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Abstract. This paper deals with the optimal control problem in which the controlled system is
described by a fully coupled anticipated forward-backward stochastic differential delayed equation. The
maximum principle for this problem is obtained under the assumption that the diffusion coefficient does
not contain the control variables and the control domain is not necessarily convex. Both the necessary
and sufficient conditions of optimality are proved. As illustrating examples, two kinds of linear quadratic
control problems are discussed and both optimal controls are derived explicitly.
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1. Introduction and problem formulation

Throughout this paper, Rn denotes the n-dimensional Euclidean space. 〈·, ·〉 and | · | denote the scalar product
and norm in the Euclidean space, respectively. � appearing in the superscripts denotes the transpose of a matrix.
C > 0 denotes a constant which can be changed line by line.

Let (Ω,F ,P) be a complete filtered probability space equipped with a natural filtration Ft := σ
{
W (s); 0 ≤

s ≤ t
}
, where W (·) is a d-dimensional standard Brownian motion. Let T > 0 be a fixed time horizon. E denotes

the expectation under P and E
Ft [·] := E[·|Ft] denotes the conditional expectation. L2(Ω,FT ;Rn) denotes the

space of all Rn-valued FT -measurable random variables ξ satisfying E[|ξ|2] < ∞, L2
F ([0, T ];Rn) denotes the

space of all Rn-valued Ft-adapted processes ψt satisfying E
[ ∫ T

0
|ψt|2dt

]
<∞.
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Let nonempty U ⊂ Rk. Admissible control Uad is the set of Ft-adapted processes v : Ω×[0, T ] → U satisfying
sup0≤t≤T E|v(t)|4 <∞. For given v(·) ∈ Uad, consider the following control system described by a fully-coupled
anticipated forward-backward stochastic differential delayed equation (AFBSDDE):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxv(t) = b(t, xv(t), yv(t), zv(t), xv(t− δ), v(t), v(t − δ))dt

+ σ(t, xv(t), yv(t), zv(t), xv(t− δ))dW (t), t ∈ [0, T ],

− dyv(t) = f(t, xv(t), yv(t), zv(t),EFt [yv(t+ δ)], v(t), v(t − δ))dt − zv(t)dW (t), t ∈ [0, T ],

xv(t) = ξ(t), v(t) = η(t), t ∈ [−δ, 0],

yv(T ) = g(xv(T )), yv(t) = ϕ(t), t ∈ (T, T + δ].

(1.1)

Here triple (xv(t), yv(t), zv(t)) : Ω× [−δ, T ]× [0, T + δ]× [0, T ] → Rn ×Rm ×Rm×d are called state trajectory
corresponding to v(·). b : [0, T ]×Rn×Rm×Rm×d×Rn×U×U → Rn, σ : [0, T ]×Rn×Rm×Rm×d×Rn →
Rn×d, f : [0, T ] × Rn × Rm × Rm×d × Rm × U × U → Rm, g : Rn → Rm are given continuous functions.
δ > 0 is a given finite time delay. ξ(·) ∈ L2

F([−δ, 0];Rn) is the initial path of xv(·), η(·) is the initial path of
control v(·) satisfying sup−δ≤t≤0 E|η(t)|4 <∞ and ϕ(·) ∈ L2

F([T, T + δ];Rm) is the terminal path of yv(·).
We are given an m× n full-rank matrix G. For any v(·) ∈ Uad, for simplicity we denote xv(t− δ),EFt [yv(t+

δ)], v(t − δ) by xv(δ), yv(+δ), v(δ), respectively. And we use the following notations:

Γ v :=

⎛
⎝xv

yv

zv

⎞
⎠ , A(t, Γ v, xv(δ), yv(+δ), v, v(δ)

)
:=

⎛
⎝−G�f

(
t, Γ v(t), yv(+δ), v(t), v(δ)

)
Gb
(
t, Γ v(t), xv(δ), v(t), v(δ)

)
Gσ
(
t, Γ v(t), xv(δ)

)
⎞
⎠

here Gσ ≡ (Gσ1, Gσ2, . . . , Gσd). Given v(·) ∈ Uad, we assume that the following hypothesis holds.

(H1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) For all (Γ v, xv(δ), yv(+δ)),A(t, Γ v, xv(δ), yv(+δ), v, v(δ)
) ∈ L2

F([0, T ];Rn × Rm × Rm×d);
(ii) For all t ∈ [0, T ], there exists a constant C > 0, such that∣∣A(t, Γ v, xv(δ), yv(+δ), v, v(δ)

)∣∣− ∣∣A(t, Γ̄ v, x̄v(δ), ȳv(+δ), v, v(δ)
)∣∣

≤ C
(|Γ v − Γ̄ v| + |xv(δ) − x̄v(δ)| + |yv(+δ) − ȳv(+δ)|), ∀Γ v = (xv, yv, zv), Γ̄ v = (x̄v , ȳv, z̄v);

(iii) b, σ is continuously differentiable in (Γ v, xv(δ)) with uniformly bounded partial derivatives;
(iv) f is continuously differentiable in (Γ v, yv(+δ)) with uniformly bounded partial derivatives;
(v) g is Lipschitz continuous and continuously differentiable with uniformly bounded derivative;
(vi) For each x ∈ Rn, g(x) ∈ L2(Ω,FT ;Rm).

(H2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ T

0

〈A(t, Γ v, xv(δ), yv(+δ), v, v(δ)
) −A(t, Γ̄ v, x̄v(δ), ȳv(+δ), v, v(δ)

)
, Γ v − Γ̄ v

〉
dt

≤
∫ T

0

[− β1|Gx̂v|2 − β2

(|G�ŷv|2 + |G�ẑv|2)]dt,〈
g(xv) − g(x̄v), G(xv − x̄v)

〉 ≥ μ1|Gx̂v|2,
or

(H2)′

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ T

0

〈A(t, Γ v, xv(δ), yv(+δ), v, v(δ)
)−A(t, Γ̄ v, x̄v(δ), ȳv(+δ), v, v(δ)

)
, Γ v − Γ̄ v

〉
dt

≥
∫ T

0

[
β1|Gx̂v|2 + β2

(|G�ŷv|2 + |G�ẑv|2)]dt,〈
g(xv) − g(x̄v), G(xv − x̄v)

〉 ≤ −μ1|Gx̂v|2,
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for all Γ v = (xv, yv, zv), Γ̄ v = (x̄v, ȳv, z̄v), x̂v = xv − x̄v, ŷv = yv − ȳv, ẑv = zv − z̄v. Here β1, β2 and μ1 are given
nonnegative constants with β1 + β2 > 0, β2 + μ1 > 0. Moreover we have β1 > 0, μ1 > 0 (resp., β2 > 0), when
m > n (resp., m < n).

We can see that in (1.1), the forward part with initial condition is a stochastic differential delayed equation
(SDDE) and the backward part with terminal condition is an anticipated backward stochastic differential equation
(ABSDE). The general theory and applications of SDDEs and ABSDEs can be found in Mohammed [14] and
Peng and Yang [20], respectively. In addition, one distinguished feature of equation (1.1) is that the forward
SDDE and backward ABSDE are fully coupled. The existence and uniqueness of the solution of such AFBSDDE
under the above G-monotonic assumptions has been studied recently by Chen and Wu [6] (noting that this kind
G-monotonic assumption was initially introduced by Hu and Peng [11], Peng and Wu [19]).

Lemma 1.1 ([6]). Let (H1) and (H2)( or (H2)’) hold. Then for any v(·) ∈ Uad, AFBSDDE (1.1) admits a
unique adapted solution (xv(·), yv(·), zv(·)) ∈ L2

F([−δ, T ];Rn) × L2
F([0, T + δ];Rm) × L2

F([0, T ];Rm×d).

We introduce the following cost functional

J(v(·)) = E

[∫ T

0

l(t, xv(t), yv(t), zv(t), xv(t− δ), v(t), v(t− δ))dt + Φ(xv(T )) + γ(yv(0))

]
, (1.2)

here l : [0, T ] × Rn × Rm × Rm×d × Rn × U × U → R, Φ : Rn → R, γ : Rn → R are given continuous
functions. We need the following hypothesis.

(H3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i) l is continuously differentiable in Γ v, xv(δ), with partial derivatives being continuous
in (Γ v, xv(δ), v, v(δ)) and bounded by C(1 + |xv| + |yv| + |zv| + |xv(δ)| + |v| + |v(δ)|);

(ii) Φ is continuously differentiable and Φx is bounded by C(1 + |xv|);
(iii) γ is continuously differentiable and γy is bounded by C(1 + |yv|).

Our stochastic optimal control problem is to minimize the cost functional (1.2) over v(·) ∈ Uad subject
to (1.1), i.e., to find a u(·) ∈ Uad satisfying

J(u(·)) = inf
v(·)∈Uad

J(v(·)). (1.3)

Our main target in this paper is to find some necessary condition of the stochastic optimal control u(·) in
the form of Pontryagin’s type maximum principle. We also investigate when the derived maximum principle
becomes sufficient condition. To get it, we introduce the following additional assumptions.

(H4) g(x) ≡MTx, MT ∈ Rm×n, ∀x ∈ Rn; Φ is convex in x, γ is convex in y.

The optimal control problem for stochastic differential delayed systems has been studied by many researchers
(see Kolmanovskii and Maizenberg [12], Øksendal and Sulem [15], Chen and Wu [5] and the references therein)
which has the practical background. One of the main motivations is that many random phenomena have the
feature of past-dependence, i.e., their behavior at time t depends not only on the situation at t, but also on a
finite part of their past history. For example, the evolution of the stock price and other stochastic dynamical
systems are sometimes identified as SDDEs.

General nonlinear BSDEs were developed by Pardoux and Peng [16] and have been widely applied in optimal
control, finance and partial differential equations (see Peng [17, 18], El Karoui et al. [10], Yong and Zhou [27]).
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Recently, Chen and Wu [5] studied one kind of delayed stochastic optimal control problem. When introducing the
adjoint equation, they encountered some new type of BSDEs. This new type of BSDEs was already introduced,
also recently, by Peng and Yang [20] for the general nonlinear case and they called them anticipated BSDEs
(ABSDEs). Moreover, they find that there exists a duality relation between SDDE and ABSDE.

