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SUBRIEMANNIAN GEODESICS OF CARNOT GROUPS OF STEP 3 ∗
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Abstract. In Carnot groups of step ≤ 3, all subriemannian geodesics are proved to be normal. The
proof is based on a reduction argument and the Goh condition for minimality of singular curves. The
Goh condition is deduced from a reformulation and a calculus of the end-point mapping which boils
down to the graded structures of Carnot groups.
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1. Introduction

This paper is inspired by the smoothness problem of subriemannian geodesics, one of the fundamental prob-
lems in subriemannian geometry. We first study the case of Carnot group with step ≤ 3. In this case we proved
that all subriemannian geodesics are normal and thus smooth.

To state the subriemannian geodesic problem, we first recall some basic facts on subriemannian geometry.
We refer to the book [27] for detail. A subriemannian manifold is a smooth n-dimensional manifold M with
a k-dimensional subbundle or distribution � ⊂ TM on which a smooth inner product gc is endowed. (�, gc)
is called a subriemannian structure on M and � horizontal bundle. In this paper, we always assume M is
connected and � satisfies the so-called Chow-Hömander condition which means that vector fields of � together
with all their commutators span the tangent space at each point on M . Carnot groups are important examples
of subriemannian manifolds. A Carnot group G is a connected, simply connected Lie group with a graded Lie
algebra

� = V 1 ⊕ . . . ⊕ V r, with V i = [V 1, V i−1], [V 1, V r] = 0, i = 2, . . . , r. (1.1)

The integer r is called the step of G. Since G is connected and simply connected, the exponential map from � to G

gives a global chart for G. Carnot groups are tangent spaces (in the sense of Gromov-Hausdorff) of equiregular
subriemannian manifolds, see [9, 25]. It is believed that the role played by Carnot groups in subriemannian
geometry is similar to the role of Euclidean Spaces in Riemannian geometry.
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condition.
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It follows from the Chow-Rashevskii connectivity theorem that for any given points p, q ∈ M there always
exists at least a horizontal curve connecting p and q, see [16, 29]. Here a horizontal curve is by definition an
absolutely continuous curve γ : [0, 1] → M such that γ̇(t) ∈ Δγ(t)M whenever γ̇(t) exists. Thus one can define
a natural distance:

dsr(p, q) = inf
∫ 1

0

√
gc(γ̇, γ̇)dt

where the infimum is taken among the set Ω(p, q) of all horizontal curves γ such that γ(0) = p and γ(1) = q.
dsr is called the Carnot-Carathéodory distance of (M,�, gc). A subriemannian geodesic is a horizontal curve
locally realizing dsr. We will reserve the terminology “minimizing geodesic” or “minimizer” for those globally
distance-realizing subriemannian geodesics. It is not difficult to prove that any two sufficiently close points can
be joined by a minimizing geodesic. If (M, dsr) is complete, there is a minimizing geodesic connecting any two
points. Before Montgomery [26] (in 1991) discovered a smooth singular minimizer, it was taken for grant (see
e.g. [30]) that each subriemannaian geodesic similar to a Riemannian geodesic could satisfy a Hamilton-Jacobi
equation:

ẋi =
∂H

∂λi
, λ̇i = −∂H

∂xi
(1.2)

where (xi, λi) is a coordinate system of T �M , H(x, λ) = maxv∈�x{λ(v) − 1
2gc(v, v)} (λ ∈ T �

x M) is the subrie-
mannian Hamiltonian. A horizontal curve γ(t) = (xi(t)) (denoted by a local coordinate) satisfying (1.2) almost
everywhere for some lift λ(t) = (λi(t)) can be proved to be locally minimizing and smooth, and is called a normal
geodesic. Montgomery’s example shows that not all subriemannian geodesics are normal. The subriemannian
geodesic problem is a special case of geometric control problems. In fact singular curves or abnormal extremals
play a very important role in optimal control theory, see e.g. [4,12]. It is well known that the Pontryagin maxi-
mum principle (or the Lagrange Multiplier Rule in the Lagrangian formulation) gives the first order necessary
condition of optimality for optimal control problems. This first order condition is hardly considered to be sat-
isfactory when one studies abnormal extremals. Recently experts developed necessary/sufficient second order
conditions of optimality, i.e., Goh condition and generalized Legendre-Jacobi condition, see e.g. [3–7]. These
conditions were derived from the finiteness of the generalized Morse index of critical points of the end-point
mapping. We refer to [4, 5, 7] for the finiteness of the generalized Morse index.

Let Ω(p) be the set of all horizontal curves γ : [0, 1] → M such that γ(0) = p. It is well known that Ω(p)
is a smooth Banach manifold, see [10]. The end-point mapping is the smooth mapping E : Ω(p) → M defined
by taking γ ∈ Ω(p) to γ(1). Thus Ω(p, q) = E −1(q). In general E is not regular at all curves in Ω(p) and
thus Ω(p, q) possibly has no smooth structure if q is a critical value of E . If γ ∈ Ω(p) is a critical point of
E , we call γ a singular curve. After Montgomery’s example, Liu and Sussmann in [23] gave more examples of
singular curves which are locally minimizing. All these examples found on rank two distributions are in fact
C1-rigid curves which by definition are locally isolated curves in Ω(p, q) with respect to the C1-topology, see
also Bryant and Hsu [13]. For every rank two distribution satisfying �3

p �= �2
p at p ∈ M they proved that there

exists a rigid curve locally length-minimizing and emanating from p, see also Agrachev and Sarychev in [5],
Theorem 6.2. Here �1 = �,�i = �i−1 + [�1,�i−1] for i = 2, . . . The research of such curves first appeared
in the work of Carathéodory, Engel, and Hilbert, see [11, 32]. Classical calculus of variations can not fully deal
with the subriemannian geodesic problem when Ω(p, q) contains singular curves, because there possibly exist no
smooth variations of such curves. But singular curves could be subriemannian geodesics as shown by the above
mentioned work. A fundamental problem is whether all subriemannian geodesics are smooth. This problem is
equivalent to the question whether all singular geodesics are smooth, since normal (regular) geodesics are always
smooth. There are some substantial results so far, while the problem is still open for general cases. Agrachev
and Sarychev [6] proved that there admit no strictly singular geodesics for medium fat distributions including
strong-generating distributions (fat distributions) for which Strichartz [30] had already obtained the conclusion.
For a class of equiregular subriemannian manifolds, Leonardi and Monti [22] showed that length-minimizing
curves have no corner-like singularities which in particular implies that all singular geodesics in Carnot groups of
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rank two with step ≤ 4 are smooth. There are also some “generic” results which claims that for 3 ≤ k < n there
exists an open dense subset Ok of the space Dk consisting of all k-dimensional distributions on M (endowed
with the Whitney C∞ topology), such that each distribution in Ok admits no singular geodesics, see [3,15] and
references therein.

