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A LOWER BOUND ON LOCAL ENERGY OF PARTIAL SUM
OF EIGENFUNCTIONS FOR LAPLACE-BELTRAMI OPERATORS ∗

Qi Lü
1,2

Abstract. In this paper, a lower bound is established for the local energy of partial sum of eigen-
functions for Laplace-Beltrami operators (in Riemannian manifolds with low regularity data) with
general boundary condition. This result is a consequence of a new pointwise and weighted estimate for
Laplace-Beltrami operators, a construction of some nonnegative function with arbitrary given critical
point location in the manifold, and also two interpolation results for solutions of elliptic equations with
lateral Robin boundary conditions.
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1. Introduction and main result

Let M be a d (d ∈ N) dimensional connected compact C1-smooth Riemannian manifold with an C2-smooth
boundary Γ , and ω a nonempty open subset of M . Denote by g the C1-smooth Riemannian metric tensor on
M ; by Dg the Levi-Civita connection on M induced by g; by ∇M , divM and ΔM the gradient operator, the
divergence operator and the Laplace-Beltrami operator (on M) given by Dg, respectively; by (·, ·)g and | · |g
the inner product and the norm for the tangent vector of M with respect to g, respectively; by dgx the volume
element of M with respect to g; and by dgΓ the volume element of Γ induced by g. We refer to [3] for more
details on the notation/tool used in this paper, say Sobolev spaces on Riemannian manifold. Fix any T > 0,
and put Q = (0, T ) ×M and Σ = (0, T ) × Γ . Throughout this paper, we use C = C(M,ω, d, g, T ) to denote a
generic positive constant, which may change from one place to another.

We define an unbounded operator A on L2(M) by⎧⎨⎩D(A) =
{
u ∈ H2(M) : l̃ ∂M u

∂ν + lu = 0 on Γ
}
,

Au = −ΔMu, ∀ u ∈ D(A),
(1.1)

Keywords and phrases. Lower bound, local energy, partial sum of eigenfunctions, Laplace-Beltrami operator, Robin boundary
condition.
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where ν = ν(x) is the unit outward normal vector of M at x ∈ Γ with respect to the metric g, ∂M u
∂ν

∣∣∣
Γ

=

(∇Mu, ν)g|Γ , both l̃ and l belong to L∞(Γ ) and satisfy l̃ = 1, l ≥ 0 or l̃ = 0, l > 0. Let {λi}∞i=1 be the
eigenvalues of A, and {ei}∞i=1 the corresponding eigenfunctions satisfying |ei|L2(M) = 1. It is easy to show that
0 ≤ λ1 ≤ λ2 ≤ . . ., and {ei}∞i=1 constitutes an orthonormal basis of L2(M).

One can find the following result from [4,7, 9].

Theorem 1.1. If both Γ and g are C∞, l̃ = 0 and l = 1, then it holds that

∑
λi≤r

|ai|2 ≤ CeC
√

r

∫
ω

∣∣∣∣ ∑
λi≤r

aiei(x)
∣∣∣∣2dgx, (1.2)

for every r > 0 and every choice of the coefficients {ai}λi≤r with ai ∈ lC.

This result provides a delicate lower bound estimate for the local energy of partial sum of eigenfunctions
for Laplace-Beltrami operators (in C∞-smooth Riemannian manifolds) with Dirichlet boundary condition . As
remarked in [22], the power 1

2 in the above eC
√

r is sharp. In terms of the control theory language, inequality
(1.2) can be viewed as an observability estimate for partial sum of eigenfunctions for operator A. Besides its
obviously independent interest, this inequality has many applications in control theory. In [7], by means of a
time iteration approach, Lebeau and Robbiano used (1.2) to obtain null controllability of the heat equation with
homogeneous Dirichlet boundary condition. In [9], inequality (1.2) was addressed by Lebeau and Zuazua, and
via which null controllability of a linear system of thermoelasticity was analyzed. Further applications of this
inequality to controllability problems can be found in [11,15,16,21]. On the other hand, in [19], Wang used (1.2)
to establish an L∞-null controllability for the heat equation, and especially, via which he solved a long-standing
open problem in control theory for infinite dimensional systems, i.e., the Bang-Bang principle for time optimal
control problem for the heat equation with a locally distributed controller. His results was recently extended to
fractional order parabolic equations, see [12].

We remark that, in Theorem 1.1, both Γ and g are assumed to be C∞-smooth. Escauriaza pointed out that
the C∞-regularity for Γ can be weakened to be C2 but his proof was not published (see Rem. 1.1 in [11]). In
this paper, we shall address the sharp result in this respect and, in particularly, consider a similar problem but
with more general boundary conditions.

The main result of this paper can be stated as follows:

Theorem 1.2. The conclusion in Theorem 1.1 still holds when the additional assumptions on Γ , g, l̃ and l
therein are dropped.

Noting that the time iteration method developed in [7] does not depend on the boundary condition. Therefore,
using Theorem 1.2 and this method, it is easy to obtain the corresponding controllability/optimal control results
for equations with Robin boundary condition. On the other hand, Theorem 1.2 can also be employed to prove the
null/approximate controllability of forward stochastic heat equations [14], which is, to the best of the author’s
knowledge, the first controllability result for forward stochastic partial differential equations with control acts
only on the drift term.

Theorem 1.2 needs much lower regularities for both Γ and g than Theorem 1.1. Furthermore, Theorem 1.2
is for general Robin type boundary condition while Theorem 1.1 addresses only the homogeneous Dirichlet
boundary condition.

In [4, 7, 9], the authors employed a local Carleman estimate to establish Theorem 1.1. The homogeneous
Dirichlet boundary condition plays an important role in their proof. However, it seems to be quite difficult to
prove Theorem 1.2 by using the same method. Instead, in this paper, we shall use a global (in space) Carleman
estimate to overcome the difficulties introduced by the general boundary condition. On the other hand, it
deserves to point out that, although a related global Carleman estimate was established in [2] addressing
observability estimates for quite general parabolic equations, the approach therein does not seem to be able to
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provide the desired sharp estimate “eC
√

r” in Theorem 1.2. Indeed, in order to prove Theorem 1.2, we need
to derive first a new pointwise and weighted estimate for Laplace-Beltrami operators (see Sect. 2), and then
to prove the existence of a nonnegative function with arbitrary given critical point location in manifold M
(see Sect. 3), and also to show some interpolation results for solutions of elliptic equations with lateral Robin
boundary conditions in a cylinder (see Sects. 4 and 5).

It is considerably easier to prove Theorem 1.2 with l̃ = 0 and l > 0 than the case with l̃ = 1 and l ≥ 0. Noting
that in both cases we can use the same method to obtain the desired inequalities. Therefore in the sequel we
only prove Theorem 1.2 for the case that l̃ = 1 and l ≥ 0. The proof of this theorem will be given in Section
6. Note also that, even for the case of Dirichlet boundary condition, our method seems to be more elementary
and also self-contained than that in [4, 7, 9].

2. A pointwise and weighted estimate for Laplace-Beltrami operators

In this section, we establish a pointwise weighted estimate for Laplace-Beltrami operators on a given
Riemannian manifold, which will play a key role in the sequel.

Let N be a n-dimensional (n ∈ N) Riemannian manifold with a C1-metric tensor b. The meaning of (·, ·)b,
| · |b, ∇N , divN , ΔN and so on can be understood similarly as mentioned at the very beginning of Section 1.