Forward-backward stochastic systems where the controlled systems are described by forward-backward
stochastic differential equations (FBSDEs) are widely used in mathematical economics and mathematical fi-
nance. They are encountered in stochastic recursive utility optimization problems (see Antonelli [1], El Karoui
et al. [10], Wang and Wu [23]) and principal-agent problems (see Williams [24], Cvitanic et al. [9]). Moreover,
some financial optimization problems for large investors (see Cvitanic and Ma [8], Cucoo and Cvitanic [7], Buck-
dahn and Hu [3]) and some asset pricing problems with forward-backward differential utility (see Antonelli [1],
Antonelli et al. [2]) will directly lead to fully coupled FBSDEs. So the optimal control problems for forward-
backward stochastic systems are extensively studied in the literature.

However, to our best knowledge, there are few papers studying forward-backward stochastic differential
delayed systems. Recently, Chen and Wu [4] discussed one kind of stochastic recursive optimal control problem
of the system described by FBSDE with time-varying delay. The necessary condition for the optimal control –
maximum principle – is derived. In this paper, we will further research on this topic and consider the optimal
control problem for stochastic system described by the fully coupled AFBSDDE (1.1). Our work distinguishes
itself from [4,5] in the following aspects:

(i) The control system (1.1) itself is a fully coupled AFBSDDE. First of all, in [5] the state equation and
adjoint equation in fact form a kind of AFBSDDE which is a special case of (1.1). More importantly, the
motivation for us to study this kind of stochastic system (1.1) is that it has practical background and can
describe more general economic and financial framework with delay. We believe that AFBSDDEs and their
wide applications in mathematical finance, if the time delay is allowed, is an important concern in the
future.

(ii) The cost functional (1.2) is more general. It involves not only the running cost, the initial cost and the
terminal cost, but also delayed terms in the state and control variables.

(iii) Both the necessary and sufficient conditions for the optimal control are obtained. When the control domain
is not necessarily convex and the control system described by the fully coupled AFBSDDE, this problem
is more difficult. We overcome the difficulties by techniques dealing with fully-coupling in Shi and Wu [21],
by methods dealing with time delay in Chen and Wu [5] and by Clarke generalized gradient’s approach
dealing with sufficient conditions of optimality in Zhou [30].

We refer to Wu [25], Shi and Wu [21, 22], Meng [13], Yong [26] for more details on maximum principles for
fully coupled forward-backward stochastic systems without delay.

The rest of this paper is organized as follows. In Section 2, we give the main results of this paper, including
the necessary and sufficient maximum principles. For the sake of readability, the proofs of the results are spread
over several subsections in Section 3. In Section 4, we present two linear-quadratic (LQ) problems as examples
of applying the general results established. Finally in Section 5, we give some concluding remarks.

2. Statement of necessary and sufficient maximum principles

In this section, we present the necessary and sufficient maximum principles for our problem (1.3). For read-
ability, proofs of these results will be given in next section.

Let u(·) ∈ Uad be optimal, Γ (·) ≡ (x(·), y(·), z(·)) be the corresponding optimal trajectory corresponding to
u(·). For simplification, we introduce the following notations:

bx := bx(t, x(t), y(t), z(t), x(t − δ), u(t), u(t− δ)), etc.,
b(uε) := b(t, x(t), y(t), z(t), x(t − δ), uε(t), uε(t− δ)), b(u) := b(t, x(t), y(t), z(t), x(t− δ), u(t), u(t− δ)),
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and similar notations are used for σ, f, l. We introduce the following adjoint equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp(t) =
[
f�

y p(t) − b�y q(t) − σ�
y k(t) − ly + f�

y(+δ)(t− δ)p(t− δ)
]
dt

+
[
f�

z p(t) − b�z q(t) − σ�
z k(t) − lz

]
dW (t), t ∈ [0, T ],

− dq(t) =
{−f�

x p(t) + b�x q(t) + σ�
x k(t) + lx + E

Ft
[
(bx(δ)|t+δ)�q(t+ δ)

+ (σx(δ)|t+δ)�k(t+ δ) + lx(δ)|t+δ

]}
dt− k(t)dW (t), t ∈ [0, T ],

p(0) = −γy(y(0)), q(T ) = −g�x (x(T ))p(T ) + Φx(x(T )), k(T ) = 0,
p(t) = 0, t ∈ [−δ, 0); q(t) = 0, k(t) = 0, t ∈ (T, T + δ].

(2.1)

Remark 2.1. In equation (2.1), bx(δ)|t+δ(espectively, σx(δ)|t+δ) denotes the value of bx(δ)(espectively, σx(δ))
when time t takes value t+ δ. It is easy to see that (2.1) is a linear AFBSDDE and by Lemma 1.1 there exists
a unique solution (p(·), q(·), k(·)) ∈ L2

F([−δ, T ];Rm) × L2
F([0, T + δ];Rn) × L2

F([0, T + δ];Rn×d).

Define the Hamiltonian function H : [0, T ]×Rn×Rm×Rm×d×Rn×Rm×U×U×Rm×Rn×Rn×d → R
as

H(t, x, y, z, x(δ), y(+δ), v, v(δ), p, q, k) := 〈q, b(t, x, y, z, x(δ), v, v(δ))〉 − 〈p, f(t, x, y, z, y(+δ), v, v(δ))〉
+ tr

{
k�σ(t, x, y, z, x(δ))

}
+ l(t, x, y, z, x(δ), v, v(δ)). (2.2)

Then (2.1) can be rewritten as the following stochastic Hamiltonian system’s type:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dp(t) =
[−Hy(t) −Hy(+δ)(t− δ)

]
dt−Hz(t)dW (t), t ∈ [0, T ],

− dq(t) =
{
Hx(t) + E

Ft
[
Hx(δ)(t)|t+δ

]}
dt− k(t)dW (t), t ∈ [0, T ],

p(0) = −γy(y(0)), q(T ) = −g�x (x(T ))p(T ) + Φx(x(T )), k(T ) = 0,
p(t) = 0, t ∈ [−δ, 0); q(t) = 0, k(t) = 0, t ∈ (T, T + δ],

(2.3)

where Hx(t) := Hx

(
t, x(t), y(t), z(t), x(t − δ),EFt [y(t+ δ)], u(t), u(t− δ), p(t), q(t), k(t)

)
, etc.

The two main results of this paper are the following theorems.

Theorem 2.2 (stochastic maximum principle). Suppose that (H1)∼(H3) hold. Let u(·) be an optimal control
for our problem (1.3), (x(·), y(·), z(·)) be the optimal trajectory and (p(·), q(·), k(·)) be the solution of adjoint
equation (2.1). Then we have

H(t) + E
Ft

[
H(t)

∣∣
t+δ

]
= min

v∈U

{
H(t, v, u(t− δ)) + E

Ft

[
H(t, u(t), v)

∣∣
t+δ

]}
, a.s. (2.4)

Theorem 2.3 (sufficient conditions for optimality). Suppose that (H1)∼(H4) hold. Let u(·) be an admissi-
ble control, (x(·), y(·), z(·)) be the corresponding trajectory and (p(·), q(·), k(·)) be the solution of adjoint equa-
tion (2.1). Suppose that H(t, ·, ·, ·, ·, ·, v, v(δ), p, q, k) is convex and Lipschitz continuous for all t ∈ [0, T ], then
u(·) is optimal if it satisfies (2.4).

Proofs of the proceeding two theorems are deferred to Section 3.
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3. Proof of Theorems 2.1 and 2.2

This section is devoted to proofs of the two main theorems of this paper: Theorems 2.1 and 2.2. The proofs
will be spread over several subsections.

3.1. Spike variation and prior estimations

We introduce the spike variation:

uε(t) :=
{
v(t), if τ ≤ t ≤ τ + ε,
u(t), otherwise,

where 0 ≤ τ < T, 0 < ε < δ is sufficiently small, and v(·) ∈ U is an arbitrary Ft-adapted process satisfying
sup0≤t≤T+δ E|v(t)|4 < +∞. Obviously, uε(·) is admissible. Let Γ ε(·) ≡ (xε(·), yε(·), zε(·)) be the trajectory
corresponding to uε(·). We introduce the following variational equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) =
[
bxx

1(t) + byy
1(t) + bzz

1(t) + bx(δ)x
1(t− δ) + b(uε) − b(u)

]
dt

+
[
σxx

1(t) + σyy
1(t) + σzz

1(t) + σx(δ)x
1(t− δ)

]
dW (t), t ∈ [0, T ],

− dy1(t) =
{
fxx

1(t) + fyy
1(t) + fzz

1(t) + E
Ft
[
f�

y(+δ)y
1(t+ δ)

]
+ f(uε) − f(u)

}
dt− z1(t)dW (t), t ∈ [0, T ],

y1(T ) = gx(x(T ))x1(T ),
x1(t) = 0, t ∈ [−δ, 0]; y1(t) = 0, t ∈ (T, T + δ]; z1(t) = 0, t ∈ [T, T + δ].

(3.1)

Similarly by Lemma 1.1, (3.1) admits a unique adapted solution (x1(·), y1(·), z1(·)).
The following lemmas in this subsection are all preparations to derive the variational inequality in next

subsection. At first, we have the following elementary lemma.