In this paper we will concentrate on the case of Carnot groups. As mentioned above Carnot groups are
very important in subriemannian geometry. Our study here will be instructive for later considerations of sub-
riemannian geodesics of general distributions. Our starting point is the refined formulation of the end-point
mapping which boils down to the graded structures of Carnot groups. The graded structure (1.1) implies that
each horizontal curve Υ = (γ1, γ2, . . . , γr) is uniquely determined by the first layer γ1. Here we use the expo-
nential mapping exp to identify the Carnot group G with its Lie algebra � and γi = πi(exp−1 Υ ) ∈ V i where
πi : � = V 1 ⊕ . . . ⊕ V r → V i is the projection to the i-th component. The subriemannian geodesic problem in
Carnot groups can be formulated as a minimization problem with equality constraint. The end-point mapping
E is different from the ordinary one which usually takes a control function to the end point of the trajectory
uniquely determined by the control function (the initial point is fixed). The formula for the differential of E
can be written out for Carnot groups with any step by a very tedious computation. In the case of step 3, the
differential and the intrinsic Hessian of the end-point mapping are of simple form. We will get the second order
necessary conditions for optimality of a singular curve, that is, if a singular curve Υ = (γ1, γ2, . . . , γr) is locally
energy-minimizing then γ1 must satisfy the Goh condition and the generalized Legendre-Jacobi condition, see
Propositions 4.3 and 4.5. From the Goh condition and the graded structure (1.1) we deduce that the first layer
γ1 of a singular geodesic Υ must be in a lower-dimension subspace. Thus singular geodesics must be in Carnot
subgroups of rank 2 or step 2. We finally reduce the problem to the rank two case which (known to experts) is
easy, see Theorems 5.2 and 5.4. The reduction to lower subgroups is a curious coincidence with Hamenstädt’s
suggestion for the smoothness problem, see [19].

The paper is organized into five sections. In the next section we give a formulation of the end-point mapping
which is based on a characterization of horizontal curves in Carnot groups. Section 3 is devoted to the calculus
of the end-point mapping. We will give the differential, the intrinsic Hessian for the step ≤ 3 case. In Section 4
we derive the second order necessary conditions of singular geodesics. We prove the main results in Section 5.

2. Horizontal curves and the end-point mapping

2.1. Basic structure of Carnot groups

Let G be a Carnot group with a Lie algebra � satisfying (1.1) (we call such Lie algebras Carnot
algebras). We endow on V 1 an inner product 〈·, ·〉. Let ni = dim(Vi), n =

∑r
i=1 ni. The r−vector

(n1, n1 + n2, . . . , Σ
i
j=1nj , . . . , n) is called the growth vector of the Carnot group. We fix an orthonormal

basis of V 1, {e1, . . . , en1}, then arbitrarily extend it to a basis of �, {e1, . . . , en1 , en1+1 . . . , en}, and extend
〈·, ·〉 to an inner product g on � making the basis orthonormal. Via the exponential mapping exp we iden-
tify G with � or Rn with a group law determined by the Baker-Campbell-Hausdorff formula. For p ∈ G,
setting Xi(p) = d

dt

∣∣
t=0

{p · exp(tei)}, i = 1 . . . , n, we get the basis of the space of left-invariant vector
fields. The horizontal bundle � = span{X1, . . . , Xn1} satisfies the Chow-Hörmander condition by (1.1). Let
gc((Xi(p), Xj(p)) = 〈ei, ej〉, i, j = 1, . . . , n1. Thus we have a subriemannian structure (�, gc) on G. We also
extend gc to a left-invariant Riemannian metric gr such that {X1, . . . , Xn} is an orthonormal basis of TG. We
emphasize that subriemannian geodesics in G are independent of the choice of orthonormal bases and their
extensions, that is, they are completely determined by (�, V 1, 〈·, ·〉) or equivalently by (G,�, gc).

Example 2.1.

1. The simplest Carnot group is the Heisenberg group Hm with the Heisenberg algebra (growth vec-
tor = (2m, 2m + 1)) � = span{e1, . . . , em, f1 . . . , fm} ⊕ span{g} with the basis satisfying that [ei, fi] = g,
i = 1, . . . , m, and all other brackets vanish;
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2. the Engel group is a Carnot group with the growth vector (2, 3, 4). Its algebra is span{e1, e2} ⊕ span{e3} ⊕
span{e4} with [e1, e2] = e3, [e1, e3] = e4. Note that Carnot groups of rank two (n1 = 2) has a special feature:
the second layer has dimension 1 whatever its step. We will see later this feature make the study of its
subriemannian geodesics very easy;

3. the free Carnot group with bi-dimension (k, r) has the maximal vector growth among all Carnot groups with
k generators and step = r. The free Carnot groups play some particular roles in nilpotent analysis;

4. let � be a Carnot algebra satisfying (1.1). If W ⊂ V 1 is a lower-dimensional subspace, then �̄ = W 1⊕. . .⊕W r̄ is
a Lie subalgebra of �, where W 1 = W, W i = [W 1, W i−1], i = 2, . . . , r̄, and r̄ ∈ [1, r] is the largest integer such
that W r̄ �= 0. It is obvious that �̄ is a Carnot algebra and Ḡ := exp(̄�) is a Carnot subgroup of G (we regard
Euclidean spaces as abelian Carnot groups). We use �̄(W ) (resp. Ḡ(W )) to indicate the Carnot subalgebra
(resp. Carnot subgroup) generated by W . The reduction to Carnot subgroups with lower-dimensional first
layer is one of main tricks in this paper.

