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INVERSE PROBLEMS IN SPACES OF MEASURES
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Abstract. The ill-posed problem of solving linear equations in the space of vector-valued finite Radon
measures with Hilbert space data is considered. Approximate solutions are obtained by minimizing the
Tikhonov functional with a total variation penalty. The well-posedness of this regularization method
and further regularization properties are mentioned. Furthermore, a flexible numerical minimization
algorithm is proposed which converges subsequentially in the weak* sense and with rate O(n−1) in
terms of the functional values. Finally, numerical results for sparse deconvolution demonstrate the
applicability for a finite-dimensional discrete data space and infinite-dimensional solution space.
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1. Introduction

This paper is concerned with solving ill-posed linear inverse problems for measure-valued unknowns. While the
basic regularization theory of inverse problems is well-established in Hilbert spaces [22] and for linear problems
in Banach spaces [34], recent interest focuses on specific linear and non-linear problems usually set in Banach
spaces [4,9,21,31,32,38,43,44,49]. One particular research topic is regarding the recovery of sparse unknowns,
i.e., exploiting the knowledge that the sought object is, in some sense, composed of only a few elements.
This is most commonly formulated in the discrete setting imposing an �0 constraint [10,15,16,26]. Relaxing this
constraint leads to the so-called “sparse regularization” which is penalizing with an �1 functional. This approach
gives inverse problems in sequence spaces which have been extensively studied in terms of regularization and
numerical algorithms [3, 5–7, 12, 14, 19, 23, 28, 29, 35, 37]. In practical applications, the respective results and
methods are transferred to the continuous setting without further justification, where they have been observed
to work well [14, 17, 45, 48]. The present work aims at establishing a framework for this continuous setting in
terms of studying general spaces of Radon measures both as the solution space for linear inverse problems as
well as the underlying space for numerical algorithms.
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We consider linear inverse problems of the following type: find μ such that

K∗μ = f0 (1.1)

for some data f0 ∈ H . Here, H is a Hilbert space which models the measured data and K∗ maps continuously
from the space of finite vector-valued Radon measures M(Ω,�m) intoH . The setΩ is allowed to be a continuum.
As it will turn out, it is meaningful to consider linear mappings K∗ which are adjoints of some linear and
continuous K : H → C0(Ω,�

m). In particular, the space of Radon measures allows for finite linear combinations
of delta peaks, which can be considered as an analogue of sparsity with respect to the possibly continuous index
set Ω.

Solving the inverse problem (1.1) is often ill-posed in the sense that small variations in data cause large effects
on the value of an unknown. For that reason, solution methods for inverse problems require stabilization. This
can be done, for example, by using a regularization method where an ill-posed inverse problem is replaced by a
nearby well-posed problem. For our purposes, it is important that this stabilized well-posed problem respects
the requirement for sparse solutions. This will be realized by penalizing with the norm in M(Ω,�m) and solving
the Tikhonov minimization problem

min
μ∈M(Ω,�m)

‖K∗μ− f δ‖2

2
+ α‖μ‖M (1.2)

where the linear and continuous K : H → C0(Ω,�m) is the “predual” forward mapping, f δ ∈ H the given noisy
data corresponding to the noise level δ > 0 and α > 0 a regularization parameter. This work studies existence
of minimizers for this functional, optimality conditions and regularization properties. Moreover, a numerical
algorithm is proposed which converges in the weak* sense.

A similar framework with Radon measures on open subsets of �d has been recently introduced in [45] which
also includes some numerical experiments for the recovery of sparse unknowns. The authors reduce the situation
to the Hilbert space setting by utilizing suitable embeddings of M(Ω) into a Sobolev space of negative order,
implying some dependence on the dimension. Our approach is genuinely set in the space of Radon measures on
separable, locally compact metric spaces, is dimension-independent and includes the inverse problems considered
in [45] as a special case. Moreover, differently from the discrete soft-thresholding algorithm used in the latter
paper, we introduce and carry out the convergence analysis for an algorithm acting in M(Ω,�m). In [11],
elliptic partial differential equations are controlled with a Radon measure penalty. The authors establish a
similar predual formulation and optimality system but we will obtain these results as a special case; namely
with K∗ in (1.2) being the solution operator of an elliptic equation. Finally, we mention that in [39], also
Radon measures are the solution model for the inverse problem of deconvolution, regularization, however, is not
performed in terms of Tikhonov functionals, but with an orthogonal matching pursuit.

Possible applications for the Radon-measure framework could be the deconvolution of point-like objects, a
problem which arises, for instance, when long-exposure images of astronomical objects are taken with a ground-
based telescope [41] or when mass spectrograms are acquired in which a substance contains multiple isotopes [8].
Moreover, the setting might be applied to formulate and solve the problem of finding an optimal placement for
control devices or point actuators for partial differential equations [46].

The outline of the paper is as follows. In Section 2 a short introduction to the space of finite Radon measures
is given. Section 3 introduces the functional-analytic framework for solutions of (1.2). As a main result we show
that this problem is the Fenchel dual for a minimization problem set in H involving the predual operator K
mapping into C0(Ω,�m). Based on this, necessary and sufficient optimality conditions for minimizers of the
functional are derived. In Section 4, the minimization problem (1.2) is viewed as a regularization method for
the inverse problem (1.1). Convergence of the respective solutions of (1.2) as δ → 0 is studied. The rate O(δ) for
the Bregman distance with respect to the norm in M(Ω,�m) under the usual source condition is derived. Due
to the forward operator being an adjoint mapping, the source condition can be studied in C0(Ω,�

m) instead of
M(Ω,�m)∗. Section 5 proposes a practical numerical algorithm which produces a sequence of approximations
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each consisting of finitely many delta peaks. It is shown that this sequence minimizes the functional with rate
O(n−1) and converges subsequentially in the weak* sense to a minimizer. The applicability of this algorithm is
established in Section 6. There, a deconvolution problem is solved numerically in a semi-discrete setting with
discrete data points but arbitrary peak positions. The article concludes with Section 7, summarizing the results.

2. Preliminaries

Before going into the precise definition of the inverse problem (1.1), we introduce some notation and recall
some facts from measure theory.

We are dealing with vectors in �m for m ≥ 1. We equip �m with a norm | · | and the associated dual norm
| · |∗ with respect to the dual pairing induced by the scalar product σ · τ =

∑m
i=1 σiτi. Furthermore, we denote

by | · |2 the Euclidean norm in �m.
Recall the following generalization of the sign mapping to �m: For σ, τ ∈ �m we associate the set-valued

sign mappings

Sgn(τ) = {σ ∈ �m : |σ|∗ ≤ 1, σ · τ = |τ |},
Sgn∗(σ) = {τ ∈ �m : |τ | ≤ 1, σ · τ = |σ|∗}

as well as sgn(τ) = σ such that σ = argminσ̃∈Sgn(τ) |σ̃|2 and the analogous construction for sgn∗. Note that
in case of | · | being the Euclidean norm, we have Sgn(τ) = {τ/|τ |2} for τ �= 0 and Sgn(0) = {|σ|2 ≤ 1}. In
particular, in dimension one it holds that Sgn(s) = 1 for s > 0, Sgn(s) = −1 for s < 0 and Sgn(0) = [−1, 1].
Also, for |τ | =

∑m
i=1 |τi| it turns out that σ ∈ Sgn(τ) if and only if σi ∈ Sgn(τi) for all i = 1, . . . ,m.

In this paper, Ω is always a separable locally compact metric space with a metric ρ. In some cases, we assume
that Ω is a subset of �d, d ≥ 1. Then the metric in Ω ⊂ �

d is induced by the Euclidean norm | · |2 if not
mentioned otherwise. In �d, the boundary of a set E is denoted by ∂E, χE is the characteristic function of E,
i.e., χE(x) = 1 if x ∈ E and χE(x) = 0 if x �∈ E, and dist(E,F ) is the distance between sets E and F defined
by

dist(E,F ) = inf{|x− y|2 : x ∈ E, y ∈ F}.
For the measure-theoretic part, we follow the notation of [2]. A positive measure ν is a σ-additive set function

defined on the Borel sets of Ω (with respect to the topology induced by the metric ρ) with values in [0,∞] and
ν(∅) = 0. We denote by Lp

ν(Ω,�m), 1 ≤ p <∞, the Banach space of all measurable functions g : Ω → �
m such

that its p-norm is finite, i.e.,

‖g‖p =
(∫

Ω

|g(ω)|p dν(ω)
)1/p

<∞.

Two functions in Lp
ν(Ω,�m) are identified if they are equal ν-almost everywhere. Let Ld be the Lebesgue

measure in �d. For Ω ⊂ �
d, we use the notation Lp

Ld(Ω,�m) = Lp(Ω,�m) (and Lp(Ω) if m = 1) for all
1 ≤ p <∞. The space L2(Ω,�m) is a Hilbert space with the inner product

〈u, v〉2 =
m∑

i=1

∫
Ω

ui(x)vi(x) dx

and the corresponding induced norm ‖ · ‖2.
A finite Radon measure μ is a σ-additive �m-valued set function defined on the Borel sets of Ω with μ(∅) = 0.

The total-variation measure of a finite Radon measure μ is the positive measure defined by

|μ|(E) = sup

{ ∞∑
n=1

|μ(En)| :
∞⋃

n=1

En = E, {En} disjoint and measurable

}
.
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We denote the space of finite Radon measures by M(Ω,�m) (and M(Ω) if m = 1). It can be normed by the
total variation norm

‖μ‖M = |μ|(Ω).

Each finite Radon measure μ possesses a polar decomposition, i.e., there exists a function σ ∈ L1
|μ|(Ω,�

m) with
|σ(x)| = 1 for |μ|-almost all x ∈ Ω such that

μ(E) =
∫

E

σ d|μ| for all measurable E ⊂ Ω.

An important result about the space M(Ω,�m), which is known as the Riesz theorem, is its characterization
as a dual space. To state this theorem, introduce the space

C0(Ω,�
m) = {u ∈ C(Ω,�m) : suppu ⊂⊂ Ω}‖ · ‖∞ , ‖u‖∞ = sup

x∈Ω
|u(x)|∗

which is the completion of continuous compactly supported functions with respect to the supremum norm. For
m = 1 we denote it by C0(Ω). The Riesz theorem now states that the dual space (C0(Ω,�

m))∗ = M(Ω,�m)
which also implies the completeness of the space of finite Radon measures. The corresponding dual paring is
defined by

〈μ, u〉 =
m∑

i=1

∫
Ω

ui dμi

for each μ ∈ M(Ω,�m) and u ∈ C0(Ω,�m).
We therefore say that a sequence {μn} in M(Ω,�m) converges in the weak* sense to a μ if and only if

m∑
i=1

∫
Ω

ui dμn
i −→

m∑
i=1

∫
Ω

ui dμi for each u ∈ C0(Ω,�
m).

Note that the mapping μ → ‖μ‖M is lower semi-continuous in this weak* sense. Moreover, every bounded
sequence in M(Ω,�m) has a weak* convergent subsequence. We will subsequently deal with δ-peaks (or Dirac
measures) which are defined for x ∈ Ω and m = 1 by: 〈δx, u〉 = u(x) for u ∈ C0(Ω).

