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ANALYSIS OF HAMILTON-JACOBI-BELLMAN EQUATIONS ARISING
IN STOCHASTIC SINGULAR CONTROL ∗

Ryan Hynd1

Abstract. We study the partial differential equation

max {Lu − f, H(Du)} = 0

where u is the unknown function, L is a second-order elliptic operator, f is a given smooth function
and H is a convex function. This is a model equation for Hamilton-Jacobi-Bellman equations arising
in stochastic singular control. We establish the existence of a unique viscosity solution of the Dirichlet
problem that has a Hölder continuous gradient. We also show that if H is uniformly convex, the gradient
of this solution is Lipschitz continuous.
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1. Introduction

In this paper, we consider PDE associated with a general class of stochastic singular control problems. This
is a class of nonlinear, second-order PDE that each have a free boundary determined by a convex gradient
constraint. Using PDE methods, we show that the Dirichlet problem has a unique solution and derive some
regularity properties of the gradient of this solution. Namely, we establish that the gradient is Hölder continuous
and also that if H is uniformly convex, the gradient is Lipschitz continuous. Finally, we give a brief discussion of
how this type of equation arises in control theory and show how our regularity results apply to the motivating
control problems.

The PDE we focus on is {
max{Lu− f,H(Du)} = 0, x ∈ O

u = 0, x ∈ ∂O,
(1.1)
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where O ⊂ R
n is open and bounded with smooth boundary ∂O and f is a smooth, non-negative function on O.

We assume that L is the linear differential operator

Lψ(x) := −a(x) ·D2ψ + b(x) ·Dψ + c(x)ψ, ψ ∈ C2(O)

with smooth coefficients a : O → S(n), b : O → R
n and c : O → R. Here A · B := trAtB and S(n) denotes the

set of n× n symmetric matrices with real entries. We shall further assume that L is (uniformly) elliptic:

a(x)ξ · ξ ≥ γ|ξ|2, for all x ∈ O, ξ ∈ R
n (1.2)

for some γ > 0. The final assumption on L that we will make is

c(x) ≥ δ, x ∈ O

where δ is a positive constant.
Our central result is

Theorem 1.1.

(i) Assume that H : R
n → R satisfies {

H is convex
H(0) < 0.

(1.3)

Then there is a unique viscosity solution

u ∈ C1,α
loc (O) ∩ C0,1(O)

of (1.1), for any α ∈ (0, 1);
(ii) if, in addition to (1.3), H satisfies {

H is uniformly convex
D2H ∈ L∞

loc(R
n)

(1.4)

then u ∈ C1,1
loc (O).

We employ techniques from the theory of viscosity solutions of scalar non-linear elliptic PDE to prove the
existence and uniqueness of solutions of (1.1). We also use a penalization technique similar to the one introduced
by Evans in [3] and refined by Wiegner [11] and Ishii and Koike [7] to establish regularity of solutions. More
precisely, we study the penalized equation{

Luε + βε(H(Duε)) = f, x ∈ O

uε = 0, x ∈ ∂O,
(1.5)

where (βε)ε>0 is what we call a penalty function. βε can be thought of as a smoothing of z �→ (z/ε)+. We show
that this equation has a unique solution uε that is bounded in W 2,p

loc (O) for all ε positive and small enough and
that uε converges to u in C1

loc(O), though a sequence of ε tending to 0.
Our result is novel in the fact that it only assumes convexity of the gradient constraint function. Some previous

regularity results apply to the case of the gradient constraint function

H(p, x) = |p| − g(x), (p, x) ∈ R
n ×O, (1.6)
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where g is a smooth, positive function on O. While we do not consider gradient constraints that depend on
x, a close inspection of the methods we employ indicate they would apply to a large class of these gradient
constraints. For instance, if we assume that H ∈ C(Rn ×O) satisfies⎧⎪⎨

⎪⎩
p �→ H(p, x) is convex for each x ∈ O

H(0, x) < 0 for each x ∈ O

x �→ H(p, x) ∈ C0,1(O),

then a modification of our methods would establish part (i) of Theorem 1.1 for solutions of equation (1.1) with
this H .

Our goal was to identify general structural conditions on the type of gradient constraints for which pe-
nalization methods are successful at yielding regularity results. We believe that assumptions (1.3) and (1.4)
accomplish this. In addition, we remark that our main regularity result involves uniform convexity of H while
previous results did not explicitly make this assumption. This is because uniform convexity was built in by their
choices of gradient constraints. For example, we can replace the gradient constraint given by H defined in (1.6)
with |Du|2 − g(x)2 ≤ 0, which is uniformly convex in Du.

It also should be noted that C2 regularity of solutions has been obtained in the caseO = R
n andH(p) = |p|−1

by assuming n = 1 or 2, very special structural conditions on f and/or that L has constant coefficients [9, 10].
The purpose of this work was to study solutions of (1.1) on a general bounded domain in R

n and estimate
solutions for a general gradient constraint function and a general elliptic operator.