Recall that the differential of the exponential mapping is given by the following formula

d exp(e) = Id −
r∑

m=2

(−1)m

m!
ad(e)m−1, (2.1)

see e.g. [31]. For an absolutely continuous curve Υ : [0, 1] → G, we denote by γ the corresponding curve exp−1(Υ )
with values in the Lie algebra �. We have γ = Σr

i=1γ
i where γi = πi(γ), πi : � → V i is the projection to the i-th

layer. It is obvious that γ is also absolutely continuous. From (2.1) we get for a.e. t ∈ [0, 1]

Υ̇ (t) = γ̇(t) −
r∑

m=2

(−1)m

m!
ad(γ(t))m−1(γ̇(t))

= γ̇(t) −
r∑

m=2

(−1)m

m!
[γ(t), γ̇(t)]m−1. (2.2)

In the last formula we used the iterated Lie bracket which is defined by

[e, f ]m = [e, [e, [. . . , [e︸ ︷︷ ︸
m times

, f ], ], . . . , ] and [e, f ]0 = f.

From (2.2) we obtain that Υ is horizontal if and only if for a.e. t ∈ [0, 1]

πi

(
γ̇(t) −

r∑
m=2

(−1)m

m!
[γ(t), γ̇(t)]m−1

)
= 0, i = 2, . . . , r.

We summarize as

Lemma 2.2. An absolutely curve Υ in G is horizontal if and only if for a.e. t ∈ [0, 1]

γ̇i(t) =
r∑

m=2

(−1)m

m!
πi([γ(t), γ̇(t)]m−1), i = 2, . . . , r.

We denote by H1 the Sobolev type space of all horizontal curves Υ : [0, 1] → G with square integrable
derivatives. In the rest of the paper we assume all horizontal curves in G are in H1. For our purpose this
assumption is not restrictive since all rectifiable curves can be arc-length parameterized. Combining (2.2) with
Lemma 2.2, we have for a.e. t ∈ [0, 1]

Υ̇ (t) =
n1∑
i=1

ẋi(t)Xi(Υ (t)) (2.3)
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where γ1(t) = Σn1
i=1x

i(t)ei. Define P : G → V 1, P(p) = π1(exp−1(p)). The mapping P is just the projection Rn �
(x1, . . . , xn1 , . . . , xn) → (x1, . . . , xn1) ∈ Rn1 when we identify G as (Rn, ·). The formula (2.3) in particular implies
that P is a Riemannian submersion from (G, gr) to (V 1, 〈·, ·〉) (or equivalently from (Rn, gr) to (Rn1 , 〈·, ·〉)) with
the property that for any p ∈ G, P�,p(Xi(p)) = ei, i = 1, . . . , n1, and P�,p(Xj(p)) = 0 for j = n1 + 1, . . . , n.

Note that the graded condition (1.1) for the Lie algebra � is equivalent to the following condition

V i =
[
V 1,
[
. . . ,

[
V 1, V 1

]]]︸ ︷︷ ︸
i times

, i = 2, . . . r, and V j = 0 for j > r, (2.4)

which together with Lemma 2.2 implies that

γ̇i =
i∑

m=2

(−1)m

m!

⎛
⎝ ∑

j1+j2+...+jm=i

[
γj1 ,

[
γj2 ,

[
. . . ,

[
γjm−1 , γ̇jm

]]]]⎞⎠ for i = 2, . . . , r, a.e., (2.5)

which means that γ1 determines γ2, γ3, . . . , γr recursively. We list γ̇2, γ̇3, γ̇4 as functions of γ1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ̇2 =
1
2
[
γ1, γ̇1

]
γ̇3 =

1
2
{[

γ1, γ̇2
]
+
[
γ2, γ̇1

]}− 1
6
[
γ1,
[
γ1, γ̇1

]]
γ̇4 =

1
2
{[

γ1, γ̇3
]
+
[
γ2, γ̇2

]
+
[
γ3, γ̇1

]}− 1
6
{[

γ1,
[
γ1, γ̇2

]]
+
[
γ1,
[
γ2, γ̇1

]]
+
[
γ2,
[
γ1, γ̇1

]]}
+

1
24
[
γ1, γ̇1

]
3
.

(2.6)

Sometimes we will abuse the notation Υ = (γ1, . . . , γr) or Υ = Σr
i=1γ

i.

Proposition 2.3. (1) Given p ∈ G. Every absolutely continuous curve γ1 : [0, 1] → V 1 has a unique horizontal
lift Υ = (γ1, . . . , γr) : [0, 1] → G determined by (2.5) with Υ (0) = p. They have the same length and same
regularity or smoothness; (2) Horizontal lifts of every straight line (or its interval) in V 1 are subriemannian
minimizing geodesics.

Proof. (1) Note that the class of absolutely continuous curves in � is just the Sobolev class W 1,1([0, 1], �). This
implies γ1 is continuous and thus bounded in [0, 1] with γ̇1 ∈ L1([0, 1], �), see e.g. [14], Chapter 2. So there
exists γ2 ∈ W 1,1([0, 1], �) such that γ2(t) = 1

2

∫ t

0 [γ1, γ̇1]dτ + π2(exp−1 p). Continuing this process, and noting
that each summand in the right hand side of (2.5) contains only one term with derivative and other terms are
bounded, that is, the right hand side of (2.5) is in L1([0, 1], �). Thus the function γi satisfying

γi(t) =
∫ t

0

i∑
m=2

(−1)m

m!

