN+1)|τN ]

≤E[(TK̂N + TK̂N+1)1[0,T ](τN+1)|τN ]

= : α(τN ).

Hence, V N,N+1
u (x, τN ) ≤ V N,N

u (x, τN ) + α(τN ) , (which also holds if V N,N+1
u (x, τN ) is nonfinite), and

V N,N
u (x, τN ) ≤ V N,N+1

u (x, τN ) + α(τN ) if V N,N+1
u (x, τN ) is finite, (then β(x, τN ) is finite). Thus,

supu∈UN,x,τ V N,N+1
u (x, τN ) = V N,N+1(x, τN ) ≤ supu∈UN,x,τ V N,N

u (x, τN ) + α(τN ) = V N,N(x, τN ) + α(τN ),
and, symmetrically, V N,N(x, τN ) ≤ V N,N+1(x, τN ) + α(τN ) if V N,N+1(x, τN ) is finite ((x, τN ) ∈ BN ).

The next to last inequality also holds if UN,x,τ is empty. Define α(τN−1) := E[α(τN )|τN−1]. The two last
inequalities imply the two inequalities in what follows: for (x, τN−1) ∈ BN−1,

V N−1,N
u (x, τN−1) − α(τN−1) =E

[∫ τ̂N

τ̂N−1
af(s, xu(s, τ ; τN−1, x), u(s), τ)ds

+ V N,N(xu(τ̂N , τ ; τN−1, x), τN ) − α(τN )|τN−1

]

≤V N−1,N+1
u (x, τN−1)

=E

[∫ τ̂N

τ̂N−1
af(s, xu(s, τ ; τN−1, x), u(s), τ)ds

+ V N,N+1(xu(τ̂N , τ ; τN−1, x), τN )|τN−1

]

≤E

[∫ τ̂N

τ̂N−1
af(s, xu(s, τ ; τN−1, x), u(s), τ)ds

+ V N,N
(
xu

(
τ̂N , τ ; τN−1, x

)
, τN

)
+ α

(
τN

)
|τN−1

]

=V N−1,N
u (x, τN−1) + α(τN−1),

so
V N−1,N

u (x, τN−1) − α(τN−1) ≤ V N−1,N+1
u (x, τN−1) ≤ V N−1,N

u (x, τN−1) + α(τN−1)

(the second inequality holds also if V N−1,N+1
u (x, τN−1) is nonfinite, the first one holds if V N−1,N+1(x, τN−1) is

finite; then V N,N+1(xu(τ̂N , τ ; τN−1, x), τN ) is finite a.s. in Pr[.|τN−1]). Moreover, by the two last inequalities
(in a shorthand notation)

V N−2,N
u − α = E

[
a

∫ τ̂N−1

τ̂N−2
+V N−1,N − α

]
≤ V N−2,N+1

u

= E

[
a

∫ τ̂N−1

τ̂N−2
+V N−1,N+1

]
≤ E

[
a

∫ τ̂N−1

τ̂N−2
+V N−1,N + α

]
= V N−2,N

u + α,
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and this continues backwards for N − 3, N − 4, . . ., so for

α(τk) = E[α(τk+1)|τk] = E[E[α(τk+2)|τk+1]|τk] = E[α(τk+2)|τk] = . . . = E[α(τN )|τk],

for (x, τk) ∈ Bk, k ≤ N ,

V k,N
u (x, τk) − α(τk) ≤ V k,N+1

u (x, τk) ≤ V k,N
u (x, τk) + α(τk), (2.21)

(the first inequality holds if V k,N+1
u (x, τk) is finite). Hence, for k ≤ N ,

V k,N (x, τk) − α(τk) ≤ V k,N+1(x, τk) ≤ V k,N (x, τk) + α(τk), (2.22)

(the first inequality holds if V k,N+1(x, τk) is finite).

Let A := supiKi/k̄
i <∞. By (2.5),

E[[1[0,T ](τN+1)|τN ]|τk] ≤
∞∑

m=N+1

Pr[T ∈ [τm, τm+1)|τk] ≤ Φ∗kN+1−k
∗ /(1 − k∗).

Hence,

E[α(τN )|τk] =E[E[T (K̂N + K̂N+1)1[0,T ](τN+1)|τN ]|τk]

≤T (K̂N + K̂N+1)Φ∗kN+1
∗ /kk

∗(1 − k∗)

≤AT(k̄N + k̄N+1)Φ∗kN+1
∗ /kk

∗ (1 − k∗) = Lk(k̄k∗)N+1,

where Lk := AT (1/k̄ + 1)Φ∗/kk∗ (1 − k∗). By repeated use of (2.21), for αk,N ′
N =

∑N ′

M=N+1 Lk(k̄k∗)M ≤
Lk(k̄k∗)N+1/(1 − k̄k∗) and for N ′ > N, we get the “iterated double inequality”

V k,N
u (x, τk) − αk,N ′

N ≤ V k,N ′
u (x, τk) ≤ V k,N

u (x, τk) + αk,N ′
N , ((x, τk) ∈ Bk),

(the first inequality holding if V k,N ′
u (x, τk) is finite). Hence, for (x, τk) ∈ Bk,

V k,N (x, τk) − αk,N ′
N ≤ V k,N ′

(x, τk) ≤ V k,N (x, τk) + αk,N ′
N , (2.23)

(the first inequality holding if V k,N ′
(x, τk) is finite).

For later use, note that |σN+1(τ)| ≤ ∑
N≤j<∞ |a| ∫ τ̂j+1

τ̂j
Kjds. Thus,

E[|σN+1(τ)|] ≤ E

⎡
⎣ ∞∑

j=N

|a|Kj(τ̂ j+1 − τ̂ j)

⎤
⎦

≤
∞∑

j=N

|a|TKj Pr[τj < T ] =
∞∑

j=N

|a|TKj

∞∑
m=j

Pr[T ∈ (τm, τm+1]]

≤
∞∑

j=N

|a|TKj

∞∑
m=j

Φ∗km
∗ ≤

∞∑
m=N

|a|TKjΦ
∗kj

∗/(1 − k∗)

≤
∞∑

m=N

Φ∗T |a|A(k̄k∗)j/(1 − k∗) ≤ Φ∗T |a|A(k̄k∗)N/(1 − k̄k∗)(1 − k∗).
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Note that, by (2.23),

W k,N+1 := V k,N+1 −
N+1∑
j=0

Lk(k̄k∗)j ≤ V k,N −
N∑

j=0

Lk(k̄k∗)j =: W k,N ,

so the sequence {W k,N}N is decreasing, hence limNW
k,N exists, and then also limN V k,N =: V k,∞ exists. In

fact, for αk
N = limN ′→∞ αk,N ′

N , by (2.23),

V k,k(x, τk) − αk
k ≤ V k,∞(x, τk) ≤ V k,k(x, τk) + αk

k, (2.24)