The organization of this paper is as follows. In Section 2, we show that (1.1) has a unique viscosity solution
by establishing a comparison principle for sub and supersolutions. Then we pursue the regularity of this solution
in Section 3 by studying the penalized equation (1.5). In the final section, we use our uniform estimates to pass
to the limit as ε → 0+ and prove Theorem 1.1. Before performing our analysis, let us discuss the motivating
applications in singular control theory and give a probabilistic interpretation of solutions of (1.1).

Probabilistic interpretation of solutions. Assume that (Ω,F ,P) is a probability space equipped with a
standard n-dimensional Brownian motion (W (t), t ≥ 0). A control process is a pair (ρ, ξ) such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(ρ(t), ξ(t)) ∈ R

n × R, t ≥ 0,
(ρ, ξ) is adapted to the filtration generated by W
|ρ(t)| = 1, t ≥ 0, a.s.
ξ(0) = 0, t �→ ξ(t) is non-decreasing and is left continuous with right hand limits a.s.

Now, let � be the support function of a nonempty, closed, convex set K ⊂ R
n. That is,

�(v) := sup
p∈K

v · p, v ∈ R
n. (1.7)

We consider the stochastic control problem

u(x) := inf
ρ,ξ

E
x

∫ τ

0

e−
∫

t
0 c(Xρ,ξ(s))ds

[
f(Xρ,ξ(t))dt+ �(ρ(t))dξ(t)

]
, x ∈ O. (1.8)

Here Xρ,ξ satisfies the stochastic differential equation (SDE){
dX(t) = −b(X(t))dt+ σ(X(t))dW (t) − ρ(t)dξ(t), t ≥ 0
X(0) = x

and τ = inf{t ≥ 0 : Xρ,ξ(t) /∈ O}. We are assuming that σ, b, c are smooth on O and that the above SDE has
as unique solution (in law) for each x ∈ O and control process (ρ, ξ). In general, X will not have continuous
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sample paths and so it is regarded as a “singularly” controlled process. Therefore, we say that u is the value
function of a problem of stochastic singular control.

Fleming and Soner have shown that if the value function u satisfies a natural dynamic programming principle,
then u is a viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation of the form (1.1) (Thm. 5.1,
Sect. VIII.5 in [5]). This result, restated below, provides the connection between equation (1.1) and stochastic
singular control.

Theorem 1.2. Assume that for each stopping time θ (with respect to the filtration generated by W ) and x ∈ O,

u(x) = inf
ρ,ξ

E
x

{
e−
∫

τ∧θ
0 c(Xρ,ξ(s))dsu(Xρ,ξ(τ ∧ θ)) +

∫ τ∧θ

0

e−
∫

t
0 c(Xρ,ξ(s))ds

[
f(Xρ,ξ(t))dt + �(ρ(t))dξ(t)

]}
.

Then the value function u is a viscosity solution of HJB equation{
max

{− 1
2σ(x)σt(x) ·D2u+ b(x) ·Du+ c(x)u − f(x), H(Du)

}
= 0, x ∈ O

u = 0, x ∈ ∂O
(1.9)

where
H(p) = max

|v|=1
{p · v − �(v)} , p ∈ R

n. (1.10)

In particular, u is a viscosity solution of (1.1) with

a(x) :=
1
2
σ(x)σt(x), x ∈ O. (1.11)

In view of Theorem 1.1, we have the following corollary which asserts that singular stochastic control problems
as described above have C1 value functions.

Corollary 1.3. Assume the hypotheses of Theorem 1.2, that a : O → S(n) defined in (1.11) satisfies the
uniform ellipticity condition (1.2), and that 0 ∈ R

n is an interior point of the convex set K associated with �.

(i) Then u given by (1.8) is the unique viscosity solution of (1.9). In particular, u ∈ C1,α
loc (O) for each

0 < α < 1;
(ii) further suppose � is the support function of K := {p ∈ R

n : G(p) ≤ 0} where G satisfies (1.3) and (1.4).
Then u ∈ C1,1

loc (O).

Proof.

(i) If 0 lies in the interior of K, Bδ(0) ⊂ K for some δ > 0. It is immediate from (1.7) that �(v) ≥ δ|v| and in
particular that H(0) ≤ −δ < 0. The conclusion follows at once from Theorem 1.1;

(ii) a standard fact about the support function � of a closed, convex subset K ⊂ R
n is that

K =
⋂

|v|=1

{p ∈ R
n : v · p ≤ �(v)} .

(Thm. 8.24 in [8]). Therefore, we have by hypothesis

{p ∈ R
n : G(p) ≤ 0} =

⋂
|v|=1

{p ∈ R
n : v · p ≤ �(v)} .

In view of (1.10), it is also plain that

{p ∈ R
n : H(p) ≤ 0} =

⋂
|v|=1

{p ∈ R
n : v · p ≤ �(v)} .
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Consequently, u solves the PDE

max
{
−1

2
σ(x)σt(x) ·D2u+ b(x) ·Du+ c(x)u − f(x), G(Du)

}
= 0, x ∈ O.

From the assumptions made on G, it follows from Theorem 1.1 that u ∈ C1,1
loc (O). �

Remark 1.4. The gradient constraint H defined in (1.10) is the signed distance to the convex set K associated
with �. Moreover, the proof of part (ii) of the corollary implies that we can always assume the gradient constraint
function appearing in (1.1) is the signed distance to the convex set {p ∈ R

n : H(p) ≤ 0}.