⎛
⎝ ∑

j1+j2+...+jm=i

[
γj1 ,

[
γj2 ,

[
. . . ,

[
γjm−1 , γ̇jm

]]]]⎞⎠dτ + πi(exp−1 p)

is in W 1,1([0, 1], �). From (2.3) γ1 and its lift above have the same length.
To see (2), we recall by definition that in (G, gr) Riemannian geodesics which are horizontal must be sub-

riemannian geodesics. Since the geodesics of Euclidean space (V 1, 〈·, ·〉) are straight lines (or their intervals) ,
their horizontal lifts are Riemannian geodesics because P is a Riemannian submersion, see [28]. The minimizing
property is obvious. �

By Proposition 2.3 we sometimes do not distinguish a horizontal curve Υ = (γ1, . . . , γr) with its projection
to the first layer γ1.
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Note that horizontal lifts of straight lines in V 1 are not necessarily still a line (looking in �) if G with step ≥ 3.
In fact, let γ1(t) = vt + v0 with v, v0 ∈ V 1. By the formula (2.6) we have⎧⎪⎨

⎪⎩
γ̇2(t) =

1
2
[v, v0]

γ̇3(t) =
1
6
[v, [v, v0]]t − 5

12
[v0, [v0, v]] +

1
4
[
γ2(0), v

]
.

So the third layer of the lift is not a line unless [v, [v, v0]] = 0. While if v0 = 0, that is, the line passes through
the origin, its lift is just itself.

2.2. The end-point mapping

Given p, q ∈ G, deonte by Ω(p) the Hilbert manifold of all horizontal curves Υ ∈ H1 with Υ (0) = p. Let
Ω(p, q) = {Υ ∈ Ω(p) : Υ (1) = q}. Since Ω(p) = p · Ω(0) := {p · Υ : Υ ∈ Ω(0)}, Ω(p, q) = p · Ω(0, p−1 · q) and
the metric gc is left-invariant, it suffices to consider horizontal curves emanating from the unit. Here we abuse
0 to denote the unit of G. From Proposition 2.3, we see that the projection P gives a bijective mapping (still
denoted by P) from Ω(0) to H1(0) := {γ1 ∈ H1([0, 1], V 1) : γ1(0) = 0} with the mapping of horizontal lift as
its inverse, where H1([0, 1], V 1) denote the Sobolev space of all absolutely curves γ1 : [0, 1] → V 1 with square
integrable derivatives. Note from the formula (2.5), we have for Υ ∈ Ω(0), t ∈ [0, 1],

Υ (t) =
(
γ1(t), γ2(t), . . . , γr(t)

)
where γi(t), i = 2, . . . , r is regard as a mapping F i,t (defined recursively) from H1(0) to V i:

F i,t
(
γ1
)

=
∫ t

0

i∑
m=2

(−1)m

m!

⎛
⎝ ∑

j1+j2+...+jm=i

[
γj1 ,

[
γj2 ,

[
. . . ,

[
γjm−1 , γ̇jm

]]]]⎞⎠ dτ. (2.7)

Now the original end-point mapping

end : Ω(0) � Υ → Υ (1) ∈ G (2.8)

can be interpreted as
E : H1(0) � γ → (

F 1
(
γ1
)
, F 2

(
γ1
)
, . . . , F r

(
γ1
)) ∈ � (2.9)

where F 1(γ1) = γ1(1), F i = F i,1, i = 2, . . . , r.
Noting that given exp ξ = q ∈ G for ξ ∈ �, Ω(0, q) = exp(E −1(ξ)), the subriemannian geodesic problem in G

min
Υ∈Ω(0,q)

1
2

∫ 1

0

gc(Υ̇ , Υ̇ )dt

is equivalent to the minimizing problem with equality constraint

min
E (γ1)=ξ

1
2

∫ 1

0

∣∣γ̇1
∣∣2 dt. (2.10)

By the Cauchy-Schwarz inequality the problem of minimizing the energy functional is equivalent to that of
minimizing the length functional. The existence of the subriemannian geodesic problem even for general sub-
riemannian manifolds can be obtained by an argument of direct method in calculus of variations, see e.g.
Appendix D in [27] where one also will find the ordinary formulation of the end-point mapping. What we are
concerned with is their smoothness. The refined mapping E : H1(0) → � from a Hilbert space to a vector space
will help us much.
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3. The calculus of the end-point mapping

3.1. The generalized morse index theorem

To begin some computation, let us first see what we need according to the theory of generalized Morse
index which we will later resort to. Let (X, ‖ · ‖) be a Banach space, L : X → R, and F : X → Y with Y a
finite dimensional vector space, be C2 Fréchet differentiable mappings. Given y0 ∈ Y , consider the minimizing
problem with equality constraint

min
F (x)=y0

L(x). (3.1)

The Lagrange Multiplier Rule states that if x ∈ X is a solution of (3.1) then there exists a nontrivial couple
(λ0, λ�) ∈ R × Y � such that λ0dxL + λ�dxF = 0, where dxL (resp. dxF ) denotes the Fréchet derivative of L
(resp. F ) at the point x. In other words, the point x is a singular point of the augmented end-point mapping
L : X � y → (L(y), F (y)) ∈ R × Y and

λ̃ · dxL = λ0dxL + λ�dxF = 0 with λ̃ = (λ0, λ�). (3.2)

The abnormal case λ0 = 0 arises exactly when Im(dxF ) �= Y , i.e., x is a singular point of F . In this case we
call (x, λ�) an abnormal extremal. In the regular case Im(dxF ) = Y , we take λ0 = 1. For x ∈ X if there exists
λ� such that

dxL + λ�dxF = 0, (3.3)

we call (x, λ�) a normal extremal. The definition of normal extremals is equivalent to the one given in the
Introduction. In the theory of subriemannian geodesics there exists a correspondence between λ� in (3.3) and
the Hamiltonian lift λ(t) in (1.2), see [20] or [27], Chapter 5. We remark that an abnormal extremal may be
normal by choosing a suitable multiplier (or a Hamiltonian lift). Those abnormal extremals which can not be
normal for any multiplier are called strictly abnormal extremals.