(the first inequality if V k,∞(x, τk) is finite).
Note that, by (2.16), and monotone convergence of {W k,N}N ,

V k,∞
u (x, τk) = Eτk+1

[
a

∫ τ̂k+1

τ̂k

f(s, xu(s, τ ; τk, x), u(s), τ)ds + V k+1,∞(xu(τ̂k+1, τ ; τk, x), τk+1)|τk

]
, (2.25)

so, for

(x, τk) ∈ Bk, V k,∞(x, τk) = sup u∈Uk,x,τkEτk+1

[
a

∫ τ̂k+1

τ̂k

f(s, xu(s, τ ; τk, x), u(s), τ)ds

+ V k+1,∞(xu(τ̂k+1, τ ; τk, x), τk+1)|τk

]
. (2.26)

Upper semicontinuity of V k,∞ Even V k,∞ is usc on Bk. To see this, let (x̄, τ̄k) ∈ Bk, and let
(xj , τ

k
(j)) → (x̄, τ̄k), when j → ∞, (xj , τ

k
(j)) ∈ Bk, the sequence being so chosen that V k,∞(xj , τ

k
(j)) →

lim sup(x̌,τ)∈Bk,(x̌,τk)→(x̄,τ̄) V
k,∞(x̌, τk). If the last entity equals −∞, there is nothing to prove. If not,

V k,∞(xj , τ
k
(j)) > −∞ for j ≥ some j∗. Then V k,N ′

(xj , τ
k
(j)) > −∞ for N ′ large enough, in fact for all N ′geqk,

by (2.23) when j ≥ j∗. Then, for any given ε > 0, for N∗ ≥ k chosen such that αk
N ≤ ε/4 for N ≥ N∗,

by (2.24), for any j ≥ j∗, V k,N (xj , τ
k
(j)) − ε/4 ≤ V k,∞(xj , τ

k
(j)) ≤ V k,N (xj , τ

k
(j)) + ε/4. For some jN ≥ j∗,

V k,N (x(j), τ
k
(j)) ≤ V k,N (x̄, τ̄k) + ε/2 when j ≥ jN , (V k,N (x̌, τk) is usc in (x̌, τk) ∈ Bk

j ). This means that for all
N ≥ k, V k,N (x̄, τ̄k) > −∞ and that V k,N∗

(x̄, τ̄k) ≤ V k,∞(x̄, τ̄k) + ε/4, by (2.24), so using (2.24) again, we get,
for j ≥ jN∗ , that

V k,∞(xj , τ
k
(j)) ≤ V k,N∗

(xj , τ
k
(j))+ε/4 ≤ V k,N∗

(x̄, τ̄k)+ε/4+ε/2 ≤ V k,∞(x̄, τ̄k)+ε/4+ε/2+ε/4=V k,∞(x̄, τ̄k)+ε.

Thus, (x̌, τ) → V k,∞(x̌, τk) is usc in (x̌, τk) ∈ Bk.
Recall that E[|σN+1(τ)|] → 0, when N → ∞. By (2.18) and the monotone convergence theorem (cf. the

W k,N ’s introduced above),

E[axu(T, τ)] ≤ E

⎡
⎣ ∑

0≤j≤k−1

∫ τ̂ j+1

τ̂ j

af(s, xu(s, τ), u(s, τ), τ)ds

⎤
⎦ + E[V k,∞(xu(τ̂k, τ), τk)]. (2.27)

Construction of optimal controls satisfying (2.26). Let us use (2.26) to define, by induction, measurable
controls uk(t, τk) that will turn out to give the optimal control: due to (2.27) and the existence of an admissible
solution, V 0,∞(0, 0) is finite. Define (u0(t, τ0), x0(t, τ0)) to be a control in U0,0,τ0

with corresponding solution
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x0(t, τ0) := x0(t, τ0; 0, 0) yielding supremum for k = 0 in (2.26), (such a control exists in U0,0,τ0
, by Rem. 2.3).

Evidently, (t, τ0) → u0(t, τ0) is measurable (τ0 = τ0 = 0, by Proposition 1, u0(, τ0) is measurable in t). By
induction, assume, for j ≤ k − 1 and for some measurable set Mj ⊂ Ωj of full P -measure in Ωj (Pr[Ωj\Mj] =
0), that for each τ ∈ Mj a pair (uj(t, τ j), xj(t, τ j)) exists such that V j,∞(xj(τj , τ j), τ j) is finite, and such
that the pair yields supremum in (2.26) for k replaced by j, with x = xj(τj , τ j), (xj(τj , τ j) = xj−1(τj , τ j−1),
xu(., τ ; τj , x) = xj(., τ j)), and with uj(., τ j) ∈ U j,xj−1(τ̂j ,τ j−1),τ , (t, τ j) → uj(t, τ j) measurable. By the induction
hypothesis, V k−1,∞(xk−1(τ̂k−1, τ

k−1), τ) is finite on Mk−1. Since Uk−1,xk−1(τ̂k−1,τk−1),τ is nonempty for τk−1 ∈
Mk−1 (it contains uk−1(., τk−1)), then, by (2.20)*), V k−1,k−1(xk−1(τ̂k−1, τ

k−1), τk−1) is bounded on Mk−1, and,
by (2.23), V k−1,N ′

(xk−1(τ̂k−1, τ), τk−1) is finite for N ′ ≥ k − 1, so, by (2.24), V k−1,∞(xk−1(τk−1, τ
k−1), τk−1)

is a bounded function on Mk−1. Then, by (2.26),

1Mk−1V
k−1,∞(xk−1(τ̂k−1,τ

k−1), τk−1) =1Mk−1E

[
a

∫ τ̂k

τ̂k−1
f(s, xk−1(s, τk−1), uk−1(s, τk−1), τ)ds

+ V k,∞(xk−1(τ̂k, τk−1), τk)}|τk−1

]
. (2.28)

Taking expectation (E[.|τ0]) on both sides yields a finite expression also on the right hand side. This means
that 1Mk−1V

k,∞(xk−1(τ̂k, τk−1), τk) is a.s. finite, (otherwise E[E[1Mk−1V
k,∞(xk−1(τ̂k, τk−1), τk)}|τk−1]] would

not be finite). I.e. a measurable subset Mk of full P -measure in Ωk exists such that
V k,∞(xk−1(τ̂k, τk−1), τk) is finite for τk ∈ Mk. Moreover, by Lusin’s theorem, an increasing sequence of
measurable sets {M j

k}j exists, such that τk 
→ V k,∞(xk−1(τ̂k, τk−1), τk) is continuous on M j
k ⊂ Mk, with

meas(Mk \ M j
k) → 0 when j → ∞. For τ ∈ M j

k , by Remark 2.3 and (2.26) holding for k, a control
uk,τk(.) ∈ Uk,xk−1(τ̂k,τk−1),τ , with corresponding solution xk,τk(.) satisfying xk,τk(τk) = xk−1(τk, τk−1) exists,
yielding supremum in (2.26) for x = xk,τk(τk). Then the following equality is satisfied for τ ∈M j

k :