2. Comparison principle

In this section, we will verify a fundamental comparison principle among viscosity sub- and supersolutions of
the PDE

max{Lu− f,H(Du)} = 0.

Although it is now well known how to establish comparison principles of elliptic nonlinear PDE, the problem
we have must be individually addressed because of the gradient constraint. In what follows, we use the notation
and several basic results found in standard sources on viscosity solutions such as [1, 2] and the references
therein. Throughout this paper, all PDE and partial differential inequalities will be interpreted in the viscosity
sense. Therefore, we may sometimes omit the term “viscosity” when we mention solutions, subsolutions, and
supersolutions.

Proposition 2.1. Assume u ∈ USC(O) is a subsolution of (1.1) and v ∈ LSC(O) is a supersolution of (1.1).
If

u ≤ v on ∂O and u ∈ L∞(∂O),

then u ≤ v in O.

Formal Proof. Before proving the above proposition, we give a formal proof (i.e. assuming u, v ∈ C2(O)) that
will help motivate a rigorous argument. Fix ε ∈ (0, 1) and set

wε(x) = εu(x) − v(x), x ∈ O.

The function wε achieves its maximum at some xε ∈ O. If xε ∈ ∂O, then

wε(xε) = −(1 − ε)u(xε) + u(xε) − v(xε) ≤ −(1 − ε)u(xε) ≤ (1 − ε)|u|L∞(∂O).

If xε ∈ O, then by calculus {
0 = Dwε(xε) = εDu(xε) −Dv(xε)
0 ≥ D2wε(xε) = εD2u(xε) −D2v(xε).

As H(Du(xε)) ≤ 0,
H(Dv(xε)) = H(εDu(xε)) ≤ εH(Du(xε)) + (1 − ε)H(0) < 0 (2.1)

by (1.3). In particular, since v is a supersolution, we have that

Lv(xε) − f(xε) ≥ 0.

Therefore,

c(xε)w(xε) ≤ L(εu− v)(xε)
≤ −(1 − ε)f(xε)
≤ 0

and hence wε(xε) ≤ 0. In either case, wε ≤ C(1 − ε), and letting ε→ 1− gives u ≤ v. �
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Proof of the proposition.
1. Fix ε ∈ (0, 1) and set

wη(x, y) = εu(x) − v(y) − 1
2η

|x− y|2, x, y ∈ O

for η > 0. wη ∈ USC(O×O) and so has a maximum at some point (xη, yη) ∈ O×O. As O is compact, (xη, yη)
has a limit point of the form (xε, xε) through some sequence of η → 0+, where xε is a maximizing point of
x �→ εu(x) − v(x), and through this sequence of η → 0+

|xη − yη|2
η

→ 0 (2.2)

(Lem. 3.1 in [2]).
2. If xε ∈ ∂O, we have from the definition of wη and our assumptions that

εu(x) − v(x) ≤ εu(xε) − v(xε) = −(1 − ε)u(xε) + u(xε) − v(xε) ≤ C(1 − ε), x ∈ O.

Now we assume that xε ∈ O and without any loss of generality that (xη, yη) ∈ O × O for η > 0. According to
the theorem of Sums (Thm. 3.2 in [2]), for each ρ > 0 there are X,Y ∈ S(n) such that(

xη − yη

η
,X

)
∈ J

2,+
(εu)(xη)(

xη − yη

η
, Y

)
∈ J

2,−
v(yη)

and (
X 0
0 −Y

)
≤ A+ ρA2. (2.3)

Here

A = D2 |x− y|2
2η

∣∣∣
x=xη,y=yη

=
1
η

(
I −I
−I I

)
and I is the n× n identity matrix. In particular, choosing ρ = η in (2.3) implies the matrix inequality(

X 0
0 −Y

)
≤ 3
η

(
I −I
−I I

)
. (2.4)

3. Since u is a viscosity subsolution

max
{
−a(xη) · X

ε
+ b(xη) · xη − yη

εη
+ c(xη)u(xη) − f(xη), H

(
xη − yη

εη

)}
≤ 0, (2.5)

and since v is a viscosity supersolution

max
{
−a(yη) · Y + b(xη) · xη − yη

η
+ c(yη)v(yη) − f(yη), H

(
xη − yη

η

)}
≥ 0. (2.6)

As H
(

xη−yη

εη

)
≤ 0, we have by (1.3) that

H

(
xη − yη

η

)
= H

(
ε
xη − yη

εη

)
≤ εH

(
xη − yη

εη

)
+ (1 − ε)H(0) < 0.