Let H , H1 and H2 be any given C1-vector fields on N . We recall the following well-known formulas which
will be useful later (e.g. [3], Chap. 1, [5], Chap. 3).

divN (hH) = (∇Nh,H)b + h divNH, ∀ h ∈ C1(N), (2.1)
∇N (H1, H2)b = (∇NH1, H2)b + (∇NH2, H1)b + (∇Nb)(H1, H2), (2.2)

where (∇NHi, Hj)b stands for the contraction of the tensor b⊗∇NHi⊗Hj (1 ≤ i, j ≤ 2, i+j = 3), (∇Nb)(H1, H2)
stands for the contraction of the tensor ∇Nb⊗H1 ⊗H2. Also, for any f ∈ C1(N), we denote by ∇N (∇Nf) the
Hessian of f .

In the sequel, for arbitrary real function ϕ ∈ C2(N) and arbitrary positive real numbers s and λ, we choose
functions α and θ as follows:

α = eλϕ, θ = esα. (2.3)

We have the following result:

Theorem 2.1. Assume v ∈ C2(N) and put w = θv. Then it holds that

2θ2
∣∣∣ΔNv

∣∣∣2 +D ≥ B1|∇Nw|2b +B2w
2 + 4sλ2

(∇N (α|∇Nϕ|2b),∇Nw
)
b
w

+ 4sλ2α(∇Nw,∇Nϕ)2b + 4sλα (∇Nw, ([∇N (∇Nϕ)] ,∇Nw)b )b

+ 4sλα (∇Nw, (∇N b)(∇Nw,∇Nϕ))b − 2sλα ((∇N b)(∇Nw,∇Nw),∇Nϕ)b , (2.4)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D = 2sλdivN

[
2λα|∇Nϕ|2bw∇Nw + s2λ2α3|∇Nϕ|2bw2∇Nϕ

+ 2α(∇Nϕ,∇Nw)b∇Nw − α|∇Nw|2b∇Nϕ
]

B1 = 2sλ2α|∇Nϕ|2b − 2sλαΔNϕ|∇Nϕ|2b − sλα ((∇N b)(∇Nw,∇Nw),∇Nϕ)b

= 2sλ2α|∇Nϕ|2b − sαO(λ),

B2 = 2s3λ4α3|∇Nϕ|4b + 2s3λ3α3divN (|∇Nϕ|2b∇Nϕ) − 4s2λ2α2
∣∣∣ΔNϕ

∣∣∣2 − 4s2λ4α2|∇Nϕ|2b
= 2s3λ4α3|∇Nϕ|4b − s3α3O(λ3) − s2α2O(λ4).

(2.5)
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Remark 2.2. There exist several pointwise and weighted estimates for second order partial differential op-
erators in the literature (e.g., [1, 6, 10, 18, 20]). These estimates are quite useful in control theory and inverse
problems for partial differential equations. In [18], Theorem 2.2, one can find an estimate similar to (2.4). The
main advantage of our estimate (2.4) consists in that it is more convenient to deal with the Robin boundary
condition, as shown in the proof of Theorem 4.1.

Proof of Theorem 2.1. By the definition of v and w, we have that

∇Nv = ∇N (θ−1w) = w∇N (θ−1) + θ−1∇Nw = −sλθ−1αw∇Nϕ+ θ−1∇Nw. (2.6)

Hence, by (2.1), it follows that

−θdivN (∇Nv) = −θdivN (−sλθ−1αw∇Nϕ+ θ−1∇Nw)
= −ΔNw + 2sλα(∇Nϕ,∇Nw)b + sλ2α|∇Nϕ|2bw − s2λ2α2|∇Nϕ|2bw + sλαwΔNϕ. (2.7)

Put ⎧⎪⎨⎪⎩
I1 = −ΔNw − s2λ2α2|∇Nϕ|2bw,
I2 = 2sλα(∇Nϕ,∇Nw)b + 2sλ2α|∇Nϕ|2bw,
I3 = −θΔNv − sλαwΔNϕ+ sλ2α|∇Nϕ|2bw.

(2.8)

By (2.7)–(2.8), we see that I1 + I2 = I3. Hence

2I1I2 ≤ |I3|2. (2.9)

We estimate |I3|2 first.

|I3|2 =
∣∣∣− θΔNv − sλαwΔNϕ+ sλ2α|∇Nϕ|2bw

∣∣∣2
≤ 2θ2|ΔNv|2 + 4s2λ2α2|ΔNϕ|2|w|2 + 4s2λ4α2

∣∣∣∇Nϕ
∣∣∣4
b
|w|2. (2.10)

Next, let us estimate I1I2. By (2.8), it follows that

I1I2 = 2sλα
(−ΔNw − s2λ2α2|∇Nϕ|2bw

) (
(∇Nϕ,∇Nw)b + λ|∇Nϕ|2bw

)
= 2sλ2α

(−ΔNw − s2λ2α2|∇Nϕ|2bw
) |∇Nϕ|2bw (2.11)

−2s3λ3α3|∇Nϕ|2b(∇Nϕ,∇Nw)bw − 2sλαΔNw(∇Nϕ,∇Nw)b.

We need to compute the terms in the right-hand side of (2.11) one by one. By formula (2.1), we find that

2sλ2α
(−ΔNw − s2λ2α2|∇Nϕ|2bw

) |∇Nϕ|2bw = −2s3λ4α3|∇Nϕ|4bw2 − divN

(
2sλ2α|∇Nϕ|2bw∇Nw

)
+ 2sλ2

(∇N (α|∇Nϕ|2),∇Nw
)

b
w + 2sλ2α|∇Nϕ|2b |∇Nw|2b .

(2.12)

Further,

− 2s3λ3α3|∇Nϕ|2b(∇Nϕ,∇Nw)bw = −divN

(
s3λ3α3|∇Nϕ|2bw2∇Nϕ

)
+ 3s3λ4α3|∇Nϕ|4bw2

+ s3λ3α3divN

(|∇Nϕ|2b∇Nϕ
)
w2. (2.13)

Further,

− 2sλαΔNw(∇Nϕ,∇Nw)b = −divN (2sλα(∇Nϕ,∇Nw)b∇Nw) + 2sλ2α(∇Nϕ,∇Nw)2b
+ 2sλα (∇Nw,∇N (∇Nw,∇Nϕ)b)b .
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By formula (2.2),

(∇Nw,∇N (∇Nw,∇Nϕ)b)b = (∇Nw, ([∇N (∇Nw)] ,∇Nϕ)b + ([∇N (∇Nϕ)] ,∇Nw)b )b

+ (∇Nw, (∇N b)(∇Nw,∇Nϕ))b .

Noting that

2 (∇Nw, ([∇N (∇Nw)] ,∇Nϕ)b )
b

=
(
∇N

∣∣∣∇Nw
∣∣∣2
b
,∇Nϕ

)
b

− ((∇N b)(∇Nw,∇Nw),∇Nϕ)b ,

we arrive at

2sλα (∇Nw,∇N (∇Nw,∇Nϕ)b)b = sλα

(
∇N

∣∣∣∇Nw
∣∣∣2
b
,∇Nϕ

)
b

− sλα ((∇Nb)(∇Nw,∇Nw),∇Nϕ)b

+ 2sλα (∇Nw, ([∇N (∇Nϕ)] ,∇Nw)b )b+2sλα (∇Nw, (∇N b)(∇Nw,∇Nϕ))b

= sλdivN

(
α|∇Nw|2b∇Nϕ

)− sλ2α|∇Nϕ|2b |∇Nw|2b − sλαΔNϕ|∇Nw|2b
− sλα ((∇Nb) (∇Nw,∇Nw) ,∇Nϕ)b+2sλα (∇Nw, ([∇N (∇Nϕ)] ,∇Nw)b )b

+ 2sλα (∇Nw, (∇N b)(∇Nw,∇Nϕ))b .