Lemma 3.1. Given a0(·), b01(·), . . . , b0d(·) ∈ L2
F([0, T ];Rn) and uniformly bounded Rn×n-valued Ft-adapted

processes a1(·), a2(·), b11(·), . . . , b1d(·), b21(·), . . . , b2d(·). Then for the following linear SDDE

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx̃(t) =
[
a1(t)x̃(t) + a2(t)x̃(t− δ) + a0(t)

]
dt

+
d∑

j=1

[
b1j(t)x̃(t) + b2j(t)x̃(t− δ) + b0j(t)

]
dWj(t), t ∈ [0, T ],

x̃(t) = 0, t ∈ [−δ, 0],

(3.2)

there exists a constant K1 > 0, such that the unique solution x̃(·) ∈ L2
F([−δ, T ];Rn) satisfies

E

[
sup

0≤t≤T
|x̃(t)|2

]
≤ K1

{∫ T

0

E|a0(t)|2dt+
∫ T

0

E|b0(t)|2dt
}
, (3.3)

where b0(·) ≡ (b01(·), . . . , b0d(·)).
Given ξ(·) ∈ L2([T, T + δ];Rm), α3(·) ∈ L2

F([0, T ];Rm) and uniformly bounded Rm×m-valued Ft-adapted
processes α0(·), α1(·), α21(·), . . . , α2d(·). Then for the following linear ABSDE⎧⎪⎪⎨

⎪⎪⎩
− dỹ(t) =

[
α0(t)ỹ(t) + α1(t)EFt

[
ỹ(t+ δ)

]
+

d∑
j=1

α2j(t)z̃j(t) + α3(t)
]
dt− z̃(t)dW (t), t ∈ [0, T ],

ỹ(t) = ξ(t), t ∈ [T, T + δ],

(3.4)
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there exists a constant K2 > 0, such that the unique solution (ỹ(·), z̃(·)) ∈ L2
F([0, T +δ];Rm)×L2

F ([0, T ];Rm×d)
satisfies

E

[
sup

0≤t≤T
|ỹ(t)|2

]
≤ K2

{
E|ξ(T )|2 +

∫ T

0

E|z̃(t)|2dt+
∫ T

0

E|α3(t)|2dt+
∫ T+δ

T

E|ξ(t)|2dt
}
, (3.5)

where z̃(·) ≡ (z̃1(·), . . . , z̃d(·)).

Proof. The existence of unique solution of SDDE (3.2) follows from Mohammed [14]. By (3.2) we can get

sup
0≤t≤T

|x̃(t)|2 ≤ C

(∫ T

0

|x̃(s)|2ds+
∫ T

0

|x̃(s− δ)|2ds+
∫ T

0

|a0(s)|2ds
)

+ C sup
0≤t≤T

⎧⎨
⎩

d∑
j=1

∫ t

0

[b1j(s)x̃(s) + b2j(s)x̃(s− δ) + b0j(s)]dWj(s)

⎫⎬
⎭

2

.

Taking expectation on both sides and by Burkholder-Davis-Gundy’s inequality, we have

E

[
sup

0≤t≤T
|x̃(t)|2

]
≤ CE

{∫ T

0

|x̃(s)|2ds+
∫ T

0

|x̃(s− δ)|2ds+
∫ T

0

|a0(s)|2ds+
d∑

j=1

∫ t

0

∣∣b1j(s)x̃(s)

+ b2j(s)x̃(s− δ) + b0j(s)
∣∣2ds

}

≤ C

{∫ T

0

E|x̃(s)|2ds+
∫ T

0

E|x̃(s− δ)|2ds+
∫ T

0

E|a0(s)|2ds

+
d∑

j=1

∫ T

0

E|b0j(s)|2ds
}
.

Noting that ∫ T

0

E|x̃(s− δ)|2ds =
∫ T−δ

−δ

E|x̃(s)|2ds =
∫ T−δ

0

E|x̃(s)|2ds ≤
∫ T

0

E|x̃(s)|2ds,

then we have

E

[
sup

0≤t≤T
|x̃(t)|2

]
≤ C

∫ T

0

E

[
sup

0≤s≤t
|x̃(s)|2

]
dt+ C

⎧⎨
⎩
∫ T

0

E|a0(s)|2ds+
d∑

j=1

∫ T

0

E|b0j(s)|2ds
⎫⎬
⎭ .

By Gronwall’s inequality, we obtain (3.3). The existence of unique solution of ABSDE (3.4) follows from Peng
and Yang [20]. And by (3.4), we can get

sup
0≤t≤T

|ỹ(t)|2 ≤ C|ξ(T )|2 + C

∫ T

0

⎧⎨
⎩|ỹ(s)|2 +

∣∣EFs [ỹ(s+ δ)]
∣∣2 +

d∑
j=1

|z̃j(s)|2 + |α3(s)|2
⎫⎬
⎭ ds

+ C

(∫ T

0

z̃(s)dW (s)

)2

+ C sup
0≤t≤T

(∫ t

0

z̃(s)dW (s)
)2

.
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Taking expectation on both sides and by Burkholder-Davis-Gundy’s inequality, we have

E

[
sup

0≤t≤T
|ỹ(t)|2

]
≤ CE|ξ(T )|2 + C

⎧⎨
⎩
∫ T

0

E|ỹ(s)|2ds+
∫ T

0

E
∣∣EFs

[
ỹ(s+ δ)

]∣∣2ds+
d∑

j=1

∫ T

0

E|z̃j(s)|2ds
⎫⎬
⎭

+ C

∫ T

0

E|α3(s)|2ds.

Noting that∫ T

0

E
∣∣EFs

[
ỹ(s+ δ)

]∣∣2ds ≤ ∫ T

0

E
[
E
Fs
∣∣ỹ(s+ δ)

∣∣2]ds =
∫ T

0

E
∣∣ỹ(s+ δ)

∣∣2ds =
∫ T+δ

δ

E|ỹ(s)|2ds

=
∫ T

δ

E|ỹ(s)|2ds+
∫ T+δ

T

E|ξ(s)|2ds ≤
∫ T

0

E|ỹ(s)|2ds+
∫ T+δ

T

E|ξ(s)|2ds,

then we have

E

[
sup

0≤t≤T
|ỹ(t)|2

]
≤ CE|ξ(T )|2 + C

⎧⎨
⎩
∫ T

0

E

[
sup

0≤s≤t
|ỹ(s)|2

]
dt+

d∑
j=1

∫ T

0

E|z̃j(s)|2ds
⎫⎬
⎭

+ C

∫ T+δ

T

E|ξ(s)|2ds+ C

∫ T

0

E|α3(s)|2ds.

By Gronwall’s inequality, we obtain (3.5). The proof is complete. �

We need the following lemma.

Lemma 3.2. Let (H1) and (H2) hold. Then, we have the following estimations:

sup
0≤t≤T

E|x1(t)|2 ≤ Cε, (3.6)

sup
0≤t≤T

E|y1(t)|2 ≤ Cε, E

∫ T

0

|z1(t)|2dt ≤ Cε. (3.7)

Proof. Applying Itô’s Formula to 〈Gx1(·), y1(·)〉, we can get

E〈gx(x(T ))x1(T ), Gx1(T )〉

= −E

∫ T

0

〈
fxx

1(t) + fyy
1(t) + fzz

1(t) + E
Ft
[
fy(+δ)y

1(t+ δ)
]
, Gx1(t)

〉
dt− E

∫ T

0

〈f(uε) − f(u), Gx1(t)〉dt

+ E

∫ T

0

〈
bxx

1(t) + byy
1(t) + bzz

1(t) + bx(δ)x
1(t− δ), G�y1(t)

〉
dt+ E

∫ T

0

〈b(uε) − b(u), G�y1(t)〉dt

+ E

∫ T

0

〈
σx(t)x1(t) + σy(t)y1(t) + σzz

1(t) + σx(δ)x
1(t− δ), G�z1(t)

〉
dt.

Then by the G-monotonic condition (H2), we obtain

μ1E|Gx1(T )|2 + β1E

∫ T

0

|Gx1(t)|2dt+ β2E

∫ T

0

(|G�y1(t)|2 + |G�z1(t)|2)dt

≤ E

∫ T

0

〈b(uε) − b(u), G�y1(t)〉dt− E

∫ T

0

〈f(uε) − f(u), Gx1(t)〉dt. (3.8)
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Case 1. When m > n, we assume β1 > 0, β2 ≥ 0, μ1 > 0. From (3.8) we have

μ1E|Gx1(T )|2 + β1E

∫ T

0

|Gx1(t)|2dt ≤ E

∫ T

0

〈b(uε) − b(u), G�y1(t)〉dt − E

∫ T

0

〈f(uε) − f(u), Gx1(t)〉dt

≤ E

∫ T

0

|G�y1(t)|2dt+
1
4

E

∫ T

0

|b(uε) − b(u)|2dt

+
β1

2
E

∫ T

0

|Gx1(t)|2dt+
1

2β1
E

∫ T

0

|f(uε) − f(u)|2dt,

i.e.,

μ1E|Gx1(T )|2 +
β1

2
E

∫ T

0

|Gx1(t)|2dt ≤ E

∫ T

0

|G�y1(t)|2dt+ Cε, (3.9)

where constant C depends on Lipschitz constants. From the second equation of (3.1), we get

E|y1(t)|2 + E

∫ T

t

|z1(s)|2ds

= E

{
hx(x(T ))x1(T ) +

∫ T

t

[
fxx

1(s) + fyy
1(s) + fzz

1(s) + E
Fs
[
fy(+δ)y

1(s+ δ)
]
+ f(uε) − f(u)

]
ds

}2

≤ 7C2

{
E|x1(T )|2 + TE

∫ T

t

|x1(s)|2ds+ T

∫ T

t

E|y1(s)|2ds+ (T − t)E
∫ T

t

|z1(s)|2ds

+T
∫ T

t

E
∣∣EFs

[
y1(s+ δ)

] ∣∣2ds
}

+ 7E

(∫ T

t

(f(uε) − f(u))ds

)2

≤ C1

⎧⎨
⎩E|x1(T )|2 + TE

∫ T

t

(|x1(s)|2 + |y1(s)|2)ds+ (T − t)E
∫ T

t

|z1(s)|2ds+ E

(∫ T

t

(f(uε) − f(u))ds

)2
⎫⎬
⎭ ,

where C1 is a constant depending on the following C0. In the above we have use the fact that∫ T

t

E
∣∣EFs

[
y1(s+ δ)

]∣∣2ds ≤ ∫ T

t

E
[
E
Fs
[|y1(s+ δ)|2]]ds =

∫ T

t

E
[|y1(s+ δ)|2]ds =

∫ T−δ

t−δ

E|y1(s)|2ds

≤
∫ T

t−δ

E|y1(s)|2ds =
∫ t

t−δ

E|y1(s)|2ds+
∫ T

t

E|y1(s)|2ds ≤ C0

∫ T

t

E|y1(s)|2ds,

where constant C0 > 1 is large enough satisfying (C0 − 1)
∫ T

t E|y1(s)|2ds ≥ ∫ t

t−δ E|y1(s)|2ds, t ∈ [0, T ].
Let δ1 = 1

2C1
, then for t ∈ [T − δ1, T ], we have

E|y1(t)|2 +
1
2

E

∫ T

t

|z1(s)|2ds ≤ C1

{
E|x1(T )|2 + TE

∫ T

t

|x1(s)|2ds+ T

∫ T

t

E|y1(s)|2ds
}

+ E

(∫ T

t

(f(uε) − f(u))ds

)2
⎫⎬
⎭ .

