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DISTRIBUTED CONTROL FOR MULTISTATE MODIFIED
NAVIER-STOKES EQUATIONS

Nadir Arada1

Abstract. The aim of this paper is to establish necessary optimality conditions for optimal control
problems governed by steady, incompressible Navier-Stokes equations with shear-dependent viscosity.
The main difficulty derives from the fact that equations of this type may exhibit non-uniqueness of
weak solutions, and is overcome by introducing a family of approximate control problems governed
by well posed generalized Stokes systems and by passing to the limit in the corresponding optimality
conditions.
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1. Introduction

This paper deals with an optimal control problem associated with a viscous, incompressible fluid. The controls
and states are constrained to satisfy a modified Navier-Stokes system with shear dependent viscosity given by⎧⎪⎨⎪⎩

−∇ · (τ(Dy)) + y · ∇y + ∇π = u in Ω,

∇ · y = 0 in Ω,

y = 0 on Γ,

(1.1)

where y is the velocity field, π is the pressure, τ is the Cauchy stress tensor, Dy = ∇y+(∇y)T

2 is the symmetric
part of the velocity gradient ∇y, the control u is the distributed mechanical force and Ω ⊂ R

n (n = 2 or n = 3)
is a bounded domain. The objective of the control is to match the velocity field to a given target field. More
precisely, we consider the following optimal control problem

(Pα)

⎧⎨⎩Minimize J(y, u) =
1
2

∫
Ω

|y − yd|2 dx +
ν

2

∫
Ω

|u|2 dx

Subject to (y, u) ∈ W 1,α
0 (Ω) × Uad satisfies (1.1) for some π ∈ Lα(Ω),
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where α ≥ 2, ν is a positive constant, yd is some desired velocity field and Uad, the set of admissible controls,
is a nonempty convex closed subset of L2(Ω).

The considered class of fluids are described by partial differential equations of the quasi-linear type that
generalize the Navier-Stokes system. These equations were first studied by Ladyzhenskaya [12] and Lions [13]
who proved existence of weak solutions using compactness arguments and the theory of monotone operators
(see [16] for a review on the subject). Only scant attention has been paid to the analysis of optimal control
problems governed by these equations. We mention the work of Slawig [18] for the two-dimensional steady
case, and Wachsmuth and Roub́ıček [19] for the two-dimensional unsteady case. We also refer to the work
of Gunzburger and Trenchea [9] devoted to optimal control problem for a three-dimensional modified Navier-
Stokes system coupled with maxwell equations, and to the work of Kunisch and Marduel [15] for a problem
with temperature-dependent viscosity.

As for optimal control problems governed by steady Navier-Stokes equations, one of the issues encountered
when dealing with the class of problems studied in this paper is related with the uniqueness of the state variable,
guaranteed under some restrictions on the data. Different approaches have been considered. The first one consists
in deriving the necessary optimality conditions on a set of admissible controls defined by taking into account
these restrictions (see e.g. [6, 17]). Another method introduced by Abergel and Casas [1] allows to obtain the
optimality conditions of Fritz-John type for any convex admissible control set and derive these conditions in a
qualified form when the so-called (C) property introduced by Gunzburger et al. in [10] is fulfilled.

Another difficulty arises when studying the differentiability of the control-to-state mapping and is a conse-
quence of the nonlinearity of the stress tensor. Unless the gradient of the velocity is uniformly bounded, or α = 2
which corresponds to the Navier-Stokes equations, the related analysis cannot be achieved in Sobolev spaces
and the natural setting for the linearized equation (and similarly for the adjoint equation) involves adequate
weighted Sobolev spaces. The underlying difficulties appear identically in a class of optimal control problems
governed by quasilinear elliptic equations, and we specially mention the related papers by Casas and Fernández
(see [3–5]).

In the present work, we do not impose any additional restriction on the set of admissible controls. System
(1.1) may then exhibit non-uniqueness of weak solutions and the control-to-state mapping u �−→ yu can be
multivalued. Combining the methods developed in [1, 4, 5] together with explicite estimates established in [2],
we derive optimality conditions in a nonqualified form in both two-dimensional and three-dimensional cases.
Their qualification is guaranteed under the (C) property, or under a precise condition on the optimal control.
This last result was obtained in [2] using a different approach and seems to be new in the sense that no constraint
on the size of admissible controls is needed.

The plan of the paper is as follows. Assumptions, notation and some preliminary results are given in Section 2.
The main results are stated in Section 3. In Section 4, we introduce a family of approximate control problems
associated with well-posed generalized Stokes systems and we analyze the differentiability of the corresponding
control-to-state mapping. We establish the approximate optimality conditions in Section 5 and, by passing to
the limit, we derive the optimality conditions for our control problem in Section 6.

2. Notation and preliminary results

Throughout the paper, Ω is a bounded domain in R
n (n = 2 or n = 3). The boundary of Ω is denoted

by Γ and is of class C2. Since many of the quantities occuring in the paper are vector-valued functions, the
notation will be abreged for the sake of brevity and we will use the same notation of norms for scalar, vector
and matrix-valued functions.

For η, ζ ∈ R
n×n, we define the scalar product and the corresponding norm by

η : ζ =
n∑

i,j=1

ηijζij and |η| = (η : η)
1
2 .
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For η ∈ R
n×n×n×n and ζ ∈ R

n×n, the scalar product is defined by

η : ζ =

⎛⎝ n∑
k,�=1

ηijk�ζk�

⎞⎠
i,j=1,...,n

∈ R
n×n,

and we can verify that

(η : ζ1) : ζ2 = (ζ2 : η) : ζ1, η ∈ R
n×n×n×n, ζ1, ζ2 ∈ R

n×n.

Let us now summarize assumptions on the nonlinear tensor τ . We assume that τ : R
n×n
sym −→ R

n×n
sym has a

potential, i.e. there exists a function Φ ∈ C2(R+
n , R+

n ) with Φ(0) = 0 such that

τij(η) =
∂Φ(|η|2)

∂ηij
= 2Φ′(|η|2) ηij for all η ∈ R

n×n
sym , τ(0) = 0.

(Here R
n×n
sym consists of all symetric (n × n)-matrices.) Moreover, we assume that for some α ≥ 2 the following

assumptions hold

A1: there exists a positive constant γ such that for all i, j, k,  = 1, . . . , n∣∣∣∣∂τk�(η)
∂ηij

∣∣∣∣ ≤ γ
(
1 + |η|2)α−2

2 for all η ∈ R
n×n
sym .

A2: there exists a positive constant μ such that

τ ′(η) : ζ : ζ =
n∑

i,j=1

n∑
k,�=1

∂τk�(η)
∂ηij

ζk�ζij ≥ μ
(
1 + |η|2)α−2

2 |ζ|2 for all η, ζ ∈ R
n×n
sym .

These assumptions are usually used in the literature and cover a wide range of applications in non-Newtonian
fluids. Typical prototypes of extra tensors used in applications are

τ(η) = 2μ
(
1 + |η|2)α−2

2 η or τ(η) = 2μ (1 + |η|)α−2
η.

We recall that a fluid is called shear thickening if α > 2 and shear thinning if α < 2. For the special case
τ(η) = 2μη (α = 2), we recover the Navier-Stokes equation with viscosity coeficient μ > 0. Assumptions A1-A2
imply the following standard properties for the non-linear tensor τ (see [16], Chap. 5).