By (2.6),

a(yη) · Y + b(xη) · xη − yη

η
+ c(yη)v(yη) − f(yη) ≥ 0. (2.7)
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Combining (2.5) and (2.7) gives,

εc(xη)u(xη) − c(yη)v(yη) ≤ a(xη) ·X − a(yη) · Y + (b(xη) − b(yη)) · xη − yη

η
+ εf(xη) − f(yη)

≤ a(xη) ·X − a(yη) · Y + Lip(b)
|xη − yη|2

η
+ Lip(f)|xη − yη|. (2.8)

Note x �→ a1/2(x) (the unique positive square root of a(x)) is Lipschitz continuous since x �→ a(x) is Lipschitz
and a ≥ γ > 0; indeed

Lip(a1/2) ≤ Lip(a)
2γ

·

Also note that the 2n× 2n matrix (
a1/2(xη)a1/2(xη) a1/2(xη)a1/2(yη)

a1/2(yη)a1/2(xη) a1/2(yη)a1/2(yη)

)

is non-negative definite, and by (2.4)

a(xη) ·X − a(yη) · Y = tr [a(xη)X − a(yη)Y ]

= tr

[(
a1/2(xη)a1/2(xη) a1/2(xη)a1/2(yη)

a1/2(yη)a1/2(xη) a1/2(yη)a1/2(yη)

)(
X 0
0 −Y

)]

≤ tr

[(
a1/2(xη)a1/2(xη) a1/2(xη)a1/2(yη)

a1/2(yη)a1/2(xη) a1/2(yη)a1/2(yη)

)
3
η

(
I −I
−I I

)]

≤ 3
η
tr
[
(a1/2(xη) − a1/2(yη))((a1/2(xη) − a1/2(yη))

]

≤ 3Lip(a)2

2γ2

|xη − yη|2
2η

·

By (2.8),

εc(xη)u(xη) − c(yη)v(yη) ≤
(

3Lip(a)2

2γ2
+ 2Lip(b)

) |xη − yη|2
2η

+ Lip(f)|xη − yη|. (2.9)

4. Let (xε, xε) be a limit point of (xη, yη) through as sequence of η → 0+. If xε ∈ ∂O, we have from our
remarks above that

εu(xε) − v(xε) ≤ C(1 − ε).

If xε ∈ O, we let η → 0+ through the appropriate subsequence in (2.9) and recall (2.2) to arrive at

c(xε)(εu(xε) − v(xε)) ≤ 0.

This inequality implies εu(xε) − v(xε) ≤ 0, and so in either case,

εu(x) − v(x) ≤ εu(xε) − v(xε) ≤ C(1 − ε), x ∈ O.

We conclude by letting ε→ 1−. �
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Remark 2.2. With a comparison principle in hand, we can now employ a routine application of Perron’s
method to obtain the existence of solutions. Indeed, observe that

u ≡ 0

is a subsolution of (1.1); and ū, the unique solution of{
Lv = f, x ∈ O

v = 0, x ∈ ∂O,
(2.10)

is a supersolution of (1.1). Therefore, Perron’s method applies from which we conclude

u(x) := sup {w(x) : u ≤ w ≤ u, w is a subsolution of (1.1)}
is a viscosity solution (Thm. 4.1 in [2]). By the comparison principle, this solution is unique. For the remainder
of this paper, we pursue the regularity of solutions of (1.1).

3. Penalization method

In this section, we analyze solutions of the penalized equation (1.5){
Luε + βε(H(Duε)) = f, x ∈ O

uε = 0, x ∈ ∂O,

where (βε)ε>0 is a family of functions (βε)ε>0 satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

βε ∈ C∞(R)
βε = 0, z ≤ 0
βε > 0, z > 0
β′

ε ≥ 0
β′′

ε ≥ 0
βε(z) = z−ε

ε , z ≥ 2ε.

(3.1)

For each ε > 0, we think of βε as a type of smoothing of z �→ (z/ε)+; for small ε, we think of βε as a smooth
approximation of the set valued mapping

β0(t) =

{
{0}, t < 0
[0,∞], t = 0.

It will be a standing assumption that such a family of functions satisfying (3.1) exists. The reason for using this
approximation is from the following intuition. Since the values of βε(H(Duε)) can be large whenH(Duε) > 0 and
ε small, solutions will seek to satisfy H(Duε) ≤ 0 and, in this sense, become closer to satisfying equation (1.1).

In our analysis of (1.5), we make the following special assumptions on H⎧⎪⎨
⎪⎩
H ∈ C2(Rn)
D2H ≥ θ, for some θ ∈ (0, 1)
supp∈Rn |D2H(p)| <∞.

(3.2)

Admittedly, Theorem 1.1 addresses a much larger class of gradient constraints H . However, we will see in the
next section that the assumptions made above can be relaxed by replacing a general H with (a smoothing of)
an appropriate inf-convolution.
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Notice that (1.5) is a semi-linear, uniformly elliptic PDE with smooth coefficients. By our growth assumptions
on βε and (3.2) βε(H(p)) grows at most quadratically as |p| → ∞, for each ε > 0. It follows that (1.5) has a
unique, classical solution uε (Thm. 15.10 in [6]). Our goal is to derive W 2,p estimates (1 ≤ p ≤ ∞) on solutions
that are independent of all ε > 0 and small. Such estimates would aid us in proving that a subsequence of
uε converges to u, the solution of (1.1), in C1

loc(O) as ε → 0+. To this end, our main result concerning the
penalization method is as follows.