Therefore it holds

− 2sλαΔNw(∇Nϕ,∇Nw)b = −divN (2sλα(∇Nϕ,∇Nw)b∇Nw) + 2sλ2α(∇Nϕ,∇Nw)2b
+ divN

(
sλα|∇Nw|2b∇Nϕ

)− sλα ((∇N b)(∇Nw,∇Nw),∇Nϕ)b

− sλ2α|∇Nϕ|2b |∇Nw|2b−sλαΔNϕ|∇Nw|2b + 2sλα (∇Nw, ([∇N (∇Nϕ)] ,∇Nw)b )b

+ 2sλα (∇Nw, (∇N b)(∇Nw,∇Nϕ))b . (2.14)

Finally, by (2.9)–(2.14), we obtain (2.4). �

3. A nonnegative function with an arbitrary given critical point location

in the manifold

In this section, we prove the existence of a nonnegative function with an arbitrary given critical point location
in manifold M . This result is a modification of the corresponding result in [2] for flat spaces. In the sequel, this
construction will play a key role in the choice of the weight function in our global Carleman estimate.

Our result is stated as follows:

Theorem 3.1. There exists a function ψ ∈ C2(M) such that ψ > 0 in M , ψ = 0 on Γ and

|∇Mψ|2g > 0, ∀x ∈M \ ω0, (3.1)

where ω0 is an arbitrary fixed nonempty open subset of M such that ω0 ⊂ ω.

Proof of Theorem 3.1. We borrow some idea from [2]. Choose a function p ∈ C2(M) such that

p > 0 in M, p = 0 and |∇Mp|g > 0 on Γ. (3.2)

By the density of Morse functions in C2(M) (see [17], Chap. 1), there exists a sequence of Morse functions
{pk(x)}∞k=1 such that

pk → p in C2(M), as k → ∞. (3.3)
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Denote by M1 =
{
x ∈ M

∣∣∣∇Mp(x) = 0
}

the set of critical points of function p. Since |∇Mp|g > 0 on ∂M ,
there exist a positive number ξ1 > 0 and an open set M2 ⊂M such that

|∇Mp|g > ξ1 > 0 in M2, M1 ∩M2 = ∅, Γ ⊂M2. (3.4)

Let f ∈ C∞(M) such that
f = 1 on Γ, f = 0 in M \M2. (3.5)

Put qk(x) = pk(x) + f(x)[p(x) − pk(x)]. By the definition of qk, we know

qk = 0 on Γ, ∇Mqk = ∇Mpk in M \M2 (3.6)

and
∇Mqk(x) = ∇Mpk(x) + f(x)

[∇Mp(x) −∇Mpk(x)
]
+ ∇Mf(x)

[
p(x) − pk(x)

]
. (3.7)

By (3.3), we know that there exists a k̄ ∈ N such that for any integer k > k̄, we have

f(x)
[∇Mp(x) −∇Mpk(x)

]
+ ∇Mf(x)

[
p(x) − pk(x)

]
<
ξ1
2
· (3.8)

From (3.4), (3.7) and (3.8), for any integer k1 > k̄, it follows that

|∇Mqk1 |g > 0 in M2. (3.9)

Letting q(x) = qk1(x), we know that q is a Morse function satisfying |∇Mq|g > 0 in M2.

Denote by CP1 the set of critical points of function q, i.e., CP1 =
{
x ∈ M

∣∣∣∇Mq(x) = 0
}
. Hence CP1 is

a finite set. Assume CP1 = {x1, x2, . . . , xm}. Consider a sequence of functions {ρi}m
i=1 ⊂ C∞([0, 1];M) such

that ⎧⎪⎪⎨⎪⎪⎩
ρi(t) ∈M, ∀ t ∈ [0, 1], ρi(t1) = ρi(t2), ∀ t1, t2 ∈ [0, 1], t1 = t2, i = 1, . . . ,m,

ρi(1) = xi, ρ
i(0) ∈ ω1, i = 1, . . . ,m,

ρi(t1) = ρj(t2), ∀ i = j, ∀ t1, t2 ∈ [0, 1],

(3.10)

where ω1 is a nonempty open set such that ω1 ⊂ ω0. By (3.10), there exists a sequence of C2-vector fields
{ηi}m

i=1 on M and a sequence of C∞-functions {γi}m
i=1 on M such that

dρi(t)
dt

= ηi(ρi(t)), in [0, 1], i = 1, . . . ,m, (3.11)

supp γi ⊂M, i = 1, . . . ,m, (3.12)
supp γi ∩ supp γj = ∅, ∀ i = j, (3.13)

γi(ρi(t)) = 1, ∀ t ∈ [0, 1], i = 1, . . . ,m. (3.14)

Let V i(x) = γi(x)ηi(x). Consider the system of the ordinary differential equations on manifold M as follows:{
dx
dt = V i(x),

x(0) = x0.
(3.15)

Denote by S i
t : M → M (i = 1, . . . ,m) the operator such that S i

t (x0) = x(t), where x(t) is the solution of
equation (3.15). Hence S i

t (i = 1, . . . ,m) are diffeomorphisms on M .
By (3.10), (3.11) and (3.14), we have

S i
1 (ρi(0)) = xi, i = 1, . . . ,m. (3.16)
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Put S(x) = S 1
1 ◦S 2

1 ◦ . . .◦Sm
1 and ψ(x) = q(S(x)). By (3.12), there exists a domain M3 ⊂M such that Γ ⊂M3

and
S i

1 (x) = x, ∀x ∈M3, i = 1, . . . ,m. (3.17)

Therefore ψ(x) = q(x), ∀x ∈M3. Hence ψ(x) = 0, ∀x ∈ ∂M . Denote by CP2 the critical points of ψ. Since the
mapping S is a diffeomorphism, we have

CP2 =
{
x ∈M

∣∣∣S(x) ∈ CP1

}
. (3.18)

By (3.13), we have
S(ρi(0)) = xi, i = 1, . . . ,m. (3.19)

It follows from (3.18) and (3.19) that CP2 ⊂ ω0, which completes the proof. �

4. Interpolation inequality I

This section is devoted to showing an interpolation result for solutions to the following elliptic equation:{
utt +ΔMu = 0 in Q,

∂M u
∂ν + l(x)u = 0 on Σ.

(4.1)

Our result reads:

Theorem 4.1. Let 0 < γ < T
2 and 2γ < T ′ < T ′′ < T − γ. Then there exists a constant μ ∈ (0, 1) such that

any solution u ∈ H2(Q) of (4.1) satisfies

|u|L2(M×(T ′,T ′′)) ≤ C|u|μL2(ω×(γ,T−γ))|u|1−μ
H1(Q). (4.2)

This sort of interpolation estimate has already appeared in the framework of boundary control and stabiliza-
tion for hyperbolic equations (e.g. [8]) and also for inverse problems (e.g. [18]).