The corank of x is defined as the codimension of Im(dxL). The following theorem, which gives neces-
sary/sufficient conditions of optimality for a singular point is enough for our purpose, for the general versions
see [4], Chapter 20.

Theorem 3.1 ([2,4–6]). If x is a local minimizer in X of the minimizing problem (3.1), of corank N , then for
the nontrivial pair of Lagrange multiplier λ̃ = (λ0, λ�) (λ0 = 0 or 1) satisfying (3.2), the Morse index of the
quadratic form λ̃ · d2

xL restricted to ker dxF is less than or equal to N − 1.

We recall that the Morse index of a quadratic form is the maximal dimension of subspaces on which the
quadratic form is negative definite. Theorem 3.1 is classical for the regular case for which (3.3) is the Euler-
Lagrange equation, see [24].

3.2. The differential of the end-point mapping

In the next section we will derive second order necessary conditions for minimality of abnormal extremals of
the problem (2.10) from the finiteness of the Morse index of the quadratic form λ̃ · d2

xL stated in Theorem 3.1.
In the following we do some computation of the differential of the end-point mapping.

Lemma 3.2. Given Υ = (γ1, . . . , γr) ∈ Ω(0), then TΥ Ω(0) = Tγ1H1(0) = H1(0).

Proof. H1(0) is a Hilbert space. Let φ ∈ H1(0). The family of horizontal lifts of γ1 + εφ (ε ∈ [−ε0, ε0]),

Υε(t) =
(
γ1(t) + εφ(t), F 2,t(γ1 + εφ), . . . , F r,t(γ1 + εφ)

)
where F i,t, i = 2 . . . , r, is defined as in (2.7), is a smooth curve in Ω(0) with Υ0 = Υ .

On the other hand, if Υε is a smooth family in Ω(0) with Υ0 = Υ , then by Lemma 2.2 and (2.5), (2.7) we
have

Υε(t) =
(
γ1

ε , F 2,t(γ1
ε ), . . . , F r,t(γ1

ε )
)

where γ1
ε = P(Υε) is a smooth family in H1(0) with γ1

0 = γ1 = P(Υ ). �
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For γ1, φ ∈ H1(0), the differential at γ1 of the end-point mapping E is

dγ1E : H1(0) � φ → dγ1E (φ) =
(
φ(1), dγ1F 2(φ), . . . , dγ1F r(φ)

) ∈ TqG (3.4)

where q = (γ1(1), F 2(γ1), . . . , F r(γ1)) and F i is shortened for F i,1, i = 2, . . . , r. Noting that the differential
dγ1F i(φ), i = 2, . . . , r, recursively depends on dγ1Ḟ j,t(φ), dγ1F j,t(φ), j = 2, . . . , i− 1, t ∈ (0, 1], its computation
is complicated for i ≥ 5. We restrict to the case of step ≤ 3 partly also because of technical difficulties in the
next two sections. Observe that d

dtdγ1F i,t(φ) = dγ1Ḟ i,t(φ). From (2.6)–(2.7) we have for step=2⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F 2,t(γ1) =
1
2

∫ t

0

[γ1, γ̇1]dτ

dγ1F 2,t(φ) =
∫ t

0

[φ, γ̇1]dτ +
1
2
[γ1(t), φ(t)]

dγ1Ḟ 2,t(φ) =
1
2
[φ(t), γ̇1(t)] +

1
2
[γ(t), φ̇(t)].

(3.5)

For step = 3, from (2.6) we first have

Ḟ 3,t = γ̇3(t) =
1
2

d
dt
[
F 2,t, γ1(t)

]
+

1
3
[
γ1(t),

[
γ1(t), γ̇1(t)

]]
,

then using (3.5) get⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dγ1F 3,t(φ) =
∫ t

0

[
γ1,
[
φ, γ̇1

]]
dτ +

1
2
([

F 2,t, φ
]
+
[
dγ1F 2,t(φ), γ1

])
+

1
3
[
γ1(t), φ(t)

]
2

=
∫ t

0

[
γ1,
[
φ, γ̇1

]]
dτ +

1
2

[∫ t

0

[
φ, γ̇1

]
dτ, γ1(t)

]
+

1
4

[∫ t

0

[
γ1, γ̇1

]
dτ, φ(t)

]
+

1
12
[
γ1(t),

[
γ1(t), φ(t)

]]
.

(3.6)

In the above computation we used integration by parts, skew-symmetry and Jacobi identity of Lie brackets to
arrange terms.

Lemma 3.3. In the case r = 3, by (3.4)–(3.6) we have φ ∈ ker
(
dγ1E

)
if and only if

φ(1) = 0∫ 1

0

[φ, γ̇1]dt = 0∫ 1

0

[γ1, [φ, γ̇1]]dt = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (3.7)

Now we compute the second Fréchet derivative of the end-point mapping E for r = 3. From (3.5) we have

d2
γ1F 2(φ, φ) =

∫ 1

0

[φ, φ̇]dt. (3.8)

For φ ∈ ker
(
dγ1E

)
it follows from (3.6) and (3.7) that

d2
γ1F 3(φ, φ) =

∫ 1

0

[φ, [φ, γ̇1]]dt +
∫ 1

0

[
γ1 − 1

2
γ1(1), [φ, φ̇]

]
dt. (3.9)
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So the intrinsic quadratic mapping (see e.g. [4], pp. 294–296) of E for r = 3

d2
γ1E : ker

(
dγ1E

)× ker
(
dγ1E

)→ �

is

d2
γ1E (φ, φ) =

(
0,

∫ 1

0

[φ, φ̇]dt,

∫ 1

0

[φ, [φ, γ̇1]]dt +
∫ 1

0

[
γ1 − 1

2
γ1(1), [φ, φ̇]

]
dt

)
. (3.10)