Proposition 3.1. Assume that O′ ⊂⊂ O, 1 < p <∞ and 0 < ε < θ. We have the following estimates:
(i)

|uε|W 1,∞(O) ≤ C

for a universal constant C;
(ii)

|uε|W 2,p(O′) ≤ C1,

for some C1 depending on p and O′;
(iii)

|uε|W 2,∞(O′) ≤ C2,

for some C2 depending on θ, O′, and
max
|p|≤C

|D2H(p)|.

The proof Proposition 3.1 is accomplished through the following sequence of lemmas, and we will obtain the
desired estimates by employing the Bernstein method.

Lemma 3.2. There is a constant C such that

|uε(x)| ≤ C, x ∈ O

for ε > 0.

Proof. Let ū be the unique smooth solution of (2.10). As ū is a supersolution of equation (1.5), uε ≤ ū; while
uε ≥ 0, since u : x �→ 0 is a subsolution of (1.5). Hence, 0 ≤ uε ≤ ū. �

An immediate corollary of the above proof is

Corollary 3.3. There is a constant C such that

|Duε(x)| ≤ C, x ∈ ∂O

for ε > 0.

Proof. By the proof of the previous lemma, we have 0 ≤ uε ≤ ū with equality holding on ∂O. Thus,

∂ū(x)
∂ν

≤ ∂uε(x)
∂ν

≤ 0, x ∈ ∂O

where ν is the outward normal on ∂O (which is assumed to be smooth). �

Lemma 3.4. There is a constant C such that

|Duε(x)| ≤ C, x ∈ O

for 0 < ε < θ.
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Proof.
1. It suffices to bound the function

vε(x) = |Duε(x)|2 − λuε(x), x ∈ O

from above, for some universal (that is, ε independent) constant λ > 0. To this end, we suppress ε dependence,
function arguments and make use of equation (1.5) to compute the following identity

a ·D2v = 2aD2u ·D2u− 2
n∑

i,j=1

uxixjDu ·Daij +Dv · (β′DH + b) + 2Du · (uDc+ cDu+Db ·Du−Df)

− λ(cu + b ·Du− f) + λ(β′Du ·DH − β). (3.3)

2. Since H is uniformly convex with D2H ≥ θ and H(0) ≤ 0,

p ·DH(p) −H(p) ≥ θ|p|2/2, p ∈ R
n.

Also note that, βε(z) ≤ zβ′
ε(z) for all z ∈ R which implies

β′Du ·DH − β ≥ β′(Du ·DH −H) ≥ β′ θ
2
|Du|2.

Using this inequality, the previous lemma and the uniform ellipticity of a (1.2) we have from (3.3) the estimate

a ·D2v ≥ −C|Du|2 − C +Dv · (β′DH + b) +
λθβ′

2
|Du|2. (3.4)

3.Let x0 ∈ O be a maximizing point for v. If x0 ∈ ∂O, a bound on |Du(x0)|2 that is independent of ε > 0 is
immediate from the previous corollary. If x0 ∈ O, then

Dv(x0) = 0, a(x0) ·D2v(x0) ≤ 0.

Now, if β′ = β′(H(Du(x0))) ≤ 1/θ < 1/ε, then β = β(H(Du(x0))) ≤ 1 by (3.1). In particular, H(Du(x0)) ≤
2ε ≤ 2θ ≤ 2 which implies a bound on |Du(x0)| independent of ε ∈ (0, θ). If β′(H(Du(x0))) ≥ 1/θ, (3.4) gives

0 ≥ −C|Du(x0)|2 − C +
λ

2
|Du(x0)|2,

which implies a bound on |Du(x0)|2 independent of ε ∈ (0, θ), for λ > 0 chosen large enough. �

Lemma 3.5. Let O′ ⊂⊂ O . There is a constant C1 depending on O′ such that

0 ≤ βε(H(Duε(x))) ≤ C1, x ∈ O′

for 0 < ε < θ.

Remark 3.6. To simplify the arguments given below, we assume

b ≡ 0, and c ≡ δ > 0.

It is straightforward to verify that incorporating more general coefficients b and c is merely technical and no
new issues arise.
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Proof.
1. It suffices to bound

vε(x) := η(x)βε(H(Duε(x))) +
1
2
|Duε(x)|2, x ∈ O

for each η ∈ C∞
c (O), 0 ≤ η ≤ 1. As before, we will omit the ε dependence of uε and vε, omit the arguments of

functions, write β for βε(H(Duε)) and compute the following identity for a ·D2v

a ·D2v = (a ·D2η)η + β′DH ·Dv + β′′aD2uDH ·D2uDH

× β′

⎧⎨
⎩η
⎛
⎝a ·D2uD2HD2u+DH ·D(δu− f) −

n∑
i,j=1

uxixjDaij ·DH
⎞
⎠

−βDH ·Dη −DH ·D2uDu+D2uDu ·Du
⎫⎬
⎭+ aD2u ·D2u+Du ·D(δu − f) −

n∑
i,j=1

uxixjDaij ·Du.

(3.5)

Below, we will make use of the following inequalities⎧⎪⎪⎪⎨
⎪⎪⎪⎩
β′′aD2uDH ·D2uDH ≥ 0
a ·D2uD2HD2u ≥ γθ|D2u|2
aD2u ·D2u ≥ γ|D2u|2
0 ≤ β ≤ C{1 + |D2u|},

(3.6)

which follow from PDE (1.5) and our various assumptions on β, a and H (1.2), (3.1) and (3.2).