Proof of Theorem 4.1. We borrow some ideas from [18]. The key is to use Theorem 2.1. The proof is divided
into five steps.

Step 1. Firstly, we will explain the construction of the weight function θ appeared in Theorem 2.1. By (3.1),
we have

h
�
=

1
|ψ|L∞(M)

min
x∈M\ω0

|∇ψ(x)|g > 0. (4.3)

Without loss of generality, let us assume that T ′ ≤ T − T ′′. Let

a =
T

2
− 2γ, a0 =

T − T ′ − 2γ
2

, a1 =
T

2
− γ. (4.4)

It is easy to check that
T

2
− T ′ < a0 < a < a1 <

T

2
·

We choose

ϕ(x, t) = (c1 − c2)
ψ(x)

|ψ|L∞(M)
+ a2 −

(
t− T

2

)2

+ κ (4.5)

and

ϕ̃(x, t) = −(c1 − c2)
ψ(x)

|ψ|L∞(M)
+ a2 −

(
t− T

2

)2

+ κ, (4.6)
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where c1 = a2 − (T
2 − T ′)2, c2 = a2 − 1

2

(
T
2 − T ′)2 − a2

0 and κ is chosen to be large enough to make ϕ̃ > 0. It is
easy to check that c1 > c2.

These give the functions α(x, t) = eλϕ(x,t), α̃(x, t) = eλϕ̃(x,t), θ = esα and θ̃ = esα̃. It is obvious that
0 < ϕ̃ ≤ ϕ, 1 < α̃ ≤ α and 1 < θ̃ ≤ θ.

By the definition of α, it is easy to check that⎧⎪⎨⎪⎩
α(·, t) ≥ ec1λ+λκ,

∣∣∣t− T
2

∣∣∣ ≤ T
2 − T ′,

α(·, t) ≤ e(c1−c2)λ+λκ,
∣∣∣t− T

2

∣∣∣ ≥ a.
(4.7)

Noting that equation (4.1) has only partial boundary condition. We need to reduce it into an equation with
full boundary condition. For this, let us choose a cut-off function φ(t) ∈ C∞

0

(
T
2 − a1,

T
2 + a1

)
= C∞

0 (γ, T − γ)
such that ⎧⎨⎩

0 ≤ φ(t) ≤ 1, t ∈ (γ, T − γ),

φ(t) = 1,
∣∣∣t− T

2

∣∣∣ ≤ T
2 − a.

(4.8)

Let u1 = φu, noticing that φ is independent of x, it follows by equation (4.1) that⎧⎪⎪⎨⎪⎪⎩
(u1)tt +ΔMu1 = φttu+ 2φtut in Q,

∂M u1
∂ν + l(x)u1 = 0 on Σ,

u1 = 0 on (M × {0})⋃ (M × {T }) .
(4.9)

By (4.8), we know that there is a Q0 ⊂ Q such that

{
supp (u1) ⊂ Q0,

∂Q0 is C2.
(4.10)

Put Σ0 = ∂Q0 ∩Σ.

Step 2. We now apply Theorem 2.1 to equation (4.9) with n = d+ 1, N = Q0, b = 1 ⊗ g, v being replaced by
u1, ϕ is as (4.5) and w = θu1.

Integrating equality (2.4) on Q0, we obtain that∫
Q0

2θ2
∣∣∣(u1)tt +ΔMu1

∣∣∣2dgxdt+
∫

Q0
Ddgxdt

≥ ∫
Q0
B1|∇Nw|2bdgxdt+

∫
Q0
B2w

2dgxdt+ 4sλ2
∫

Q0

(∇N (α|∇Nϕ|2b),∇Nw
)

b
wdgxdt

+ 4sλ2
∫

Q0
α(∇Nw,∇Nϕ)2bdgxdt+ 4sλ

∫
Q0
α (∇Nw, [∇N (∇Nϕ)]∇Nw)b dgxdt

+ 4sλ
∫

Q0
α (∇Nw, (∇N b)(∇Nw,∇Nϕ))b dgxdt− 2sλ

∫
Q0
α ((∇Nb)(∇Nw,∇Nw),∇Nϕ)b dgxdt.

(4.11)

Let us estimate the right-hand side of (4.11). By Cauchy-Schwarz inequality and noting that ϕ ∈ C2(Q0),
we have the following estimates:

4sλ2
∣∣∣ (∇N (α|∇Nϕ|2b),∇Nw

)
b
w
∣∣∣ ≤ C

(
s2λ4αw2 + λ2|∇Mw|2g + λ2|wt|2

)
, (4.12)

4sλ
∣∣∣α (∇Nw, [∇N (∇Nϕ)]∇Nw)b

∣∣∣ ≤ Csλα
(|∇Mw|2g + |wt|2

)
, (4.13)

4sλ
∣∣∣α (∇Nw, (∇N b)(∇Nw,∇Nϕ))b

∣∣∣ ≤ Csλα
(|∇Mw|2g + |wt|2

)
, (4.14)

sλ
∣∣∣α ((∇N b)(∇Nw,∇Nw),∇Nϕ)b

∣∣∣ ≤ Csλα
(|∇Mw|2g + |wt|2

)
. (4.15)
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By the definition of B1, we have that

B1|∇Nw|2b =
[
2sλ2α|∇Nϕ|2b − sαO(λ)

]
(|∇Mw|2g + |wt|2). (4.16)

By the definition of B2, we have that

B2w
2 =
[
2s3λ4α3|∇Nϕ|4b − s3α3O(λ3) − s2α2O(λ)4

]
w2. (4.17)

Recalling (4.5) for the definition of ϕ and (4.3) for the positive constant h, we conclude that there is a constant
λ0 > 1 such that for any λ ≥ λ0, one can find a constant s0 > 1 so that for any s ≥ s0, the following estimates
hold uniformly for (x, t) ∈M × (2 − a, 2 + a) \ ω0 × (2 − a0, 2 + a0):{

B1|∇Nw|2b − C(sλα + λ2α)(|∇Mw|2g + |wt|2) ≥ (c1 − c2)2h2sλ2α(|∇Mw|2g + |wt|2),
B2w

2 − Cs2λ4αw2 ≥ (c1 − c2)4h4s3λ4α3|w|2.
(4.18)

From (4.11) and (4.18), we conclude that

sλ2

∫
Q0

α
(|∇Mw|2g + |wt|2

)
dgxdt+ s3λ4

∫
Q0

α3|w|2dgxdt ≤ C

{∫
Q0

θ2
∣∣∣(u1)tt +ΔMu1

∣∣∣2dgxdt+
∫

Q0

Ddgxdt

+ sλ2

∫ T

0

∫
ω0

α
(|∇Mw|2g + |wt|2

)
dgxdt+ s3λ4

∫ T

0

∫
ω0

α3|w|2dgxdt

}
. (4.19)

Step 3. We now get rid of the boundary term
∫

Q0
Ddgxdt in (4.19).