From (3.9), we get

E|y1(t)|2 +
1
2

E

∫ T

t

|z1(s)|2ds ≤ C2

∫ T

t

E|y1(s)|2ds+ Cε+ Cε2,
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where C2 is a constant depending on C1, μ1, β1 and T . By the Gronwall’s inequality, we have

E|y1(t)|2 ≤ Cε, E

∫ T

t

|z1(s)|2ds ≤ Cε, t ∈ [T − δ1, T ].

Repeating this procedure, the above estimates hold for t ∈ [T − 2δ1, T ]. Obviously, after a finite number of
iterations, estimation (3.7) are obtained. By the variation equation (3.1), estimation (3.7), using the same
technique to deal with the time delay term as in the proof of Lemma 3.1, we get

E|x1(t)|2 = E

{∫ t

0

[bxx1(s) + byy
1(s) + bzz

1(s) + bx(δ)x
1(t− δ) + b(uε) − b(u)]ds

+
∫ t

0

[σxx
1(s) + σyy

1(s) + σzz
1(s) + σx(δ)x

1(t− δ)]dW (s)
}2

≤ 18C2

{∫ t

0

E|x1(s)|2ds+ T sup
0≤t≤T

E|y1(t)|2 + E

∫ t

0

|z1(s)|2ds
)

+E

(∫ t

0

(b(uε) − b(u))ds
)2
}

≤ C3

∫ t

0

E|x1(s)|2ds+ Cε+ Cε2,

where C3 is a constant. By Gronwall’s inequality, we obtain (3.6).

Case 2. When m < n, we assume β1 ≥ 0, β2 > 0, μ1 ≥ 0. From (3.8) we have

β2E

∫ T

0

(|G�y1(t)|2 + |G�z1(t)|2)dt

≤ E

∫ T

0

〈b(uε) − b(u), G�y1(t)〉dt − E

∫ T

0

〈f(uε) − f(u), Gx1(t)〉dt

≤ β2

2
E

∫ T

0

|G�y1(t)|2dt+
1

2β2
E

∫ T

0

|b(uε − b(u)|2dtr + E

∫ T

0

|Gx1(t)|2dt+
1
4

E

∫ T

0

|f(uε) − f(u)|2dt,

i.e.,
β2

2
E

∫ T

0

|G�y1(t)|2dt+ β2E

∫ T

0

|G�z1(t)|2dt ≤ E

∫ T

0

|Gx1(t)|2dt+ Cε, (3.10)

where constant C depends on Lipschitz constants and β2. By (3.1) and (3.10), we get

E|x1(t)|2 ≤ 9C2

{∫ t

0

E|x1(s)|2ds+ E

∫ t

0

|y1(s)|2ds+ E

∫ t

0

|z1(s)|2ds

+
∫ t

0

E|x1(s− δ)|2ds+ E

(∫ t

0

(b(uε) − b(u))ds
)2
}

≤ C4

∫ t

0

E|x1(s)|2ds+ Cε+ Cε2,

where C4 is a constant depending on β2, G. By Gronwall’s inequality, estimation (3.6) are obtained. By (3.1),
estimation (3.6) and the same technique to deal with the time anticipated term as in Case 1, we get

E|y1(t)|2 + E

∫ T

t

|z1(s)|2ds ≤ C5

(
T

∫ T

t

E|y1(s)|2ds+ (T − t)E
∫ T

t

|z1(s)|2ds
)

+ Cε+ Cε2,

where constant C5 depends on C4. Using the above iteration process again, (3.7) is obtained.

Case 3. When m = n, similarly to the above two cases, the result can be obtained easily. �
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However, the ε-order estimations of (x1(·), y1(·), z1(·)) in Lemma 3.2 is not sufficient to get the variational
inequality. We need to give some more elaborate estimations. Thus we have the following lemma.

Lemma 3.3. Let (H1) and (H2) hold. Then we have

sup
0≤t≤T

E|x1(t)|2 ≤ Cε
3
2 , (3.11)

sup
0≤t≤T

E|y1(t)|2 ≤ Cε
3
2 , E

∫ T

0

|z1(t)|2dt ≤ Cε
3
2 . (3.12)

Proof. By Lemmas 3.1 and 3.2, we can easily get

E

[
sup

0≤t≤T
|x1(t)|2

]
≤ Cε, E

[
sup

0≤t≤T
|y1(t)|2

]
≤ Cε. (3.13)

By (3.8), Hölder’s inequality and (3.13), we have

μ1E|Gx1(T )|2 + β1E

∫ T

0

|Gx1(t)|2dt+ β2E

∫ T

0

(|G�y1(t)|2 + |G�z1(t)|2)dt

≤ E

∫ T

0

〈b(uε(t)) − b(u(t)), G�y1(t)〉dt− E

∫ T

0

〈f(uε(t)) − f(u(t)), Gx1(t)〉dt

≤

√√√√
E

[
sup

0≤t≤T
|y1(t)|2

]
E

(∫ T

0

|G(b(uε(t)) − b(u(t)))|dt
)2

+

√√√√
E

[
sup

0≤t≤T
|x1(t)|2

]
E

(∫ T

0

|G�(f(uε(t)) − f(u(t)))|dt
)2

≤ Cε
3
2 .

Case 1. When m > n, we have β1 > 0, β2 ≥ 0, μ1 > 0. Then we obtain

μ1E|Gx1(T )|2 + β1E

∫ T

0

|Gx1(t)|2dt ≤ Cε
3
2 .

Using the same method of Lemma 3.2, we can get estimation (3.12). Then (3.11) holds.

Case 2. When m < n, we have β1 ≥ 0, β2 > 0, μ1 ≥ 0. Then we have

β2E

∫ T

0

(|G�y1(t)|2 + |G�z1(t)|2)dt ≤ Cε
3
2 .

Using the method of Lemma 3.2 once more, we can get estimation (3.11). Then (3.12) holds.
Case 3. When m = n, the result can be obtained similarly. �

The following lemma plays an important role in deriving the variational inequality.

Lemma 3.4. Let (H1) and (H2) hold. Then we have

sup
0≤t≤T

E|xε(t) − x(t) − x1(t)|2 ≤ Cεε
2, (3.14)

sup
0≤t≤T

E|yε(t) − y(t) − y1(t)|2 ≤ Cεε
2, E

∫ T

0

|zε(t) − z(t) − z1(t)|2dt ≤ Cεε
2. (3.15)

Hereafter Cε denotes some nonnegative constant such that Cε → 0 as ε→ 0.
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Proof. It is easy to see that

∫ t

0

b(s, Γ (s) + Γ 1(s), x(s − δ) + x1(s− δ), uε(s), uε(s− δ))ds

+
∫ t

0

σ(s, Γ (s) + Γ 1(s), x(s− δ) + x1(s− δ))dW (s)

=
∫ t

0

[
b(uε) +

∫ 1

0

bx(s, Γ (s) + λΓ 1(s), x(s − δ) + λx1(s− δ), uε(s), uε(s− δ))dλx1(s)

+
∫ 1

0

by(s, Γ (s) + λΓ 1(s), x(s − δ) + λx1(s− δ), uε(s), uε(s− δ))dλy1(s)

+
∫ 1

0

bz(s, Γ (s) + λΓ 1(s), x(s− δ) + λx1(s− δ), uε(s), uε(s− δ))dλz1(s)

+
∫ 1

0

bxδ
(s, Γ (s) + λΓ 1(s), x(s− δ) + λx1(s− δ), uε(s), uε(s− δ))dλx1(s− δ)

]
ds

+
∫ t

0

[
σ(s, Γ (s), x(s − δ)) +

∫ 1

0

σx(s, Γ (s) + λΓ 1(s), x(s − δ) + λx1(s− δ))dλx1(s)

+
∫ 1

0

σy(s, Γ (s) + λΓ 1(s), x(s − δ) + λx1(s− δ))dλy1(s)

+
∫ 1

0

σz(s, Γ (s) + λΓ 1(s), x(s − δ) + λx1(s− δ))dλz1(s)

+
∫ 1

0

σxδ
(s, Γ (s) + λΓ 1(s), x(s− δ) + λx1(s− δ))dλx1(s− δ)

]
dW (s)

=
∫ t

0

b(u)ds+
∫ t

0

σ(s, Γ (s), x(s − δ))dW (s)

+
∫ t

0

[
bxx

1(s) + byy
1(s) + bzz

1(s) + bxδ
x1(s− δ) + b(uε) − b(u)

]
ds

+
∫ t

0

[
σxx

1(s) + σyy
1(s) + σzz

1(s) + σxδ
x1(s− δ)

]
dW (s) +

∫ t

0

Aε
1(s)ds+

∫ t

0

Bε
1(s)dW (s)

= x(t) − x(0) + x1(t) +
∫ t

0

Aε
1(s)ds+

∫ t

0

Bε
1(s)dW (s),

where (for simplification we omit the time subscript s)