Continuity

|τ(η)| ≤ n2γ

α − 1
(
1 + |η|2)α−2

2 |η|. (2.1)

Coercivity
τ(η) : η ≥ μ|η|2 and τ(η) : η ≥ μ

α − 1
|η|α. (2.2)

Monotonicity
(τ(η) − τ(ζ)) : (η − ζ) ≥ μ |η − ζ|2

(τ(η) − τ(ζ)) : (η − ζ) ≥ μ
22α+1 |η − ζ|α

(2.3)

where γ and μ are the constants appearing in the assumptions A1-A2.
Let us now define some useful function spaces. The space of infinitely differentiable functions with compact

support in Ω will be denoted by D(Ω). The standard Sobolev spaces are denoted by W k,α(Ω) (k ∈ N and
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1 < α < ∞), and their norms by ‖ · ‖k,α. We set W 0,α(Ω) ≡ Lα(Ω) and ‖ · ‖α ≡ ‖ · ‖Lα . In order to eliminate
the pressure in the weak formulation of the state equation, we will work in divergence-free spaces. Consider

V = {ϕ ∈ D(Ω) | ∇ · ϕ = 0} ,

and denote by Vα the closure of V with respect to the norm ‖∇ · ‖α, i.e.

Vα =
{
ϕ ∈ W 1,α

0 (Ω) | ∇ · ϕ = 0
}

.

Following [4,5], given y ∈ W 1,α
0 (Ω), we can associate two weighted Sobolev spaces V y

α and Hy
α, where V y

α is the
set of functions z ∈ V2 such that the norm ‖ · ‖ defined by

‖z‖2 =
∫

Ω

(
1 + |Dy|2)α−2

2 |Dz|2 dx

is finite, and Hy
α is the completion of V with respect to this norm. It may be verified that V y

α and Hy
α are Hilbert

spaces and that Hy
α ⊂ V y

α . Moreover, since α ≥ 2, we have

Vα ⊂ Hy
α ⊂ V2

with continuous injections.
In the remaining part of this section, we collect some results that will be useful for the sequel. We begin by

the Poincaré and the Korn inequalities and next, we point out some notable facts related with the convective
term.

Lemma 2.1 (see [8], Chap. 2). Let y be in H1
0 (Ω). Then the following estimate holds

‖y‖2 ≤ CP ‖∇y‖2 with CP =
n − 1√

n
|Ω| 1

n .

Lemma 2.2 (see [11]). Let y be in H1
0 (Ω). Then we have

‖∇y‖2 ≤
√

2 ‖Dy‖2 ,

with the equality if we suppose that y ∈ V2.

Lemma 2.3 (see [2], Lem. 2.5). Let y1 be in V2 and let y2 and y3 be in H1
0 (Ω). Then the following estimate

holds
|(y1 · ∇y2, y3)| ≤ κ1 ‖Dy1‖2 ‖Dy2‖2 ‖Dy3‖2

with κ1 = 2
3
2 (n−1)

n |Ω| 1
n(n−1) .

Lemma 2.4. Let y1, y2 and y3 be in H1
0 (Ω). Then

(y1 · ∇y2, y3) = − (y1 · ∇y3, y2) and (y1 · ∇y2, y2) = 0.

Multiplying equation (1.1) by test functions ϕ ∈ Vα and integrating, we obtain the following weak formulation.

Definition 2.5. Let u ∈ L2(Ω). A function y ∈ Vα is a weak solution of (1.1) if

(τ (Dy) , Dϕ) + (y · ∇y, ϕ) = (u, ϕ) for all ϕ ∈ Vα.
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Let us recall that, having a solution satisfying the formulation given in Definition 2.5, it is standard to
construct the corresponding pressure π ∈ Lα

0 (Ω) such that

(τ (Dy) , Dϕ) + (y · ∇y, ϕ) − (π,∇ · ϕ) = (u, ϕ) for all ϕ ∈ W 1,α
0 (Ω).

We will involve the pressure only in the formulations of the theorems and lemmas but not in the proofs, since
it can always be reconstructed uniquely.

First mathematical investigations of (1.1) under conditions (2.1)–(2.3), were performed by Lions who proved
existence of a weak solution for α ≥ 3n

n+2 (see [13] for more details). The restriction on the exponent α ensures
that the convective term belongs to L1 when considering test functions in Vα. Due to Lemma 2.3, we can see that
this condition is obviously satisfied when dealing with shear-thickening flows. Let us also emphasize the work
by Málek et al. who established existence and regularity results for this class of problems under less restrictive
assumptions (see for example [7, 14, 16]).

For the subsequent analysis, we state an existence and uniqueness result for the state equation and useful
estimates.

Proposition 2.6 (see [2], Props. 3.3 and 3.4). Assume that A1-A2 are fulfilled and that u ∈ L2(Ω). Then
problem (1.1) admits a weak solution yu ∈ Vα and the following estimates hold

‖Dyu‖2 ≤ κ2
‖u‖2

μ
and ‖Dyu‖α

α ≤ (α − 1)
(

κ2
‖u‖2

μ

)2

with κ2 =
√

2(n−1)√
n

|Ω| 1
n . Moreover, if u satisfies the following condition

‖u‖2

μ2
<

√
n3

4 (n − 1)2 |Ω| 1
n−1

,

then equation (1.1) admits a unique weak solution yu ∈ Vα.

Proposition 2.7 (see [2], Thm 4.1). Assume that A1-A2 are fulfilled. Then problem (Pα) admits at least a
solution.

3. Statement of the main results

In order to obtain the necessary optimality conditions for (Pα) stated in Theorem 3.1 below, a family of
problems (P ε

α)ε whose solutions converge towards a solution of (Pα) is introduced and studied in Section 4. We
derive the optimality conditions for these approximate problems in Section 5 and we pass to the limit in these
conditions in Section 6.

Let us now formulate our main result.

Theorem 3.1. Assume that A1-A2 are fulfilled with α ≥ 2. Let ū ∈ Uad be a solution of (Pα) and let ȳ be the
associated state. There then exist a number λ̄ ≥ 0 and p̄ ∈ V ȳ

α such that the following conditions hold

λ̄ + ‖p̄‖1,2 = 0, (3.1)⎧⎪⎨⎪⎩
−∇ · (τ(Dȳ)) + ȳ · ∇ȳ + ∇π̄ = ū in Ω,

∇ · ȳ = 0 in Ω,

ȳ = 0 on Γ,

(3.2)

⎧⎪⎨⎪⎩
−∇ · (τ ′(Dȳ) : Dp̄) − ȳ · ∇p̄ + (∇ȳ)T p̄ + ∇π̃ = λ̄ (ȳ − yd) in Ω,

∇ · p̄ = 0 in Ω,

p̄ = 0 on Γ,

(3.3)

(
p̄ + λ̄νū, v − ū

) ≥ 0 for all v ∈ Uad. (3.4)
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Moreover p̄ satisfies
(τ ′ (Dȳ) : Dp̄, Dp̄) + (p̄ · ∇ȳ, p̄) ≤ λ̄(ȳ − yd, p̄). (3.5)

It is obvious that these optimality conditions can be written using the weak formulations corresponding to
the state and adjoint state systems. More precisely, systems (3.2) and (3.3) read as

(τ (Dȳ) , Dϕ) + (ȳ · ∇ȳ, ϕ) = (ū, ϕ) for all ϕ ∈ Vα

(τ ′ (Dȳ) : Dϕ, Dp̄) + (ϕ · ∇ȳ + ȳ · ∇ϕ, p̄) = λ̄ (ȳ − yd, ϕ) for all ϕ ∈ H ȳ
α.

The optimality conditions stated in Theorem 3.1 are of Fritz-John type and we are interested in the cases where
λ̄ can be chosen equal to one. Following Gunzburger et al. [10], the set of admissible controls Uad is said to have
the property (C) at (ȳ, ū) if for any nonzero solution (p, π) of the system⎧⎪⎨⎪⎩

−∇ · (τ ′(Dȳ) : Dp) − ȳ · ∇p + (∇ȳ)T p + ∇π = 0 in Ω,

∇ · p = 0 in Ω,

p = 0 on Γ,

we can find v ∈ Uad such that
(p̄, v − ū) < 0.