Using the divergence theorem and the boundary condition of equation (4.9), the first term in
∫

Q0
Ddgxdt

reads

4sλ2

∫
Σ0

α|∇Nϕ|2bw
∂Mw

∂ν
dΓgdt = 4sλ2

∫
Σ0

α(|∇Mϕ|2g + |ϕt|2)
(
sλα

∂Mϕ

∂ν
w2 − lw2

)
dgΓdt. (4.20)

The second one is

2s3λ3

∫
Σ0

α3(|∇Mϕ|2g + |ϕt|2)∂Mϕ

∂ν
w2dgΓdt. (4.21)

The third one is

4sλ
∫

Σ0

α(∇Nϕ,∇Nw)b
∂Mw

∂ν
dgΓdt = 4sλ

∫
Σ0

α[(∇Mϕ,∇Mw)g+ϕtwt]
(
sλαw

∂Mϕ

∂ν
+ θ

∂Mu1

∂ν

)
dgΓdt. (4.22)

By the boundary condition of u1, we have that ∂M u1
∂ν = −lu1. Especially, noting that ψ

∣∣∣
Γ

= 0, we have that

∇Mϕ|Γ = ∂M ϕ
∂ν ν
∣∣∣
Γ
. Hence from (4.22), we get that

4sλ
∫

Σ0

α(∇Nϕ,∇Nw)b
∂Mw

∂ν
dgΓdt

=
∫

Σ0

(
4s3λ3α3|∇Mϕ|2g

∂Mϕ

∂ν
w2 − 8s2λ2α2|∇Mϕ|2glw2 + 4sλα

∂Mϕ

∂ν
l2w2

)
dgΓdt

+ 4s2λ2

∫
Σ0

α2ϕtwtw
∂Mϕ

∂ν
dgΓdt− 4sλ

∫
Σ0

αϕtlwtwdgΓdt. (4.23)
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By integration by parts, we get that

− 4sλ
∫

Σ0

αϕtwtθlu1dgΓdt = −4sλ
∫

Σ0

θαϕt(sλαϕtθu1 + θ(u1)t)lu1dgΓdt

= 2sλ
∫

Σ0

{
λαϕ2

t lw
2 + αϕttlw

2
}
dgΓdt. (4.24)

Therefore, we obtain that

4sλ
∫

Σ0

α(∇Nϕ,∇Nw)b
∂Mw

∂ν
dgΓdt

=
∫

Σ0

(
4s3λ3α3|∇Mϕ|2g

∂Mϕ

∂ν
w2 − 8s2λ2α2|∇Mϕ|2glw2 + 4sλα

∂Mϕ

∂ν
l2w2

)
dgΓdt

+ 4s2λ2

∫
Σ0

α2ϕtwtw
∂Mϕ

∂ν
dgΓdt+

∫
Σ0

{
2s2λ2α2ϕ2

t lw
2 − 2sλ2αϕ2

t lw
2 − 2sλαϕttlw

2
}
dgΓdt.

(4.25)

The fourth one is

−2
∫

Σ0

sλα|∇Nw|2b
∂Mϕ

∂ν
dgΓdt

= −2
∫

Σ0

sλα(|∇Mw|2g + w2
t )
∂Mϕ

∂ν
dgΓdt

= −2
∫

Σ0

[
s3λ3α3|∇Mϕ|2g

∂Mϕ

∂ν
w2 − 2s2λ2α2|∇Mϕ|2glw2 + sλαθ2|∇Mu1|2g

∂Mϕ

∂ν

]
dgΓdt

−2
∫

Σ0

sλαw2
t

∂Mϕ

∂ν
dgΓdt. (4.26)

Therefore we have∫
Q0

Ddgxdt =
∫

Σ0

[
4s2λ3α2(|∇Mϕ|2g + |ϕt|2)w2 + 4s3λ3α3|∇Mϕ|2gw2 + 2s3λ3α3|ϕt|2w2

+ 4sλαl2w2 + 4s2λ2α2ϕtwwt − 2sλαθ2|∇Mu1|2g − 2sλαlw2
t

] ∂Mϕ

∂ν
dgΓdt

−
∫

Σ0

[
4sλ2α|∇Mϕ|2gl(1 + sα) − 2sλ2αl|ϕt|2 + 2sλαlϕtt

]
w2dgΓdt. (4.27)

Since |∇Mϕ|g|Γ > 0, we know that there exists an s1 > 0 such that for all s > s1, we have that∫
Σ0

[
4sλ2α|∇Mϕ|2gl(1 + sα) − 2sλ2αl|ϕt|2 + 2sλαlϕtt

]
w2dgΓdt ≥ 0. (4.28)

Hence the right-hand side of (4.27) could be divided into two parts. The second integral is negative and has
the property we expect. We need only to deal with the first integral in the right hand side of (4.27). We now
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choose another weight function θ̃. By (4.5), (4.6) and noting that ψ vanishes on Γ , we have the following
equalities:

ϕ
∣∣∣
Σ

= ϕ̃
∣∣∣
Σ
,
∂Mϕ

∂ν

∣∣∣
Σ

= −∂M ϕ̃

∂ν

∣∣∣
Σ
, α
∣∣∣
Σ

= α̃
∣∣∣
Σ
, w
∣∣∣
Σ

= w̃
∣∣∣
Σ
, wt

∣∣∣
Σ

= w̃t

∣∣∣
Σ
. (4.29)

Similar to (4.19) and (4.27), we deduce the following inequality:

sλ2

∫
Q0

α̃
(|∇M w̃|2g + |w̃t|2

)
dgxdt+ s3λ4

∫
Q0

α̃3|w̃|2dgxdt ≤ C

{∫
Q0

θ̃2
∣∣∣(u1)tt +ΔMu1

∣∣∣2dgxdt

+
∫

Q0

D̃dgxdt+ sλ2

∫ T

0

∫
ω0

α̃
(|∇M w̃|2g + |w̃t|2

)
dgxdt+ s3λ4

∫ T

0

∫
ω0

α̃3|w̃|2dgxdt

}
, (4.30)

where w̃ = θ̃ u1 and∫
Q0

D̃dgxdt = −
∫

Σ0

[
4s2λ3α2(|∇Mϕ|2g + |ϕt|2)w2 + 6s3λ3α3|∇Mϕ|2gw2 + 4s3λ3α3|ϕt|2w2

+ 4sλαl21w
2 + 4s2λ2α2ϕtwwt − 2sλαθ2|∇Mu1|2g − 2sλαlw2

t

] ∂Mϕ

∂ν
dgΓdt

−
∫

Σ0

[
4sλ2α|∇Mϕ|2gl(1 + sα) − 2sλ2αl|ϕt|2 − 2sλαlϕtt

]
w2dgΓdt.