V k,∞(xk−1(τ̂k, τk−1), τk) = Eτk+1

[
a

∫ τ̂k+1

τ̂k

f(s, xk,τk(s), uk,τk(s), τ)ds+ V k+1,∞(xk,τk(τ̂k+1), τk+1)|τk

]
,

(2.29)
((2.29) reduces to 0 = 0 when τk ≥ τ̂k = T ).
We want to choose uk,τk(.) to be simultaneously measurable in (t, τk), in which case we write uk(t, τk)

instead of uk,τk(.) (and xk(t, τk) for the corresponding solution). For τ ∈ M̂k := ∪jM
j
k , let Uk

τk be the set of
controls in Uk,xk−1(τ̂k,τk−1),τ for which (2.29) is satisfied. Define the functions xk−1(t, τk−1), uk−1(t, τk−1) to be
the nonanticipating functions that satisfy (xk−1(t, τk−1), uk−1(t, τk−1)) = (xj(t, τj), uj(t, τ j)) for t ∈ (τj , T ], if
τ ∈Mj, j ≤ k − 1, (then these functions are defined for P-a.e. τ in Ωk−1). Let Hk

j , j = 1, 2, , . . . be measurable
sets in Ωk such that meas(Ωk\Hk

j ) < 1/j and such that, by Lusin’s theorem for Banach space valued measurable
functions, τ → uk−1(., τk−1): Hk

j → L1(J,Rr) is continuous. Let τ(n) → τ, where τ, τ(n) ∈ F k
j := M j

k ∩Hk
j , and

assume that uk,(τ(n))k(.) → u(.) in measure, uk,(τ(n))k(.) ∈ Uk
(τ(n))k . Then, using Ascoli’s theorem, it is easily seen

that a subsequence xk−1(t, (τ(nj))k−1) is uniformly convergent to some continuous function x(.) on [0, T ], which
is a solution of (2.2) on [0, T ] corresponding to uk−1(., τk−1). Hence, by uniqueness, x(.) is equal to xk−1(t, τk−1).
The subsequence is also chosen such that the solution xk,(τ(nj ))k(t) corresponding to uk,(τ(n))k(.), (which satisfies

xk,(τ(n))k((τ(n))k) = xk−1((τ(n))k, (τ(n))k−1), converges for each t in (τk, T ] to some continuous function x∗(.)
that is easily seen to be a solution of (2.2) on [τk, T ] with initial condition xk,τk(τk) = xk−1(τk, τk−1). By
uniqueness, x∗(t) is equal to xk,τk(t) := xu(t, τ ;xk−1(τk, τk−1)). For τk ∈ F k

j , xk,τk(T ) ∈ B∗ if τk+1 > T,

provided Pr[τk+1 > T |τk] > 0, since this inequality must hold for large nj , by continuity in τk. Furthermore,
by continuity in M j

k , for τk replaced by (τ(nj))k in (2.29), the left hand side converges to the left hand side
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as written in (2.29), when nj → ∞. For τk replaced by (τ(nj))k in the right hand side, by usc, the limsup of
the right hand side when nj → ∞ is ≤ the right hand side as written, with uk,τk(.) = u(.). Hence, by (2.27),
u is optimal in Uk,xk−1(τ̂k,τk−1),τ , it belongs to Uk

τk . Thus, when Ũ is furnished with the metric of convergence
in measure, (in which it is separable and complete), the multifunction τ → Uk

τk is outer semi-continuous,
(has the closed graph property), and hence is measurable, on each F k

j , and therefore measurable on the set
Mk := ∪jF

k
j of full P-measure. By Kuratowski’s measurable selection theorem, for each τk ∈ Mk, a function

uk(., τk) ∈ Uk
τk exists such that τ → uk(., τk) is measurable on Mk. Then (t, τ) → uk(t, τk) is measurable. Let

xk(t, τ) correspond to uk(t, τ). Obviously, (uk(., τk), xk(., τk)) is defined a.s. and yields supremum in (2.26) for
(x, τk) = (xk−1(τk, τk−1), τk), τ ∈ Mk. As xk−1(τk, τk−1) = xk(τk, τk) for τk ≤ T, V k,∞(x(τk, τk), τk) is finite
on Mk.

Define x∗(t, τ), u∗(t, τ) to be the nonanticipating functions that satisfy (x∗(t, τ), u∗(t, τ)) = (xj(t, τ), uj(t, τ))
for t ∈ (τj , T ] if τ ∈ Mj. Then, a.s., (x∗(t, τ), u∗(t, τ)) = (xj(t, τ), uj(t, τ)) if t ∈ (τj , τj+1]. Evidently, using
(2.28) for j = 0, 1, . . . , k + 1, we get

V 0,∞(0, 0) =
k∑

j=0

E

[
E

[
a

∫ τ̂ j+1

τ̂ j

f(s, x∗(s, τ), u∗(s, τ))ds|τ j

]
|τ0

]
+ E[E[V k+1,∞(xk(τ̂k+1, τk), τk+1)|τk]|τ0]

By (2.24), the results limEk→∞[αk
k1[0,T ](τk)] = 0 and 0 ≤ E[E[TK̂k+11[0,T ](τk+1)|τk]|τ0] ≤ E[α(τk)|τ0]

→ 0 when k → ∞ (see comments subsequent to (2.24), and (2.20), for N = k, the last term (i.e.
E[V k+1,∞(xk(τ̂k+1, τk), τk+1)|τk]|τ0]) goes to zero when k → ∞, so letting k → ∞ we get the following equal-
ity (for the convergence of the sum below, see the result limN→∞E[|σN+1(τN+1)] = 0 obtained subsequent to
(2.24),

V 0,∞(0, 0) =
∞∑

j=0

E

[
a

∫ τ̂ j+1

τ̂ j

f(s, x∗(s, τ), u∗(s, τ))ds|τ0

]
.

Hence, u∗(., .) is optimal. (Note that x∗(t, τ) does satisfy (2.3) and (2.4), recall that xk(T, τk) ∈ B∗ when
Pr[τk+1 > T |τk] > 0, and notice that

Pr[x∗(T, τ) ∈ B∗] =
∑

k

Pr[x∗(T, τ) ∈ B∗, T ∈ [τk, τk+1)]

=
∑

k

Pr[xk(T, τk) ∈ B∗, T ∈ [τk, τk+1)]

=
∑

k

Pr[xk(T, τk) ∈ B∗, T < τk+1, τk ≤ T ]

=
∑

k

Pr[xk(T, τk) ∈ B∗|T < τk+1, τk ≤ T ] Pr[T < τk+1|τk ≤ T ] Pr[τk ≤ T ]

=
∑

k

Pr[T < τk+1|τk ≤ T ] Pr[τk ≤ T ]

=
∑

k

Pr[T ∈ [τk, τk+1)] = 1).