2. Let x0 ∈ O be a maximizing point for v. We may as well assume that x0 ∈ O; otherwise, v ≤ |Du(x0)|2/2 ≤
C. In this case, we have

Dv(x0) = 0 and 0 ≥ a(x0) ·D2v(x0).

From these inequalities, (3.5) and (3.6), it is straightforward to derive the following inequality

0 ≥ γ

2
|D2u|2 − C − Cβ′ {|D2u| + 1

}
(3.7)

where C denotes various constants that are independent of ε ∈ (0, θ) (but may depend on
η(x0), Dη(x0), D2η(x0)). All functions in (3.7) and in the rest of this proof are evaluated at x0.

If
β′ ≤ 1 < 1/ε or

γ

2
|D2u|2 − C ≤ 0,

then we have a uniform upper bound on β = β(H(Du(x0))) and also the desired upper bound on v(x0).
Otherwise, (3.7) implies

0 ≥ 1
2
γ|D2u|2 − C − C(|D2u| + 1)

and in particular |D2u(x0)| ≤ C. By the last inequality in (3.6), v ≤ C1 for some C1 independent of ε ∈ (0, θ)
and only depending on O′. �

Thus far, we have established part (i) of Propostion 3.1; the conclusion follows at once from the previous
lemma. The previous lemma will also aid us in obtaining a pointwise bound on the second derivatives of uε and
thereby establish part (ii) of Propostion 3.1. To this end, we adapt the approach by Wiegner [11].
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Lemma 3.7. Let O′ ⊂⊂ O and C > 0 as in Lemma 3.4. There is a constant C2 depending on θ, O′,
max|p|≤C |D2H(p)| such that

|uε|W 2,∞(O′) ≤ C2

for each 0 < ε < θ.

Proof.
1. It is sufficient to bound, for each η ∈ C∞

c (O) with 0 ≤ η ≤ 1, the quantity

Mε := max
x∈O

{η(x)|D2uε(x)|}

for all 0 < ε < θ. With this in mind, we shall bound the related function

vε(x) =
1
2
η(x)2|D2uε(x)|2 + λη(x)β(H(Duε(x))) +

μ

2
|Duε(x)|2, x ∈ O

from above. Here λ, μ are constants that will be chosen below. As in previous proofs, we shall omit the ε
dependence of uε, vε and their derivatives and many times we will write β for βε(H(Duε)).

Direct computation gives⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vxi = ηηxi |D2u|2 + η2D2u ·D2uxi + λ(ηxiβ + ηβ′DH ·Duxi) + μDu ·Duxi

vxixj = (ηηxixj + ηxiηxj )|D2u|2 + 2ηηxiD
2u ·D2uxj + 2ηηxjD

2u ·D2uxi

+η2(D2uxi ·D2uxj +D2u ·D2uxixj ) + λ
[
ηxixjβ + ηxiβ

′DH ·Duxj + ηxjβ
′DH ·Duxi

×η {(β′′(DH ·Duxi)(DH ·Duxj) + β′(D2HDuxi ·Duxj +DH ·Duxixj)
)}]

+μ
{
Duxi ·Duxj +Du ·Duxixj

}
.

Using the above expressions for vxi and vxixj and the fact that u solves the PDE (1.5), it is straightforward to
verify the following identity

a ·D2v = (ηa ·D2η + aDη · η)|D2u|2 + 4
n∑

i,j=1

aijηxiD
2u · ηD2uxj

+η2

⎛
⎝aD3u ·D3u+D2u ·D2(δu− f) −

n∑
k,l=1

uxkxl

[
2(axk

·D2ux�
) + (axkxl

·D2u)
]⎞⎠

+μ

⎧⎨
⎩aD2u ·D2u+Du ·D(δu− f) −

n∑
i,j=1

uxixjDaij ·Du
⎫⎬
⎭+ λ(a ·D2η)β

+β′′ (η2D2u(D2uDH) · (D2uDH) + ηβ′′λγ|D2uDH |2)+ β′DH ·Dv

+β′

⎡
⎣λ
⎛
⎝aDη ·D2uDH + η

⎧⎨
⎩a ·D2uD2HD2u+DH ·D(δu − f) −

n∑
i,j=1

uxixjDaij ·DH
⎫⎬
⎭

−βDη ·DH
⎞
⎠− η|D2u|2DH ·Dη + η2D2u ·D2uD2HD2u

⎤
⎦. (3.8)

2. Let x0 be a maximizing point for v. If x0 ∈ ∂O, then v ≤ v(x0) ≤ μ|Du(x0)|2 ≤ C. This of course implies
M2

ε ≤ v(x0) ≤ C as desired. Now suppose that x0 ∈ O, so that

Dv(x0) = 0 and a(x0) ·D2v(x0) ≤ 0.
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Evaluating identity (3.8) at x0, employing the assumed matrix inequalities a ≥ γ (1.2) and D2H ≥ θ (3.2), and
repeatedly using the Cauchy-Schwarz inequality gives us

0 ≥ −C − C|D2u|2 + μ

(
1
2
γ|D2u|2 − C

)
+ ηβ′′|D2uDH |2 (γλ− η|D2u|)

+β′
{
λ

(
1
2
ηγθ|D2u|2 − C − C|D2u|

)
− Cη|D2u|2 − C′η2|D2u|3

}
.