(4.31)

From (4.27) and (4.31), we know that for ∀ s > s1, we have that∫
Q0

(
D + D̃

)
dgxdt = −

∫
Σ0

[
8sλ2α|∇Mϕ|2gl(1 + sα) − 4sλ2αl|ϕt|2 − 4sλαlϕtt

]
w2dgΓdt ≤ 0. (4.32)

By (4.19), (4.30) and noting (4.32), we arrive at

sλ2

∫
Q0

[
α
(|∇Mw|2g + |wt|2

)
+ α̃
(|∇M w̃|2g + |w̃t|2

)]
dgxdt,+s3λ4

∫
Q0

(
α3|w|2 + α̃3|w̃|2) dgxdt

≤ C

{∫
Q0

(
θ2
∣∣∣∣(u1)tt+ΔMu1

∣∣∣∣2+θ̃ 2

∣∣∣∣(u1)tt+ΔMu1

∣∣∣∣2
)
dgxdt+s3λ4

∫ T

0

∫
ω0

(
α3|w|2+ vα̃3|w̃|2) dgxdt

+ sλ2

∫ T

0

∫
ω0

[
α
(|∇Mw|2g + |wt|2

)
+ α̃
(|∇M w̃|2g + |w̃t|2

)]
dgxdt

}
. (4.33)

Step 4. We now return both w and w̃ in (4.33) to u1. Recalling that w = θu1 and w̃ = θ̃u1, we obtain that

1
C
θ2
(|∇Mu1|2g + |(u1)t|2 + s2λ2α2|u1|2

) ≤ |∇Mw|2g + |wt|2 + s2λ2α2w2

≤ Cθ2
(|∇Mu1|2g + |(u1)t|2 + s2λ2α2|u1|2

)
(4.34)
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and
1
C
θ̃ 2
(|∇Mu1|2g + |(u1)t|2 + s2λ2α̃2|u1|2

) ≤ |∇M w̃|2g + |w̃t|2 + s2λ2α̃2w̃2

≤ Cθ̃ 2
(|∇Mu1|2g + |(u1)t|2 + s2λ2α2|u1|2

)
. (4.35)

By the definition of α, α̃, θ and θ̃, we know α ≥ α̃ > 1 and θ ≥ θ̃ > 1. Hence, by (4.33)–(4.35), we end up with
the following inequality:

s3λ4

∫
Q0

α3θ2|u1|2dgxdt ≤ C

{∫
Q0

θ2
∣∣∣∣ΔMu1 + (u1)tt

∣∣∣∣2dgxdt+ s3λ4

∫ T

0

∫
ω0

α3θ2|u1|2dgxdt

+ sλ2

∫ T

0

∫
ω0

αθ2
(|∇Mu1|2g + |(u1)t|2

)
dgxdt

}
. (4.36)

Recalling that u1 is the solution of equation (4.9), we know∣∣∣ΔMu1 + (u1)tt

∣∣∣2 ≤
∣∣∣φttu+ 2φtut

∣∣∣2. (4.37)

Choose a cut-off function g ∈ C∞
0 (ω) with g = 1 in ω0 and 0 ≤ g ≤ 1 in ω. Multiplying equation (4.9) by

gθ2αu1 and integrating it in Q0, using integration by parts, we get∫ T

0

∫
ω0

αθ2
(|∇Mu1|2g + |(u1)t|2

)
dgxdt ≤ C

[
s2λ2

∫ T

0

∫
ω

θ2α2|u1|2dgxdt+
∫

Q0

θ2|φttu+ 2φtut|2dgxdt

]
.

(4.38)
From (4.36)–(4.38), we obtain

s3λ4

∫
Q0

α3θ2|u1|2dgxdt ≤ C

{
sλ2

∫
Q0

θ2|φttu+ 2φtut|2dgxdt+ s3λ4

∫ T

0

∫
ω

α3θ2|u1|2dgxdt

}
. (4.39)

Step 5. Finally, we shall drop the weight functions in the integrands of (4.39) to get the desired result. Noting
that α satisfies (4.7) and ϕ satisfies (4.8), we have the following inequalities:∫

Q0

s3λ4α3θ2u2
1dgxdt ≥ s3λ4e3(c1λ+λκ)e2s(ec1λ+λκ)

∫ T ′′

T ′

∫
M

|u|2dgxdt, (4.40)∫
Q0

θ2|φttu+ 2φtut|2dgxdt =
∫ T

2 +a1

T
2 −a1

∫
M

θ2|φttu+ 2φtut|2dgxdt (4.41)

≤ Ce2se(c1−c2)λ+λκ

{∫ T
2 −a

T
2 −a1

∫
M

(|u|2 + |ut|2
)
dgxdt

+
∫ T

2 +a1

T
2 +a

∫
M

(|u|2 + |ut|2
)
dgxdt

}
≤ Ce2se(c1−c2)λ+λκ |u|2H1(Q),

and ∫ T

0

∫
ω

s3λ4α3θ2|u1|2dgxdt =
∫ T

2 +a1

T
2 −a1

∫
ω

s3λ4α3θ2|u1|2dgxdt

≤ s3λ4e3λ( T2
4 +c1−c2+κ)e2seλ( T2

4 +c1−c2+κ)
∫ T−γ

γ

∫
ω

|u|2dgxdt. (4.42)
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From (4.39)–(4.42), we obtain

s3λ4e3(c1λ+λκ)e2s(ec1λ+λκ)

∫ T ′′

T ′

∫
M

|u|2dgxdt ≤ s3λ4e3λ( T2
4 +c1−c2+κ)e2seλ( T2

4 +c1−c2+κ)

×
∫ T−γ

γ

∫
ω

|u|2dgxdt+ Ce2se(c1−c2)λ+λκ |u|2H1(Q). (4.43)

Recalling that c1 > c2 > 0, hence we know that e2s(ec1λ+λκ) > e2s(e(c1−c2)λ+λκ). Let λ = λ0,

ε =
e2s(e(c1−c2)λ0+κλ0)

λ4
0s

3e3λ0(c1+κ)e2sec1λ0+κλ0
, k =

eλ0(
T2
4 +c1−c2+κ) − ec1λ0+κλ0

ec1λ0+κλ0 − e(c1−c2)λ0+κλ0
,

and

ε0 =
e2s0(e(c1−c2)λ0+κλ0 )

λ4
0s

3
0e3λ0(c1+κ)e2s0ec1λ0+κλ0

·

From (4.43), we know that for any ε ∈ (0, ε0], it holds

|u|2L2(M×(T ′,T ′′)) ≤ ε−k|u|2L2(ω×(γ,T−γ)) + Cε|u|2H1(Q), (4.44)

which in turn implies that the above inequality holds for any ε > 0.

Let μ = 1
1+k , ε =

( |u|L2(ω×(γ,T−γ))

|u|H1(Q)

)2μ

, by inequality (4.44), we get

|u|L2(M×(T ′,T ′′)) ≤ C|u|μL2(ω×(γ,T−γ))|u|1−μ
H1(M×(0,T )). (4.45)

�
5. Interpolation inequality II

This section is devoted to showing another interpolation result for solutions to equation (4.1). Our result is
stated as follows:

Theorem 5.1. Let 0 < γ < T
2 . Then there exists a constant δ ∈ (0, 1) such that any solution u ∈ H2(Q)

of (4.1) satisfies

|u|H1(ω×(γ,T−γ)) ≤ C(|u(0)|L2(ω) + |ut(0)|L2(ω) + |∇Mu(0)|L2(ω))δ|u|1−δ
H1(Q). (5.1)

Proof of Theorem 5.1. We divide the proof into three steps.

Step 1. Let ω2 ⊂⊂ ω. Denote by dist ((x, t), ω2×{0}) the distance from (x, t) to ω1×{0}. Put N(τ) =
{
(x, t) ∈

Q
∣∣∣dist ((x, t), ω2 × {0}) < τ

}
. Let 0 < τ1 < τ2 < τ3 such that N(τ3) ⊂ Q and N(τ3) ∩ (M × {0}) ⊂ ω × {0}.

Let h be an C2-function such that⎧⎪⎨⎪⎩
3 < h < 4 if (x, t) ∈ N(τ1),

0 < h < 1 if (x, t) ∈ N(τ3) \N(τ2),

|∇Mh| > 0 for all(x, t) ∈ N(τ3).