It is obvious that if the property (C) is satisfied then λ̄ = 0. Replacing p̄ by p̄
λ̄
, we obtain the following result.

Corollary 3.2. Assume that assumptions of Thorem 3.1 are fulfilled. If Uad has the property (C) at (ȳ, ū), then
conditions (3.2)–(3.5) hold with λ̄ = 1.

Another consequence of our main result is that the optimality conditions can be obtained in a qualified form if
the optimal control is subject to some constraint, the same that guarantees the uniqueness of the corresponding
state and adjoint state. This result seems interesting in the sense that we do not need to impose any other
constraint on the admissible set of controls.

Corollary 3.3. Assume that assumptions of Thorem 3.1 are fulfilled, and assume that ū satisfies

‖ū‖2

μ2
<

√
n3

4 (n − 1)2 |Ω| 1
n−1

· (3.6)

Then there exist a unique ȳ ∈ Vα and a unique p̄ ∈ H ȳ
α such that conditions (3.2)–(3.4) hold with λ̄ = 1.

Proof. Due Proposition 2.6, the state equation (3.2) admits a unique solution ȳ ∈ Vα. Similarly, due Propo-
sition 3.9 in [2], if ū satisfies (3.6) then the adjoint system (3.3) admits a unique solution p̄ in H ȳ

α. It follows
that, if we suppose that λ̄ = 0 then p̄ ≡ 0 is the (unique) solution of (3.3) leading to a contradiction with the
nontriviality condition (3.1). �

Notice that if the assumptions of the previous corollary are satisfied, then the solution p̄ of (3.3) belongs
to H ȳ

α ⊂ V ȳ
α , implying that inequality (3.5) is automatically satisfied. More precisely, by testing the weak

formulation of (3.3) by p̄, we obtain

(τ ′ (Dȳ) : Dp̄, Dp̄) + (p̄ · ∇ȳ, p̄) = (ȳ − yd, p̄).

Let us finish this section by considering the case of the Navier-Stokes equations. For α = 2, V ȳ
α ≡ H ȳ

α ≡ V2

and we recover the optimality conditions already established by Abergel and Casas in [1] for a slightly different
functional.
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Corollary 3.4. Assume that the extra-stress tensor has the form τ(η) = 2μη. Let ū ∈ Uad be a solution of (P2)
and let ȳ be the associated state. There then exist a number λ̄ ≥ 0 and p̄ ∈ V2 such that the following conditions
hold

λ̄ + ‖p̄‖1,2 = 0,⎧⎪⎨⎪⎩
−μ Δȳ + ȳ · ∇ȳ + ∇π̄ = ū in Ω,

∇ · ȳ = 0 in Ω,

ȳ = 0 on Γ,⎧⎪⎨⎪⎩
−μ Δp̄ − ȳ · ∇p̄ + (∇ȳ)T p̄ + ∇π̃ = λ̄ (ȳ − yd) in Ω,

∇ · p̄ = 0 in Ω,

p̄ = 0 on Γ,(
p̄ + λ̄νū, v − ū

) ≥ 0 for all v ∈ Uad.

Moreover, if Uad has the property (C) at (ȳ, ū) or if ū satisfies (3.6), then the optimality conditions (3.2)–(3.5)
hold with λ̄ = 1.

4. Approximate problem

4.1. Setting and preliminary convergence results

Let (ū, ȳ) be a fixed solution of (Pα). Following Abergel and Casas [1], we approximate the control problem
by a family of penalized problems governed by a generalized Stokes system for which uniqueness of solutions is
guarenteed. More precisely, for every ε > 0, we define a functional Jε by

Jε(w, u) = J(yw,u, u) +
1
2ε

‖D (yw,u − w)‖2
2 +

1
2
‖yw,u − ȳ‖2

2 +
1
2
‖u − ū‖2

2 ,

where yw,u satisfies following (generalized) Stokes system⎧⎪⎨⎪⎩
−∇ · (τ(Dy)) + w · ∇y + ∇π = u in Ω,

∇ · y = 0 in Ω,

y = 0 on Γ.

(4.1)

The problem (P ε
α) is then defined in the following way

(P ε
α)

Minimize Jε(w, u)

Subject to (w, u) ∈ Vα × Uad.

Proposition 4.1. Let u ∈ L2(Ω) and w ∈ Vα. Then problem (4.1) admits a unique weak solution yw,u in Vα.
Moreover, the following estimates hold

‖Dyw,u‖2 ≤ κ2

μ
‖u‖2 and ‖Dyw,u‖α

α ≤ (α − 1)
(

κ2

μ
‖u‖2

)2

with κ2 defined in Proposition 2.6.

Proof. Existence and uniqueness of a solution and the corresponding estimates can be established by using
standard arguments (see for example Props. 3.3. and 3.4 in [2]). �
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We next prove that each problem (P ε
α) admits at least a solution (wε, uε) and that these solutions form an

approximating family for (Pα)

Proposition 4.2. For every ε > 0 there exists at least one solution (wε, uε) of (P ε
α). Moreover, if we denote

by yε the solution of (4.1) corresponding to (wε, uε), then we have

lim
ε→0

‖uε − ū‖2 = lim
ε→0

1
ε
‖D (yε − wε)‖2 = 0,

lim
ε→0

‖D(wε − ȳ)‖2 = lim
ε→0

‖D(yε − ȳ)‖α = 0,

lim
ε→0

Jε(wε, uε) = J(ȳ, ū).

Proof. Existence of an optimal solution (wε, uε) of (P ε
α) is standard and can be proved by using standard

arguments. Since yȳ,ū = ȳ, we have
Jε(wε, uε) ≤ Jε(ȳ, ū) = J(ȳ, ū)

implying that
‖uε‖2

2 ≤ 2 ‖uε − ū‖2
2 + 2 ‖ū‖2

2 ≤ 4J(ȳ, ū) + 2 ‖ū‖2
2 , (4.2)

and
‖D (yε − wε)‖2

2 ≤ 2εJ(ȳ, ū) −→ 0 when ε → 0.

Setting ϕ = yε in the weak formulation of (4.1) yields

(τ(Dyε), Dyε) = (uε, yε) .

Taking into account (2.2), the Poincaré and the Korn inequalities, we obtain

μ ‖Dyε‖2
2 ≤ ‖uε‖2 ‖yε‖2 ≤ κ2 ‖uε‖2 ‖Dyε‖2

which together with (4.2) give

‖Dyε‖2 ≤ κ2

μ
‖uε‖2 ≤ κ2

μ

(
4J(ȳ, ū) + 2 ‖ū‖2

2

) 1
2

(4.3)

and

μ ‖Dyε‖α
α ≤ ‖uε‖2 ‖yε‖2 ≤ κ2 ‖uε‖2 ‖Dyε‖2 ≤ κ2

2

μ

(
4J(ȳ, ū) + 2 ‖ū‖2

2

)
.