Here C is denotes various constants that are independent of ε, but may depend on |DH(Du(x0))|, η(x0), Dη(x0),
D2η(x0) and

C′ := max
|p|≤C

|D2H(Du(p))| ≥ |D2H(Du(x0))|.

Observe that C′ is a universal constant by assumption (3.2).

3. Set

λ = λε := αMε

where α > max{1/γ, C′} is a positive constant. Notice that

0 ≥ −C − C|D2u|2 + μ

(
1
2
γ|D2u|2 − C

)
+ η2|D2u|β′′|D2uDH |2(γα− 1)

+β′
{
αη|D2u|

(
1
2
ηγθ|D2u|2 − C − C|D2u|

)
− Cη|D2u|2 − C′η2|D2u|3

}

≥ −C − C|D2u|2 + μ

(
1
2
γ|D2u|2 − C

)
+ β′

{
αη|D2u|

(
1
2
ηγθ|D2u|2 − C − C|D2u|

)

−Cη|D2u|2 − C′η2|D2u|3
}
. (3.9)

If for this choice of α

αη|D2u|
(

1
2
ηγθ|D2u|2 − C − C|D2u|

)
− Cη|D2u|2 − C′η2|D2u|3 ≤ 0,

then there is a bound on η(x0)|D2u(x0)| depending only on θ, |DH(Du(x0))|, and C′. If the above inequality
does not hold, then (3.9) implies

0 ≥ −C − C|D2u|2 + μ

(
1
2
γ|D2u|2 − C

)
.

For μ chosen large enough, this inequality implies a universal bound on η(x0)|D2u(x0)|.
In all cases, we have bounded η(x0)|D2u(x0)|2 from above independently of 0 < ε < θ (but perhaps dependent

on θ, and C′) and therefore,

M2
ε ≤ max

O
v ≤ η(x0)|D2u(x0)|2 + CMε + C ≤ C(Mε + 1).

Consequently, Mε ≤ C2 for some C2 (possibly) depending only on O′, C′ and θ. �
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4. Convergence

In this final section, we complete the proof Theorem 1.1. We have already established the existence of a unique
viscosity solution in Proposition 2.1; see Remark 2.2. The only issue remaining is the regularity of solutions,
which will be handled by our results in the previous section. Note however, that we established Proposition 3.1
under the extra hypotheses (3.2), while Theorem 1.1 does make this assumption. The main idea to overcome
this technicality is to employ the inf-convolution

Ht(p) := inf
q∈Rn

{
H(q) +

1
2t
|p− q|2

}
, (p, t) ∈ R

n × (0,∞). (4.1)

We make use following lemma and omit the proof as it is elementary.

Lemma 4.1. Assume that H : R
n → R satisfies (1.3).

(i) Ht(0) < 0, for t > 0;
(ii) Ht → H locally uniformly on R

n, as t→ 0+;

(iii) Ht is convex and for each p, z ∈ R
n and t > 0

Ht(p+ z) − 2Ht(p) +Ht(p− z) ≤ |z|2
t

·

In particular, 0 ≤ D2Ht ≤ 1/t, a.e. p ∈ R
n.

Assume that H satisfies (1.4) and D2H(p) ≥ θ, for a.e. p ∈ R
n;

(iv) for each t, R > 0,

Ht(p+ z) − 2Ht(p) +Ht(p− z) ≤
(
|D2H |L∞(BQ(R,t)+|z|)

)
|z|2

for |p| ≤ R and z ∈ R
n, where

Q(R, t) := 2
(
R+ t max

|w|≤R
|DH(w)|

)
;

(v) for each p, z,∈ R
n, t > 0

Ht(p+ z) − 2Ht(p) +Ht(p− z) ≥ θ|z|2
1 + tθ

·

Hence, D2Ht ≥ θ/(1 + tθ), a.e. p ∈ R
n, t > 0.

Proof of Theorem 1.1.
1. First assume that H satisfies (3.2), so that we can apply Proposition 3.1. In view of the conclusion of this

proposition, a routine application of the Arzelà-Ascoli theorem implies there is a sequence of εk → 0 such that{
uεk → v uniformly in O
uεk → v in C1

loc(O),

as k → ∞. That is, uεk → v uniformly in O and uεk → v in C1(O′) for each O′ ⊂⊂ O, as k → ∞. It is clear
from the above convergence that v ∈ C1,1

loc (O) ∩ C0,1(O). We now claim: v is a viscosity solution of (1.1) and
therefore has to coincide with u by the uniqueness of viscosity solutions of (1.1).

2. Suppose that v − ϕ has a local maximum at x0 ∈ O and that ϕ ∈ C2(O). We must show

max
{
δv(x0) − a(x0) ·D2ϕ(x0) − f(x0), H(Dϕ(x0))

} ≤ 0. (4.2)
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By adding x �→ ρ
2 |x−x0|2 to ϕ and later sending ρ→ 0, we may assume that v−ϕ has a strict local maximum.