The construction of h is very easy. For example, we can choose a smooth function h1 : R → R such that{
h′1 < 0 and 3 < h1(s) < 4 if 0 < s < τ2

1 ,

0 < h1(s) < 1 if τ2
2 < s < τ2

3 .

Then h(x, t) = h1(dist 2((x, t), ω2 × {0})) is the desired function.
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In what follows, we shall use Theorem 2.1 (with ϕ replaced by h) to prove Theorem 5.1. For simplicity of the
notations, we still use θ to denote the weight function if there is no confusion.

Denote by db∂N(τ3) the volume element of ∂N(τ3) in its Riemannian metric and by ν̄ = ν̄(x) the unit
outward normal vector of N(τ3) at x ∈ ∂N(τ3) with its Riemannian metric.

For ε small enough, define

Nε(∂(N(τ3)) \ (ω2 × {0})) �
= {x : x ∈ N(τ3), dist ((x, t), ∂(N(τ3)) \ (ω2 × {0})) < ε}.

Choose a function χ ∈ C∞(N(τ3)) such that 0 ≤ χ ≤ 1 and that

χ =
{

1 if (x, t) ∈ N(τ2),
0 if (x, t) ∈ N(τ3) ∩Nε(∂(N(τ3)) \ (ω2 × {0})).

Put ū = χu where u is the solution of equation (4.1). Then, ū satisfies the following equation:{
ūtt +ΔM ū = χttu+ 2χtut + uΔMχ+ 2(∇Mu,∇Mχ)g in N(τ3),

|∇M ū|g = ū = 0 on ∂N(τ3) \ (ω × {0}). (5.2)

Apply Theorem 2.1 to equation (5.2) with b = 1 ⊗ g, v replaced by ū and w = θū.
Proceeding as in (4.12)–(4.18), similar to (4.19), and noting that h has no critical point in N(τ3), we obtain

that

sλ2

∫
N(τ3)

α
(|∇Mw|2g + |wt|2

)
dgxdt+ s3λ4

∫
N(τ3)

α3|w|2dgxdt

≤ C

{∫
N(τ3)

θ2
∣∣∣ūtt +ΔM ū

∣∣∣2dgxdt+
∫

N(τ3)

D1dgxdt

}
, (5.3)

where

D1 = 2sλdivN

[
2λα|∇Nh|2bw∇Nw + s2λ2α3|∇Nh|2bw2∇Nh+ 2α(∇Nh,∇Nw)b∇Nw − α|∇Nw|2b∇Nh

]
. (5.4)

By the divergence theorem,
∫

N(τ3)
D1dgxdt is the boundary term.

For the first term therein, we have∫
∂N(τ3)

2sλ2α|∇Nh|2bw
∂w

∂ν̄
db∂N(τ3) ≤ C

∫
∂N(τ3)

{
sλα(|∇Mw|2g + w2

t ) + sλ3αw2
}
db∂N(τ3).

Due to the definition of w, we know{
w|∂N(τ3)\(ω×{0}) = ū|∂N(τ3)\(ω×{0}) = 0,

∇Nw|∂N(τ3)\(ω×{0}) = ∇N ū|∂N(τ3)\(ω×{0}) = 0.

Hence we know that∫
∂N(τ3)

2sλ2α|∇Nh|2bw
∂w

∂ν̄
db∂N(τ3) ≤ C

∫
ω×{0}

{
sλα(|∇Mw|2g + w2

t ) + sλ3αw2
}
dgx.

By the same argument, we obtain the estimates for the remainder terms. Therefore, it follows that∫
Q

D1dgxdt ≤ C

∫
ω×{0}

[
sλα(|∇Mw|2g + w2

t ) + s3λ3α3w2
]
dgx. (5.5)
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Combining (5.3) and (5.5), we obtain that

sλ2

∫
N(τ3)

α
(|∇Mw|2g + |wt|2

)
dgxdt+ s3λ4

∫
N(τ3)

α3|w|2dgxdt ≤ C

{∫
N(τ3)

θ2
∣∣∣ūtt +ΔM ū

∣∣∣2dgxdt

+
∫

ω×{0}

[
sλα(|∇Mw|2g + |wt|2) + s3λ3α3|w|2] dgx

}
. (5.6)

Step 2. We now return the w in (5.6) to ū. Recalling w = θū, it is clear that

1
C
θ2
(|∇M ū|2g + |ūt|2 + s2λ2α2|ū|2) ≤ |∇Mw|2g + |wt|2 + s2λ2α2w2

≤ Cθ2
(|∇M ū|2g + |ūt|2 + s2λ2α2|ū|2) . (5.7)

From (5.6)–(5.7), and noting the first equation in (5.2), we obtain that

sλ2

∫
N(τ3)

αθ2
(|∇M ū|2g + |ūt|2

)
dgxdt+ s3λ4

∫
N(τ3)

α3θ2|ū|2dgxdt

≤ C

{∫
N(τ3)

θ2

∣∣∣∣∣χttu+2χtut+uΔMχ+2(∇Mu,∇Mχ)g

∣∣∣∣∣
2

dgxdt+
∫

ω×{0}

[
sλα(|∇M ū|2g+ū2

t )+s
3λ3α3ū2

]
dgx

}
.

(5.8)

By the definition of ū, we know that ū = u in N(τ1). By the definition of h, we know that{
α ≥ e3λ and θ ≥ ese3λ

if (x, t) ∈ N(τ1),

α ≤ eλ and θ ≤ eseλ

if (x, t) ∈ N(τ3) \N(τ2).

By the definition of χ we know that

χt = 0 and ∇Mχ = 0 if (x, t) ∈ N(τ2).

Therefore we have the following inequalities:∫
N(τ3)

sλ2αθ2
(|∇M ū|2g + |ūt|2

)
dgxdt ≥ sλ2e3λe2se3λ

∫
N(τ1)

(|∇M ū|2g + |ūt|2
)
dgxdt, (5.9)∫

N(τ3)

s3λ4α3θ2ū2dgxdt ≥ s3λ4e9λe2se3λ

∫
N(τ1)

|u|2dgxdt, (5.10)∫
N(τ3)

θ2
∣∣∣χttu+ 2χtut + uΔMχ+ 2(∇Mu,∇Mχ)g

∣∣∣2dgxdt ≤ Ce2seλ

∫
N(τ3)

(|u|2 + |∇Mu|2g + |ut|2
)
dgxdt,

(5.11)∫
ω×{0}

s3λ3α3θ2|ū|2dgx ≤ s3λ3e12λe2se4λ

∫
ω×{0}

|u|2dgx, (5.12)

and ∫
ω×{0}

sλαθ2
(|∇M ū|2g + ū2

t

)
dgx ≤ sλe4λe2se4λ

∫
ω×{0}

(|∇Mu|2g + u2
t

)
dgx. (5.13)
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From (5.8) to (5.13), we know that

sλ2e3λe2se3λ

∫
N(τ1)

(|∇M ū|2g + |ūt|2
)
dgxdt+ s3λ4e9λe2se3λ

∫
N(τ1)

s3λ4|u|2dgxdt

≤ C

{
e2seλ

∫
N(τ3)