Remark 2.1. Let Ω be an open non-empty subset of �d. In this case, there are some weakly* dense subsets
of M(Ω,�m) which are of interest later on:

(i) the space L2(Ω,�m) with the injection w → wLd;
(ii) the space of all finite linear combinations of δ-peaks:{

μ =
N∑

i=1

uiδxi : N ∈ �, ui ∈ �m, xi ∈ Ω, i = 1, . . . , N

}
.

The proof of these density statements can be found in the appendix.

Finally, introduce the notation L (X,Y ) for the set of linear and continuous mappings K : X → Y . We denote
by ‖K‖ = sup {‖Kx‖Y : ‖x‖X ≤ 1} the corresponding operator norm.

3. Minimization in spaces of measures

This section is devoted to the analysis of the minimization problem (1.2). We start with defining more
precisely the setting for the inverse problem (1.1). Let H be a Hilbert space with the inner product 〈 · , · 〉H and
the induced norm ‖ · ‖. We consider the inversion of K∗ which is the adjoint of a continuous linear mapping
K : H → C0(Ω,�m). Such an adjoint maps continuously between M(Ω,�m) and H . Throughout this section,
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we denote by f some given data in H . It can be either the exact data f0 or the noisy data f δ. For α > 0, we
use the notation Tα for the Tikhonov functional

Tα(μ) =
‖K∗μ− f‖2

2
+ α‖μ‖M. (3.1)

The following proposition shows that the Tikhonov functional has a minimizer.

Proposition 3.1. Let K : H → C0(Ω,�
m) be a linear and continuous mapping, f ∈ H and α > 0. Then, the

minimization problem

min
μ∈M(Ω,�m)

‖K∗μ− f‖2

2
+ α‖μ‖M (3.2)

admits a solution μ∗ ∈ M(Ω,�m). If K∗ is injective, this solution is unique.

Proof. Observe that Tα is proper and coercive on M(Ω,�m). It is moreover sequentially weak* lower semi-
continuous: a sequence {μn} converging to μ in the weak* sense is mapped via K∗ to a weakly convergent
sequence K∗μn ⇀K∗μn in H since

〈K∗μn, v〉H =
m∑

i=1

∫
Ω

Kv dμn
i →

m∑
i=1

∫
Ω

Kv dμi = 〈K∗μ, v〉H (3.3)

for all v ∈ H . Denote by Tα(μ) = S(μ) + αR(μ) with

S(μ) = 1
2‖K∗μ− f‖2 and R(μ) = ‖μ‖M. (3.4)

The mapping w → 1
2‖w − f‖2 is convex and continuous, and hence sequentially weak lower semi-continuous.

This yields the sequential weak* lower semi-continuity of S. The functional R is just the norm in M(Ω,�m)
which is known to the sequentially lower semi-continuous in the weak* sense, implying the desired property for
Tα.

By the direct method, a minimizing argument μ∗ in M(Ω,�m) exists. Finally, an injective K∗ results in a
strictly convex Tα which immediately gives the stated uniqueness. �

Remark 3.2. As was seen in the above proof, the adjointK∗ : M(Ω,�m) → H is weak*-to-weak (sequentially)
continuous (cf. (3.3)). This property was important for showing the weak* lower semi-continuity of associated
Tikhonov functionals.

The requirement that the forward operator A = K∗ is an adjoint mapping is not actually a severe restriction
if A is supposed to be weak*-to-weak* sequentially continuous: according to Theorem V.1.3. [13], if X is a
separable Banach space and a functional u∗∗ ∈ X∗∗ is sequentially weak* continuous, there has to be a u ∈ X
such that 〈u∗∗, u∗〉X∗∗×X∗ = 〈u∗, u〉X∗×X for all u∗ ∈ X∗. Note that the weak* continuity of a linear functional
is equivalent with the continuity with respect to the bounded X topology in X∗, see [18], Theorem V.5.6, which
in turn can be characterized by the sequential weak* continuity. Now for separable Banach spaces X , Y holds:
an operator A ∈ L (Y ∗, X∗) which is weak*-to-weak* sequentially continuous has an adjoint A∗ ∈ L (X∗∗, Y ∗∗)
which maps X into Y regarded as closed subspaces in X∗∗ and Y ∗∗ under the canonical injections into the bidual
spaces, respectively. This follows from the fact that for u ∈ X and each sequence {vn} in Y ∗ with vn ⇀∗ v for
some v ∈ Y ∗ we have

lim
n→∞〈A∗u, vn〉Y ∗∗×Y ∗ = lim

n→∞〈u, Avn〉X∗∗×X∗

= 〈u, Av〉X∗∗×X∗ = 〈A∗u, v〉Y ∗∗×Y ∗

yielding that A∗u is weak* sequentially continuous on Y ∗∗ and is therefore representable by an element in Y .
Hence, A∗ restricted to X can be considered as A∗|X = K with K ∈ L (X,Y ) and consequently, A = K∗ is an
adjoint mapping.
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Since in the studied case X = H is a Hilbert space, the weak*-to-weak* sequential continuity of A is equal
to the weak*-to-weak sequential continuity, therefore, these mappings coincide with the adjoints mappings.

Before proceeding to the analysis of minimizers of (3.2), we introduce some examples which show what kind
of problems can be treated within this framework. The first regards a deconvolution problem while the second
involves elliptic partial differential equations.

Example 3.3. Let Ω be a bounded domain in �d and k ∈ L2(�d) with essential support in Ω′ ⊂ �
d, a

bounded open set. Denote by Ω′′ = {x− y : x ∈ Ω, y ∈ Ω′} = Ω −Ω′ and define

(Kv)(x) =
∫

Ω

k(y − x)v(y) dy

for x ∈ Ω′′. We like to show that Kv ∈ C0(Ω
′′) by approximation with compactly supported continuous

functions. First, we see that the translation of a L2-function, i.e., x → k( · − x), is a continuous operation
mapping Ω′′ → L2(�d) (see, for instance, [1], Thm. 2.32) and restricting to Ω followed by taking the scalar
product is also. Hence Kv is indeed a continuous function. Now set Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε} and let
vε = χΩεv. Clearly, vε → v in L2(Ω) as ε → 0. Construct kε analogously and define Kεv

ε according to the
above with v and k replaced by vε and kε, respectively.

For each ε > 0, we deduce the inclusion suppKεv
ε ⊂ Ωε −Ω′

ε ⊂⊂ Ω′′. Therefore, let {zn} with zn ∈ Ωε −Ω′
ε

be an arbitrary sequence, so zn = xn − yn with each xn ∈ Ωε ⊂⊂ Ω and yn ∈ Ω′
ε ⊂⊂ Ω′. Therefore, there exist

respective subsequences, not relabeled, and limits x ∈ Ωε, y ∈ Ω′
ε such that xn → x and yn → y as n → ∞.

Hence z = x− y ∈ Ωε −Ω′
ε = Ωε −Ω′

ε ⊂ Ω′′ (note that both sets are compact) is a limit of {zn} in Ω′′, which
means that the claimed compactness holds.

Thus, Kεv
ε is continuous with compact support in Ω′′. The bilinear operation

L(v, k)(x) =
∫

Ω

k(y − x)v(y) dy

obeys, because of the Cauchy-Schwarz inequality,

‖L(v, k)‖∞ ≤ ‖k‖2‖v‖2

which means that L : L2(Ω) × L2(Ω′) → C0(Ω
′′) is a continuous mapping. Therefore, we have L(vε, kε) → Kv

as ε→ 0 which implies Kv ∈ C0(Ω′′) with K being continuous.
Hence, Proposition 3.1 is applicable with H = L2(Ω) and K mapping into C0(Ω′′). Let us eventually compute

K∗ : M(Ω′′) → L2(Ω): for μ ∈ M(Ω′′)

〈K∗μ, v〉2 =
∫

Ω′′

∫
Ω

k(y − x)v(y) dy dμ(x) =
∫

Ω

∫
Ω′′

k(y − x) dμ(x)v(y) dy

by Fubini’s theorem, so K∗μ = μ ∗ k in the sense of the convolution of measures. It turns out that (3.2) is
actually the deconvolution problem

min
μ∈M(Ω−Ω′)

‖μ ∗ k − f‖2
2

2
+ α‖μ‖M

where the sought solution is a measure in Ω −Ω′ and the data is compared only in Ω.

Example 3.4. Let Ω ⊂ �
d, d ≤ 3, be a bounded domain with a C1,1-boundary and A ∈ C0,1(Ω,�d×d) a

matrix field such that A(x) is symmetric for each x ∈ Ω and there is a uniform ellipticity constant c > 0 such
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that ξTA(x)ξ ≥ c
∑d

i=1 ξ
2
i for each x ∈ Ω and ξ ∈ �d. Consider K as the weak solution operator K : v → u

such that
− div(A∇u) = v in Ω,

u = 0 on ∂Ω.
(3.5)

From the regularity theory of elliptic equations (see, for instance, [30], Chap. 2) we know that K : L2(Ω) →
H1

0 (Ω) ∩H2(Ω) continuously. Since d ≤ 3, the solution has to be continuous due to the continuous embedding
H2(Ω) ↪→ C(Ω). Furthermore, u ∈ H1

0 (Ω) implies a zero trace in H1/2(∂Ω) which in particular gives a zero
trace for continuous functions in H1

0 (Ω). Hence, u ∈ C0(Ω) holds and consequently K : L2(Ω) → C0(Ω) is
continuous, implying that Proposition 3.1 is applicable.

The adjoint K∗ : M(Ω) → L2(Ω) is the solution operatorK∗ : μ → f for the elliptic boundary value problem

− div(A∇f) = μ in Ω,
f = 0 on ∂Ω

(3.6)

in the weak sense of Stampacchia [47]: Indeed, for each v ∈ C0(Ω) we have u = Kv ∈ H1
0 (Ω)∩C0(Ω). Moreover,

denoting L∗ as the formal adjoint of the differential operator L = − div(A∇) it follows that L∗u = v in the
weak sense. Hence, for μ ∈ M(Ω) and f = K∗μ it holds that:∫

Ω

L∗uf dx =
∫

Ω

vf dx = 〈K∗μ, v〉2 = 〈μ, Kv〉 =
∫

Ω

u dμ,

implying that f satisfies (3.6) in the sense of Definition 9.1 in [47]. Moreover, as Ω satisfies the uniform cone
property, it is an H1

0 (Ω)-admissible domain according to Definition 6.2 in [47]. It is immediate that a weak
solution of (3.6) has to be unique, hence Theorem 9.1 in [47] implies that actually f ∈ W 1,q

0 (Ω) for each
1 ≤ q < d/(d − 1). Equation (3.6) is therefore also satisfied in the distributional sense in Ω with homogeneous
Dirichlet boundary values attained in the sense of traces.