Remark 2.4. Below we need the following modifications of (2.9) and (2.10). There is given a closed set A
in R

n containing x0, such that if x̄ ∈ A∩clB(x0, r
∗
i−1(τi)), then xu(τi+1, τ ; τi, x̄) ∈ A∩clB(x0, r

∗
i (τj)), i =

0, 1, 2, . . ., r∗−1(t) = 0. For each τ, for each j ≥ i ≥ 1, for x̄ ∈ A∩clB(x0, r
∗
i−1(τi)), for some τ ′j ∈ [τj , τj+1),

the solution xu(t, τ ; τi, x̄), belongs to clB(x0,max{nr∗j−1(t), nr
∗
j (t)}) for t ∈ (τj , τ ′j ]∩ J and to clB(x0, r

∗
j (t)) for

t ∈ (τ ′j , τj+1] ∩ J (instead of to clB(x0, r
∗
j (t)) for all t ∈ (τj , τj+1] ∩ J). Furthermore, for each τ, each j ≥ 0, for

some τ ′j ∈ [τj , τj+1), the solution xu(t, τ ; τ0, x0) belongs to clB(x0,max{nr∗j−1(t), nr
∗
j (t)}) for t ∈ (τj , τ ′j ]∩J and
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to clB(x0, r
∗
j (t)) for t ∈ (τ ′j , τj+1]∩J (instead of to clB(x0, r

∗
j (t)) for all t ∈ (τj , τj+1]∩J). Moreover, (2.9) must be

changed as follows: |f0(t, x, u, τ)|, |f(t, x, u, τ)| ≤ Kj for (x, u, τ) ∈ clB(x0,max{nr∗j−1(t), nr
∗
j (t)})×U×Ω′′ when

t ∈ [τj , τ ′j ]∩J, and |f0(t, x, u, τ)|, |f(t, x, u, τ)| ≤ Kj for (x, u, τ) ∈ clB(x0, r
∗
j (t))×U×Ω′′ when t ∈ (τ ′j , τj+1)∩J.

(Then the start points xk−1,τk−1(τk) belong to A∩clB(x0, r
∗
k−1(τk)) and f0 and f are, as before, bounded by

Kk along the solutions xk,τk(t) and xu(t, τ ; τk, x̄), x̄ ∈ A∩ clB(x0, r
∗
k−1(τk)), both properties being used in the

proof).
Letting all V k,N (x, τk), and V k,∞(x, τk) be defined only for x ∈ A, the proof will be a trivial modification of

the proof above.
Finally, it is not necessary to assume uniqueness of solutions of (2.2) (or in (2.10)). It was done just to save

a few words in the proof; uniqueness is not assumed in the crucial Proposition 2.2.

Remark 2.5. Let Q be a closed set in R
n+1. Theorem 2.2 holds even if the requirment (t, x(t, τ)) ∈ Q a.s. is

added to the requirments in (2.6) for a pair to be admissible.

The proof has then to be changed as follows. In the arguments subsequent to (2.17) (and before (2.18)),
the set Bk has to be replaced by Bk ∩ {(x, τk) : (τk, x) ∈ Q}, and the points (t, x) in the definitions of the
two sets S have to be restricted to the sets {(t, x) : (t, x) ∈ Q if Pr[τN+1 > t|τN ] > 0} and {(t, x) : (t, x)
∈ Q if Pr[τk > t|τk−1] > 0}, respectively. Finally, the solution xu(t, τ ; τk, x) appearing in the definition of the
set Uk,x,τ , see the beginning of Continued proof of Theorem 2.2, has also to satisfy (t, xu(t, τ ; τk, x)) ∈ Q if
Pr[τk+1 > t|τk] > 0] a.s.

End conditions of the type hk(x(T, τ)) = 0 a.s, k = 1, . . . , k′ and hk(x(T, τ)) ≥ 0 a.s. , k = 1, . . . , k′′,
(hk, hk continuous), instead of (2.3) and (2.4), can also be allowed. In case of such end conditions, replacing
T by T + 1, with f and f0 zero on (T + 1, T ], and using auxiliary state variables yk and yk governed by
ẏk = hk(x(t, τ))1[T,T+1], ẏk = hk(x(t, τ))1[T,T+1] reduce the problem to one with restrictions of the form (2.3)
and (2.4). (We can assume hk and hk to be bounded, if not, replace then by hk/(1 + |hk|) and hk/(1 + |hk|)).

Remark 2.6. The weaker condition that μ(τj+1|τ0, . . . , τj) is simply measurable in (τj+1, τ0, . . . , τj) suffices for
Theorem 2.1 to hold. In this case, by Lusin’s theorem, an increasing sequence of sets {Ωi

m}m exists, Ωi
m relatively

closed in Ωi, such that τ i → μ(.|τ i) ∈ L1(J,R) is continuous on eachΩi
m, with meas[Ωi\(∪mΩ

i
m)] = 0. Similarly,

the continuity condition on f0 and f can be weakened to continuity in {(t, x, u, τ i) : t ∈ J, x ∈ R
n, u ∈ U, τ i ∈

Ω̂i
m, τ

i ≤ t}, where {Ω̂i
m}m is some increasing family of relatively closed sets for which meas[Ωi\(∪mΩ̂

i
m)] = 0

(a condition that comes not far from assuming mere measurability in τ i). Of cource, we may assume Ωi
m = Ω̂i

m.

Some hints for a proof: by backwards induction, with Ωk
N,N+1 := ΩN+1, there exists an increasing sequence of

sets {Ωk
N,m}m , k = N + 1, N, . . . , 1, relatively closed in Ωk, such that meas(Ωk

m\Ωk
N,m) ≤ 2−N/m (⇒ 1Ωk

N.m
↑

1Ωk a.e.), such that {∫ ∞
τk

(1Ωk+1 −1Ωk+1
N,n

)μ(τk+1|τk)dτk+1}n converges uniformly in τk on each Ωk
N,m to zero (use

almost uniform convergence of E[1Ωk+1 − 1Ωk+1
N,n

|τk] to zero). Define Ω̃k
m = ∩∞

N=1Ω
k
N,m and note that 1Ω̃k

m
↑ 1Ωk

a.e. Then it can be shown by backwards induction that V k,N is usc on Bk ∩{R
n×Ωk

N,m} for each m, and hence
that V k,∞ is usc on Ω̃k

m for each m.
In fact, assuming that V k,N is usc on Bk ∩ {R

n × Ωk
N,m}, the following property entails that V k−1,N is

usc on Bk−1 ∩ {R
n × Ωk−1

N,m} for each m: assume that a sequence of triples (τ(j), xj(.), uj(.)) exists, such that