4. Goh condition and Legendre-Jacobi condition

In the rest of the paper we assume the Carnot group has step ≤ 3. From (3.5) and (3.6) we have for φ ∈ H1(0)
with φ(1) = 0

dγ1E (φ) =
(

0,

∫ 1

0

[φ, γ̇1]dt,

∫ 1

0

[
γ1 − 1

2
γ1(1),

[
φ, γ̇1

]]
dt

)
. (4.1)

Applying the Lagrange Multiplier Rule to the problem (2.10) we get

Proposition 4.1. If γ1 ∈ H1(0) is a minimizer of the problem (2.10), then there exists λ̃ = (λ1, λ2, λ3) ∈ ��

with λi ∈ (V i)�, i = 1, 2, 3, such that for any φ ∈ H1(0)∫ 1

0

< γ̇1, φ̇ > +λ2
[
φ, γ̇1

]
+ λ3

[
γ1 − 1

2
γ1(1),

[
φ, γ̇1

]]
dt = 0 with φ(1) = 0 (4.2)

or
λ̃dγ1E (φ) = λ1φ(1) + λ2dγ1F 2(φ) + λ3dγ1F 3(φ) = 0 with λ̃ �= 0. (4.3)

Proof. Taking L as the energy functional L(γ1) = 1
2

∫ 1

0 |γ̇1|2dt, by the Lagrange Multiplier Rule there exists
nontrivial (λ0, λ̃) ∈ R × �� with λ0 = 0 or 1 and λ̃ = (λ1, λ2, λ3) such that for any φ ∈ H(0)

λ0dγ1L(φ) + λ1φ(1) + λ2dγ1F 2(φ) + λ3dγ1F 3(φ) = 0.

When λ0 = 1, (4.2) follows from the last formula, (4.1) and dγ1L(φ) =
∫ 1

0
〈γ̇1, φ̇〉dt. �

We call γ1 (or its horizontal lift) satisfying (4.2) for some (λ2, λ3) a normal geodesic. By a standard argument
from the theory of (elliptic) differential equations normal geodesics are smooth, see e.g. [14]. Singular geodesics
are local minimizers γ1 (or their horizontal lifts) of the problem (2.10) satisfying (4.3) for some λ̃ = (λ1, λ2, λ3) ∈
��. For singular geodesics the following result follows from Theorem 3.1 and (3.10).

Proposition 4.2. If γ1 ∈ H1(0) is a singular minimizer of the problem (2.10), there exists a nontrivial λ̃ =
(λ1, λ2, λ3) satisfying (4.3) such that the Morse index of the quadratic form

λ̃d2
γ1E (φ, φ) =

∫ 1

0

λ2[φ, φ̇]dt +
∫ 1

0

λ3

[
γ1 − 1

2
γ1(1), [φ, φ̇]

]
dt +

∫ 1

0

λ3[φ, [φ, γ̇1]]dt
(
φ ∈ ker

(
dγ1E

))
(4.4)

is finite.

Proposition 4.3. Let γ1, λ̃ = (λ1, λ2, λ3) be as in Proposition 4.2. Assume γ1 is parameterized proportionally
to arc-length. Then {

λ2 = 0
λ3
[
γ1(t), [a, b]

]
= 0, ∀a, b ∈ V 1, ∀t ∈ [0, 1].

(4.5)
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Proof. The argument is similar to [4], Proposition 20.13. The idea is a type of scaling or blowing up method.
Let τ̄ ∈ [0, 1] be a Lebesgue point of γ̇1. Take a smooth mapping c : R → V 1 with support on [0, 2π] such that∫ 2π

0 c(s)ds = 0. Let φc,ε(τ) =
∫ τ

0 c( τ̃−τ̄
ε )dτ̃ with ε small. This certainly implies φ̇c,ε(τ) = c( τ−τ̄

ε ) for τ ∈ [0, 1]
and φc,ε ∈ H1(0) with φc,ε(1) = 0. Letting w(s) =

∫ s

0
c(s̃)ds̃, we have∫ 1

0

λ2[φc,ε, φ̇c,ε]dτ = ε2
∫ 2π

0

λ2 [w(s), c(s)] ds (4.6)

and similarly∫ 1

0

λ3

[
γ1 − 1

2
γ1(1),

[
φc,ε, φ̇c,ε

]]
dt =ε2

∫ 2π

0

λ3

[
γ1(τ̄) − 1

2
γ1(1), [w(s), c(s)]

]
ds + ε3O(1) (4.7)

where we used the fact γ̇ ∈ L∞ and thus γ1(τ̄ + εs) = γ1(τ̄ ) + εO(1) for ε small enough. For the last term in
(4.4) we have ∫ 1

0

λ3
[
φc,ε,

[
φc,ε, γ̇

1
]]

dt = ε3
∫ 2π

0

λ3
[
w(s),

[
w(s), γ̇1(τ̄ + εs)

]]
ds = ε3O(1). (4.8)

From (4.6)–(4.8), we get

λ̃d2
γ1E (φc,ε, φc,ε) = ε2

∫ 2π

0

ω(w(s), c(s))ds + ε3O(1) (4.9)

where ω(a, b) = λ2[a, b] + λ3
[
γ1(τ̄ ) − 1

2γ1(1), [a, b]
]

is a skew-symmetric bilinear form on V 1.
We claim that ω ≡ 0. In fact, if ω �= 0, then rankω = 2l0 > 0 and we can change the basis of V 1 such that

ω(a, b) =
l0∑

i=1

(
xiyi+l0 − xi+l0yi

)
for any b = (x1, . . . , xn1), a = (y1, . . . , yn1) ∈ V 1. Now we take

c(s) =
(
x1(s), 0, . . . , 0, xl0+1(s), 0, . . . , 0

)
where x1(s) =

∑∞
k=1 ξk cos ks, xl0+1(s) =

∑∞
k=1 ηk sin ks, and (ξk)∞k=1, (ηk)∞k=1 ∈ l1. Putting c(s), w(s) =∫ s

0
c(s̃)ds̃ into (4.9) we get

λ̃d2
γ1E (φc,ε, φc,ε) = −

(
2π

∞∑
k=1

1
k
ξkηk

)
ε2 + ε3O(1).