Next, we will derive optimality conditions for minimizers of (3.2) with the help of convex duality (see, for
instance, [20, 52]). The usual setting, however, which requires the consideration of the dual space M(Ω,�m)∗,
turns out to be complicated due to the inaccessibility of this space. There is, nevertheless, a method which
circumvents these complications: one can identify (3.2) being equivalent to the Fenchel dual problem associated
with a functional in H . The corresponding optimality conditions only involve the dual space C0(Ω,�

m)∗, the
space of finite Radon measures. Here, the indicator functional I of a set E is defined by IE(x) = 0 if x ∈ E and
IE(x) = ∞ if x �∈ E. Also, the subdifferential and the Fenchel conjugate of a functional F are denoted by ∂F
and F ∗, respectively.

Proposition 3.5. Let K : H → C0(Ω,�
m) be linear and continuous, f ∈ H and α > 0. The problem

min
v∈H

‖v − f‖2

2
+ I{v∈H : ‖Kv‖∞≤α}(v) (3.7)

is equivalent to a Fenchel predual problem of (3.2), i.e., the Fenchel dual problem of (3.7) exists and possesses
the same solutions as (3.2).

Proof. Define S0(v) = 1
2‖v − f‖2 for v ∈ H whose conjugate function obeys

S∗
0 (w) =

‖f + w‖2

2
− ‖f‖2

2
·

Likewise, the conjugate of R0 : C0(Ω,�
m) → � ∪ {∞} given by R0(u) = I{‖u‖∞≤α}(u) reads as

R∗
0(μ) = sup

‖u‖∞≤α

m∑
i=1

∫
Ω

ui dμi = α‖μ‖C∗
0

= α‖μ‖M = αR(μ)
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where R is defined in (3.4). Now verify that all prerequisites for the validity of the Fenchel duality formula
according to [51], Corollary 2.8.5, are satisfied. In particular, 0 ∈ H is in the domain of S0 +R0 ◦K and R0 is
continuous at 0 ∈ C0(Ω,�

m). Hence,

min
v∈H

‖v − f‖2

2
+ I{‖Kv‖∞≤α}(v) = max

μ∈M(Ω,�m)

‖f‖2

2
− ‖f −K∗μ‖2

2
− α‖μ‖M

according to the Fenchel duality formula and the above considerations. The solutions for the problem on the
right-hand side obviously coincide with the solutions of (3.2). �

With the help of the predual problem and duality, it is possible to derive optimality conditions for the original
problem.

Proposition 3.6. Let K : H → C0(Ω,�
m) be linear and continuous, f ∈ H and α > 0. Then, a μ∗ ∈

M(Ω,�m) is a solution of (3.2) if and only if w∗ = −K(K∗μ∗ − f) satisfies ‖w∗‖∞ ≤ α and each polar
decomposition μ∗ = σ∗|μ∗| obeys

σ∗ · w∗ = α |μ∗|-almost everywhere. (3.8)

In particular, supp |μ∗| ⊂ {x ∈ Ω : |w∗(x)|∗ = α} for each solution μ∗.

Proof. From Fenchel duality and Proposition 3.5 one knows that (v∗, μ∗) ∈ H×M(Ω,�m) are solutions of (3.7)
and (3.2), respectively, if and only if −K∗μ∗ ∈ ∂S0(v∗) and μ∗ ∈ ∂R0(Kv∗) with S0 and R0 from the proof of
Proposition 3.5. This means that −K∗μ∗ = v∗ − f and ‖Kv∗‖∞ ≤ α with

m∑
i=1

∫
Ω

(w −Kv∗)i dμ∗
i ≤ 0 for all w ∈ C0(Ω,�

m), ‖w‖∞ ≤ α.

Plugging v∗ = f −K∗μ∗ and using a polar decomposition of μ∗, one sees that μ∗ being optimal is equivalent to
‖w∗‖∞ ≤ α and ∫

Ω

(w − w∗) · σ∗ d|μ∗| ≤ 0 for all w ∈ C0(Ω,�
m), ‖w‖∞ ≤ α. (3.9)

Rearranging, using basic properties of the supremum and the definition of the dual norm yields that this is
equivalent to ‖w∗‖∞ ≤ α and

α|μ∗|(Ω) = α‖μ∗‖M = sup
‖w‖∞≤α

∫
Ω

w · σ∗ d|μ∗| ≤
∫

Ω

w∗ · σ∗ d|μ∗|.

This is, in turn, by basic properties of the integral, equivalent to ‖w∗‖∞ ≤ α and w∗ · σ∗ = α |μ∗|-almost
everywhere, proving the desired characterization.

We finally show supp |μ∗| ⊂ {x ∈ Ω : |w∗(x)|∗ = α} for a solution μ∗ indirectly. For this purpose, let x ∈ Ω
be such that |w∗(x)|∗ < α. Since w∗ is continuous, this has to be true on a whole neighborhood Vx of x. For
each u ∈ C0(Vx,�

m), a t > 0 can be chosen such that both w = w∗ ± tu obey ‖w‖∞ ≤ α. Plugged into (3.9),
this gives ∫

Ω

u · σ∗ d|μ∗| = 0 for all u ∈ C0(Vx,�
m)

implying that μ∗ restricted to Vx is the zero-measure and consequently Vx ⊂ Ω\ supp |μ∗|. �

Remark 3.7. If the vector norm | · | is strictly convex, i.e., |u|, |v| ≤ 1 implies |u+ v| < 2 for u �= v, there is a
polar decomposition of an optimal μ∗ for which σ∗ ∈ C0(Ω,�

m). This can be seen as follows. First, observe that
necessarily, σ∗(x) = J (w∗(x)) for |μ∗|-almost all x ∈ Ω where J : �m → �

m is the | · |∗-| · |-duality mapping
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with gauge φ : t → t/α: since supp |μ∗| ⊂ {|w∗(x)|∗ = α}, we only need to consider |μ∗|-almost every x ∈ Ω
with |w∗(x)|∗ = α for which we have, due to (3.8),

w∗(x) · σ∗(x) = α = |w∗(x)|∗φ (|w∗(x)|∗)
|σ∗(x)| = 1 = φ (|w∗(x)|∗)

}
=⇒ σ∗(x) = J (w∗(x))

noting that strict convexity in the dual space leads to a single-valued duality relation.
On the other hand, each Borel measurable σ∗ coinciding with J ◦ w∗ |μ∗|-almost everywhere gives a polar

decomposition since it always defines the same integral. Put in a different way: σ∗(x) = J (w∗(x)) for |μ∗|-almost
every x ∈ Ω constitutes the angular part of a polar decomposition of μ∗. Finally, this construction yields an
element in C0(Ω,�

m) by the uniform continuity of J (note that strict convexity on finite dimensional spaces
implies uniform convexity) as well as J(0) = 0.

Remark 3.8. In the special case of Ω = � with the discrete topology and m = 1, the space C0(Ω) is the space
c0 of null sequences and M(Ω) = �1. The associated regularized problem (3.2) amounts to the regularization
of a linear inverse problem with the �1-norm which is known to implement so-called sparsity constraints. As
already pointed out in the introduction, these types of problems have been studied extensively in the literature,
usually with a linear and continuous operator K∗ : �2 → �2.

Optimality in this case is often expressed as: u∗ interpreted as a sequence is optimal if and only if

u∗k

⎧⎨⎩
= 0 ⇒ |K(K∗u∗ − f)|k ≤ α,

> 0 ⇒ (−K(K∗u∗ − f))k = α,

< 0 ⇒ (−K(K∗u∗ − f))k = −α.
The translation into each polar decomposition of the corresponding measure is just μ∗ = σ∗|μ∗| with |μ∗| =
|u∗|H0 where H0 denotes the counting measure on � and σ∗

k ∈ sgn(u∗k), i.e., |σ∗
k| ≤ 1 if u∗k = 0 and σ∗

k = u∗k/|u∗k|
else. The support of |μ∗| is exactly the collection of coefficients where u∗k �= 0, or, the other way around, the
set of coefficients where u∗k = 0 is |μ∗|-negligible. Hence, it is easy to see that condition (3.8) is an equivalent
description of the above in terms of measures.

Remark 3.9. The last remark shows that the situation (3.2) can be interpreted as a natural generalization of
the discrete setting Ω = � to continuous ones. In fact, the consideration of measure spaces is necessary since
they guarantee the topological properties (sequential weak* compactness) which are required for the application
of the direct method.

In case of Ω ⊂ �d being a domain, one could be tempted with regularizing with the L1-norm instead of the
norm in M(Ω,�m) (in which, nevertheless, L1(Ω,�m) is a closed subspace). However, in this case, we are only
able to obtain a bounded sequence in L1(Ω,�m) which is not sufficient for the extraction of a weakly convergent
subsequence (see the Dunford-Pettis theorem, for instance [2], Thm. 1.38). Based on this, one can easily construct
a counterexample for the existence of solutions for the Tikhonov functional with L1-regularization (with some
technical effort). As we have seen in Proposition 3.1, considering M(Ω,�m) instead of L1(Ω,�m) provides the
compactness needed in the existence proof.

4. Regularization properties

In this section we interpret the minimization problem (1.2) as a Tikhonov regularization method for the
inverse problem (1.1). Even though our problem is covered by the existing theory of regularization in Banach
spaces [9, 32], we want to discuss this matter shortly for the sake of consistence. We point out that the mini-
mization problem (1.2) is well-posed and approximates the inverse problem (1.1) in the sense usually considered
in regularization theory.

Like in the previous section, we denote by f0 the exact data and by f δ noisy data. We assume that there
exists a solution of (1.1), i.e., f0 belongs to the range of the operator K∗. If the null space of K∗ is not trivial,
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the inverse problem (1.1) may have multiple solutions. Our interest is in the following special solutions (if they
exist):

Definition 4.1. An element μ† ∈ M(Ω,�m) is called a minimum norm solution of (1.1) if

‖μ†‖M = min{‖μ‖M : K∗μ = f0} <∞.

We call a minimizer of the Tikhonov functional Tα with data f δ a regularized solution of (1.1) (see (3.1)
for the definition). In the regularization theory, the amount of the noise in the data is often given in the form
of the noise level δ, i.e., ‖f δ − f0‖ ≤ δ. A regularized solution is a good approximation of a solution of the
inverse problem (1.1) if there exists a choice of the regularization parameter α such that a regularized solution
converges to a minimum norm solution as the noise level tends to zero.

In the setup of the paper, the crucial observations are:
• the operator K∗ : M(Ω,�m) → H is weak*-to-weak continuous;
• the norm ‖ · ‖ is lower semi-continuous with respect to the weak topology in H ;
• the norm ‖ · ‖M is weak* lower semi-continuous, see [2], Theorem 1.59;
• every bounded sequence in M(Ω,�m) has a weak* convergent subsequence, see also [2], Theorem 1.59.