The previous estimate together with (2.1) imply

‖τ(Dyε)‖α′

α′ ≤
(

n2γ

α − 1

)α′ ∫
Ω

(
1 + |Dyε|2 )α−2

2 α′
|Dyε|α′

dx

≤
(

n2γ

α − 1

)α′ ∫
Ω

(
1 + |Dyε|2 )α

2 dx ≤
(

n2γ

α − 1

)α′

2
α−2

2 (|Ω| + ‖Dyε‖α
α)

≤
(

n2γ

α − 1

)α′

2
α−2

2

(
|Ω| +

(κ2

μ

)2 (
4J(ȳ, ū) + 2 ‖ū‖2

2

))
and the sequence (τ(Dyε))ε is uniformly bounded in Lα′

(Ω). There then exist subsequences, still indexed by ε,
(uε)ε, (yε)ε, (wε)ε and (τ(Dyε))ε, and (u, y, τ̃) ∈ L2(Ω)×Vα ×Lα′

(Ω) such that (uε)ε weakly converges to u in
L2(Ω), (yε)ε and (wε)ε weakly converge to y in Vα, and (τ(Dyε))ε weakly converges to τ̃ in Lα′

(Ω). Moreover,
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since α ≥ 2 > 3n
n+2 , by using compactness results on Sobolev spaces, we deduce that (wε)ε strongly converges

to y in L
2α

α−1 (Ω) and for all ϕ ∈ Vα, we have

|(wε · ∇wε − y · ∇y, ϕ)| ≤ |((wε − y) · ∇wε, ϕ)| + |(y · ∇ (wε − y) , ϕ)|
= |((wε − y) · ∇wε, ϕ)| + |(y · ∇ϕ, wε − y)|
≤
(
‖∇wε‖α ‖ϕ‖ 2α

α−1
+ ‖y‖ 2α

α−1
‖∇ϕ‖α

)
‖wε − y‖ 2α

α−1

−→ 0 when ε → 0. (4.4)

Taking into account these convergence results, by passing to the limit in the weak formulation corresponding
to yε and using classical arguments, we obtain

(τ(Dy), Dϕ) + (y · ∇y, ϕ) = (u, ϕ) for all ϕ ∈ Vα.

Therefore y is the solution of (1.1) corresponding to u and (y, u) is admissible for (Pα). To prove that (yε)ε>0

strongly converges to y in W 1,α
0 (Ω), notice that due to the monotonicity condition (2.3)2, Lemma 2.4 and

classical embedding results, we have

μ
22α+1 ‖D(yε − y)‖α

α ≤ (τ (Dyε) − τ (Dy) , D(yε − y))

= (uε − u, yε − y) + (y · ∇y − wε · ∇yε, yε − y)

= (uε − u, yε − y) + ((y − wε) · ∇y, yε − y)

−→ 0 when ε → 0.

Finally, since (ȳ, ū) is a solution of (Pα), we have

J(y, u) ≤ J(y, u) +
1
2
‖y − ȳ‖2

2 dx +
1
2
‖u − ū‖2

2

≤ lim inf
ε→0

Jε(wε, uε) ≤ J(ȳ, ū) ≤ J(y, u).

and consequently y ≡ ȳ and u ≡ ū. On the other hand

J(ȳ, ū) ≤ lim inf
ε→0

Jε(wε, uε) ≤ lim sup
ε→0

Jε(wε, uε) ≤ J(ȳ, ū)

and thus

lim sup
ε→0

(
1
2ε

‖D (yε − wε)‖α
α dx +

1
2
‖uε − ū‖2

)
≤ lim sup

ε→0
(Jε(wε, uε) − J(yε, uε))

≤ lim sup
ε→0

Jε(wε, uε) − lim inf
ε→0

J(yε, uε) ≤ 0.

The claimed result is then proven. �

In order to establish the approximate optimality conditions corresponding to (P ε
α), we need to study the

properties of the corresponding control-to-state mapping. Consider

G : Vα × L2(Ω) −→ V2

(w, u) �−→ yw,u.

where yw,u is the solution of (4.1). In the next section, we derive some estimates necessary to prove the Lipschitz
continuity of G. Existence and uniqueness results for an auxiliary linearized system are established in Section 4.3
while Section 4.4 is devoted to the the analysis of the differentiability of G.
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4.2. Lipschitz continuity of the control-to-state mapping

Lemma 4.3. For i = 1, 2, let (ui, wi) be in L2(Ω)×Vα and let ywi,ui be the corresponding weak solution of (4.1).
Then the following estimates hold

‖D (yw1,u1 − yw2,u2)‖2 ≤ κ2

μ

(
‖u1 − u2‖2 +

κ1‖u1‖2

μ
‖D(w1 − w2)‖2

)
‖D (yw1,u1 − yw2,u2)‖α

α ≤ 22α+1

(
κ2

μ

(
‖u1 − u2‖2 +

κ1‖u1‖2

μ
‖D(w2 − w1)‖2

))2

with κ1 and κ2 respectively defined in Lemma 2.3 and Proposition 2.6.

Proof. To simplify the notation, set yi = ywi,ui . Substituing in the weak formulation of (4.1), setting ϕ = y1−y2

and using Lemma 2.4, we get

(τ(Dy1) − τ(Dy2), D (y1 − y2)) = (u1 − u2, y1 − y2) + (w2 · ∇y2 − w1 · ∇y1, y1 − y2)
= (u1 − u2, y1 − y2) + ((w2 − w1) · ∇y1, y1 − y2) − (w2 · ∇(y1 − y2), y1 − y2)

= (u1 − u2, y1 − y2) + ((w2 − w1) · ∇y1, y1 − y2) .

Using the Poincaré and the Korn inequalities, we obtain

|(u1 − u2, y1 − y2)| ≤ ‖u1 − u2‖2 ‖y1 − y2‖2 ≤ κ2 ‖u1 − u2‖2 ‖D (y1 − y2)‖2 .

On the other hand, due to Lemma 2.3 and Proposition 4.1, we have

|((w2 − w1) · ∇y1, y1 − y2)| ≤ κ1 ‖D(w2 − w1)‖2 ‖Dy1‖2 ‖D(y1 − y2)‖2

≤ κ1
κ2‖u1‖2

μ
‖D(w2 − w1)‖2 ‖D(y1 − y2)‖2 .

By combining these estimates and taking into account the monotonicity condition (2.3)1, we deduce that

μ ‖D(y1−y2)‖2
2 ≤ (τ(Dy1)−τ(Dy2), D (y1−y2)) ≤ κ2

(
‖u1 − u2‖2+

κ1‖u1‖2

μ
‖D(w2 − w1)‖2

)
‖D(y1 − y2)‖2

(4.5)
implying the first estimate. Due to (2.3)2 and (4.5), it follows that

2−(2α+1)μ ‖D(y1 − y2)‖α
α ≤ (τ(Dy1) − τ(Dy2), D(y1 − y2))

≤ κ2

(
‖u1 − u2‖2 +

κ1‖u1‖2

μ
‖D(w2 − w1)‖2

)
‖D(y1 − y2)‖2

≤ κ2
2

μ

(
‖u1 − u2‖2 +

κ1‖u1‖2

μ
‖D(w2 − w1)‖2

)2

which gives the second estimate and completes the proof. �

Lemma 4.4. For i = 1, 2, let (ui, wi) be in L2(Ω)×Vα and let ywi,ui be the corresponding weak solution of (4.1).
Then the following estimate holds

‖yw1,u1 − yw2,u2‖H
yw2,u2
α

≤ κ2κ3

μ

(
‖u1 − u2‖2 +

κ1‖u1‖2

μ
‖D(w2 − w1)‖2

)
with κ3 = 2

α−2
2
(
1 + 22α+1

) 1
2 .
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Proof. By taking into account assumption A2 and using standard arguments, for every η, ζ ∈ R
n×n
sym we have