τk−1
(j) ∈ Ωk−1

N,m, u
j(.) ∈ Uk−1,xj

0,τ(j) , xj(.) a deterministic solution corresponding to uj(.) defined on Ij = [tj0, T ],

tj0 = (τ(j))k−1, xj(tj0) = xj
0 and such that there exist x0, x

∗(.), u∗(.) ∈ Ũ , τ , with τk−1 ∈ Ωk−1
N,m, for which

τk−1
(j) → τk−1, xj

0 = xj(tj0) → x0, supt∈Ij∩I |xj(t) − x∗(t)| → 0 for I = [τk−1, T ], x∗(t0) = x0 for t0 = τk−1, with



EXISTENCE OF OPTIMAL NONANTICIPATING CONTROLS IN PIECEWISE DETERMINISTIC CONTROL PROBLEMS 57

(x∗(.), u∗(.)) satisfying (2.12). Then6

limsupjEτk

[
a(xj(τ̂k) − xj(tj0)) + V k,N (xj(τ̂k), τk−1

(j) , τk)|τk−1
(j)

]
≤ Eτk

[
a(x∗(τ̂k) − x∗(t0))

+ V k,N (x∗(τ̂k), τk−1, τk)|τk−1

]
.

3. Piecewise continuous systems

Let us now consider piecewise continuous systems, where the state jumps at the times τi introduced in
Section 2 above. Hence, to the setup in Section 2, add the feature that

x(τi+, τ) = ĝ(τi, x(τi−, τ), i), i = 1, 2, . . . (3.1)

So now, t→ x(t, τ) is only absolutely continuous (and governed by the differential equation in (2.2)) between
the points τi, with left and right limits at each τi, i = 1, 2, . . . satisfying (3.1). We take t → x(t, τ) to be left
continuous. The functions f0 and f satisfy the general assumptions as before, and ĝ is continuous. It is assumed
that, for some constants α, κ, αg, and κg, for all (t, x, u, τ) ∈ J × R

n × U × Ω′′, |f(t, x, u, τ)| ≤ α + κ|x|,
|f0(t, x, u, τ)| ≤ α + κ|x|, and |ĝ(t, x, i)| ≤ αg + κg|x| (for all i). For h∗ ≡ 0, we now want to maximize the
criterion in (2.1).

Theorem 3.1. Assume that the components gm of g := ĝ − x satisfy gm ≡ 0 for m = 1, . . . , n1, and gm ≥ 0
for m = n1 + 1, . . . ,m2. Assume also that k∗ in (2.5) satisfies k∗ < 1/κg. Assume, finally, that an admissible
solution (x(t, τ), u(t, τ)) of (2.2), (3.1) exists, that U is compact, and that N(t, x, τ) is convex (see (8)). Then
there exists an optimal pair (x∗(t, τ), u∗(t, τ)).

Remark 3.2. If the assumptions on the components gm, m = 1, . . . , n2 fail, then we run the risk that no
admissible solution exists. (See the discussion in Sect. 3.4 in Seierstad [10]). Formally the conditions gm ≡ 0 for
m = 1, . . . , n1, and gm ≥ 0 for m = n1 + 1, . . . ,m2 can be dropped.

It is not difficult to carry out essentially the same proof as above even in the present jump situation, it would
add some few more details. However, being more than long enough, we did not want the proof to become even
longer by adding in these extra details. So, instead we shall use Theorem 2.1 in an suitably rewritten system to
obtain Theorem 3.1, even if that necessitates some tedious, mainly “book-keeping” arguments.

Proof. Theorem 2.1 holds for any norm |x| on R
n equivalent to the Euclidean norm, and given this norm,

we shall use the max-norm |(z, y)| = max{|z|, |y|} on R
n × R

n. Define x̄ = (x̄1, . . . , x̄n2 , 0, . . . , 0) ∈ R
n and

λ(t) = x0 + (t/T )(x̄ − x0). Let us introduce translated trajectories x̌(t, τ) := x(t, τ) − λ(t), governed by the
system

dx̌/dt = f̌(t, x̌, u, τ) := f(t, x̌+ λ(t), u, τ) − (1/T )(x̄− x0), x̌(0) = 0,
x̌(τi+, τ) = ǧ(τi, x̌(τi−, τ), i) := ĝ(τi, x̌(τi−, τ) + λ(τi), i) − λ(τi),

6To prove this inequality, note that −K∗ ≤ a(xj (τ̂k)−xj (tj0))+V k,N (xj(τ̂k), τk) ≤ K∗ for some positive K∗ independent of τk

and j, (the left hand inequality holding only if V k,N (xj(τ̂k), τk) is > −∞), and, hence, for n large, αj := Eτk [{a(xj(τ̂k)−xj(tj0))+

V k,N (xj(τ̂k), τk−1
(j)

, τk)}1Ωk (τk−1
(j)

, τk)|τk−1
(j)

] ≤ Eτk [{a(xj(τ̂k) − xj(tj0)) + V k,N (xj(τ̂k), τk−1
(j)

, τk)}1Ωk
N,n

(τk−1
(j)

, τk)|τk−1] + ε, be-

cause for n large Eτk [{a(x(τ̂k)−x(tj0))+V k,N (xj(τ̂k), τk−1
(j)

, τk)}1Ωk\Ωk
N,n

|τk−1
(j)

] ≤ ε uniformly in j. For some subsequence ji both

limαji = lim supj αj and μ(.|τk−1
(ji)

) → μ(.|τk−1) a.s. Then, by Fatou’s lemma, limji
αj = ε+limsupji

Eτk [{a(xji (τ̂k) − x(tji
0 )) +

V k,N (xji (τ̂k), τk−1
(ji)

, τk)}1Ωk
N,n

(τk−1
(ji)

, τk)|τk−1
(ji)

] ≤ ε + Eτk [{a(x∗(τ̂k) − x∗(t0)) + V k,N (x∗(τ̂k), τk−1, τk)}1Ωk
N,n

(τk−1, τk)|τk−1].