Accordingly, the inverse problem (1.1) is a specific example of problems studied in [32]. Therefore the following
results are valid:
• a minimum norm solution μ† of (1.1) exists, see [32], Theorem 3.4;
• existence: the Tikhonov functional Tα admits a minimizer (Prop. 3.1);
• uniqueness : the minimizer of Tα is unique if K∗ is injective (Prop. 3.1);
• stability: for a norm-convergent sequence of the data every minimizing sequence of the corresponding

Tikhonov functionals has a subsequence which converges in the weak* sense. The limit of each weak*
convergent subsequence is a minimizer of the Tikhonov functional with the limit data, see [32], Theorem 3.2;

• convergence: with the parameter choice rule

α(δ) −→ 0 and
δ2

α(δ)
−→ 0 as δ −→ 0

where α( · ) is a monotonically increasing function, regularized solutions converge subsequentially in the
weak* sense to a minimum norm solution as δ → 0. If, in addition, the minimum norm solution μ† is unique,
the convergence is sequential, not only subsequential, see [32], Theorem 3.5.

The well-posedness of the minimization of the Tikhonov functional is guaranteed by the existence, uniqueness
and stability results above. Furthermore, the convergence of regularized solutions to a minimum norm solution
is obtained (subsequentially in the weak* sense) with an a-priori parameter choice rule. Hence the minimization
problem (1.2) is a proper regularization method for the inverse problem (1.1).

For qualitative estimates for the convergence of regularized solutions to a minimum norm solution, some ad-
ditional assumptions are needed. Usually these assumptions are given in the form of a so-called source condition.
In here, we follow the lines of [9]. A minimum norm solution μ† is said to fulfill a source condition if

∃ h ∈ H : K∗∗h ∈ ∂‖ · ‖M(μ†). (4.1)

The subdifferential of the norm ‖ · ‖M is ∂‖ · ‖M(μ) = {ϕ ∈ (M(Ω,�m))∗:〈ϕ, μ〉M∗×M = ‖μ‖M and
‖ϕ‖M∗ = 1}. By the Hahn-Banach theorem, the subdifferential ∂‖ · ‖M(μ) is nonempty for all μ ∈ M(Ω,�m).
Hence the source condition is

∃ h ∈ H : 〈K∗∗h, μ†〉M∗×M = ‖μ†‖M and ‖K∗∗h‖M∗ = 1.

Using the definition of the adjoint and the Hahn-Banach theorem, the source condition can be written equiva-
lently in the form

∃ h ∈ H : 〈μ†,Kh〉 = ‖μ†‖M and ‖Kh‖∞ = 1. (4.2)
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In the Banach space theory of variational regularization, convergence rates results are given using generalized
Bregman distances.

Definition 4.2. Let U be a Banach space and J : U → [0,∞] a convex, proper functional with the subdiffer-
ential ∂J . The Bregman distance related to J is defined as the set-valued function

DJ(u, v) = {J(u) − J(v) − 〈ξ, u− v〉U∗×U : ξ ∈ ∂J(v)}, u, v ∈ U.

For the norm ‖ · ‖M the corresponding Bregman distance D‖ · ‖M(μ, ν) is the nonempty set

D‖ · ‖M(μ, ν) = {‖μ‖M − 〈ϕ, μ〉M∗×M : 〈ϕ, ν〉M∗×M = ‖ν‖M and ‖ϕ‖M∗ = 1}
for all μ, ν ∈ M(Ω,�m). The following convergence rates result with an a-priori parameter choice rule is valid:

• Convergence rates : with the parameter choice rule α ∼ δ, in the Bregman distance related to the total varia-
tion norm between a regularized solution and a minimum norm solution satisfying the source condition (4.2)
there exists an element which converges with rate O(δ), see [9], Theorem 2.

Remark 4.3. The source condition of the form (4.1) is related to the subdifferential of the penalty term and
hence usually requires information about the dual space of the space of the unknown. For finite Radon measures
the dual space (M(Ω,�m))∗ is complicated and therefore at first glance the source condition is hard to verify.
In this paper, the form of the inverse problem (1.1), i.e., the existence of the predual operator K, simplifies the
source condition, as has been seen in (4.2). Note that for this particular problem the dual space (M(Ω,�m))∗

or its norm are not needed in the source condition. This may not be the case for all inverse problems involving
finite Radon measures.

We can further modify the source condition (4.2). By the polar decomposition of μ† and the definition of the
total variation norm,

〈μ†,Kh〉 = ‖μ†‖M ⇐⇒
∫

Ω

(1 − (Kh)(x) · σ†(x)) d|μ†|(x) = 0.

According to the source condition (4.2), ‖Kh‖∞ = 1. Furthermore, |σ†(x)| = 1 for |μ†|-almost all x ∈ Ω.
Therefore the source element h has to fulfill (Kh)(x) · σ†(x) = 1 for |μ†|-almost all x ∈ Ω. Hence the source
condition can equivalently be given as

∃ h ∈ H :

{
(Kh)(x) · σ†(x) = 1 for |μ†|-almost every x ∈ Ω,

|(Kh)(x)| ≤ 1, x ∈ Ω.
(4.3)

Remark 4.4. Let us now consider an inverse problem K∗μ = f where μ ∈ M(Ω) and f ∈ H , i.e., the
case m = 1. Let μ† be a minimum norm solution of the problem. By the polar decomposition there exists
σ† ∈ L1

|μ†|(Ω) such that |σ†(x)| = 1 for |μ†|-almost all x ∈ Ω and μ† = σ†|μ†|. Let us redefine the value of σ†

to be 1 in the |μ†|-null set {x ∈ Ω : |σ†(x)| �= 1}. Then the space Ω can be divided into two disjoint parts;
Ω†

+ = {x ∈ Ω : σ†(x) = 1} and Ω†
− = {x ∈ Ω : σ†(x) = −1}.

The minimum norm solution μ† fulfills the source condition (4.3) if and only if there exist sets Ω̃+ ⊂ Ω†
+ and

Ω̃− ⊂ Ω†
−, and an element h ∈ H such that

{
|μ†|(Ω†

+ \ Ω̃+) = 0,
|μ†|(Ω†

− \ Ω̃−) = 0,
and

⎧⎪⎨⎪⎩
(Kh)(x) = 1, x ∈ Ω̃+,

(Kh)(x) = −1, x ∈ Ω̃−,
|(Kh)(x)| ≤ 1, x ∈ Ω.

(4.4)

Since Kh is a C0(Ω)-function, in view of (4.4) the source condition requires that the sets Ω̃+ and Ω̃− have to
be separated from each others and the boundary ∂Ω everywhere by a positive distance in Ω.
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Example 4.5 (continued). Consider now the elliptic boundary value problem (3.6). Let the assumptions made
in Example 3.4 be valid. Let f ∈ L2(Ω) and μ† ∈ M(Ω) be the (unique) solution of the inverse problem
K∗μ = f where K∗ is the solution operator for the elliptic problem (3.6).

With the notations of Remark 4.4, let us suppose that there exist sets Ω̃+ ⊂ Ω†
+ and Ω̃− ⊂ Ω†

− such that

{
|μ†|(Ω†

+ \ Ω̃+) = 0,
|μ†|(Ω†

− \ Ω̃−) = 0,
and

⎧⎪⎨⎪⎩
dist(Ω̃+, Ω̃−) > 0,
dist(Ω̃+, ∂Ω) > 0,
dist(Ω̃−, ∂Ω) > 0.

(4.5)

According to Remark 4.4, the existence of sets Ω̃+ and Ω̃− satisfying requirements (4.5) is a necessary condition
for μ† to fulfill the source condition (4.4).

Using, for instance, Theorem 1.4.1 in [33], we can construct functions g+, g− ∈ C∞(Ω) with disjoint compact
supports such that 0 ≤ g+, g− ≤ 1,

g+(x) =

{
1, x ∈ Ω̃+,

0, x ∈ Ω̃− ∪ ∂Ω, and g−(x) =

{
1, x ∈ Ω̃−,

0, x ∈ Ω̃+ ∪ ∂Ω.

Define u = g+ − g− and v = − div(A∇u) in the weak sense. Then u = Kv and u satisfies the conditions
in (4.4) for Kv, i.e., v is the required source element in L2(Ω). Hence the existence of sets Ω̃+ and Ω̃− with
properties (4.5) is actually the sufficient condition for μ† to fulfill the source condition (4.4) in the case of the
elliptic problem (3.6).

Note that for sparse solutions, i.e.,

μ† =
N∑

i=1

ajδxj , aj ∈ �, xj ∈ Ω,

the sets Ω̃+ and Ω̃− with properties (4.5) always exist and hence, sparse solutions satisfy the source condi-
tion (4.4).

5. A numerical minimization algorithm

The following section aims at proposing a numerical algorithm for the iterative minimization of the Tikhonov
functional (3.2) and to derive its convergence. From the numerical analysis point of view, this seems to be
challenging as we are dealing with algorithms for the non-reflexive space M(Ω,�m) which moreover does not
possess any smoothness, convexity or other properties useful for studying convergence in Banach spaces [36,50].
On the other hand, Radon measures are well-studied objects and many notions of convergence are available
(see, for instance, [24, 27]) for which one can hope that it holds for a numerical algorithm.

We propose an extension of the well-known iterative soft-thresholding algorithm for the solution of inverse
problems in �2 with (weighted) �1-penalization [14], i.e., solving for A ∈ L (�2, H) and f ∈ H the problem

min
u∈	2

‖Au− f‖2

2
+ α

∞∑
k=1

|uk|.

The algorithm proceeds as follows: take a stepsize 0 < s < 2/‖A‖2 and iterate{
u0 ∈ �2

un+1 = Sαs (un − sA∗(Aun − f))
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where Sαs denotes componentwise soft-thresholding defined by

Sαs(v)k = sgn(vk)max {0, |vk| − αs}.

This algorithm is known to converge in the sequence-space setting, in many cases at a q-linear rate [6, 12, 14].
However, this algorithm has no natural generalization to Radon measures, having its main reason in the failure
of point evaluation for a μ ∈ M(Ω,�m) in contrast to some u ∈ �2.

In the existing literature, this defect is often circumvented by going into the discrete setting as follows.
Consider again problem (3.2) in the situation of Proposition 3.1. We now assume that the sought measure μ
consists of finitely many fixed delta peaks located at Ωh = {x1, . . . , xN} ⊂ Ω and coefficients uk ∈ �m:

μ =
N∑

k=1

ukδxk
=

N∑
k=1

m∑
j=1

uk,j(ejδxk
)

with ej being the j-th unit vector in �m. Therefore, writing

u = (u1, . . . , uN) , Au =
N∑

k=1

m∑
j=1

uk,jK
∗(ejδxk

)

gives a linear and continuous operator between finite-dimensional vector spaces. Since the ansatz measures are
sums of delta peaks, the discretized problem then reads as

min
u∈�Nm

‖Au− f‖2
2

2
+ α

N∑
k=1

|uk|.

The iterative thresholding procedure can now be performed on u and is known to converge (note that uk is
penalized by a vector norm). The above corresponds to joint sparsity constraints for which the analysis is, for
instance, carried out in [25]. Indeed, this approach is often taken in practice when an L1(Ω,�m) or M(Ω,�m)
regularization term is considered [45].

Our approach stays, in contrast to the above, in the continuous domain and incorporates a way of adding and
removing delta peaks at arbitrary points of Ω. It realizes the above finite-dimensional soft-thresholding step as
a part of the algorithm but also provides a mechanism to iteratively modify the set of peak positions Ωh.