From the last formula and the construction of φc,ε it follows that there exists an infinite dimensional space K
such that λ̃d2

γ1E (φ, φ) < 0 for each φ ∈ K. Note that K∩ ker
(
dγ1E

)
is also infinite dimensional, since the rank

of E is less than n. It implies the Morse index of λ̃d2
γ1E is infinite. This is impossible by Proposition 4.2, so

ω ≡ 0.
We have proved that if t ∈ [0, 1] is a Lebesgue point of γ̇1, then

λ2[a, b] + λ3

[
γ1(t) − 1

2
γ1(1), [a, b]

]
= 0 for any a, b ∈ V 1. (4.10)

Since almost all points in [0, 1] are Lebesgue points of γ̇1 ∈ L∞ by the Lebesgue differentiation theorem, it
follows from the continuity of γ1 that (4.10) holds for any t ∈ [0, 1]. In (4.10) letting t = 0 we get λ2[a, b] +
λ3
[− 1

2γ1(1), [a, b]
]

= 0 (since γ1(0) = 0). Combing the last identity with (4.10), we obtain λ3
[
γ1(t), [a, b]

]
= 0

for any t ∈ [0, 1] and any a, b ∈ V 1. Applying the identity (4.10) again, we finally have λ2ξ = 0 for any ξ ∈ V 2,
since [V 1, V 1] = V 2. �
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The condition of (4.5) is called the Goh condition which first appeared in references of singular control theory,
see [17]. A curve γ1 ∈ H1(0) (or its horizontal lift) together with some nonzero λ̃ = (λ1, λ2, λ3) ∈ �� satisfying
the Goh condition is called a Goh curve and the pair (γ1, λ̃) is called a Goh extremal. Note that for a Goh
extremal (γ1, λ̃), λ3 �= 0 and (4.3) automatically holds by choosing λ1 = 0. The following fact is instructive for
the study of subriemannian geodesics even for general case.

Corollary 4.4. Assume G is a Carnot group of step 3, with a Carnot algebra � = V 1 ⊕ V 2 ⊕ V 3. Let W be a
lower-dimensional subspace of V 1.

(1) If [W, V 2] � V 3, then any curve (H1(0) �)γ1 ⊂ W is a Goh curve;
(2) if � is a free Carnot algebra, then any curve (H1(0) �)γ1 ⊂ W is a Goh curve.

Proof. (1) By assumption dim(V 3\[W, V 2]) ≥ 1. For any curve (H1(0) �)γ1 ⊂ W choosing λ1 = 0, λ2 = 0 and
λ3 �= 0 annihilating [W, V 2], we conclude that (γ1, λ̃) is a Goh extremal. The statement of (2) follows from (1)
and the fact that for a free Carnot algebra, [W, V 2] � V 3 always holds when dimW < dim V 1. �

Corollary 4.4 implies that each Carnot group of step 3 admits Goh curves. The following necessary condition
is not used in this paper, but we include it for completeness.

Proposition 4.5. Let γ1, λ̃ = (λ1, λ2, λ3) be as in Proposition 4.3. Then

λ3
[
a, [a, γ̇1(t)]

] ≥ 0 for a.e. t ∈ [0, 1] and any a ∈ V 1 (4.11)

and

λ̃d2
γ1E (φ, φ) =

∫ 1

0

λ3
[
φ, [φ, γ̇1]

]
dt ≥ 0, φ ∈ ker

(
dγ1E

)
, (4.12)

changing λ̃ to −λ̃ if necessary.

Proof. It suffices to prove that (4.11) holds for all Lebesgue points of γ̇1.
Let τ̄ ∈ [0, 1] be a Lebesgue point of γ̇1. Assume that λ3

[
ā, [ā, γ̇1(τ̄ )

]
< 0 for some ā ∈ V 1. We choose a

suitable basis of V 1 to diagonalize the quadratic form

λ3
[
a, [a, γ̇1(τ̄ )

]
=

n1∑
j=1

σi(xj)2, a = (x1, . . . , xn1)

with at least one term σi < 0. For any smooth x : R → Rn1 with support in [0,1], let

φx(t) =

⎛
⎜⎝ 0, . . . , 0︸ ︷︷ ︸

(i−1) terms

, x(t), 0, . . . , 0

⎞
⎟⎠ ,

then we have

λ̃d2
γ1E (φx, φx) = σi

∫ 1

0

x2(t)dt < 0. (4.13)

Denote by Π the set of all smooth mappings x : [0, 1] → Rn1 with support in [0,1] and satisfying (4.13). Π is
infinitely dimensional, so is

{
φx : φx ∈ ker

(
dγ1E

)
, x ∈ Π

}
. It is a contraction by Proposition 4.2. �

(4.11) and (4.12) are called generalized Legendre-Jacobi condition.
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5. Subriemannian geodesics of step 3

In this section we assume G is of step = 3.

Lemma 5.1. Any line (or its interval) through 0 is a normal geodesic.

Proof. For γ1(t) = Ctv0, where C a constant and v0 ∈ V 1, we take λ2 = 0, λ3 = 0, then (4.2) holds for any
φ ∈ H1(0) with φ(1) = 0. �

The following result on rank 2 case is well known, see e.g. [8]. For completeness we give a self-contained proof.

Theorem 5.2 (rank 2 case). Let G be of rank 2, i.e., n1 = 2. Assume V 1 = span{e1, e2}.
(1) In the case of the Engel group whose algebra � = span{e1, e2} ⊕ span{e3} ⊕ span{e4} with [e1, e2] =

e3, [e1, e3] = e4, there is a unique arc-length parameterized singular geodesic γ1 which is normal and tangent
to e2, that is, γ1(t) = te2;

(2) to the other case where � = span{e1, e2}⊕span{e3}⊕span{e4, e5} with [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5,
singular geodesics are exactly those lines (or their intervals) in V 1 through the origin.