Letting n → ∞, then ε → 0 and we get the asserted inequality. (From this we also get that solutions uk,τk
(t) in the section

subsequent to (2.27) again exist).
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with criterion integrand f̌0(t, x̌, u, τ) := f0(t, x̌+λ(t), u, τ). Note that if λ∗ = maxt∈J |λ(t)|, then |f̌(t, x̌, u, τ)| ≤
α̌+κ|x̌|, |f̌0(t, x̌, u, τ)| ≤ α̌+κ|x̌|, |ǧ(τi, x̌(τi−, τ), i)| ≤ α̌g+κg|x̌|, α̌ = (1/T )|x0−x̄|+α+κλ∗, α̌g = λ∗+αg+κgλ

∗.
The end condition on x̌(T, τ) is x̌m(T, τ) = 0 a.s. for m = 1, . . . , n1, x̌

m(T, τ) ≥ 0 a.s. for m = n1 + 1, . . . , n2.
Below, we write x, x0, f, f0,g, α, and αg instead of x̌, x̌0, f̌ , f̌0, ǧ, α̌, and α̌g. �

A. Assume first that there exist two sequences of positive numbers Mi,Ki, and positive continuous nonde-
creasing functions r∗i (.), i = 0, 1, . . . , supi,t∈[0,T ] r

∗
i (t)/k̄i < ∞ and supi Ki/k̄

i < ∞ for some k̄ ∈ (1, 1/k∗), and∑√
Mi < ∞, such that |f(t, x, u, τ)| ≤ Ki and |f0(t, x, u, τ)| ≤ Ki for all (x, u, τ) ∈ clB(0, r∗i (t)) × U × Ω′′,

for all t ∈ (τi, τi+1], and such that, for any control u(., .) ∈ U ′ and any τ ∈ Ω′′, with τk ∈ (0, T ), and
any x̃ ∈ clB(0, r∗k−1(τk)), any solution x(t, τ ; τk, x̃), t ∈ [τk, T ], of ẋ = f(t, x, u(t), τ) starting at (τk, x̃) (i.e.
x(τk−, τ ; τk, x̃) = x̃) and satisfying the jump condition (3.1) for i ≥ k, by assumption satisfies x(t, τ ; τk, x̃) ∈
clB(0, r∗j (t)) for t ∈ (τj , τj+1]∩J, j ≥ k. Moreover, x(t, τ ; 0, 0) ∈ clB(0, r∗j (t)) for t ∈ (τj , τj+1)∩J , j = 0, 1, . . ., for
any solution x(t, τ ; 0, 0) on [0, T ]. Assume moreover that |ĝ(t, x, i)− x| ≤Mi when |x| ≤ max{nr∗i−1(t), nr

∗
i (t)}.

(These conditions are called the auxiliary conditions). This jumping system can be rewritten as a nonjumping
system as follow:

let M =
∑∞

i=1(Mi +
√
Mi), M0 = 0, aj :=

∑j
i=0(Mi +

√
Mi), and bj := Mj +

√
Mj. For i = 1, 2, . . . , let

σi := σi(τi) := τi + ai−1 if τi < T, and σi := σi(τi) := T + M+ τi if τi ≥ T, moreover, let σ0 = 0. There is
an one-one correspondence between the σi’s and the τi’s. Note that σi < T +M ⇔ τi < T . In an obvious way,
the densities μ(τk|τk−1) give rise to densities μ∗(σk|σk−1), k = 0, 1, 2 . . . , that, by the way, are equal to zero on
[σk−1, σk−1 + bk−1] ∩ [0, T +M ].

Let σ = (σ0, σ1, . . .) and let v(t, σ0, σ1, . . .) take values in U, be nonanticipating and simultaneously measurable
on each set [0, T +M ]×Ω′

i, Ω
′
i := {(σ0, σ1, . . .) : σi+1 > T +M}. (The set of such controls is denoted U ′′). For

t ∈ [0, T +M ], define

h0(t, z(.), v, σ0, σ1, . . .) =
∞∑

i=0

f0(t− ai, z(t), v, τ0, τ1, . . .)1(σi+bi,σi+1](t) and for g := ĝ − x,

h(t, z(.), v, σ0, σ1, . . .) =
∞∑

i=0

f(t− ai, z(t), v, τ0, τ1, . . .)1(σi+bi,σi+1](t) +
∞∑

i=1

g(τi, z(σi), i)1(σi,σi+Mi](t)/Mi.

Then, for any given v(t, σ), let zv(t, σ) := z(t, σ), for t ∈ [0, T +M ], be the solution – continuous in t – of the
retarded equation

ż(t, σ) = h(t, z(.), v(t, σ), σ), z(0, σ) = 0. (3.2)

Define, for s ∈ [0, T ],

x(s, τ) =
∞∑

i=0

z(s+ ai, σ)1(σi+bi,σi+1](s+ ai), (3.3)

and

u(s, τ) =
∞∑

i=0

v(s+ ai, σ)1(σi+bi,σi+1](s+ ai). (3.4)
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Now, z(t, σ) satisfies ż(t, σ) = f(t−ai, z(t, σ), v(t, σ), τ0, τ1, . . .) for t ∈ (σi +bi, σi+1], t ≤ T +M. Assume τi < T.
Then, for t′ ∈ [τi, τi+1), t′ ≤ T,

x(t′, τ) − x(τi+, τ) = z(t′ + ai, σ) − z(σi + bi, σ)

=
∫ t′+ai

σi+bi

f(t− ai, z(t, σ), v(t, σ), τ)dt

=
∫ t′

τi

f(s, z(s+ ai, σ), v(s+ ai, σ), τ)ds

=
∫ t′

τi

f(s, x(s, τ), u(s, τ), τ)ds.

Note that z(t, σ) is constant on (σi +Mi, σi + bi). Moreover, for τi < T ,

x(τi+, τ) − x(τi−, τ) = z(σi +Mi, σ) − z(σi, σ)

=
∫ σi+Mi

σi

(1/Mi)g(τi, z(σi, σ), i)dt

= g(τi, z(σi, σ), i) = g(τi, x(τi−, τ), i).
Hence, (x(., τ), u(., τ)) satisfies (2.2) and (3.1). Symmetrically, if (x(.), u(.)) satisfies (2.2) and (3.1), there is a
pair (z(., .), v(., .)) satisfying (3.2), (u(., τ) and v(., σ) again related as in (3.4)).

Now, (3.2) is a retarded differential equation. There would be no problem if Theorem 2.1 was proved for
nonjumping states governed by retarded equations, (and the proof would be almost the same). But let us stick
to ordinary equations: we shall work with two states, z, developing as before, and y, being equal to z, except
on each (σi, σi +Mi], where it is constant and equals z(σi, σ), and on each (σi +Mi, σi + bi] where it develops
in such a manner that it reaches the constant value z has on (σi + Mi, σi + bi] before the end of the interval,
(in particular, y(σi + bi, σ) = z(σi + bi, σ)).