(τ(η) − τ(ζ)) : (η − ζ) =
∑
i,j

(τij(η) − τij(ζ)) (η − ζ)ij

=
n∑

i,j=1

∫ 1

0

d
ds

τij(ζ + s(η − ζ)) ds (η − ζ)ij

=
n∑

i,j=1

n∑
k,�=1

∫ 1

0

∂τij

∂ηk�
(ζ + s(η − ζ)) (η − ζ)k� ds (η − ζ)ij

=
∫ 1

0

τ ′(ζ + s(η − ζ)) : (η − ζ) : (η − ζ) ds

≥ μ

∫ 1

0

(
1 + |ζ + s(η − ζ)|2)α−2

2 |η − ζ|2 ds

= μ
(
1 + |ζ + s∗(η − ζ)|2)α−2

2 |η − ζ|2 , (4.6)

where 0 < s∗ < 1 is a number arising when applying the mean values thorem to the integral. On the other
hand, for every s ∈ [0, 1], we have(

1 + |ζ|2)α−2
2 ≤ (1 + 2|ζ + s(η − ζ)|2 + 2|η − ζ|2)α−2

2

≤ 2α−2

((
1 + |ζ + s(η − ζ)|2)α−2

2 + |η − ζ|α−2

)
. (4.7)

Combining (4.6) and (4.7), we obtain

22−α(1 + |ζ|2)α−2
2 |ζ − η|2 ≤ (1 + |ζ + s∗(η − ζ)|2)α−2

2 |η − ζ|2 + |η − ζ|α

≤ 1
μ

(τ(η) − τ(ζ)) : (η − ζ) + |η − ζ|α

and thus

22−α
∥∥∥ (1 + |Dyw2,u2 |2

)α−2
4 D(yw1,u1 − yw2,u2)

∥∥∥2

2
≤ 1

μ
(τ(Dyw1,u1) − τ(Dyw2,u2), D(yw1,u1 − yw2,u2))

+ ‖D(yw1,u1 − yw2,u2)‖α
α .

The conclusion is a direct consequence of inequality (4.5) and Lemma 4.3. �

4.3. Linearized equation

To show the differentiability of G, we need to investigate the following linearized system⎧⎪⎨⎪⎩
−∇ · (τ ′(Dy) : Dz) + w · ∇z + ∇π = v − f · ∇y in Ω,

∇ · z = 0 in Ω,

z = 0 on Γ,

(4.8)

where v ∈ L2(Ω) and (f, w, y) ∈ (Vα)3.

Definition 4.5. A function z is a weak solution of (4.8) if

(τ ′(Dy) : Dz, Dϕ) + (w · ∇z, ϕ) = (v − f · ∇y, ϕ) for all ϕ ∈ Hy
α.
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Proposition 4.6. Let v ∈ L2(Ω) and (f, w, y) ∈ (Vα)3. Then problem (4.8) admits a unique solution z in Hy
α.

Moreover, the following estimate holds

‖z‖Hy
α
≤ 1

μ
(κ2 ‖v‖2 + κ1 ‖Df‖2 ‖Dy‖2) .

Proof. Consider the bilinear form defined by

B(z1, z2) = (τ ′(Dy) : Dz1, Dz2) + (w · ∇z1, z2) .

Let us first prove that B is coercive on Hy
α. Taking into account Lemma 2.4 and assumption A2, we have

B(z, z) = (τ ′(Dy) : Dz, Dz) + (w · ∇z, z) = (τ ′(Dy) : Dz, Dz)

≥ ν

∫
Ω

(
1 + |Dy|2)α

2 −1 |Dz|2 dx = ν ‖z‖2
Hy

α
, (4.9)

for every z ∈ Hy
α. On the other hand, Lemma 2.3 and assumption A1 yield

|(τ ′(Dy) : Dz1, Dz2)| ≤ γ

∫
Ω

(
1 + |Dy|2)α−2

2 |Dz1||Dz2| dx

≤ γ
∥∥∥(1 + |Dy|2)α−2

4 Dz1

∥∥∥
2

∥∥∥(1 + |Dy|2)α−2
4 Dz2

∥∥∥
2

= γ ‖z1‖Hy
α
‖z2‖Hy

α

and
|(w · ∇z1, z2)| ≤ κ2 ‖Dw‖2 ‖Dz1‖2 ‖Dz2‖2 ≤ κ2 ‖Dw‖2 ‖z1‖Hy

α
‖z2‖Hy

α
,

for every z1, z2 ∈ Hyu
α . Therefore,

B (z1, z2) ≤ (γ + κ2 ‖Dw‖2) ‖z1‖Hy
α
‖z2‖Hy

α
.

The bilinear form B is then continuous and coercive on Hy
α. Applying the Lax-Milgram theorem, we deduce

that problem (4.8) admits a unique solution z in Hy
α. Taking into account (4.9) and Lemma 2.3, we obtain

μ ‖z‖2
Hy

α
≤ B (z, z) = (u, z)− (f · ∇y, z)
≤ ‖v‖2 ‖z‖2 + |(f · ∇y, z)| ≤ (κ2 ‖u‖2 + κ1 ‖Df‖2 ‖Dy‖2) ‖Dz‖2

≤ (κ2 ‖u‖2 + κ1 ‖Df‖2 ‖Dy‖2) ‖z‖Hy
α

which gives the estimate. �

4.4. Differentiability of the control-to-state mapping

As referred in the introduction, the ideas of the proof dealing with the nonlinear tensor when studying the
Gâteaux diferentiability of the control-to-state mapping are mainly due to Casas and Fernández, and were
developed in [4,5] to study optimal control problems governed by quasi-linear elliptic equations. By taking into
account the corresponding estimates and managing the convective term, these arguments are adapted to our
specific problem in Lemma 4.9 and Proposition 4.11 below, and the proofs are given for the confort of the reader.

For u and v in L2(Ω), w and f in Vα and ρ in ]0, 1[, set uρ = u + ρv, wρ = w + ρf , and let ywρ,uρ and
yw,u be the solution of (4.1) corresponding to (wρ, uρ) and (w, u) respectively. In order to simplify the notation
we set yρ instead of ywρ,uρ , y instead of yw,u and zρ = yρ−y

ρ , throughout this section. Substituing in the weak
formulation of (4.1), we obtain

(τ(Dyρ) − τ(Dy), Dϕ) + (wρ · ∇yρ − w · ∇y, ϕ) = ρ(v, ϕ) for all ϕ ∈ Vα. (4.10)
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Lemma 4.7. The following estimates hold

‖Dzρ‖2 ≤ κ2

μ

(
‖v‖2 +

κ1

μ
‖uρ‖2 ‖Df‖2

)
,

‖Dzρ‖α
α ≤ 22α+1ρ2−α

(
κ2

μ

(
‖v‖2 +

κ1

μ
‖uρ‖2 ‖Df‖2

))2

,

‖zρ‖Hy
α
≤ κ3κ2

μ

(
‖v‖2 +

κ1

μ
‖uρ‖2 ‖Df‖2

)
.

Proof. The first and second estimates are direct consequence of Lemma 4.3. The third estimate follows from
Lemma 4.4. �

Lemma 4.8. If (zρk
)k weakly converges to z in V2 for some sequence (ρk)k converging to zero, then

lim
k→+∞

1
ρk

(wρk
· ∇yρk

− w · ∇y, ϕ) = (w · ∇z + f · ∇y, ϕ) for all ϕ ∈ V2.

Proof. Notice that∣∣∣∣ 1
ρk

(wρk
· ∇yρk

− w · ∇y, ϕ) − (w · ∇z + f · ∇y, ϕ)
∣∣∣∣ =

∣∣∣ (f · ∇yρk
, ϕ) + (w · ∇zρk

, ϕ) − (w · ∇z + f · ∇y, ϕ)
∣∣∣

=
∣∣∣ (f · ∇(yρk

− y), ϕ) + (w · ∇(zρk
− z), ϕ)

∣∣∣
=
∣∣∣ (f · ∇(yρk

− y), ϕ) − (w · ∇ϕ, zρk
− z)

∣∣∣
≤ ‖f‖4‖∇(yρk

− y)‖2‖ϕ‖4 + ‖w‖4‖∇ϕ‖2‖zρk
− z‖4.