Subsequently, we investigate an algorithm for the minimization of the Tikhonov functional Tα in (3.2). In
order to formulate the algorithm, we need some prerequisites. First, define, for a t ≥ 0,

ϕ(t) =

{
αt if t ≤M0,

α
2M0

(t2 +M2
0 ) if t > M0,

M0 =
‖f‖2

2α
·

We moreover need the soft-thresholding operation associated with β > 0 and w ∈ �m

Sβ(w) = β(I − P∗)
(
w

β

)
with P∗ being the Euclidean projection on dual unit ball {|w|∗ ≤ 1}. For the Euclidean norm | · | = | · |2 on �m,
this corresponds to

Sα(w) = sgn(w)max (0, |w| − α),

for instance. Finally, denote by C| · | a constant for which |w| ≤ C| · | |w|2 holds for all w ∈ �m.
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With these prerequisites, the proposed minimization algorithm reads as follows:

Algorithm 5.1.

1. Initialize μ0 = 0, 0 < s∗ < 2/‖K∗‖2 and n = 0.
2. For a given μn =

∑Jn

j=1 u
n
j δxn

j
with un

j �= 0 and xn
j pairwise disjoint, compute

wn = −K(K∗μn − f)

and determine an xn∗ ∈ Ω such that |wn(xn∗ )|∗ = ‖wn‖∞.
3. Set νn = vnδxn∗ with

vn =

{
0 if |wn(xn∗ )|∗ ≤ α,

α−1M0‖wn‖∞sgn∗ (wn(xn
∗ )) if |wn(xn

∗ )|∗ > α.

4. Evaluate, with division by zero resulting in ∞,

sn = min

{
1,
α
∑Jn

j=1 |un
j | − ϕ (|vn|) − 〈μn − νn, wn〉
‖K∗(μn − νn)‖2

}
,

stop if sn = 0 with μn being a solution. Otherwise, define un+1/2
j ∈ �m, xn+1

j ∈ Ω for j = 1, . . . , Jn + 1 and
μn+1/2 by

μn+1/2 = μn + sn(νn − μn) =
Jn+1∑
j=1

u
n+1/2
j δxn+1

j
.

5. Set sn+1/2 = s∗/
(
C2

| · |(Jn + 1)
)

and compute

un+1
j = Sαsn+1/2

(
un

j − sn+1/2

(
K(K∗μn+1/2 − f)

)
(xn+1

j )
)

for j = 1, . . . , Jn + 1.
6. Remove the xn+1

j for which un+1
j = 0 such that the next iterate becomes

μn+1 =
Jn+1∑
j=1

un+1
j δxn+1

j

with un+1
j �= 0 for j = 1, . . . , Jn+1. Increase the counter n and continue with step 2.

It will turn out that this method is an instance of a combination between a generalized conditional gradient
method (see [5, 7]) and the well-known iterative soft-thresholding method (or, more generally, a generalized
gradient projection method [6]). We will first establish the connection to the generalized conditional gradient
method for which one step is performed in steps 2–4 in the algorithm. In order to make the generalized conditional
gradient method well-defined, we change the term α‖ · ‖M to ϕ ◦ ‖ · ‖M in the Tikhonov functional. This does,
however, not affect the solutions.

Lemma 5.2. The minimizers of Tα are exactly the minimizers of

T̃α(μ) =
‖K∗μ− f‖2

2
+ ϕ (‖μ‖M) .
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Proof. Let μ∗ be a minimizer of Tα. Necessarily,

α‖μ∗‖M ≤ Tα(μ∗) ≤ Tα(0) =
‖f‖2

2
=⇒ ‖μ∗‖M ≤ ‖f‖2

2α
= M0.

On the other hand, if μ∗ minimizes Tα over {‖μ‖M ≤M0}, then it is also a minimizer of Tα on the whole
M(Ω,�m): otherwise there would be a minimizer μ∗∗ of Tα with Tα(μ∗∗) < Tα(μ∗). But, ‖μ∗∗‖M ≤M0, hence
μ∗ was not a minimizer of Tα on {‖μ‖M ≤M0}.

Analogously, one sees that the minimizers of T̃α satisfy ‖μ‖M ≤M0 and coincide with the minimizers of T̃α

on {‖μ‖M ≤M0}. But, Tα = T̃α on {‖μ‖M ≤M0}, hence the minimizers of Tα and T̃α are the same. �

For carrying out the convergence analysis, we introduce some notation which will be common to the following
propositions and lemmas:

Definition 5.3.

(i) Let μ∗ be an arbitrary but fixed minimizer of Tα;
(ii) denote by r(μ) = Tα(μ) − Tα(μ∗) the functional distance;
(iii) introduce the primal-dual gap

G(μ, ν) := α‖μ‖M − ϕ (‖ν‖M) − 〈μ− ν, w〉.
Our convergence analysis regarding steps 2–4 is based on the presentation in [5] which is carried out in Hilbert
spaces. As we will see, some of the arguments can be transferred to the Banach space setting we consider here.
The first step consists in characterizing the νn in step 3 as the solution of a minimization problem.

Proposition 5.4. For a w ∈ C0(Ω,�
m) a minimizer of

min
ν∈M(Ω,�m)

−〈ν, w〉 + ϕ(‖ν‖M) (5.1)

is given by

ν =

{
0 if ‖w‖∞ ≤ α,

α−1M0‖w‖∞sgn∗ (w(x)) δx otherwise
(5.2)

with x ∈ Ω such that |w(x)|∗ = ‖w‖∞.
Moreover, the set-valued operator taking w to all solutions ν of (5.1) is bounded on bounded sets.

Proof. Note that since ϕ is convex on [0,∞[, a minimizer ν of (5.1) can be characterized by j∗∗w ∈ ∂(ϕ ◦
‖ · ‖M)(ν) where j∗∗ : C0(Ω,�m) → C0(Ω,�m)∗∗ = M(Ω,�m)∗ denoting the canonical injection. From convex
analysis it is known that the subgradient of ν → ϕ(‖ν‖M) is given by all q ∈ M(Ω,�m)∗ with

〈q, ν〉 = ‖q‖M∗‖ν‖M and ‖q‖M∗ ∈ ∂ϕ(‖ν‖M).

In the particular case of w ∈ C0(Ω,�
m), this reads as

〈ν, w〉 = ‖ν‖M‖w‖∞ and ‖w‖∞

⎧⎪⎨⎪⎩
≤ α if ν = 0,
= α if 0 < ‖ν‖M ≤M0,

= α‖ν‖M
M0

else.
(5.3)

Hence, ν = 0 is a minimizer if ‖w‖∞ ≤ α. In the case ‖w‖∞ > α, choose a x ∈ Ω such that |w(x)|∗ = ‖w‖∞
which exists by continuity. Hence, ν = α−1M0‖w‖∞sgn∗ (w(x)) δx satisfies ‖ν‖M > M0 and the definition of
the sign operator yields

〈ν, w〉 = α−1M0‖w‖∞sgn∗ (w(x)) · w(x)
= α−1M0‖w‖∞‖w‖∞ = ‖ν‖M‖w‖∞

as well as α‖ν‖M
M0

= ‖w‖∞. Consequently, ν is a minimizer of (5.1).
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Eventually, let w ∈ C0(Ω,�m) and ν ∈ M(Ω,�m) be a minimizer of (5.1). According to (5.3), each solution
satisfies ‖ν‖M ≤ M0 or ‖ν‖M = M0‖w‖∞

α implying that the operator taking w to all possible solutions ν is
bounded on bounded sets. �

This characterization allows us to obtain a useful estimate on the primal-dual gap for the choice w according
to step 2.

Lemma 5.5. For μ ∈ M(Ω,�m), w = −K(K∗μ− f) and ν a solution of (5.1), it holds that G(μ, ν) ≥ r(μ).

Proof. One easily checks that for each μ∗ ∈ M(Ω,�m)

−〈μ− μ∗, w〉 =
‖K∗μ− f‖2

2
− ‖K∗μ∗ − f‖2

2
+

‖K∗(μ∗ − μ)‖2

2

by bilinear computations. According to (i), we have for any minimizer μ∗ of Tα that ϕ(‖μ∗‖M) = α‖μ∗‖M and
one easily verifies that ϕ(‖μ‖M) ≥ α‖μ‖M for all μ. This leads, together with the fact that ν solves (5.1), to

G(μ, ν) ≥ −〈μ, w〉 + α‖μ‖M −
(

min
μ̄∈M(Ω,�m)

−〈μ̄, w〉 + ϕ (‖μ̄‖M)
)

≥ −〈μ− μ∗, w〉 + α‖μ‖M − α‖μ∗‖M
≥ ‖K∗μ− f‖2

2
− ‖K∗μ∗ − f‖2

2
+ α‖μ‖M − α‖μ∗‖M

= Tα(μ) − Tα(μ∗) = r(μ).

Hence the inequality holds as stated. �

Combining the latter two results with what is done in step 4, we can further derive a descent estimate for
the functional.

Proposition 5.6. Let μ ∈ M(Ω,�m) with Tα(μ) ≤ ‖f‖2/2, w = −K(K∗μ− f), ν a solution of (5.1) and

s = min
{

1,
α‖μ‖M − ϕ (‖ν‖M) − 〈μ− ν, w〉

‖K∗(μ− ν)‖2

}
·

Then, the convex combination μ̄ = μ+ s(ν − μ) satisfies

r(μ̄) − r(μ) ≤ −cr(μ)2

with c > 0 independent of μ and ν.

Proof. Observe again that Tα(μ) ≤ ‖f‖2/2 = Tα(0) implies ‖μ‖M ≤ M0 and that easy bilinear computations
show

‖K∗μ̄− f‖2

2
− ‖K∗μ− f‖2

2
= s〈K∗μ− f, K∗(ν − μ)〉 +

s2‖K∗(ν − μ)‖2

2
·

Since ϕ ◦ ‖ · ‖M is convex, we also have

ϕ (‖μ̄‖M) − ϕ (‖μ‖M) ≤ s (ϕ (‖ν‖M) − ϕ (‖μ‖M)) .