Aε
1 :=

∫ 1

0

[bx(Γ + λΓ 1, x(δ)+λx1(δ), uε, uε(δ)) − bx]dλx1 +
∫ 1

0

[by(Γ + λΓ 1, x(δ) + λx1(δ), uε, uε(δ)) − bx]dλy1

+
∫ 1

0

[bz(Γ + λΓ 1, x(δ) + λx1(δ), uε, uε(δ)) − bx]dλz1

+
∫ 1

0

[bx(δ)(Γ + λΓ 1, x(δ) + λx1(δ), uε, uε(δ)) − bx]dλx1(δ),

Bε
1 :=

∫ 1

0

[σx(Γ + λΓ 1, x(δ) + λx1(δ)) − σx]dλx1 +
∫ 1

0

[σy(Γ + λΓ 1, x(δ) + λx1(δ)) − σx]dλy1

+
∫ 1

0

[σz(Γ + λΓ 1, x(δ) + λx1(δ)) − σx]dλz1 +
∫ 1

0

[σx(δ)(Γ + λΓ 1, x(δ) + λx1(δ)) − σx]dλx1(δ),
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and Γ + λΓ 1 ≡ (x+ λx1, y + λy1, z + λz1). By Lemma 3.3, we can easily get

sup
0≤t≤T

E

{(∫ t

0

Aε
1(s)ds

)2

+
(∫ t

0

Bε
1(s)dW (s)

)2
}

≤ Cεε
2. (3.16)

Since

xε(t) = x(0) +
∫ t

0

b(s, Γ ε(s), xε(s− δ), uε(s), uε(s− δ))ds+
∫ t

0

σ(s, Γ ε(s), xε(s− δ))dW (s),

then

xε(t) − x(t) − x1(t)

=
∫ t

0

[
b(s, Γ ε(s), xε(s− δ), uε(s), uε(s− δ)) − b(s, Γ (s) + Γ 1(s), x(s − δ) + x1(s− δ), uε(s), uε(s− δ))

]
ds

+
∫ t

0

[
σ(s, Γ ε(s), xε(s− δ)) − σ(s, Γ (s) + Γ 1(s), x(s − δ) + x1(s− δ))

]
dW (s)

+
∫ t

0

Aε
1(s)ds+

∫ t

0

Bε
1(s)dW (s)

=
∫ t

0

[
Iε
1(s)(xε(s) − x(s) − x1(s)) + Iε

2(s)(yε(s) − y(s) − y1(s)) + Iε
3(s)(zε(s) − z(s) − z1(s))

+Iε
4(s)(xε(s− δ) − x(s− δ) − x1(s− δ))

]
ds+

∫ t

0

[
Dε

1(s)(x
ε(s) − x(s) − x1(s))

+Dε
2(s)(y

ε(s) − y(s) − y1(s)) +Dε
3(s)(z

ε(s) − z(s) − z1(s))

+Dε
4(s)(x

ε(s− δ) − x(s− δ) − x1(s− δ))
]
dW (s) +

∫ t

0

Aε
1(s)ds+

∫ t

0

Bε
1(s)dW (s),

where

Iε
1 :=

∫ 1

0

bx(Γ + Γ 1 + λ(Γ ε − Γ − Γ 1), x(δ) + x1(δ) + λ(xε − x(δ) − x1(δ)), uε, uε(δ))dλ, etc.,

Dε
1 :=

∫ 1

0

[σx(Γ + Γ 1 + λ(Γ ε − Γ − Γ 1), x(δ) + x1(δ) + λ(xε − x(δ) − x1(δ)))dλ, etc.,

and Γ + Γ 1 + λ(Γ ε − Γ − Γ 1) ≡ (x+ x1 + λ(xε − x− x1), y + y1 + λ(yε − y − y1), z + z1 + λ(zε − z − z1)).
Consequently, by (3.16) and similar technique to deal with the time delay term as in Lemma 3.1, we get

E|xε(t) − x(t) − x1(t)|2 ≤ C

∫ t

0

(
E|xε(s) − x(s) − x1(s)|2 + E|yε(s) − y(s) − y1(s)|2

)
ds

+ CE

∫ t

0

|zε(s) − z(s) − z1(s)|2ds+ Cεε
2. (3.17)

Moreover, we have

−
∫ T

t

f(s, Γ (s) + Γ 1(s),EFs
[
y(s+ δ) + y1(s+ δ)

]
, uε(s), uε(s− δ))ds+

∫ T

t

(z(s) + z1(s))dW (s)

= g(x(T )) + gx(x(T ))x1(T ) − y(t) − y1(t) −
∫ T

t

Iε
5(s)ds,
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where

Iε
5 :=

∫ 1

0

[
fx(Γ + λΓ 1, y(+δ) + λy1(+δ), uε, uε(δ)) − fx

]
dλx1

+
∫ 1

0

[
fy(Γ + λΓ 1, y(+δ) + λy1(+δ), uε, uε(δ)) − fy

]
dλy1

+
∫ 1

0

[
fz(Γ + λΓ 1, y+δ + λy1

+δ, u
ε, uε(δ)) − fz

]
dλz1

+
∫ 1

0

[
fy(+δ)(Γ + λΓ 1, y(+δ) + λy1(+δ), uε, uε(δ)) − fy(+δ)

]
dλy1(+δ).

By Lemma 3.3, we can easily find

sup
0≤t≤T

E

(∫ T

t

Iε
5 (s)ds

)2

≤ Cεε
2. (3.18)

Then from

yε(t) = g(xε(T )) +
∫ T

t

f
(
s, Γ ε(s),EFs [yε(s+ δ)], uε(s), uε(s− δ)

)
ds−

∫ T

t

zε(s)dW (s),

we have

[
yε(t) − y(t) − y1(t)

]
+
∫ T

t

[
zε(s) − z(s) − z1(s)

]
dW (s)

=
∫ T

t

{
f
(
s, Γ ε(s),EFs [yε(s+ δ)], uε(s), uε(s− δ)

)− f
(
s, Γ (s) + Γ 1(s),EFs [y(s+ δ) + y1(s+ δ)],

uε(s), uε(s− δ)
)}

ds+
∫ T

t

Iε
5 (s)ds+ g(xε(T )) − g(x(T )) − gx(x(T ))x1(T )

=
∫ T

t

{
Hε

1 (s)(xε(s) − x(s) − x1(s)) +Hε
2(s)(yε(s) − y(s) − y1(s)) +Hε

3(s)(zε(s) − z(s) − z1(s))

+Hε
4(s)EFs

[
yε(s+ δ) − y(s+ δ) − y1(s+ δ)

]}
ds+

∫ T

t

Iε
5(s)ds

+g(xε(T )) − g(x(T ) + x1(T )) +
∫ 1

0

[
gx(x(T ) + λx1(T )) − gx(x(T ))

]
dλx1(T ),

where

Hε
1 :=

∫ 1

0

fx(Γ + Γ 1 + λ(Γ ε − Γ − Γ 1),EFs
[
y(+δ) + y1(+δ) + λ(yε − y(+δ) − y1(+δ)), uε, uε(δ))dλ, etc.

Immediately the following result holds:

E|yε(t) − y(t) − y1(t)|2 + E

∫ T

t

|zε(s) − z(s) − z1(s)|2ds

≤ CE

{∫ T

t

[
Hε

1(s)(xε(s) − x(s) − x1(s)) +Hε
2(s)(yε(s) − y(s) − y1(s))

+Hε
3(s)(zε(s) − z(s) − z1(s)) +Hε

4 (s)EFs
[
yε(s+ δ) − y(s+ δ) − y1(s+ δ)

]]
ds

+
∫ T

t

Iε
5(s)ds+ g(xε(T )) − g(x(T ) + x1(T )) +

∫ 1

0

[
gx(x(T ) + λx1(T )) − gx(x(T ))

]
dλx1(T )

}2

.
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By (3.18), Lemma 3.3, the same iteration method and the technique to deal with the time anticipated term as
in Lemma 3.2, we have

E|yε(t) − y(t) − y1(t)|2 +
1
2

E

∫ T

t

|zε(s) − z(s) − z1(s)|2ds ≤ C

∫ T

t

(
E|xε(s) − x(s) − x1(s)|2

+E|yε(s) − y(s) − y1(s)|2) ds+ E|h(xε(T )) − h(x(T ) + x1(T ))|2 + Cεε
2. (3.19)

From (3.17) and (3.19), using the method once more as the proof of Lemma 3.3 with (x1(·), y1(·), z1(·))
replaced by (xε(·) − x(·) − x1(·), yε(·) − y(·) − y1(·), zε(·) − z(·)− z1(·)), we can get (3.14) and (3.15). We omit
the detail. The proof is complete. �

3.2. Variational inequality

Lemma 3.5. Let (H1)∼(H3) hold. Then we have

E

∫ T

0

[
l�x x

1(t) + l�y y
1(t) + l�z x

1(t) + l�x(δ)x
1(t− δ) + l(uε) − l(u)

]
dt

+ E
[
Φ�

x (x(T ))x1(T )
]
+ E

[
γ�y (y(0))y1(0)

] ≥ o(ε). (3.20)

Proof. Since u(·) is optimal, we have

0 ≤ J(uε(·)) − J(u(·)) = E

∫ T

0

[
l(t, xε(t), yε(t), zε(t), xε(t− δ), uε(t), uε(t− δ)) − l(u)

]
dt

+ E
[
Φ(xε(T )) − Φ(x(T ))

]
+ E

[
γ(yε(0)) − γ(y(0))

]
.

By (3.15), it is clear that E
[
γ(yε(0)) − γ(y(0) + y1(0))

]
= o(ε). Hence

E
[
γ(yε(0)) − γ(y(0))

]
= E

[
γ(y(0) + y1(0)) − γ(y(0))

]
+ o(ε) = E

[
γ�y (y(0))y1(0)

]
+ o(ε).

Similarly by (3.14), we have E
[
Φ(xε(T )) − Φ(x(T ))

]
= E

[
Φ�

x (x(T ))x1(T )
]
+ o(ε). And by Lemma 3.4, we get

E

∫ T

0

[
l(t, xε(t), yε(t), zε(t), xε(t− δ), uε(t), uε(t− δ))

− l(t, x(t) + x1(t), y(t) + y1(t), z(t) + z1(t), x(t− δ) + x1(t− δ), uε(t), uε(t− δ))
]
dt = o(ε).