The result is then a consequence of the strong convergence of (yρk
)k to y in H1

0 (Ω) and the strong convergence
of (zρk

)k to z in L4(Ω). �

Lemma 4.9. If (zρk
)k weakly converges to z in Hy

α for some sequence (ρk)k converging to zero, then

lim
k→+∞

1
ρk

(τ (Dyρk
) − τ (Dy) , Dϕ) = (τ ′(Dy) : Dz, Dϕ) for all ϕ ∈ V .

Proof. Let ϕ ∈ V be fixed. Standard calculation shows that

1
ρk

(τ(Dyρk
) − τ(Dy), Dϕ) =

∫
Ω

∫ 1

0

τ ′ (Dy(x) + sD (yρk
− y) (x)) : Dzρk

(x) : Dϕ(x) ds dx

=
∫

Ω

τ ′ (σϕ
ρk

(x)
)

: Dzρk
(x) : Dϕ(x) dx =

(
τ ′ (σϕ

ρk

)
: Dzρk

, Dϕ
)
, (4.11)

where σϕ
ρk

(x) = Dy(x)+ sϕ
ρk

(x)D (yρk
− y) (x) with 0 < sϕ

ρk
(x) < 1 being a number (depending on ϕ(x)) arising

when applying the mean values theorem to the integral in the interval [0, 1]. Since α ≥ 2, we have(
1 + |σϕ

ρk
(x)|2)α−2

2 =
(
1 + |Dy(x) + sϕ

ρk
(x)D(yρk

− y)(x)|2)α−2
2

≤ (1 + 2|Dy(x)|2 + 2(sϕ
ρk

(x))2|D(yρk
− y)(x)|2)α−2

2

≤ 2
α−2

2
(
1 + |Dy(x)|2 + |D(yρk

− y)(x)|2)α−2
2

≤ 2α−2

((
1 + |Dy(x)|2)α−2

2 + |D(yρk
− y)(x)|α−2

)
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and by taking into account Lemma 4.7, we deduce that∥∥∥(1 + |σϕ
ρk
|2)α−2

4 Dzρk

∥∥∥2

2
=
∫

Ω

(1 + |σϕ
ρk

(x)|2)α−2
2 |Dzρk

(x)|2 dx

≤ 2α−2

∫
Ω

((
1 + |Dy(x)|2)α−2

2 + |D (yρk
− y) (x)|α−2

)
|Dzρk

(x)|2 dx

= 2α−2
(
‖zρk

‖2
Hy

α
+ ρα−2

k ‖Dzρk
‖α

α

)
≤ (22α+1 + κ2

3

)(κ2

μ

)2(
‖v‖2 +

κ1

μ
(‖u‖2 + ‖v‖2) ‖Df‖2

)2

.

Therefore, the strong convergence of (σϕ
ρk

)k to Dy in Lα(Ω) and the weak convergence of (Dzρk
)k to Dz in

L2(Ω) yield
(1 + |σϕ

ρk
|2)α−2

4 Dzρk
−→ (1 + |Dy|2)α−2

4 Dz weakly in L2(Ω). (4.12)

On the other hand, let us consider the superposition (or Nemytskii) operator A acting from (Lα(Ω))n×n to
(L2(Ω))n×n and defined by

A(g)(x) =
Dϕ : τ ′(g(x))

(1 + |g(x)|2)α−2
4

, x ∈ Ω.

Using A1, we can easily verify that

|A(g)| =
|Dϕ : τ ′(g)|
(1 + |g|2)α−2

4

≤ γn2 |Dϕ|(1 + |g|2)α−2
2

(1 + |g|2)α−2
4

= γn2|Dϕ|(1 + |g|2)α−2
4

which shows that A is continuous. Therefore, since
(
σϕ

ρk

)
k

converges to Dy in Lα(Ω), we deduce that

A (σϕ
ρk

) −→ A (Dy) strongly in L2(Ω). (4.13)

Combining (4.12) and (4.13), we deduce that

lim
k→+∞

(
τ ′ (σϕ

ρk

)
: Dzρk

, Dϕ
)

= lim
k→+∞

(
Dϕ : τ ′ (σϕ

ρk

)
, Dzρk

)
= lim

k→+∞

(
A (σϕ

ρk

)
, (1 + |σϕ

ρk
|2)α−2

4 Dzρk

)
=
(
A (Dy) , (1 + |Dy|2)α−2

4 Dz
)

= (Dϕ : τ ′ (Dy) , Dz) = (τ ′ (Dy) : Dz, Dϕ)

and the proof is complete. �
Remark 4.10. Notice that following [18], we can avoid the use of the mean values theorem in (4.11) and obtain
similar estimates and convergence results by adapting the proof. In particular, (4.12) may be replaced by∫ 1

0

(1 + |Dy + sD(yρk
− y)|2)α−2

4 dsDzρk
−→ (1 + |Dy|2)α−2

4 Dz weakly in L2(Ω)

and the superposition operator A may be defined as

A : L1([0, 1]; (Lα(Ω))n×n) −→ (L2(Ω))n×n

A(g)(x) =
Dϕ :

∫ 1

0

τ ′(g(s)(x)) ds(∫ 1

0

(1 + |g(s)(x)|2)α−2
2 ds

) 1
2
, x ∈ Ω.
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Proposition 4.11. If (zρk
)k weakly converges to z in Hy

α for some sequence (ρk)k converging to zero, then z
is the unique solution of problem (4.8). Moreover, (zρk

)k converges strongly to z in V2.

Proof. The first assertion is a direct consequence of Lemmas 4.8, 4.9 and of the density of V in Hy
α. To prove

the strong convergence, let us set

M = τ ′(Dy(x)), Mρ(x) = τ ′(σρ(x)),

where σρ is as in (4.11) with ϕ substituted by yρ − y. Due to A2, the matrices

M s(x) =
M(x) + MT (x)

2
, M s

ρ(x) =
Mρ(x) + MT

ρ (x)
2

are symmetric and positive definite. Applying the Cholesky method to M s(x) and M s
ρ(x), we deduce the

existence of lower triangular matrices L(x) and Lρ(x) such that

M s(x) = L(x)LT (x) and M s
ρ(x) = Lρ(x)LT

ρ (x).

Therefore, by taking into account (4.10) and (4.11), we obtain∥∥LT
ρk

Dzρk

∥∥2

2
= (Mρk

: Dzρk
, Dzρk

) = − 1
ρk

(wρk
· ∇yρk

− w · ∇y, zρk
) + (v, zρk

)

= − (f · ∇yρk
+ y · ∇zρk

, zρk
) + (v, zρk

) = − (f · ∇yρk
, zρk

) + (v, zρk
)

≤ κ1‖Df‖2 ‖Dyρk
‖2 ‖Dzρk

‖2 + κ2 ‖v‖2 ‖Dzρk
‖2

≤
(

κ2κ1‖Df‖2
‖uρk

‖2

μ
+ κ2 ‖v‖2

)
‖Dzρk

‖2

≤ κ2

(
κ1

μ
(‖u‖2 + ‖v‖2)‖Df‖2 + ‖v‖2

)
‖Dzρk

‖2

≤ κ2
2

μ

(
κ1

μ
(‖u‖2 + ‖v‖2)‖Df‖2 + ‖v‖2

)2

(4.14)

and the sequence (LT
ρk

Dzρk
)k is bounded in L2(Ω). Arguments similar to those used in the third step of the

proof of Theorem 3.1 in [5] show that (Lρk
)k strongly converges to L in L2(Ω) and

(
LT

ρk
Dzρk

)
k

weakly converges
to LT Dz in L2(Ω). Taking into account (4.14), we deduce that∥∥LT Dz

∥∥2

2
≤ lim inf

k

∥∥LT
ρk

Dzρk

∥∥2

2
≤ lim sup

k

∥∥LT
ρk

Dzρk

∥∥2

2
= lim sup

k
(Mρk

: Dzρk
, Dzρk

)

= lim sup
k

(
− 1

ρk
(wρk

· ∇yρk
− w · ∇y, zρk

) + (v, zρk
)
)

= lim sup
k

(− (f · ∇yρk
+ w · ∇zρk

, zρk
) + (v, zρk

))

= lim sup
k

(− (f · ∇yρk
, zρk

) + (v, zρk
)) = − (f · ∇y, z) + (v, z)

= − (f · ∇y − w · ∇z, z) + (v, z) = (M : Dz, Dz) =
∥∥LT Dz

∥∥2

2
.