Together, noting that ϕ(‖μ‖M) = α‖μ‖M, it follows that

T̃α(μ̄) − T̃α(μ) ≤ s (〈μ− ν, w〉 + ϕ (‖ν‖M) − α‖μ‖M) +
s2‖K∗(ν − μ)‖2

2

= −sG(μ, ν) +
s2‖K∗(ν − μ)‖2

2
· (5.4)
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We now distinguish two cases: first, suppose ‖K∗(ν − μ)‖2 ≤ G(μ, ν) leading to s = 1 and, consequently, with
the help of Lemma 5.5, to

T̃α(μ̄) − T̃α(μ) ≤ −G(μ, ν) +
G(μ, ν)

2
= −G(μ, ν)

2
≤ −r(μ)

2
·

With

r(μ) = Tα(μ) − Tα(μ∗) ≤ Tα(μ) ≤ (‖K∗‖M0 + ‖f‖)2

2
+ αM0 ≤ C1,

such that C1 > 0, the above becomes

T̃α(μ̄) − T̃α(μ) ≤ −r(μ)2

2C1
·

We like to prove this kind of estimate also if ‖K∗(ν − μ)‖2 > G(μ, ν). In this case, s = G(μ, ν)/‖K∗(ν−μ)‖2 < 1,
so it plugging into (5.4), we arrive at

T̃α(μ̄) − T̃α(μ) ≤ − G(μ, ν)2

‖K∗(ν − μ)‖2
+

G(μ, ν)2

2‖K∗(ν − μ)‖2
= − G(μ, ν)2

2‖K∗(ν − μ)‖2

≤ − r(μ)2

2‖K∗(ν − μ)‖2
·

Since w = −K(K∗μ − f) is bounded if μ is bounded and ν is bounded if w is bounded (by, say C2 > 0, see
Prop. 5.4), there follows ‖K∗(ν − μ)‖2 ≤ ‖K∗‖2(C2 +M0)2 ≤ C3 for some C3 > 0. Thus

T̃α(μ̄) − T̃α(μ) ≤ −r(μ)2

2C3
·

In both of the two cases, T̃α(μ̄) ≤ T̃α(μ) = Tα(μ) ≤ Tα(0) and hence, ‖μ̄‖M ≤ M0 leads to T̃α(μ̄) = Tα(μ̄).
Finally, by choosing c = min {1/(2C1), 1/(2C3)} > 0 the desired estimate r(μ̄) − r(μ) ≤ −cr(μ)2 is
obtained. �

Taking a look at Algorithm 5.1, we see that ν chosen in steps 2–3 corresponds to a minimizing element
for (5.1) (see Prop. 5.4), so step 4 produces μn+1/2 = μ̄n according to Proposition 5.6. Hence, there is a c > 0
independent of n, such that

r(μn+1/2) − r(μn) ≤ −cr(μn)2

if Tα(μn) ≤ ‖f‖2/2 for all n. For μ0 this is indeed true, and it would be for all n, if also r(μn+1) ≤ r(μn+1/2)
for all n. Showing the latter is the goal of the following proposition which is inspired by the presentation
in [6].

Proposition 5.7. Let J ≥ 1, x1, . . . , xJ ∈ Ω be pairwise disjoint, and B : (�m)J → M(Ω,�m) be defined by
Bu =

∑J
j=1 ujδxj . Then, for all u1, . . . , uJ ∈ �m and 0 < s < 2/(C| · |‖K∗‖2J), it holds that

vj = Ssα

(
uj − s (B∗K(K∗Bu− f))j

)
, j = 1, . . . , J, (5.5)

satisfies

‖K∗Bv − f‖2

2
+ α

J∑
j=1

|vj | ≤ ‖K∗Bu − f‖2

2
+ α

J∑
j=1

|uj |. (5.6)
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Proof. First note that the norm of the operator B can be estimated as follows: For u1, . . . , uJ ∈ �m,

‖Bu‖M =
J∑

j=1

|uj | ≤
⎛⎝ J∑

j=1

1

⎞⎠1/2⎛⎝ J∑
j=1

|uj |2
⎞⎠1/2

≤
√
JC| · |

⎛⎝ J∑
j=1

|uj|22

⎞⎠1/2

implying that ‖B‖ ≤ √
JC| · | .

It is well-known [14,25] that the soft-thresholding operator η = Sβ(ξ) is the solution operator to

min
η∈�m

|η − ξ|22
2

+ β|η|. (5.7)

We nevertheless give a short argumentation for the sake of completeness. It is easily seen, mostly analogous to
Proposition 3.5, that the Fenchel dual problem is equivalent to

min
ζ∈�m

|ζ − ξ|22
2

+ I{|ζ|∗≤β}(ζ)

with the respective solutions satisfying η∗ = ξ − ζ∗. The above problem is just the projection of ξ onto the ball
{|ζ|∗ ≤ β} which can be expressed as P{|ξ|∗≤β}(ξ) = βP∗(ξ/β). Together, it follows that η∗ = β(I −P∗)(ξ/β) =
Sβ(ξ).

Denote by wj = (−B∗K(K∗Bu − f))j . Since vj = Ssα(uj + swj) is the solution of the problem (5.7), we can
express it with subgradients and use subgradient calculus:

0 ∈ ∂

(
| · − uj − swj |22

2
+ αs| · |

)
(vj) ⇔ uj + swj − vj ∈ sα∂| · |(vj).

In terms of the subgradient inequality, the latter just reads as

(uj + swj − vj) · (ηj − vj) ≤ s
(
α|ηj | − α|vj |

)
.

Introducing the quantities Gj = α|uj | − α|vj | − wj · (uj − vj), setting ηj = uj and rearranging yields

|uj − vj |22 ≤ s
(
α|uj | − α|vj | + wj · (uj − vj)

)
= sGj . (5.8)

In particular, Gj ≥ 0. Next, observe that

‖K∗Bv − f‖2

2
− ‖K∗Bu− f‖2

2
− 〈K∗Bu− f, K∗B(v − u)〉 =

‖K∗B(v − u)‖2

2
·
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So using
∑J

j=1 wj · (uj − vj) = 〈K∗Bu− f, K∗B(v − u)〉, the estimate on ‖B‖, (5.8), the choice of s and (5.8)
again, we get

‖K∗Bv − f‖2

2
− ‖K∗Bu − f‖2

2
+ α

J∑
j=1

|vj | − α
J∑

j=1

|uj |

=
‖K∗B(v − u)‖2

2
+ 〈K∗Bu− f, K∗B(v − u)〉 + α

⎛⎝ J∑
j=1

|vj | − |uj|
⎞⎠

=
‖K∗B(v − u)‖2

2
−

J∑
j=1

α|uj | − α|vj | + wj · (uj − vj)

≤ ‖K∗‖2‖B‖2

2

J∑
j=1

|vj − uj |22 −
J∑

j=1

Gj

≤
(
JC2

| · |‖K∗‖2

2
− 1
s

)
J∑

j=1

|uj − vj |22 ≤ 0.

The desired statement now immediately follows. �

By examining the notation, it is easy to see that step 5 of Algorithm 5.1 corresponds to the thresholding
step (5.5) and that (5.6) is just r(μn+1) ≤ r(μn+1/2). Moreover, neglecting delta peaks with zero height as done
in step 6 does not change μn+1. Thus, we have all the ingredients to prove the subsequential weak* convergence
of Algorithm 5.1 to minimizers of the Tikhonov functional (3.2).

Theorem 5.8. Algorithm 5.1 produces a minimizing sequence {μn} of measures for the functional Tα with rate
r(μn) ≤ Cn−1 for some C > 0. Each subsequence of {μn} possesses a weak* convergent subsequence whose limit
μ∗ is a minimizer of Tα. If the minimizer is unique, the whole sequence converges to μ∗ in the weak* sense.

Proof. Let us first prove, by induction, that {r(μn)} is a non-increasing sequence, i.e., r(μn) ≤ r(μn−1) ≤ . . . ≤
r(μ0) for all n. If this holds for some n, r(μn) ≤ r(μ0) and consequently, Tα(μn) ≤ Tα(μ0) = ‖f‖2/2, so
Proposition 5.6 can be applied (note again, that μn+1/2 corresponds to μ̄n by virtue of Prop. 5.4). This leads
to r(μn+1/2) ≤ r(μn) and by virtue of Proposition 5.7, we also have r(μn+1) ≤ r(μn). Hence, {r(μn)} is
non-increasing.

To prove that {μn} is a minimizing sequence, it suffices to obtain the rate. Note that Propositions 5.6 and 5.7
also yield a c > 0 such that

r(μn+1) − r(μn) ≤ −cr(μn)2

for each n. Denoting rn = r(μn) we employ the following widely-known trick: Estimate

1
rn+1

− 1
rn

=
rn − rn+1

rn+1rn
≥ cr2n
rn+1rn

≥ c > 0,

sum up
1
rn

− 1
r0

=
n−1∑
i=0

1
ri+1

− 1
ri

≥
n−1∑
i=0

c = cn,

and rearrange to rn ≤ (r−1
0 + cn)−1 ≤ Cn−1 for some C > 0.

The rest can be deduced from functional-analytic arguments: any subsequence of {μn} is also a minimizing
sequence and hence, another subsequence exists for which there is a weak* limit μ∗ which is a minimizer (the
latter from the weak* lower semi-continuity, also see Prop. 3.1). In case of uniqueness of μ∗, the statement
follows from the usual subsequence argument. �



INVERSE PROBLEMS IN SPACES OF MEASURES 209

5.1. Acceleration strategies

It is obvious from the proof that Algorithm 5.1 does still converge if the soft-thresholding step (step 5) is left
out. We added this step, however, to encourage the removal of peaks from the iterates. This may be helpful in
practical implementations, as it is usually more efficient to deal with a lower number of peaks.

Note, moreover, that the algorithm also still converges if step 5 is replaced with or supplemented by any
method which do not increase the functional value. As it is shown in Proposition 5.7, performing one soft-
thresholding iteration belongs to the class of such methods. One can as well repeat this iteration several times
and the overall convergence as well as the rate will not be affected provided that the number of repetitions stays
bounded.

In this spirit, the soft-thresholding algorithm, may be replaced by suitable application of an algorithm with
better asymptotic convergence rate, like, for instance of Nesterov-type [42] like the “fast iterative shrinkage-
thresholding algorithm” (FISTA) [3], if sufficiently many iterations are carried out such that the functional
value is not increased.

Provided that the predual forward operator K is mapping into the space of continuously differentiable func-
tions, it is moreover possible to insert a step which moves the position of the peaks according to the gradient
flow of the discrepancy functional with respect to the peak positions. Concerning a single peak, this idea has
also been presented in [40], here we adapt it to our general framework.

Proposition 5.9. Suppose that Ω ⊂ �
d is a non-empty, open subset and K : H → C1

0(Ω,�m) is linear and
continuous. Let μ =

∑J
j=1 ujδx0

j
with uj �= 0 and x0

j ∈ Ω pairwise disjoint. Then, there exists a t0 > 0 for which
the system of ordinary differential equations⎧⎪⎪⎨⎪⎪⎩

∂xj(t)
∂t

= −∇
⎛⎝K

⎛⎝K∗
J∑

j=1

ujδxj(t) − f

⎞⎠⎞⎠ (xj(t))
T
uj

xj(0) = x0
j , j = 1, . . . , J

(5.9)

admits a solution for t ∈ ]0, t0[. Each solution on ]0, t0[ satisfies

∂

∂t

⎛⎝Tα

⎛⎝ J∑
j=1

ujδxj(t)

⎞⎠⎞⎠ ≤ 0 for all t ∈ ]0, t0[.

Proof. We first show that the mapping Φ : ΩJ → � given by

Φ(x) = Tα (μ(x)) , μ(x) =
J∑

j=1

ujδxj

is continuously differentiable with gradient

(∇Φ(x))j = ∇ (K (K∗μ(x) − f)) (xj)Tuj .