So by Lemma 3.3, using the technique to deal with the time delay term again, we obtain that

E

∫ T

0

[
l(t, xε(t), yε(t), zε(t), xε(t− δ), uε(t), uε(t− δ)) − l(u)

]
dt

=
∫ T

0

[
l(t, x(t) + x1(t), y(t) + y1(t), z(t) + z1(t), x(t − δ) + x1(t− δ), uε(t), uε(t− δ)) − l(u)

]
dt+ o(ε)

= E

∫ T

0

[
l�x x

1(t) + l�y y
1(t) + l�z x

1(t) + l�x(δ)x
1(t− δ)

]
dt+ E

∫ T

0

[
l(uε) − l(u) +

(
lx(uε) − lx(u)

)�
x1(t)

+
(
ly(uε) − ly(u)

)�
y1(t) +

(
lz(uε) − lz(u)

)�
z1(t) +

(
lx(δ)(uε) − lx(δ)(u)

)�
x1(t− δ)

]
dt+ o(ε)

= E

∫ T

0

[
l�x x

1(t) + l�y y
1(t) + l�z x

1(t) + l�x(δ)x
1(t− δ) + l(uε) − l(u)

]
dt+ o(ε).

Sum the above three results up, it is easily to see that (3.20) holds. The proof is complete. �
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3.3. Proof of Theorem 2.1

Proof of Theorem 2.1. Applying Itô’s formula to 〈x1(·), q(·)〉 + 〈y1(·), p(·)〉. By the adjoint equation (2.1), vari-
ational equation (3.1) and variational inequality (3.20), we get

E

∫ T

0

[
l�x x

1(t) + l�y y
1(t) + l�z z

1(t) + l�x(δ)x
1(t− δ) + l(uε) − l(u)

]
dt+ E

[
Φ�

x (x(T ))x1(T )
]
+ E

[
γ�y (y(0))y1(0)

]
= E

∫ T

0

[〈q(t), b(uε) − b(u)〉 − 〈p(t), f(uε) − f(u)〉 + l(uε) − l(u)
]
dt

= E

∫ T

0

[
H(t, x(t), y(t), z(t), x(t − δ),EFt [y(t+ δ)], uε(t), uε(t− δ), p(t), q(t), k(t))

−H(t, x(t), y(t), z(t), x(t− δ),EFt [y(t+ δ)], u(t), u(t− δ), p(t), q(t), k(t))
]
dt

:= E

∫ T

0

[
H(t, uε(t), uε(t− δ)) −H(t, u(t), u(t− δ))

]
dt ≥ o(ε). (3.21)

In the above, we have used the duality between SDDE and ABSDE such as the following:

(i) E

∫ T

0

〈y1(t− δ), f�
y(+δ)p(t)〉dt− E

∫ T

0

〈y1(t),EFt(fy(+δ)|t+δ)�p(t+ δ)〉dt

= E

∫ T−δ

−δ

〈y1(t),EFt(fy(+δ)|t+δ)�p(t+ δ)〉dt− E

∫ T

0

〈y1(t),EFt(fy+(δ)|t+δ)�p(t+ δ)〉dt

= E

∫ 0

−δ

〈y1(t),EFt(fy(+δ)|t+δ)�p(t+ δ)〉dt− E

∫ T

T−δ

〈y1(t),EFt(fy(+δ)|t+δ)�p(t+ δ)〉dt = 0,

since p(t) = 0 for any t ∈ [−δ, 0) and y1(t) = 0 for any t ∈ (T, T + δ];

(ii) E

∫ T

0

〈x1(t− δ), b�x(δ)q(t)〉dt − E

∫ T

0

〈x1(t),EFt(bx(δ)|t+δ)�q(t+ δ)〉dt

= E

∫ T−δ

−δ

〈x1(t),EFt(bx(δ)|t+δ)�q(t+ δ)〉dt− E

∫ T

0

〈x1(t),EFt(bx(δ)|t+δ)�q(t+ δ)〉dt

= E

∫ 0

−δ

〈x1(t),EFt(bx(δ)|t+δ)�q(t+ δ)〉dt− E

∫ T

T−δ

〈x1(t),EFt(bx(δ)|t+δ)�q(t+ δ)〉dt

= 0,

since x1(t) = 0 for any t ∈ [−δ, 0] and q(t) = 0 for any t ∈ (T, T + δ] and

(iii) E

∫ T

0

〈x1(t− δ), σ�
x(δ)k(t)〉dt− E

∫ T

0

〈x1(t),EFt(σx(δ)|t+δ)�k(t+ δ)〉dt

= E

∫ T−δ

−δ

〈x1(t),EFt(σx(δ)|t+δ)�k(t+ δ)〉dt− E

∫ T

0

〈x1(t),EFt(σx(δ)|t+δ)�k(t+ δ)〉dt

= E

∫ 0

−δ

〈x1(t),EFt(σx(δ)|t+δ)�k(t+ δ)〉dt− E

∫ T

T−δ

〈x1(t),EFt(σx(δ)|t+δ)�k(t+ δ)〉dt

= 0,
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since x1(t) = 0 for any t ∈ [−δ, 0] and k(t) = 0 for any t ∈ [T, T + δ]. Moreover, the following relation is also
needed:

(iv) E

∫ T

0

〈x1(t− δ), lx(δ)〉dt− E

∫ T

0

〈x1(t),EFt(lx(δ)|t+δ)〉dt

= E

∫ T−δ

−δ

〈x1(t),EFt(lx(δ)|t+δ)〉dt − E

∫ T

0

〈x1(t),EFt(lx(δ)|t+δ)〉dt

= E

∫ 0

−δ

〈x1(t),EFt(lx(δ)|t+δ)〉dt − E

∫ T

T−δ

〈x1(t),EFt(lx(δ)|t+δ)〉dt

= 0,

since x1(t) = 0 for any t ∈ [−δ, 0] and lx(δ)(t) = 0 for any t ∈ (T, T + δ]. Thus (2.4) can be obtained easily
from (3.21) similar to [4]. We omit the detail. The proof is complete. �

3.4. Proof of Theorem 2.2

In this subsection, we will prove Theorem 2.2. As mentioned in the introduction, our method is applying the
technique of Clarke generalized gradient. The Clarke generalized gradient was used to derive sufficient conditions
for stochastic optimal control problems by Zhou [30], Yong and Zhou [27]. For the readers’ convenience, we firstly
review some preliminaries of the Clarke generalized gradient which will play a key role in this section.

Let v : X → R be a locally Lipschitz continuous function, where X is a convex set in Rn. We recall the
following definition.

Definition 3.6 ([30]). The Clarke generalized gradient of v at x̂ ∈ X , denoted by ∂v(x̂), is a set defined by

∂v(x̂) :=
{
ζ ∈ Rn; 〈ζ, ξ〉 ≤ v0(x̂; ξ), for any ξ ∈ Rn

}
,

where

v0(x̂; ξ) := lim sup
x∈X ,x+hξ∈X ,x→x̂,h→0+

h(x+ hξ) − h(x)
h

·

The following results are useful in this section.

Lemma 3.7 ([30]). The following properties hold:

(1) ∂v(x̂) is a nonempty convex set and satisfying ∂(−v)(x̂) = −∂v(x̂);
(2) for any set N ⊂ X of measure zero

∂v(x̂) = co
{

lim
i→∞

vx(xi) : v is differentiable at xi, xi /∈ N and xi → x̂
}
,

where “co” denotes the convex hull of a set;
(3) if x̂ attains maximum or minimum of v over X , then 0 ∈ ∂v(x̂);
(4) if v is a convex (respectively, concave) function, then p ∈ ∂v(x̂) if and only if

v(x) − v(x̂) ≥ ( respectively, ≤)〈p, x− x̂〉,

for any x ∈ X .

Lemma 3.8 ([30]). Let ρ be a convex or concave function on Rd×U. Assume that ρ(x, u) is Lipschitz continuous
in u, differentiable in x, and ρx(x, u) is continuous in (x, u). For a given (x̄, ū) ∈ Rd ×U, if r ∈ ∂uρ(x̄, ū), then
(ρx(x̄, ū), r) ∈ ∂x,uρ(x̄, ū).
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Proof of Theorem 2.2.. Let u(·) be an admissible control and (x(·), y(·), z(·)) be the corresponding trajectory.
Applying Itô’s formula to 〈q(t), xv(t) − x(t)〉 + 〈p(t), yv(t) − y(t)〉, noting control system (1.1), adjoint equa-
tion (2.1) and Hamiltonian function (2.2), we get

E
[
Φx(x(T ))�(xv(T ) − x(T ))

]
+ E

[
γy(y(0))�(yv(0) − y(0))

]
= E

∫ T

0

[
〈q(t), b(t, xv(t), yv(t), zv(t), xv(t− δ), v(t), v(t − δ)) − b(u)〉

− 〈p(t), f(t, xv(t), yv(t), zv(t),EFt
[
yv(t+ δ)

]
, v(t), v(t − δ)) − f(u)〉

+ tr
{
k(t)�

(
σ(t, xv(t), yv(t), zv(t), xv(t− δ)) − σ(t, x(t), y(t), z(t), x(t − δ))

)}]
dt

+ E

∫ T

0

{〈
xv(t) − x(t),−Hx(t) − E

Ft
[
Hx(δ)(t)|t+δ

]〉
− 〈yv(t) − y(t), Hy(t) +Hy(+δ)(t− δ)〉 − 〈zv(t) − z(t), Hz(t)〉

}
dt.

By the convexity of Φ and γ, we derive that

J(v(·)) − J(u(·)) = E

∫ T

0

[
l(t, xv(t), yv(t), zv(t), xv(t− δ), v(t), v(t − δ)) − l(u)

]
dt

+ E
[
Φ(xv(T )) − Φ(x(T ))

]
+ E

[
γ(yv(0)) − γ(y(0))

]
≥ E

[
Φx(x(T ))�(xv(T ) − x(T ))

]
+ E

[
γy(y(0))�(yv(0) − y(0))

]
+ E

∫ T

0

[
H(t, xv(t), yv(t), zv(t),EFt [yv(t+ δ)], v(t− δ), p(t), q(t), k(t)) −H(t)

]
dt

+ E

∫ T

0

{〈
xv(t) − x(t),−Hx(t) − E

Ft
[
Hx(δ)(t)|t+δ

]〉
− 〈yv(t) − y(t), Hy(t) +Hy(+δ)(t− δ)〉 − 〈zv(t) − z(t), Hz(t)〉

}
dt.