Weak convergence together with norm convergence implies strong convergence of (LT
ρk

Dzρk
)k to LT Dz in L2(Ω).

The conclusion follows by following [5]. �

Proposition 4.12. Let G : L2(Ω) × Vα −→ V2 be the functional defined by G(w, u) = y, where y ≡ yw,u is the
solution of (4.1) corresponding to (w, u). Then, G is Gâteaux diferentiable at (w, u) and its derivative in direction
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(f, v), z = G′(w, u)(f, v) is the unique solution in Hy
α of problem (4.8). Moreover, setting I(w, u) = J(yw,u, u)

we have
∂I

∂w
(w, u) · f = (y − yd, zf) and

∂I

∂u
(w, u) · v = (y, φv) + ν (u, v) ,

where zf ∈ Hy
α is the solution of (4.8) corresponding to v = 0 and φv ∈ Hy

α is the solution of (4.8) corresponding
to f = 0.

Proof. For ρ ∈]0, 1[, let wρ = w+ρf , uρ = u+ρv, yρ ≡ ywρ,uρ and zρ = yρ−y
ρ . Due to Lemma 4.7, we deduce that

(zρ)ρ is bounded in Hy
α. There then exist a subsequence (zρk

)k and z ∈ Hy
α such that (zρk

)k weakly converges
to z in V2. Due to Proposition 4.11, z is the solution of the linear equation (4.8) and (zρk

)k strongly converges
to z in V2. Taking into account Lemma 4.7, we deduce that

‖Dz‖2 = lim
k

‖Dzρk
‖2 ≤ κ2

μ

(
‖v‖2 +

κ1‖u‖2

μ
‖Df‖2

)
≤ κ2

μ

(
‖v‖2 +

κ1‖u‖2|Ω|α−2
α

μ
‖Df‖α

)
≤ κ2

μ

(
1 +

κ1‖u‖2|Ω|α−2
α

μ

)
(‖v‖2 + ‖Df‖α)

which implies the continuity of G′(w, u) : L2(Ω) × Vα → V2 and therefore the Gâteaux differentiability of G.
The last part is a consequence of the differentiability of J . �

5. Approximate optimality conditions

The following result states the optimality conditions for (P ε
α).

Theorem 5.1. Let (wε, uε) be a solution of (P ε
α) and let yε ∈ Vα be the corresponding solution of (4.1). Then

there exists pε ∈ Hyε

α such that

(τ(Dyε), Dϕ) + (wε · ∇yε, ϕ) = (uε, ϕ) for all ϕ ∈ Vα, (5.1)

(τ ′(Dyε) : Dϕ, Dpε) − (wε · ∇pε, ϕ) − (ϕ · ∇pε, yε) = (2yε − ȳ − yd, ϕ) for all ϕ ∈ Hyε

α (5.2)

and
(pε + νuε + uε − ū, v − uε) ≥ 0 for all v ∈ Uad. (5.3)

Proof. Let pε ∈ Hyε

α be the solution of

(τ ′(Dyε) : Dϕ, Dpε) − (wε · ∇pε, ϕ) = (2yε − ȳ − yd, ϕ) +
1
ε

(D(yε − wε), Dϕ) for all ϕ ∈ Hyε

α . (5.4)

(Existence and uniqueness of pε can be obtained with arguments similar to those used in the proof of Prop. 4.6.)
Since Jε is differentiable, by taking into account Proposition 4.12, we obtain

∂Jε

∂w
(wε, uε) · f =

(
2yε − ȳ − yd, z

ε
f

)
+

1
ε

(
D(yε − wε), D(zε

f − f)
)
, (5.5)

where zε
f ∈ Hyε

α is the solution of (4.8) corresponding to (y, w, v) = (yε, wε, 0), and

∂Jε

∂u
(wε, uε) · v = (2yε − ȳ − yd, φ

ε
v) +

1
ε

(D(yε − wε), Dφε
v) + (νuε + uε − ū, v) , (5.6)



DISTRIBUTED CONTROL FOR MULTISTATE MODIFIED NAVIER-STOKES EQUATIONS 235

where φε
v ∈ Hyε

α is the solution of (4.8) corresponding to (y, w, f) = (yε, wε, 0). Setting ϕ = zε
f in (5.4), by

taking into account (5.5) and the weak formulation of (4.8), it follows that

∂Jε

∂w
(wε, uε) · f =

(
τ ′(Dyε) : Dzε

f , Dpε
)− (wε · ∇pε, zε

f

)− 1
ε

(D(yε − wε), f)

=
(
τ ′(Dyε) : Dzε

f , Dpε
)

+
(
wε · ∇zε

f , pε
)− 1

ε
(D(yε − wε), f)

= − (f · ∇yε, pε) − 1
ε

(D(yε − wε), f)

= (f · ∇pε, yε) − 1
ε

(D(yε − wε), f) . (5.7)

Similarly, by setting ϕ = φε
v in (5.4) and taking into account (5.6) and the weak formulation of (4.8), it follows

that

∂Jε

∂u
(wε, uε) · v = (τ ′(Dyε) : Dφε

v, Dpε) − (wε · ∇pε, φε
v) + (νuε + uε − ū, v)

= (τ ′(Dyε) : Dφε
v, Dpε) + (wε · ∇φε

v, pε) + (νuε + uε − ū, v)
= (v, pε) + (νuε + uε − ū, v)
= (pε + νuε + uε − ū, v) . (5.8)

On the other hand, since (wε, uε) is a solution of (P ε
α), we have⎧⎨⎩

∂Jε

∂w (wε, uε) · f = 0 for all f ∈ Vα

∂Jε

∂u (wε, uε) · (v − uε) ≥ 0 for all v ∈ Uad.

These relations together with (5.7) and (5.8) imply the optimality condition (5.3) and

(f · ∇pε, yε) =
1
ε

(D(yε − wε), f) for all f ∈ Vα. (5.9)

Relation (5.2) is then a direct consequence of (5.4) and (5.9). �

6. Proof of the main result

The proof is split into four steps.

Step 1. Estimate for pε.