For that purpose, let h = (h1, . . . , hJ) ∈ (�d)J and consider, for 0 < τ < τ0 with τ0 sufficiently small such that
x + τh ∈ ΩJ and {(x+ τh)j} pairwise distinct. Then, the difference quotient reads, since the regularization
penalty cancels, as

1
τ

(Tα (μ(x+ τh)) − Tα (μ(x))) =
1
τ

〈
K∗ (μ(x + τh) − μ(x)),

1
2
K∗ (μ(x+ τh) + μ(x)) − f

〉
(�d)J

=
〈

1
τ

(μ(x+ τh) − μ(x)), K (K∗μ(x) − f)
〉

(�d)J

− ‖K∗ (μ(x+ τh) − μ(x))‖2

2τ
·
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We examine the convergence of the first term. First, denote, once again, by w = −K(K∗μ(x)− f) as well as by
∇w(x) the Jacobian of w in x, so it follows by the fact that K maps into C1

0(Ω,�m),

lim
τ→0

1
τ
〈μ(x+ τh) − μ(x), K (K∗μ(x) − f)〉 = lim

τ→0
−

J∑
j=1

uj · w(xj + τhj) − w(xj)
τ

=
J∑

j=1

−uj · ((∇w)(xj )hj) .

On the other hand, estimate the norm of μ(x+ τh)− μ(x) in C1
0(Ω,�m)∗ by testing with some v ∈ C1

0(Ω,�m):

〈μ(x+ τh) − μ(x), v〉 =
J∑

j=1

uj · (v(xj + τhj) − v(xj))

≤ |τ |
J∑

j=1

∫ 1

0

|uj||∇v(xj + sτhj)||hj |2 ds ≤ C|τ |‖∇v‖∞,

hence ‖μ(x+ τh) − μ(x)‖(C1)∗ ≤ C|τ |. The second term thus converges to zero since

0 ≤ lim
τ→0

‖K∗ (μ(x+ τh) − μ(x))‖2

2τ
≤ lim

τ→0

C2τ2‖K∗‖2

2τ
= 0.

This shows that x → Tα (μ(x)) is Gâteaux-differentiable with the claimed derivative. The Fréchet-
differentiability then follows from the continuity of the Gâteaux-derivative with respect to x and the finite-
dimensionality of ΩJ ⊂ (�d)J .

Thus, due to Peano’s existence theorem, the ordinary differential equation (5.9) has a solution on an interval
[0, t0[ for some t0 > 0. If x : [0, t0[ → ΩJ is a solution, we finally see that for each t ∈ ]0, t0[:

∂(Φ ◦ x)
∂t

(t) =
〈
∂x

∂t
(t), ∇Φ (x(t))

〉
(�d)J

= −
J∑

j=1

|∇Φ (x(t))j |22 ≤ 0

which completes the proof. �

Consequently, one gets functional descent if one inserts, in step 6, before returning to step 2, the solution
of (5.9) with uj and x0

j such that μn+1 =
∑J

j=1 ujδx0
j

and replaces μn+1 by
∑J

j=1 ujδx(t)j
for some t ∈ ]0, t0[.

In practice, one has to employ numerical schemes for the solution of the ODE. A scheme and the associated
step-lengths should, of course, be chosen such that it does not increase the value of the Tikhonov-functional,
for instance, one could perform a step of the explicit Euler scheme with a step-length which ensures functional
descent.

Finally, we like to mention that one could also employ some trial-and-error peak merging approaches to
reduce the functional, for instance, if Ω is a convex subset of a normed space, choosing

μn =
J∑

j=1

ujδxj , 1 ≤ j0 < j1 ≤ J,

μn+1 =

⎧⎨⎩(uj0 + uj1)δ 1
2 (xj0+xj1 ) +

∑
j 	=j0, j 	=j1

ujδxj if Tα(μn+1) ≤ Tα(μn)

μn else
(5.10)

for some j0 and j1, for instance chosen such that |xj0 − xj1 |2 is minimal. Again, this step supplements
Algorithm 5.1 without affecting convergence.

To summarize, following steps could be inserted after step 5 to improve convergence:

• Multiple steps of the soft-thresholding procedure in step 5 or suitably many steps of FISTA instead;
• solving the ordinary differential equation (5.9) for some positive time, if possible;
• trying to merge some peaks according to the trial-and-error method (5.10), if possible.
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6. Numerical computations

To show the performance of Algorithm 5.1, we apply it for a one-dimensional version of the deconvolution
problem presented in Example 3.3. We assume that the convolution kernel k is a cubic spline with respect to a
fine uniform grid of size hf > 0, i.e.,

k =
L−2∑

j=−L+2

kjψj , ψj(x) = B0

(
x

hf
− j

)
,

for some L ≥ 2 and with the standard cubic box spline

B0(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x < −2,

(x+ 2)3 for − 2 ≤ x < −1,

−3(x+ 1)3 + 3(x+ 1)2 + 3(x+ 1) + 1 for − 1 ≤ x < 0,

3(x− 1)3 + 3(x− 1)2 − 3(x− 1) + 1 for 0 ≤ x < 1,

−(x− 2)3 for 1 ≤ x < 2,

0 for 2 ≤ x.

On a possibly coarser grid with size hc = mhf , m being a positive integer, we define the operator K for a
v = (v0, . . . , vN−1) ∈ �N by

(Kv)(x) =
N−1∑
i=0

vik(x− ihc) (6.1)

which corresponds to a discrete adjoint convolution of k with the data given in the points 0, hc, . . . , (N − 1)hc.
Equipping �N with the standard scalar product and letting Ω = ]−Lhf , (N − 1)hc + Lhf [, one sees that K :
�

N → C0(Ω) is linear and continuous and hence, satisfies the requirements of Proposition 3.1 and in particular
of Section 5. It is moreover easy to see that the adjoint corresponds to

(K∗μ)i = (k ∗ μ)(ihc), i = 0, . . . , N − 1,

i.e., is the convolution of a measure with k evaluated at the grid points with respect to hc. Hence, with data
f = (f0, . . . , fN−1) defined in these points, the Tikhonov functional to minimize reads as

Tα(μ) =
1
2

(
N−1∑
i=0

((k ∗ μ)(ihc) − fi)
2

)
+ α‖μ‖M.

Note that we still like to minimize over the space M(Ω) which we do not discretize.
Algorithm 5.1 can actually be performed in this semi-continuous setting. For μ consisting of finitely many

delta peaks, K∗μ corresponds to finite point evaluations of k as well as computing finite linear combinations.
The function w = −K(K∗μ − f), however, is defined on a continuum. However, the only thing we have to
compute is a point in which |w| becomes maximal, for which it suffices to know the critical points of w. These
can be easily obtained since Kv, v = (v0, . . . , vN−1) ∈ �N , is a cubic spline with respect to the grid hf (as hc

is a integer multiple of hf , see (6.1)):

Kv =
N−1∑
i=0

vi

L−2∑
j=−L+2

kjψj(· − imhf) =
N−1∑
i=0

L−2∑
j=−L+2

vikjψj+im.
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Table 1. Top: the values and positions for μ†, μ and the corresponding extremal points of
w for the first deconvolution experiment found by Algorithm 5.1. Bottom: the outcome of the
iterative soft-thresholding algorithm [14] for sparse spike deconvolution as proposed in [17].

Successive peak insertion and thresholding

μ† =
∑

i u†
i δx

†
i

μ =
∑

i uiδxi w = −K(K∗μ − f)

x†
i u†

i xi ui xex w(xex)

0.100000 1.000000 0.104256 0.401399 0.104256 3.000000
0.500000 2.000000 0.496413 1.262217 0.496412 3.000000
0.600000 5.000000 0.597352 4.541020 0.597352 3.000000
0.800000 1.000000 0.786699 0.698377 0.786699 3.000000

Iterative soft-thresholding for sparse spike deconvolution

μ† =
∑

i u†
i δx

†
i

μ =
∑

i uiδxi w = −K(K∗μ − f)

x†
i u†

i xi ui xex w(xex)

0.100000 1.000000 0.102957 0.404129 0.105181 3.007119
0.500000 2.000000 0.496774 1.258682 0.494902 3.021706
0.600000 5.000000 0.597460 4.546153 0.597062 2.941770
0.800000 1.000000 0.788443 0.688498 0.785062 3.013024

Hence, to compute all critical point of some w, we solve w′(x) = 0 on each suitable subinterval [jhf ,
(j + 1)hf ] which corresponds to solving a quadratic equation (which usually can be done up to machine pre-
cision). By determining the maximizer of |w| in these points, we are able to compute x such that |w(x)| =
‖w‖∞. Steps 3–4 of Algorithm 5.1 can again be evaluated directly and step 5 only requires finite point evalu-
ation for some K(K∗μ − f). In summary, this shows that one is able to perform the successive peak insertion
and thresholding method in a semi-continuous setup. Note that the above arguments heavily depend on the fact
that the convolution kernel is a cubic spline. An adaptation to other forward operators K∗, however, seems to
be possible if one knows the image of each δ-peak and has a way to compute the extremal points of the dual
variable w accurately.

We implemented and tested Algorithm 5.1 for the deconvolution problem. Taking advantage of the special
structure of the convolution operator, we also added the ODE-solving step (5.9) as well as the peak-merging
step (5.10) to improve the performance. Two experiments were performed. For the first, we chose N = 100 data
points and hc = hf = 0.01, a true solution with four delta peaks and a spline convolution kernel approximating
a Gaussian with variance σ2 = 0.05. To challenge the algorithm and model, the data has been contaminated
by quite heavy Gaussian noise (standard variance σ2 = 1

4 ). The regularization parameter was chosen α = 3
and the iteration was stopped when a decrease in the primal-dual gap G(μn, νn) to the fraction 10−9 with
respect to the zero initial guess has been observed (which happened after 2647 iterations). As a “sparsifying”
post-processing step, we merged the peaks belonging to an extremal point of w by computing the average of the
positions weighted by the magnitude. Figure 1 shows, among the used input data, the obtained approximate
solution μ, its image K∗μ and the associated dual variable w. Moreover, peak positions and heights for μ as well
as the positions and values of the corresponding extremal points of w are shown in Table 1. We also include,
for comparison, the values for the sparse spike deconvolution method proposed in [17] performed with the same
data, stopping criterion (which was reached after 18 314 iterations) and postprocessing steps, but with a fixed
uniform grid of size hf = 0.01.

One sees that for Algorithm 5.1 with peak moving and merging, the number of peaks is recovered exactly
and the positions match quite well. Due to the regularization, however, the recovered peak heights are generally
lower than for the true data. This is due to the model: as one can see by inspecting the extremal points of



INVERSE PROBLEMS IN SPACES OF MEASURES 213

s
−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0
1
2
3
4
5 μ†

s
0 0.2 0.4 0.6 0.8 1

0
1
2
3
4
5

K∗μ†

f

s
−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0
1
2
3
4
5 μ

s
0 0.2 0.4 0.6 0.8 1

0
1
2
3
4
5

K∗μ

f

s
−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−3
−2
−1
0
1
2
3

−α

α

w

Figure 1. First numerical deconvolution experiment. Upper row: the exact solution μ† (left),
its image K∗μ† under convolution and given noisy data f (right). Second row: the numeri-
cal approximation μ (left) and its image K∗μ compared to the data (right). Third row: the
corresponding dual variable w = −K(K∗μ− f).

w = −K(K∗μ − f), the positions almost perfectly match the reconstructed peak positions and the values of
w are up to six digits close to α. Also, the values of w in remaining extremal points are less than α, hence
the numerical solution μ satisfies, up to a certain accuracy the continuous optimality conditions (3.8). The
sparse spike deconvolution method of [17] is also able to recover the exact number of peaks. The solution
moreover suffers from the same model-related inaccuracies such as the reduction of magnitude. However, due
to the computations being performed on a fixed grid, the optimality conditions do not match as well as for the
semi-discrete method of Algorithm 5.1.