Denote by ∂(x,y,z,x(δ),y(+δ),v,v(δ))H(t), etc., the Clarke generalized gradients of H evaluated at (x(t), y(t), z(t),
x(t− δ),EFt [y(t+ δ)], v(t), v(t− δ)). Maximum condition (2.4) yields (0, 0) ∈ ∂(v,v(δ))H(t), a.e., a.s. By Lemma
3.7, (∂(x,y,z,x(δ),y(+δ))H(t), 0, 0) ∈ ∂(x,y,z,x(δ),y(+δ),v,v(δ))H(t), a.e., a.s. By Lemma 3.6 (4) and the convexity of
H in (x, y, z, x(δ), y(+δ)), it follows that

H
(
t, xv(t), yv(t), zv(t), xv(t− δ),EFt [yv(t+ δ)], v(t), v(t − δ), p(t), q(t), k(t)

) −H(t)
≥ 〈xv(t) − x(t), Hx(t)〉 + 〈xv(t− δ) − x(t− δ), Hx(δ)(t)〉 + 〈yv(t) − y(t), Hy(t)〉

+
〈
E
Ft [yv(t+ δ) − y(t+ δ)], Hy(+δ)(t)

〉
.

Noticing that

E

∫ T

0

〈
xv(t) − x(t),EFt

[
Hx(δ)(t)|t+δ

]〉
dt− E

∫ T

0

〈xv(t− δ) − x(t− δ), Hxδ
(t)〉dt

= E

∫ T

0

〈
xv(t) − x(t),EFt

[
Hx(δ)(t)|t+δ

]〉
dt− E

∫ T−δ

−δ

〈xv(t) − x(t),EFt
[
Hx(δ)(t)|t+δ

]〉dt
= E

∫ 0

−δ

〈
xv(t) − x(t),EFt

[
Hx(δ)(t)|t+δ

]〉
dt+ E

∫ T

T−δ

〈
xv(t) − x(t),EFt

[
Hx(δ)(t)|t+δ

]〉
dt = 0,
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since xv(t) = x(t) = ξ(t) for any t ∈ [−δ, 0] and Hx(δ)(t) = 0 for any t ∈ (T, T + δ]. And similarly, noticing that

E

∫ T

0

〈yv(t) − y(t), Hy(+δ)(t− δ)〉dt − E

∫ T

0

〈
E
Ft
[
yv(t+ δ) − y(t+ δ)

]
, Hy(+δ)(t)

〉
dt

= E

∫ T−δ

−δ

〈
E
Ft
[
yv(t+ δ) − y(t+ δ)

]
, Hy(+δ)(t)〉dt− E

∫ T

0

〈
E
Ft
[
yv(t+ δ) − y(t+ δ)

]
, Hy(+δ)(t)

〉
dt

= E

∫ 0

−δ

〈
E
Ft
[
yv(t+ δ) − y(t+ δ)

]
, Hy(+δ)(t)

〉
dt− E

∫ T

T−δ

〈
E
Ft
[
yv(t+ δ) − y(t+ δ)

]
, Hy(+δ)(t)

〉
dt = 0,

since yv(t) = y(t) = ϕ(t) for any t ∈ (T, T + δ] and Hy(+δ)(t) = 0 for any t ∈ [−δ, 0). Then we have J(v(·)) −
J(u(·)) ≥ 0, ∀v(·) ∈ Uad. Thus u(·) is the optimal control. The proof is complete. �

4. Examples: linear-quadratic case

In this section, we give two LQ examples to illustrate our results in Section 3. The first example is discussed
in Section 4.1 in which the control system coefficients contain only delayed and anticipated state terms. In
Section 4.2 we deal with the case when the control system coefficients involve both delayed and anticipated
state terms and control terms with delay. In both cases, the explicit optimal controls are obtained.

4.1. Systems with delayed and anticipated states

Let us consider the following linear stochastic control system with delayed and anticipated states (n = m = 1):

⎧⎪⎨
⎪⎩

dxv(t) = [A(t)xv(t) − byv(t) +D(t− δ)xv(t− δ) + C(t)v(t)]dt + E(t)dW (t), t ∈ [0, T ],

− dyv(t) = [axv(t) + A(t)yv(t) +D(t)EFt
[
yv(t+ δ)

]
+ F (t)v(t)]dt− zv(t)dW (t), t ∈ [0, T ],

xv(t) = ξ(t), t ∈ [−δ, 0], yv(T ) = cxv(T ), yv(t) = ϕ(t), t ∈ (T, T + δ].

(4.1)

For any given v(·), it is easy to show that the G-monotonic condition (H2) holds. Then AFBSDDE (4.1) admits
a unique solution (xv(·), yv(·), zv(·)). The cost functional is

J(v(·)) =
1
2

E

{∫ T

0

[
R(t)xv(t)2 + R̃(t)yv(t)2 + L(t)v2(t)

]
dt+MTx

v(T )2 +N0y
v(0)2

}
. (4.2)

Our optimal control problem is to minimize (4.2) over v(·) ∈ Uad subject to (4.1). In the above, constants
a > 0, b ≥ 0, c > 0,MT ≥ 0, N0 ≥ 0. Functions L(·) > 0, A(·), C(·), E(·), F (·), R(·), R̃(·) defining on [0, T ]
are bounded and deterministic, L−1(·) is also bounded. Function D(t), t ∈ [−δ, T + δ] satisfies D(t) = D, t ∈
[−δ, 0], D(t) = 0, t ∈ [T, T + δ]. Deterministic functions ξ(·), ϕ(·) satisfy

∫ 0

−δ ξ(t)
2dt < +∞,

∫ T+δ

T ϕ(t)2dt < +∞.
W (·) is a one-dimensional standard Brownian motion on (Ω,F , {Ft},P). Admissible control set denoted by Uad

is the set of all Ft-adapted square integrable process v(t), t ∈ [0, T ] valued in U ⊂ R.
Now, the Hamiltonian function (2.2) is given by

H(t, x, y, z, x(δ), y(+δ), v, p, q, k) = q
[
A(t)x − by +D(t− δ)x(δ) + C(t)v

]
− p
[
ax+A(t)y +D(t)y(+δ) + F (t)v

]
+ kE(t) +

1
2
R(t)x2 +

1
2
R̃(t)y2 +

1
2
L(t)v2.

According to Theorem 2.1, if u(·) is optimal and (x(·), y(·), z(·)) is the optimal trajectory, then

u(t) = −L−1(t)
[
C(t)q(t) − F (t)p(t)

]
, t ∈ [0, T ], (4.3)
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where (p(·), q(·)) is the solution of the following adjoint equation:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dp(t) = [A(t)p(t) + bq(t) −D(t− δ)p(t− δ) − R̃(t)y(t)]dt, t ∈ [0, T ],

− dq(t) =
[− ap(t) +A(t)q(t) +D(t)EFt [q(t+ δ)] +R(t)x(t)

]
dt− k(t)dW (t), t ∈ [0, T ],

p(0) = −N0y(0), p(t) = 0, t ∈ [−δ, 0),
q(T ) = −cp(T ) +MTx(T ), k(T ) = 0, q(t) = 0, k(t) = 0, t ∈ (T, T + δ].

(4.4)

However, it is difficult to verify this AFBSDDE (4.4) admits a unique solution (p(·), q(·), k(·)). Because the
coefficients and terminal condition of (4.4) are coupled with (x(·), y(·), z(·)) which now is the solution of the
following ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx(t) =
[
A(t)x(t) − by(t) +D(t− δ)x(t − δ) − C(t)L(t)−1C(t)q(t)

+ C(t)L(t)−1F (t)p(t)
]
dt+ E(t)dW (t), t ∈ [0, T ],

− dy(t) = [ax(t) +A(t)y(t) +D(t)EFt
[
y(t+ δ)

]− F (t)L(t)−1C(t)q(t)
+ F (t)L(t)−1F (t)p(t)]dt − z(t)dW (t), t ∈ [0, T ],

xv(t) = ξ(t), t ∈ [−δ, 0], yv(T ) = cxv(T ), yv(t) = ϕ(t), t ∈ (T, T + δ].

(4.5)

Noting that AFBSDDE (4.5) is coupled with (p(·), q(·), k(·)) vice versa! However, we can rewrite the above two
coupled AFBSDDEs (4.4) and (4.5) together:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp(t) = [A(t)p(t) + bq(t) −D(t− δ)p(t− δ) − R̃(t)y(t)]dt, t ∈ [0, T ],
dx(t) =

[
A(t)x(t) − by(t) +D(t− δ)x(t− δ) − C(t)L(t)−1C(t)q(t)

+ C(t)L(t)−1F (t)p(t)
]
dt+ E(t)dW (t), t ∈ [0, T ],

− dq(t) =
[− ap(t) +A(t)q(t) +D(t)EFt [q(t+ δ)] +R(t)x(t)

]
dt− k(t)dW (t), t ∈ [0, T ],

− dy(t) = [ax(t) +A(t)y(t) +D(t)EFt
[
y(t+ δ)

]− F (t)L(t)−1C(t)q(t)
+ F (t)L(t)−1F (t)p(t)]dt − z(t)dW (t), t ∈ [0, T ],

p(0) = −N0y(0), q(T ) = −cp(T ) +MTx(T ), y(T ) = cx(T ), k(T ) = 0,
x(t) = ξ(t), p(t) = 0, t ∈ [−δ, 0); q(t) = 0, k(t) = 0, y(t) = ϕ(t), t ∈ (T, T + δ].

(4.6)

This is an AFBSDDE with double dimensions. See Yu [28] for general theory of this kind equations without
delay. We declare that if AFBSDDE (4.6) admits a unique solution (x(·), y(·), z(·), p(·), q(·), k(·)) then we can
check that all the conditions in Theorem 2.2 are satisfied. Consequently, control (4.3) is really optimal.