Define

h1(t, z, y, v, σ0, σ2, . . .) =
∞∑

i=0

f(t− ai, z, v, τ0, τ1, . . .)1(σi+bi,σi+1](t) +
∞∑

i=1

g(τi, y, i)1(σi,σi+Mi](t)/Mi,

and

h2(t, z, y, v, σ0, σ1, . . .) =
∞∑

i=0

f(t− ai, z, v, τ0, τ1, . . .)1(σi+bi,σi+1](t) +
∞∑

i=1

H(z, y)1(σi+Mi,σi+bi](t),

where H(z, y) has the components Hm := Hm(zm, ym) := −2(ym − zm)1/2 if ym ≥ zm, Hm := 2(zm − ym)1/2

if ym < zm,m = 1, . . . , n. Evidently, H is continuous. The equations governing z and y are ż = h1(t, z, y, v, σ)
and ẏ = h2(t, z, y, v, σ), z(0) = y(0) = 0. Define γi = zm(σi) − zm(σi +Mi) and note that

|γi| = |zm(σi) − zm(σi +Mi)| ≤
∣∣∣∣∣
∫ σi+Mi

σi

(1/Mi)gm(τi, z(σi, σ), i)dt

∣∣∣∣∣ ≤
∫ σi+Mi

σi

1dt = Mi,

when σi < T +M. Now, the equation ẏm = Hm(zm, ym), ym(σi +Mi) = zm(σi) given, has the unique solution

ym(t) = (−t+ σi +Mi +
√
γi)2 + zm(σi +Mi)

on (σi +Mi, σi +Mi +
√
γi] ⊂ (σi +Mi, σi +Mi +

√
Mi] if γi ≥ 0, and if γi < 0, then

ym(t) = −(−t+ σi +Mi +
√−γi )2 + zm(σi +Mi)
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on (σi + Mi, σi + Mi +
√−γi], whereas ym(t) = zm(σi + Mi) on (σi + Mi +

√|γi|, σi + bi], recall that
z(t) is constant on (σi + Mi, σi + bi]. Define the continuous function r∗∗i (t) by r∗∗i (t) = r∗i (t − ai−1) for
t ∈ [ai−1, T + ai−1], with r∗∗i (t) constant on [0, ai] and on [T + ai, T +M ]. When t ∈ [σj + bj, σj+1), t < T +M
and (z̄, ȳ) = (x̄, x̄) ∈ clB((0, 0), r∗∗i−1(σi)) (so x̄ ∈ clB(0, r∗i−1(τi))), then (z(t, σ;σi, (z̄, ȳ)), y(t, σ;σi, (z̄, ȳ))) and
(z(t, σ; 0, (0, 0)), y(t, σ; 0, (0, 0))) belong to clB((0, 0), r∗∗j (t)), where

z(t, σ;σi, (z̄, ȳ)) = y(t, σ;σi, (z̄, ȳ))
= x(t− aj , τ ; τi, x̄) ∈ clB(0, r∗j (t− ai)) ⊂ clB(0, r∗j (t− ai−1)) = clB(0, r∗∗j (t)).

Moreover, when t ∈ [σj , σj + bj), t < T + M , then the components zm(t, σ;σi, (z̄, ȳ)) and ym(t, σ;σi, (z̄, ȳ))
belong to

[xm(τj−, τ ; τi, x̄), xm(τj+, τ ; τi, x̄)] ⊂ clB(0,max{r∗j−1(τj), r
∗
j (τj)})

= clB(0,max{r∗∗j−1(τj + aj−2), r∗∗j (τj + ai−1)})
⊂ clB(0,max{r∗∗j−1(τj + aj−1), r∗∗j (τj + aj−1)})
= clB(0,max{r∗∗i−1(σj), r∗∗i (σj)}),

so (z(t, σ;σi, (z̄, ȳ)), y(t, σ;σi, (z̄, ȳ))) ∈ clB((0, 0),max{nr∗∗j−1(t), nr
∗∗
j (t)}). Similarly, when t ∈ [σj , σj+1 + bj),

t < T +M, (z(t, σ; 0, (0, 0)), y(t, σ; 0, (0, 0))) ∈ clB((0, 0),max{nr∗∗j−1(t), nr
∗
j (t)}). Define r′′i := maxt r

∗∗
i (t). Due

to the auxiliary conditions, this system (i.e. (h0, h1, h2)) satisfies all conditions placed upon a nonjumping system
in Theorem 2.1, combined with Remark 4 above: the property |h0(t, z, u, σ)|, |h1(t, z, y, u, σ)|, |h2(t, z, y, u, σ)| ≤
K̃i := max{n, 4n2r′′2i−1r

′′
i ,Ki} holds for t ∈ (σi, σi + bi), z, y ∈ clB(0,max{nr∗∗i−1(t), nr

∗
i (t)}), and for t ∈

(σi + bi, σi+1), z, y ∈ clB(0, r∗∗i (t)), ((Hm)2 ≤ 8n(max{r′′i−1, r
′′
i }) when t ∈ (σi +Mi, σi + bi], t < T +M, z, y ∈

clB(0,max{nr∗∗i−1(t), nr
∗∗
i (t)})). Finally, in this nonjumping system, the criterion is E

∫ T+M

0 h0(t, z, v, σ)dt.
Theorem 2.1, with Remark 2.4 (A = {(x, x) : x ∈ R

n}), implies the existence of an optimal control u∗(t, σ) in
this system, which implies the existence of an optimal control u∗(t, τ) in the original jumping system.

B. Consider next the case where |g| ≤Mi,
∑√

Mi <∞ is not satisfied. For any i, there exist positive nondecreas-
ing continuous functions ri(.) and positive numbers Ki and k̄ ∈ (1, 1/k∗) such that |f0(t, x, u, τ)|, |f(t, x, u, τ)|
≤ Ki when x ∈ clB(0, ri(t)), (u, τ) ∈ U × Ω′′, t ∈ (τi, τi+1), with supi Ki/k̄

i < ∞, supi,t∈[0,T ] ri(t)/k̄i < ∞.
Moreover, the following property holds: for any u(., .) ∈ U ′, for any τ ∈ Ω′′, for any x̄ ∈ clB(0, ri−1(τi)), any
solution xu(t, τ ; τi, x̄) of (2.2), (3.1) on [τi, T ] with xu(τi−, τ ; τi, x̄) = x̄, satisfies |xu(t, τ ; τi, x̄)| ≤ rj(t) when
t ∈ (τj , τj+1). Also |xu(t, τ ; 0, 0)| ≤ rj(t) when t ∈ (τj , τj+1), for any solution x(y, τ ; 0, 0) on [0, T ].

To see this, choose numbers κ′ > κ and κ′g > κg, κ
′
g ≥ 1, such that k∗ < 1/κ′g, and let β := max{αg/(κ′g −

κg), α/(κ′ − κ)}. When |x| ≥ β, then κ′g|x| ≥ αg + κg|x̃| and κ′|x| ≥ α + κ|x|. For any u(., .), when |x̃| ≤
β(κ′g)k−1 eκ′τk , then

|xu(τk+, τ ; τk, x̃)| ≤ αg + κgβ(κ′g)
k−1eκ′τk ≤ β(κ′g)

k eκ′τk ,

and for t ∈ (τk, τk+1], by Gronwall’s inequality, |xu(t, τ ; τk, x̃)| ≤ β(κ′g)keκ′τkeκ′(t−τk) = β(κ′g)keκ′t, where
xu(t, τ ; τk, x̃) is any solution starting at (τk−, x̃) corresponding to u(., .). Moreover,

|xu(τk+1+, τ ; τk, x̃)| ≤ |ĝ(τk+1, x
u(τk+1−, τ ; τk, x̃), k + 1)|

≤ αg + κgβ(κ′g)
k eκ′τk+1

≤ κ′gβ(κ′g)
keκ′τk+1 = β(κ′g)

k+1eκ′τk+1 ,

so for t ∈ (τk+1, τk+2),

|xu(t, τ, ; τk, x̃)| ≤ [β(κ′g)
k+1 eκ′τk+1 ]eκ′(t−τk+1) = β(κ′g)

k+1eκ′t.
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Continuing in this manner, it is easily seen that for i > k, when t ∈ (τi, τi+1) and |x̃| ≤ β(κ′g)k−1eκ′τk , then

|xu(t, τ ; τk, x̃)| ≤ β(κ′g)
keκ′τk(κ′g)

i−keκ′(t−τk) ≤ βeκ′t(κ′g)
i =: ri(t).