The second numerical experiment was performed for N = 400 data points, hc = hf = 0.0025 and an exact
solution μ† consisting of six delta peaks. Convolution kernel and noise level were the same as for the first
experiment, the regularization parameter was α = 7. With the stopping criterion as above, the algorithm
took 9874 iterations to compute an approximate solution. The results are depicted in Figure 2. Moreover, the
tabulated values for the true solution, the approximate solution and the extremal points of the dual variable
can be found in Table 2. In a setup analog to the first experiment, we additionally tested the iterative soft-
thresholding procedure for sparse spike deconvolution whose outcome is shown in the same table. However, as
the primal-dual gap did not reduce sufficiently, we stopped the procedure after 100 000 iterations. The results
show that Algorithm 5.1 was again able to detect the correct number of peaks and that the numerical solution
almost perfectly satisfies the continuous optimality conditions. In contrast to that, the results for the sparse
spike deconvolution are less accurate and took significantly more iterations to compute.

Finally, in a third experiment we were interested in the impact of the acceleration steps. For this purpose,
we repeated the first experiment going through all combinations of peak moving and peak merging. As the
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Figure 2. Second numerical deconvolution experiment. Upper row: The exact solution μ†
(left), the exact and noisy data K∗μ† and f (right). Second row and third row: the numerical
results (also see Fig. 1).
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Figure 3. Comparison of the evolution of the primal-dual gap G(μn, νn) for different acceler-
ation strategies.

primal-dual gap G(μn, νn) is an upper bound for the functional distance r(μn) (see Lem. 5.5), we observed the
evolution of this value with respect to the iteration count, see Figure 3. Note carefully that computation times
for each iteration differs for the acceleration strategies. No acceleration is faster than peak moving/merging
which is in turn faster than performing both. As a result, we found that no acceleration and pure peak merging
is significantly slower than each strategy involving peak moving. In fact, the former two strategies were not
able to reduce the primal-dual gap to an acceptable amount within 10 000 iterations. The combination of peak
moving and peak merging took the least iterations to reach the stopping criterion.
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Table 2. The values and positions for μ†, μ and the corresponding extremal points of w for the
second deconvolution experiment found by Algorithm 5.1 (top) and iterative soft-thresholding
algorithm for sparse spike deconvolution (bottom), respectively (also see Tab. 1).

Successive peak insertion and thresholding

μ† =
∑

i u†
i δx

†
i

μ =
∑

i uiδxi w = −K(K∗μ − f)

x†
i u†

i xi ui xex w(xex)

0.150000 1.250000 0.127098 0.643334 0.127098 7.000000
0.200000 2.500000 0.191446 2.940414 0.191446 6.999999
0.500000 2.000000 0.503140 1.627235 0.503140 7.000000
0.600000 5.000000 0.599817 4.642194 0.599817 7.000000
0.825000 3.500000 0.824192 3.164055 0.824192 7.000000
0.900000 1.500000 0.894472 1.386177 0.894472 7.000000

Iterative soft-thresholding for sparse spike deconvolution

μ† =
∑

i u†
i δx

†
i

μ =
∑

i uiδxi w = −K(K∗μ − f)

x†
i u†

i xi ui xex w(xex)

0.150000 1.250000 0.126459 0.625429 0.123647 7.031196
0.200000 2.500000 0.191219 2.959970 0.193652 6.826450
0.500000 2.000000 0.502885 1.620953 0.503216 7.060665
0.600000 5.000000 0.599731 4.651858 0.600533 6.852985
0.825000 3.500000 0.824316 3.173683 0.823512 6.864535
0.900000 1.500000 0.894561 1.377846 0.896583 7.028022

7. Summary and conclusions

Tikhonov regularization for vector-valued finite Radon measures as the solutions of ill-posed linear inverse
problems can be put into a proper functional analytic framework which ensures existence, uniqueness (where
applicable) and desirable regularization properties. This framework moreover leads to a flexible abstract nu-
merical algorithm for which descent properties with some rate as well as (subsequential) weak* convergence can
be proven. It can easily be amended by various acceleration techniques. As the proposed algorithm produces
delta-peak iterates, it is in particular well-suited for the recovery of sparse solutions. Furthermore, the structure
of the algorithm allows computations directly on the space of finite Radon measures with only the data space
being discretized. However, as the algorithm converges only in the weak* sense, it might produce an indefinite
number of delta peaks, in particular, if the solution is non-sparse. Nevertheless, numerical computations con-
firm the applicability of the method and show that it is possible to perform accurate sparse deconvolution in a
reasonable number of iterations; even in the presence of considerable noise. The standard alternative of iterative
soft-thresholding on a fixed grid is generally less accurate and needs considerably more iterations.

Appendix A. Weak* density in the space of measures

For the sake of completeness, we like to give a proof of the density results claimed in Remark 2.1.
(i) The density of the set {wLd : w ∈ L2(Ω,�m)} can be seen as follows. Construct the operators

Mε : L2(Ω,�m) → C0(Ω,�
m) by Mε : w → (χΩεw) ∗ Gε/2 where Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε} and

Gε(x) = ε−dG(x/ε) with G ∈ C∞
0 (Ω) being a standard mollifier. It is well-known that each Mε is continuous.
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Now each M∗
ε : M(Ω,�m) → L2(Ω,�m) is continuous and yields, for μ ∈ M(Ω,�m), a sequence wε = M∗

ε μ
such that

〈wε, u〉2 =
m∑

i=1

∫
Ω

u(x)wε
i (x) dx = 〈wεLd, u〉 (A.1)

for each u ∈ C0(Ω,�
m).

Consider a u ∈ C(Ω,�m) with compact support. The function u is uniformly continuous, thus, choose for
δ > 0 given an ε > 0 such that |u(x) − u(y)|∗ ≤ δ/‖G‖1 whenever |x− y|2 ≤ ε. Moreover, one can choose ε
small enough such that χΩεu = u and so Mεu = u ∗Gε/2. For each x ∈ Ω follows

|u(x) −Mεu(x)|∗ =

∣∣∣∣∣
∫
{|x−y|2≤ε/2}

(u(y) − u(x))Gε/2(x− y) dy

∣∣∣∣∣
∗

≤
(

sup
{|x−y|2≤ε/2}

|u(x) − u(y)|∗
)∫

�d

|Gε/2(x− y)| dy ≤ δ.

Hence ‖u−Mεu‖∞ → 0 as ε→ 0. Thus by (A.1) and the continuity,

〈wεLd, u〉 = 〈μ, Mεu〉 → 〈μ, u〉 as ε→ 0

for each u ∈ C(Ω,�m) with compact support. This implies the assertion wεLd ⇀∗ μ since convergence was
checked against a strongly dense (or norm dense) subset of C0(Ω,�m).

(ii) Denote by Qi
x = 2−i]− 1

2 ,
1
2 ]d + x for x ∈ �

d and i ∈ �. Since the claim is trivial for μ = 0, pick
μ ∈ M(Ω,�m), μ �= 0 and define the sequence

μi =
∑

x∈2−i�d∩Ω

μ(Qi
x ∩Ω)δx.

Obviously, each μi is a finite linear combination of δ-peaks with ‖μi‖M ≤ ‖μ‖M. Choose u ∈ C(�d,�m) with
compact support in Ω. We may find, by uniform continuity of u, an i0 ∈ � such that for each i ≥ i0, x ∈ 2−i

�
d

and y ∈ Qi
x it follows that |u(y) − u(x)|∗ ≤ ε/‖μ‖M. Hence,∣∣∣∣∫

Ω

u dμ−
∫

Ω

u dμi

∣∣∣∣ ≤ ∑
x∈2−i�d

∣∣∣∣∣
∫

Qi
x∩Ω

u(y) − u(x) dμ(y)

∣∣∣∣∣
≤

∑
x∈2−i�d

∫
Qi

x∩Ω

|u(y) − u(x)|∗ d|μ| ≤ ε.

This implies μi ⇀∗ μ as convergence was tested against a set which is strongly dense in C0(Ω,�
m).
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[33] L. Hörmander, The Analysis of Linear Partial Differential Operators I. Springer-Verlag (1990).

[34] V.K. Ivanov, V.V. Vasin and V.P. Tanana, Theory of linear ill-posed problems and its applications, 2nd edition. Inverse and
Ill-posed Problems Series, VSP, Utrecht (2002).

[35] H. Lee, A. Battle, R. Raina and A.Y. Ng, Efficient sparse coding algorithms, in Advances in Neural Information Processing
Systems, edited by B. Schölkopf, J. Platt and T. Hoffman. MIT Press 19 (2007) 801–808.

[36] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces. Springer (1979).

[37] D.A. Lorenz, Convergence rates and source conditions for Tikhonov regularization with sparsity constraints. J. Inverse Ill-Posed
Probl. 16 (2008) 463–478.

[38] D.A. Lorenz and D. Trede, Optimal convergence rates for Tikhonov regularization in Besov scales. Inverse Prob. 24 (2008)
055010.

[39] D.A. Lorenz and D. Trede, Greedy deconvolution of point-like objects, in Proc. of SPARS’09 (2009).

[40] Y. Mao, B. Dong and S. Osher, A nonlinear PDE-based method for sparse deconvolution. Multiscale Model. Simul. 8 (2010)
965–976.

[41] L.M. Mugnier, T. Fusco and J.-M. Conan, MISTRAL: a myopic edge-preserving image restoration method, with application
to astronomical adaptive-optics-corrected long-exposure images. J. Opt. Soc. Am. A 21 (2004) 1841–1854.

[42] Y.E. Nesterov, A method of solving a convex programming problem with convergence rate O(1/k2). Soviet Math. Dokl. 27
(1983) 372–376.

[43] A. Neubauer, On enhanced convergence rates for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces.
Inverse Prob. 25 (2009) 065009.



218 K. BREDIES AND H.K. PIKKARAINEN

[44] E. Resmerita and O. Scherzer, Error estimates for non-quadratic regularization and the relation to enhancement. Inverse Prob.
22 (2006) 801–814.

[45] O. Scherzer and B. Walch, Sparsity regularization for Radon measures, in Scale Space and Variational Methods in Computer
Vision, edited by X.-C. Tai, K. Morken, M. Lysaker and K.-A. Lie. Springer-Verlag (2009) 452–463.

[46] G. Stadler, Elliptic optimal control problems with L1-control cost and applications for the placement of control devices.
Comput. Optim. Appl. 44 (2009) 159–181.
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