Since uεk converges to v uniformly (for some sequence εk → 0) as k → ∞, there is a sequence of xk such that{
xk → x0, as k → ∞
uεk − ϕ has a local maximum at xk.

As uεk is a smooth solution of (1.5), we have

δuεk(xk) − a(xk) ·D2ϕ(xk) + βεk
(H(Dϕ(xk))) ≤ f(xk).

Since βε ≥ 0, we can send k → ∞ to arrive at

δv(x0) − a(x0) ·D2ϕ(x0) ≤ f(x0).

By Lemma 3.5,
0 ≤ βεk

(H(Dϕ(xk))) = βεk
(H(Duεk(xk))) ≤ C,

which necessarily implies that when k → ∞

H(Dϕ(x0)) ≤ 0.

3. Now suppose that v − ψ has a local minimum at x0 ∈ O and that ψ ∈ C2(O). We must show

max
{
δv(x0) − a(x0) ·D2ψ(x0) − f(x0), H(Dψ(x0))

} ≥ 0. (4.3)

Arguing as above, we discover there is a sequence εk → 0 as k → ∞, and xk such that{
xk → x0, as k → ∞
uεk − ψ has a local minimum at xk.

If
H(Dψ(x0)) ≥ 0,

then (4.3) holds. Suppose now that
H(Dψ(x0)) < 0.

Since uε is a smooth solution of (1.5), we have

δuεk(xk) − a(xk) ·D2ψ(xk) + βεk
(H(Dψ(xk))) − f(xk) ≥ 0. (4.4)

By the convergence established in part 1 of this proof, H(Dψ(xk)) = H(Duεk(xk)) < 0 for all large enough k.
Hence,

lim
k→∞

βεk
(H(Dψ(xk))) = 0.

In this case, the above limit and (4.4) imply

max
{
δv(x0) − a(x0) ·D2ψ(x0) − f(x0), H(Dψ(x0))

} ≥ δv(x0) − a(x0) ·D2ψ(x0) − f(x0) ≥ 0.

This argument verifies the claim that v = u and in particular, it proves Theorem 1.1 under the hypothesis that
H satisfies (3.2).

4. Now assume that H satisfies (1.3) and define for t, ρ, θ ∈ (0, 1) the function

Ht,ρ,θ(p) := θ|p|2 +Ht,ρ(p), p ∈ R
n,
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where
Ht,ρ(p) :=

∫
Rn

ηρ(p− y)Ht(y)dy, p ∈ R
n.

Here Ht is the inf-convolution of H given in (4.1), ηρ(x) = ρ−nη(x/ρ), η ∈ C∞
c (Rn),

∫
Rn η(x)dx = 1, and

η(x) = 0 for |x| ≥ 1. Therefore, Ht,ρ ∈ C∞(Rn), and as ρ tends to 0, Hρ,t converges to Ht locally uniformly
(consult Appendix C in [4] for more on mollification).

By parts (i) and (iii) of Lemma 4.1, Ht,ρ,θ satisfies (3.2) and (for ρ small enough) (1.3). Hence,{
max

{
Lu− f,Ht,ρ,θ(Du)

}
= 0, x ∈ O

u = 0, x ∈ ∂O

has a unique solution ut,ρ,θ ∈ C1,1
loc . Moreover, an easy conclusion of the convergence assertion in parts 1–3 of

the current proof gives the estimate
|ut,ρ,θ|C1,α(O′) ≤ C(O′, α),

for each t, ρ, θ, α ∈ (0, 1) and O′ ⊂⊂ O. It follows that there is are sequences tk, ρk, θk → 0 and utk,ρk,θk

converging in C1
loc(O) to some u ∈ C1,α

loc (O)∩C0,1(O), as k → ∞. By part (ii) of Lemma 4.1 and the stability of
viscosity solutions, u is the unique viscosity solution of (1.1). This completes the proof of part (i) of Theorem 1.1.

5. Now assume in addition that H satisfies (1.4). According to parts (iv) and (v) of Lemma 4.1, Ht,ρ,θ also
satisfies (1.4). By assumption, D2H ≥ θ′ for some θ′ ∈ (0, 1). Lemma 4.1 implies that D2Ht,ρ,θ ≥ 1

2θ
′, for t > 0

small enough. The convergence assertion in parts 1–3 of the current proof implies the estimate

|ut,ρ,θ|C1,1(O′) ≤ C

(
O′, θ′, max

|p|≤C
|D2Ht,ρ,θ(p)|

)

for t, ρ, θ > 0 and some universal constant C. Noting that part (iv) of Lemma 4.1 has that D2Ht,ρ,θ is a.e.
locally bounded above, independently of all t, ρ, θ positive and small, we are able to conclude as in part 4 of
this proof. �

As a final remark, we mention equations with general boundary conditions{
max{Lu− f,H(Du)} = 0, x ∈ O

u = g, x ∈ ∂O,
(4.5)

can be handled similarly to PDE (1.1). The method presented in this paper works with little alteration provided
there exists a subsolution u ∈ C1(O) of (4.5) such that u|∂Ω = g and

H(Du(x)) < 0, x ∈ O.
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