Finally, put Ki = α′ + κ supt∈[0,T ] ri(t). The existence of functions ri(t) and numbers Ki with the above
properties has then been shown, (for any k̄ ∈ (κ′g, 1/k∗)).

Note also that β ≥ αg/(κ′g − κg), hence |ĝ(t, x, i)| ≤ αg + κg|x| ≤ κ′gβ
′ when |x| ≤ β′, β′ ≥ β, so

|ĝ(t, x, i)| ≤ κ′gnri′ (t), when |x| ≤ nri′(t). (3.5)

Choose a decreasing sequence di ∈ (0, 1], with d0 = 1, such that Mi := max{di−1(κ′g +
1)n supt∈[0,T ] ri−1(t), di(κ′g + 1)n supt∈[0,T ] ri(t)} satisfies

∑∞
i=1

√
Mi <∞. Consider now the system

ẏ = f̂(t, y, u, τ) :=
∞∑

i=0

dif(t, y/di, u, τ)1[τ i,τ i+1)(t), y(0) = 0,

f̂0(t, y, u, τ) :=
∑∞

i=0 f0(t, y/di, u, τ)1[τ i,τ i+1)(t), with jumps governed by y(τi+) = ǧ(τi, y(τi−), i) :=
diĝ(τi, y(τi−)/di−1, i) and with end conditions ym(T ) = 0, m = 1, . . . , n1, y

m(T ) ≥ 0, m = n1 + 1, . . . , n2.
Evidently, |f̂01[τ i,τ i+1)(t)| = |f0(t, y/di, u, τ)|1[τ i,τ i+1)(t) ≤ Ki when |y| ≤ diri(t), (then |y/di| ≤ ri(t)) More-
over, |f̂1[τ i,τ i+1)(t)| = |dif(t, y/di, u, τ)|1[τ i,τ i+1)(t) ≤ diKi ≤ Ki, when |y| ≤ diri(t). Now, for any solution
xu(t, τ ; τk, x̃), the function yu(t, τ ; τk, ỹ), defined by yu(t, τ ; τk, ỹ) = dix

u(t, τ ; τk, ỹ) for t ∈ (τi, τi+1] , ỹ = dk−1x̃,
is a solution of this new system (in particular yu(τi+, τ ; τk, ỹ) = dix

u(τi+, τ ; τk, ỹ) = diĝ(τi, xu(τi−, τ ; τk, ỹ), i) =
diĝ(τi, yu(τi−, τ ; τk, ỹ)/di−1, i) = ǧ(τi, yu(τi−, τ ; τk, ỹ), i), i ≥ k). Then, evidently, |yu(t, τ ; τk, ỹ)| ≤ djrj(t) for
t ∈ (τj,τj+1] when |ỹ| ≤ dk−1rk−1(t). Finally, by (3.5), when |y| ≤ di−1nri−1(t), then

|ǧ(t, y, i) − y| = |diĝ(t, y/di−1, i) − y| ≤ diκ
′
gnri−1(t) + di−1nri−1(t) ≤ di−1nri−1(t)(κ′g + 1) ≤Mi,

and for |y| ≤ dinri(t),

|ǧ(t, y, i) − y| = |diĝ(t, y/di−1, i) − y| ≤ diκ
′
gnri(t) + dinri(t) ≤ dinri(t)(κ′g + 1) ≤Mi.

For r∗i (t) = diri(t), the system (f̂0, f̂ , ǧ) satisfies the auxiliary conditions in A, so an optimal pair (y∗(., .), u∗(., .))
exists. Defining x∗(t) = y∗(t)/di for t ∈ (τi, τi+1], then (x∗(., .), u∗(., .)) is optimal in the original jumping
system, ((2.3) and (2.4) are satisfied because y∗(t, τ) satisfies y∗i(t, τ) = 0, i = 1, . . . , n1 and y∗i(t, τ) ≥ 0, i =
n1 + 1, . . . , n2 a.s. Thus

∑
i x

∗(T, τ)di1[τi,τi+1)(T ), and so also x∗(T, τ)di1[τi,τi+1)(T ) and hence x∗(T, τ), satisfy
the same relationships a.s.).

Remark 3.3. A question has been raised if, in my setting, a proof would be more rapidly constructed if
one made use of infinite horizon, autonomous discrete time dynamic programming results, as Davis [3] does.
In Davis [3], Bertsekas and Shreve [1] is used and there the criterion is required to be nonpositive when a
maximization is carried out. One would need to rewrite the problem to be Markovian, using a state y to
represent time, and a jumping state z with an infinite number of coordinate to represent (τ1, τ2, . . .) (at jump
k it equals (τ1, . . . , τk, 0, 0, . . .). As I don’t want to use nonpositivity of the criterion, the last mentioned book
could be replaced by Hernandez-Lerma et al. [9], as my problem yields a transient discrete time model in the
sense of that paper. However, if one aims at Borel measurable controls and the dynamics are given by difference
equations, usc, and not only measurability, of the optimal value function is needed. If, for some suitable metric
on the set of states z, the optimal value function as a function of (x, z) is going to be usc, then in particular we
need to know that (x, τk) → V k,∞(x, τk) is usc for any k, i.e. we would surely need the proof presented above for
this fact. To go between the discrete time and the continuous time model, compactness and measurable selection
results as exemplified by Proposition 2.2 and the arguments subsequent to (2.29) would again be needed. Even
if possible, it seems that not much would be gained by using such an approach.



62 A. SEIERSTAD

Acknowledgements. I am very grateful to two referees whose comments made it possible for me to improve the exposition
and remove errors.

References

[1] D. Bertsekas and S.E. Shreve, Stochastic optimal control: the discrete-time case. Academic Press, New York (1978).

[2] L. Cesari, Optimization – Theory and Applications. Springer-Verlag, New York (1983).

[3] M.H.A. Davis, Markov Models and Optimization. Chapman & Hall, London, England (1993).

[4] M.H.A. Davis and M. Farid, Piecewise deterministic processes and viscosity solutions, in Stochastic analysis, control, op-
timization and applications, edited by W.M. Mc.Eneaney et al., A volume in honour of W.H. Fleming, on occation of his
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