Proof. Let γ1 be a singular geodesic parameterized proportionally to arc-length and satisfying (4.3) with some
λ̃ = (λ1, λ2, λ3). From (4.5) λ2 = 0. This together with (4.3) implies that λ3 �= 0.

We claim that λ1 must be in a line. In fact, if this is not true, there must exist t1, t2 ∈ (0, 1] such that
V 1 = span{γ1(t1), γ1(t2)} which together with (4.5) implies that λ3 = 0 because [V 1, V 2] = V 3. A contradiction!
So γ1(t) = (c1e1 + c2e2)t for constants c1, c2 with (c1)2 + (c2)2 �= 0. In Proposition 2.3 we see they are shortest
subriemannian geodesics.

(1) If � is the Engel algebra, from λ3 �= 0 and λ3[c1e1t+c2e2t, e3] = 0, ∀t ∈ [0, 1] we get c1 = 0, since [e1, e3] = e4

and [e2, e3] = 0. From (3.5) and (3.6) by direct computation we verify that γ1(t) = c2e2t (c2 �= 0) is a singular
curve (choosing e.g. λ̃ = (0, 0, 1)). By Lemma 5.1 it is normal;

(2) when � is the free case, by direct computation we have Im
(
dγ1E

) �= �. In fact, by (3.6) for any φ ∈ H1(0)
there exists a constant δ such that dγ1F 3(φ) = δ(c1e4 + c2e5). So all γ1(t) = (c1e1 + c2e2)t are singular
geodesics. By Lemma 5.1 they are also normal. �

Lemma 5.3. Let γ1 (or its horizontal lift) be a subriemannian geodesic in G and be contained in a lower-
dimensional subspace W ⊂ V 1. If γ1 is a normal geodesic in the Carnot subgroup Ḡ(W ) of step 2 or 3, then γ1

is also normal in G.

Proof. Assume Ḡ(W ) has step 3. Because γ1 ⊂ W is normal in Ḡ(W ), by (4.2) there exist μ ∈ [W, W ]� and
ν ∈ [W, [W, W ]]� such that

∫ 1

0

〈
γ̇1, φ̇

〉
+ μ[φ, γ̇] + ν

[
γ1 − 1

2
γ1(1),

[
φ, γ̇1

]]
dt = 0

holds for any φ ∈ H1([0, 1], W ) with φ(0) = φ(1) = 0. Let V 2 (resp. V 3) be orthogonally decomposed as
[W, W ] ⊕ U2 (resp. [W, [W, W ]] ⊕ U3). Now we take λ2 = μ ∈ (V 2

)�
, λ3 = ν ∈ (V 3

)�, that is, we extend
μ (resp. ν) to V 2 (resp. V 3) by annihilating U2 (resp. U3). It is obvious that (λ2, λ3) satisfies (4.2) for any
φ ∈ H1([0, 1], V 1) with φ(0) = φ(1) = 0. The case when Ḡ(W ) has step 2 is similar. �
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Theorem 5.4 (general case). All subriemannian minimizers in G are normal.

Proof.

(1) Let γ1 be a singular geodesic which is parameterized proportionally to arc-length and satisfies (4.3) for
some λ̃ = (λ1, λ2, λ3).
From (4.5) and (4.3) we have λ3 �= 0 because [V 1, V 1] = V 2, [V 1, V 2] = V 3. We claim that γ1 is
contained in a lower-dimensional subspace W of V 1. Otherwise, there are t1, . . . , tn1 ∈ (0, 1] such that
V 1 = span{γ1(t1), . . . , γ1(tn1)} which together with (4.5) implies λ3 = 0.
Thus γ1 (or its horizontal lift) is a subriemannian geodesic in the Carnot subgroup Ḡ(W ) whose algebra is
�̄ = W ⊕ [W, W ] ⊕ [W, [W, W ]] or W ⊕ [W, W ] or W ;

(2) if �̄ = W , this implies that the horizontal lift of γ1 is itself. By Proposition 2.3 the line through 0 and γ1(t0)
for any t0 ∈ (0, 1] is the shortest subriemannian geodesic. So γ1 must be an interval of a line through 0;

(3) if �̄ = W ⊕ [W, W ], then γ1 is a subriemannian geodesic in a Carnot group of step 2. So γ1 is normal in
Ḡ(W ). From Lemma 5.3, γ1 is also normal in G;

(4) if �̄ = W ⊕ [W, W ] ⊕ [W, [W, W ]], then γ1 is also a subriemannian minimizer in Ḡ(W ). If γ1 is regular in
Ḡ(W ), then by Lemma 5.3 γ1 is also normal in G. If γ1 is a singular geodesic in Ḡ(W ) and dimW ≥ 3, we
repeat the procedure from step (1), with G (resp. �) replaced by Ḡ(W ) (resp. �̄).

By finite steps we arrive at the case of rank 2. Our statement follows from Theorem 5.2. �

Remark 5.5. The smoothness of subriemannian geodesics is very close to the regularity of the subriemannian
distance. In fact, the pointwise smoothness of the subriemannian distance depends on the strict normalness
and uniqueness of subriemannian geodesics. The subanalyticity of the subriemannian distance (or sphere) was
usually derived from the exclusivity of Goh curves. We refer the readers to [3,21] and references therein for this
topic. In our case of step 3, as pointed out in Corollary 4.4, there typically exist Goh curves which are smooth
even normal if they are shortest. Theorem 10 in [3] proved that the subriemannian distances of free Carnot
groups of step 3 are not subanalytic.

Acknowledgements. Part of this work was done when the first author visited Department of Mathematics, University of
Notre Dame. He would thank Professor Jianguo Cao for his help and thank the staff for their hospitality. We also thank
the referee for useful comments and suggestions.

Note added in proof. After the paper was accepted for publication, we generalized the smoothness result to sub-
riemannian manifolds of step 3 with a nilpotent basis, see http://arxiv.org/abs/1202.4287. In the latter article we
noticed that the example by [18] is not a strictly abnormal minimizer. In fact we proved that all abnormal minimizers
in rank 2 Carnot groups of step 4 must be normal.
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