Moreover, we can prove that any admissible control u(·) of the form (4.3) is optimal by the completion of
squares technique. In fact, for any admissible control v(·), applying Itô’s formula to (xv(t)−x(t))q(t)+ (yv(t)−
y(t))p(t), noting that (4.1), (4.4) and using the duality relation to deal with delay term as before, we can get

E[MTx(T )(xv(T ) − x(T ))] + E[N0y(0)(yv(0) − y(0))] = E

∫ T

0

[
C(t)q(t) −M(t)p(t)

]
(v(t) − u(t))dt.

Then, as L(t) > 0, ∀t ∈ [0, T ],MT ≥ 0, N0 ≥ 0, we have

J(v(·)) − J(u(·)) =
1
2

E

∫ T

0

[
R(t)(xv(t) − x(t))2 + 2R(t)x(t)(xv(t) − x(t)) + R̃(t)(yv(t) − y(t))2

+ 2R̃(t)y(t)(yv(t) − y(t)) + L(t)(v(t) − u(t))2 + 2L(t)u(t)(v(t) − u(t))
]
dt

+ E
{
MT (xv(T )−x(T ))2+2MTx(T )(xv(T )−x(T ))+N0(yv(0)−y(0))2+2N0y(0)(yv(0)−y(0))

}
≥ E

{∫ T

0

L(t)u(t)(v(t) − u(t))dt+MTx(T )(xv(T ) − x(T )) +N0y(0)(yv(0) − y(0))

}

= E

∫ T

0

[
L(t)u(t) + C(t)q(t) −M(t)p(t)

]
(v(t) − u(t))dt = 0.
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Since fully coupled AFBSDDE with double dimensions (4.6) is complicated, we continue to discuss it for
some special case. We choose R(·) = R̃(·) = MT ≡ 0 in (4.2):

J(v(·)) =
1
2

E

{∫ T

0

L(t)v2(t)dt+N0y
v(0)2

}
. (4.7)

The adjoint equation (4.4) reduces to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dp(t) = [A(t)p(t) + bq(t) +D(t− δ)p(t− δ)]dt, t ∈ [0, T ],

− dq(t) =
[− ap(t) +A(t)q(t) + E

Ft [D(t+ δ)q(t+ δ)]
]
dt− k(t)dW (t), t ∈ [0, T ],

p(0) = −N0y(0), p(t) = 0, t ∈ [−δ, 0),

q(T ) = −cp(T ), k(T ) = 0, q(t) = 0, k(t) = 0, t ∈ (T, T + δ].

(4.8)

Fortunately, it is easy to verify that the G-monotonic condition (H2)’ holds. Then (4.8) admits a unique solution
(p(·), q(·), k(·)). Consequently, u(t) = −L−1(t)

(
C(t)q(t)−F (t)p(t)

)
is really optimal by the same approach, and

our problem can be solved completely. To summarize, we have the following result.

Theorem 4.1. Let R(·) = R̃(·) = MT ≡ 0. Then (4.3) is the unique optimal control for our LQ prob-
lem (4.1), (4.2), where (p(·), q(·), k(·)) is the unique solution of the adjoint AFBSDDE (4.8).

4.2. Systems involving both delayed/anticipated states and delayed controls

Furthermore in this subsection, let us consider the following linear stochastic control system involving both
delayed/anticipated states and delay controls (n = m = 1):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dxv(t) = [A(t)xv(t) − byv(t) +D(t− δ)xv(t− δ)

+ C(t)v(t) + C̃(t)v(t− δ)]dt+ E(t)dW (t), t ∈ [0, T ],

− dyv(t) = [axv(t) +A(t)yv(t) +D(t)EFt
[
yv(t+ δ)

]
+ F (t)v(t) + F̃ (t)v(t − δ)]dt− zv(t)dW (t), t ∈ [0, T ],

xv(t) = ξ(t), t ∈ [−δ, 0], yv(T ) = cxv(T ), yv(t) = ϕ(t), t ∈ (T, T + δ].

(4.9)

Let Uad denote the set of admissible controls v(·) of the form:

v(t) =
{
η(t), t ∈ [−δ, 0],
v(t) ∈ L2

F([0, T ];R) and v(t) ∈ R, t ∈ [0, T ], a.s.

Our optimal control problem is to minimize the following quadratic cost functional

J(v(·)) =
1
2

E

{∫ T

0

[
R(t)xv(t)2 + R̃(t)yv(t)2 + L(t)v2(t)

]
dt+MTx

v(T )2 +N0y
v(0)2

}
(4.10)

over v(·) ∈ Uad subject to (4.9). In the above, functions C̃(·), M̃(·) defining on [0, T ] are bounded and determin-
istic. Other parameters are the same as in Section 4.1.

For any given v(·), similarly we can verify that the G-monotonic condition (H2) holds. Then AFBSDDE (4.9)
admits a unique solution (xv(·), yv(·), zv(·)) and the Hamiltonian function (2.2) is given by

H(t, x, y, z, x(δ), y(+δ), v, v(δ), p, q, k) = q
[
A(t)x − by +D(t− δ)x(δ) + C(t)v + C̃(t)v(δ)

]
− p
[
ax+A(t)y +D(t)y(+δ) + F (t)v + F̃ (t)v(δ)

]
+ kE(t) +

1
2
R(t)x2 +

1
2
R̃(t)y2 +

1
2
L(t)v2.
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According to Theorem 2.1, if u(·) is optimal and (x(·), y(·), z(·)) is the optimal trajectory, then

u(t) = −L−1(t)
{
C(t)q(t) − F (t)p(t) + E

Ft
[
C̃(t+ δ)q(t+ δ) − F̃ (t+ δ)p(t+ δ)

]}
, t ∈ [0, T ], (4.11)

where (p(·), q(·)) is the solution of the same adjoint equation (4.4). Moreover, it is now coupled with (x(·), y(·),
z(·)) which is the solution of the following AFBSDDE

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) =
{
A(t)x(t) − by(t) +D(t− δ)x(t− δ) − C(t)L(t)−1

[
C(t)q(t) + F (t)p(t)

+ E
Ft
[
C̃(t+ δ)q(t+ δ) − F̃ (t+ δ)p(t+ δ)

]]− C̃(t)L(t− δ)−1

× [C(t− δ)q(t − δ) + F (t− δ)p(t− δ) + C̃(t)q(t) − F̃ (t)p(t)
]}

dt+ E(t)dW (t), t ∈ [δ, T ],

dx(t) =
{
A(t)x(t) − by(t) +D(t− δ)x(t− δ) − C(t)L(t)−1

[
C(t)q(t) + F (t)p(t)

+ E
Ft
[
C̃(t+ δ)q(t+ δ) − F̃ (t+ δ)p(t+ δ)

]]
+ C̃(t)η(t− δ)

}
dt+ E(t)dW (t), t ∈ [0, δ],

− dy(t) =
{
ax(t) + A(t)y(t) +D(t)EFt

[
y(t+ δ)

]− F (t)L(t)−1
[
C(t)q(t) + F (t)p(t)

+ E
Ft
[
C̃(t+ δ)q(t+ δ) − F̃ (t+ δ)p(t+ δ)

]]− F̃ (t)L(t− δ)−1

× [C(t− δ)q(t − δ) + F (t− δ)p(t− δ) + C̃(t)q(t) − F̃ (t)p(t)
]}

dt− z(t)dW (t), t ∈ [δ, T ],

− dy(t) =
{
ax(t) + A(t)y(t) +D(t)EFt

[
y(t+ δ)

]− F (t)L(t)−1
[
C(t)q(t) + F (t)p(t)

+ E
Ft
[
C̃(t+ δ)q(t+ δ) − F̃ (t+ δ)p(t+ δ)

]]
+ F̃ (t)η(t − δ)

}
dt− z(t)dW (t), t ∈ [0, δ],

xv(t) = ξ(t), v(t) = η(t), t ∈ [−δ, 0],
yv(T ) = cxv(T ), yv(t) = ϕ(t), t ∈ (T, T + δ].

(4.12)

Similarly AFBSDDE (4.12) is coupled with (p(·), q(·), k(·)) vice versa! And if we rewrite (4.4) and (4.12) together,
then we encounter another more complicated AFBSDDE with double dimensions as in Section 4.1. Moreover,
by Theorem 2.2 we know that control variable (4.11) is really optimal. On the other hand, we can prove any
admissible control u(·) of the form (4.11) is optimal directly by the completion of squares technique.

Finally, we consider the cost functional (4.7) with R(·) = R̃(·) = MT ≡ 0. The adjoint AFBSDDE (4.4)
reduces to (4.8) which is unique solvable. Then (4.11) is really optimal and our problem can be solved completely.
To summarize, we have the following result.

Theorem 4.2. Let R(·) = R̃(·) = MT ≡ 0. Then (4.11) is the unique optimal control for our LQ prob-
lem (4.9), (4.10), where (p(·), q(·), k(·)) is the unique solution of the adjoint AFBSDDE (4.8).

5. Concluding remarks

In this paper, we have discussed the optimal control problem in which the control system is described by a
fully coupled AFBSDDE. The maximum principle is obtained under the assumption that the diffusion coefficient
does not contain the control variables and the control domain is not necessarily convex. Both the necessary and
sufficient conditions of optimality are proved. As illustrating examples, two kinds of linear quadratic control
problems are discussed and both optimal controls are derived explicitly.

As one referee pointed out, our results depend heavily on the G-monotonic assumption (H2). In fact, in
the past several years, the research on the wellposedness of FBSDEs have made rapid progress. For example,
Zhang [29] impose some kinds of simple weak-coupled conditions to obtain the existence and uniqueness for fully
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coupled FBSDEs. For AFBSDDEs, results on this direction are few and the only existing result is by Chen and
Wu [6] using the G-monotonic assumption (H2). We wish to study optimal control problems for fully coupled
AFBSDDEs (including FBSDEs) without the G-monotonic assumption in the future.

An interesting and challenging open problem is to extend the results in this paper to the case in which the
diffusion coefficient contains both control variable and its delayed term. Noting that this bring rather difficulty to
obtain the corresponding maximum principle even without delay. Preferable progress has been made by Yong [26]
recently for one kind general coupled forward-backward stochastic control systems with mixed initial-terminal
conditions without delay. We will study this topic for delayed system in our future research.
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