Setting ϕ = pε in (5.2), and using assumption A2 and Lemma 2.4 we obtain

μ ‖pε‖2
Hyε

α
≤ (τ ′(Dyε) : Dpε, Dpε)

= (wε · ∇pε, pε) + (pε · ∇pε, yε) + (yε − yd, p
ε) + (yε − ȳ, pε)

= − (pε · ∇yε, pε) + (yε − yd, p
ε) + (yε − ȳ, pε) . (6.1)

Using classical arguments, we have the following estimate

|− (pε · ∇yε, pε) + (yε − yd, p
ε) + (yε − ȳ, pε)| ≤ ‖∇yε‖2 ‖pε‖2

4 + (‖yε − yd‖2 + ‖yε − ȳ‖2) ‖pε‖2

≤ ‖∇yε‖2 ‖pε‖2
4 +

1
2
‖yε − yd‖2

2 +
1
2
‖yε − ȳ‖2

2 + ‖pε‖2
2

≤ ‖∇yε‖2 ‖pε‖2
4 + Jε(wε, uε) + ‖pε‖2

2

≤ ‖∇yε‖2 ‖pε‖2
4 + J(ȳ, ū) + ‖pε‖2

2 . (6.2)
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Moreover, recalling the inequality (see [8], Chap. 2)

‖pε‖4 ≤ κ4 ‖pε‖1−n
4

2 ‖∇pε‖n
4
2 with κ4 =

(
2(n − 1)√

n3

)n
4

,

by using the Korn inequality, Proposition 4.1 and estimate (4.3), we deduce that

‖∇yε‖2 ‖pε‖2
4 ≤ κ2

4 ‖∇yε‖2 ‖pε‖2−n
2

2 ‖∇pε‖n
2
2

≤ 2
n+2

4 κ2
4 ‖Dyε‖2 ‖pε‖2−n

2
2 ‖Dpε‖n

2
2

≤ 2
n+2

4 κ2
4 ‖Dyε‖2 ‖pε‖2−n

2
2 ‖pε‖n

2

Hyε
α

≤ 2
n
4 +1 κ2κ

2
4

μ
(2J(ȳ, ū) + ‖ū‖2)

1
2 ‖pε‖2−n

2
2 ‖pε‖n

2

Hyε
α

.

Due to the Young inequality, for all θ > 0 we have

2
n
4+1 κ2κ

2
4

μ
(2J(ȳ, ū)+‖ū‖2)

1
2 ‖pε‖2−n

2
2 ‖pε‖n

2

Hyε
α

≤ 4−n

4θ
4

4−n

(
2

n
4+1 κ2κ

2
4

μ
(2J(ȳ, ū)+‖ū‖2)

1
2

) 4
4−n

‖pε‖2
2+

nθ
4
n

4
‖pε‖2

Hyε
α

.

(6.3)
Choosing θ = μ

n
4 , using assumption A2 and combining (6.1)–(6.3), we deduce that

‖pε‖2
Hyε

α
≤
((

2
n
4 +1 κ2κ

2
4

μ2
(2(ū) + ‖ū‖2)

1
2

) 4
4−n

+
n

(4 − n)μ

)
‖pε‖2

2 +
nJ(ȳ, ū)
(4 − n)μ

· (6.4)

Step 2. Passage to the limit when pε is bounded in L2(Ω).

Let us assume that (pε)ε is bounded in L2(Ω). Due to (6.4), it follows that (pε)ε is bounded in Hyε

α (and thus
in V2). There then exist a subsequence (pεk)k and p̄ ∈ V2 such that (pεk)k weakly converges to p̄ in V2. Arguing
as in the proof of Lemma 4.9 and taking into account Proposition 4.2, we deduce that

lim
k→+∞

(τ ′(Dyεk) : Dϕ, Dpεk
) = (τ ′(Dȳ) : Dϕ, Dp̄) for all ϕ ∈ V

and
lim

k→+∞
((wεk · ∇pεk , ϕ) + (ϕ · ∇pεk , yε)) = (ȳ · ∇p̄, ϕ) + (ϕ · ∇p̄, ȳ)

for all ϕ ∈ V2. Therefore, by passing to the limit in the weak formulation satisfied to yεk , we deduce that

(τ ′(Dȳ) : Dϕ, Dp̄) − (ȳ · ∇p̄, ϕ) − (ϕ · ∇p̄, ȳ) = (ȳ − yd, ϕ) (6.5)

for all ϕ ∈ V .

Step 3. p̄ belongs to V ȳ
α .

Let us now prove that (1 + |Dȳ|2)α−2
2 Dp̄ belongs to L2(Ω). Set

M = τ ′(Dȳ(x)), M ε(x) = τ ′(Dyε(x)),

and

M s(x) =
M(x) + MT (x)

2
, M ε,s(x) =

M ε(x) + (M ε(x))T

2
·
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Due to A2, the matrices M s(x) and M ε,s(x) are symmetric and positive definite. Applying the Cholesky method
to M s(x) and M ε,s(x), we deduce the existence of lower triangular matrices L(x) and Lε(x) such that

M s(x) = L(x)LT (x) and M ε,s(x) = Lε(x)(Lε(x))T .

Therefore, taking into account (6.1) and (6.2), we have∥∥(Lε)T Dpε
∥∥2

2
= (M ε : Dpε, Dpε) = − (pε · ∇yε, pε) + (yε − yd, p

ε) + (yε − ȳ, pε)

≤ ‖∇yε‖2 ‖pε‖2
4 + J(ȳ, ū) + ‖pε‖2

2

and the sequence ((Lε)T Dpε)ε is bounded in L2(Ω). On the other hand, due to A1 we have

|Lε(x)|2 = |M ε(x)| ≤ γn2
(
1 + |Dyε(x)|2)α−2

2 ∈ L
α

α−2 (Ω)

for all x ∈ Ω. The convergence of (Dyε)ε to Dȳ and the weak convergence of (pε)ε to p̄ in V2 together with
arguments similar to those used in the proof of Proposition 4.11 show that

(Lε)T Dpε −→ LT Dp̄ weakly in L2(Ω).

Moreover, we have

μ
∥∥∥(1 + |Dȳ|2)α−2

4 Dp̄
∥∥∥2

2
≤ (M : Dp̄, Dp̄) =

∥∥LT Dp̄
∥∥2

2

≤ lim inf
ε

∥∥(Lε)T Dpε
∥∥2

2
≤ lim sup

ε

∥∥(Lε)T Dpε
∥∥2

2
= lim sup

ε
(M ε : Dpε, Dpε)

= lim sup
ε

(− (pε · ∇yε, pε) + (yε − yd, p
ε) + (yε − ȳ, pε))

= − (p̄ · ∇ȳ, p̄) + (ȳ − yd, p̄)

which implies (3.5). This inequality, together with (6.5) and the density of V in H ȳ
α give (3.3) with λ̄ = 1.

Similarly, we can pass to the limit in (5.1) and (5.3) and derive (3.2) and (3.4). Notice here that we can
guarantee that the sequence (pε)ε is compact in Hyε

α and that its limit point belongs to V ȳ
α . However, there is

no reason to assume that the sequence converges to an element of H ȳ
α. This is closely related to the fact that

the space V is not dense in V ȳ
α and to the nonuniqueness of the limit problem.

Step 4. Passage to the limit when pε is not bounded in L2(Ω).
If (pε) is not bounded in L2(Ω), we set

λε =
1

‖pε‖2
−→ 0 when ε → 0,

and denote again λεpε by pε. Using optimality conditions (5.2) and (5.3), we obtain

(τ ′(Dyε) : Dϕ, Dpε) − (wε · ∇pε, ϕ) − (ϕ · ∇pε, yε) = λε (yε − yd, ϕ) + λε (yε − ȳ, ϕ) for all ϕ ∈ Hyε

α ,

and
(pε + λε (νuε + uε − ū) , v − uε) ≥ 0 for all v ∈ Uad

respectively. Repeating the arguments stated in step 1–step 3, we can derive the optimality conditions (3.2)–
(3.4) with λ̄ = 0. Finally, to prove (3.1) in this case, observe that since (pε) weakly converges to p̄ in V2, it
converges strongly in L2(Ω). Therefore,

‖p̄‖2 = lim
ε

‖pε‖2 = 1

and thus p̄ = 0. �
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