(|u|2 + |∇Mu|2g + |ut|2
)
dgxdt+ s3λ3e12λe2se4λ

∫
ω×{0}

|u|2dgx

+ sλe4λe2se4λ

∫
ω×{0}

(|∇Mu|2g + u2
t

)
dgx

}
. (5.14)

Similar to (4.44), by (5.14), we obtain that there exist a β > 0 and an ε0 > 0 such that for any ε ∈ (0, ε0], we
have

|u|2H1(N(τ1))
≤ ε−β

(
|ut(0)|2L2(ω) + |∇Mu(0)|2L2(ω) + |u(0)|2L2(ω)

)
+ Cε|u|2H1(Q), (5.15)

which in turn implies that the above inequality holds for any ε > 0.
Noting that τ1 > 0, hence there is an open ball B ⊂ N(τ1). Then we know that

|u|2H1(B) ≤ ε−β
(
|ut(0)|2L2(ω) + |∇Mu(0)|2L2(ω) + |u(0)|2L2(ω)

)
+ Cε|u|2H1(Q). (5.16)

Put δ′ = 1
1+β and let ε =

(
|ut(0)|2L2(ω)+|∇M u(0)|2

L2(ω)+|u(0)|2
L2(ω)

|u|2
H1(Q)

)δ′

in (5.16), we get

|u|H1(B) ≤ C
(
|ut(0)|2L2(ω) + |∇Mu(0)|2L2(ω) + |u(0)|2L2(ω)

) δ′
2 |u|1−δ′

H1(Q)

≤ C
(|ut(0)|L2(ω) + |∇Mu(0)|L2(ω) + |u(0)|L2(ω)

)δ′
|u|1−δ′

H1(Q).

(5.17)

Step 3. To complete the proof, it suffices to show that the following proposition: For any given open set L ⊂⊂ Q,
there exists a constant 0 < δ′′ < 1 such that

|u|H1(L) ≤ C|u|δ′′
H1(B)|u|1−δ′′

H1(Q). (5.18)

Firstly, we admit this claim and continue our proof. After that, we prove this proposition.
By inequality (5.17) and (5.18), we deduce that for any given subset L ⊂⊂ Q, we have

|u|H1(L) ≤ C
(|ut(0)|L2(ω) + |∇Mu(0)|L2(ω) + |u(0)|L2(ω)

)δ |u|1−δ
H1(Q) (5.19)

where δ = δ′δ′′. Now we choose L = ω × (γ, T − γ) to get Theorem 5.1.
Now we prove the above proposition. Let B1, B2 and B3 be three open balls in Q such that B1 ⊂⊂ B2 ⊂⊂

B3 ⊂⊂ Q. Choose a cut-off function η ∈ C∞
0 (Q) such that η = 1 in B3 and 0 < η < 1. Let y = ηu. Then, y

solves {
ytt +ΔMy = ηttu+ 2ηtut + uΔMη + 2(∇Mu,∇Mη)g in Q,

|∇My| = ȳ = 0 on ∂Q.
(5.20)

Denote by P the center of B1. Let r(x, t) = dist 2((x, t), P ). Replace the above ϕ (in θ) by r. By the same
argument as the proof of Theorem 4.1, we conclude that there exists a constant 0 < δ̃ < 1 such that

|u|H1(B2) ≤ C|u|δ̃H1(B1)
|u|1−δ̃

H1(Q). (5.21)
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For any ball B′ ⊂⊂ Q, we can find a finite number m ∈ N and two sequences of balls {Bi}m
i=1 and {B̃i}m

i=1

such that ⎧⎪⎪⎨⎪⎪⎩
B′ ⊂⊂ B1,

B̃i ⊂⊂ Bi ∩Bi+1 for i = 1, . . . ,m− 1,
B̃n ⊂⊂ Bn,

B̃n = B.

(5.22)

By inequality (5.21), we know that there exists a sequences {δ̃i}m
i=1 satisfying 0 < δ̃i < 1 for i = 1, . . . ,m,

such that

|u|H1(B′) ≤ |u|H1(B1) ≤ C|u|δ̃1

H1(B̃1)
|u|1−δ̃1

H1(Q) ≤ C|u|δ̃1
H1(B2)|u|1−δ̃1

H1(Q)

≤ C|u|δ̃1δ̃2

H1(B̃2)
|u|1−δ̃1 δ̃2

H1(Q) ≤ . . . ≤ C|u|δ̃1δ̃2...δ̃m

H1(B̃n)
|u|1−δ̃1 δ̃2...δ̃m

H1(Q) . (5.23)

Put ˜̃δ = δ̃1δ̃2 . . . δ̃m, then we know that

|u|H1(B′) ≤ C|u|˜̃δH1(B)|u|1−
˜̃
δ

H1(Q). (5.24)

For any given L ⊂⊂ Q, we can find finite balls contained in the internal of Q to cover it. Hence from inequality
(5.24), we know that there exist a constant 0 < δ′′ < 1 such that (5.18) holds.

|u|H1(L) ≤ C|u|δ′′
H1(B)|u|1−δ′′

H1(Q). (5.25)

This completes the proof of Theorem 5.1. �

6. Proof of Theorem 1.2

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. For simplicity, choose T = 4, T ′ = 1 and T ′′ = 3 in inequalities (4.2) and (5.1). From
Theorem 4.1, we get

|u|L2(M×(1,3)) ≤ C|u|μL2(ω×(γ,4−γ))|u|1−μ
H1(Q). (6.1)

By Theorem 5.1, we obtain

|u|L2(M×(1,3)) ≤ C
(
|ut(0)|2L2(ω) + |∇Mu(0)|2L2(ω) + |u(0)|2L2(ω)

)μδ

|u|1−μδ
H1(Q), (6.2)

where u ∈ H2(Q) is any solution of equation (4.1).
For any {ai}λi≤r with ai ∈ lC, set

y(x, t) =
∑
λj≤r

sh(t
√
λj)√
λj

ajej (6.3)

with sh(tb)
b = t if b = 0. Then, both the real part and the imaginary part of y are solutions of (4.1) and

Re y = Im y = 0 on M × {0} . Therefore Re y and Im y satisfy inequality (6.2). For the left term of (6.2), we
have

|Re y|2L2(M×(1,3)) =
∫ 3

1

∫
M

∣∣∣∣∣ ∑
λj≤r

sh(t
√
λj)√

λj

(Re aj)ej

∣∣∣∣∣
2

dxdt =
∑
λj≤r

|Re aj |2
∫ 3

1

∣∣∣∣∣ sh(t
√
λj)√
λj

∣∣∣∣∣
2

dt

≥
∑
λj≤r

|Re aj |2
∫ 3

1

t2dt =
8
3

∑
λj≤r

|Re aj |2. (6.4)
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For the right term of (6.2), we have ∂tRe y(x, 0) =
∑

λj≤r Re ajej and

|Re y|2H1(Q) ≤ Ce8
√

r(1 + r)
∑
λj≤r

|Re aj |2 ≤ Ce9
√

r
∑
λj≤r

|Re aj |2. (6.5)

Therefore we get

∑
λj≤r

|Re aj |2 ≤ C

⎛⎝∫
ω

∣∣∣ ∑
λj≤r

Re ajej

∣∣∣2dx
⎞⎠μδ⎛⎝e9

√
r
∑
λj≤r

|Reaj |2
⎞⎠1−μδ

. (6.6)

Hence we have ∑
λj≤r

|Re aj |2 ≤ CeC
√

r

∫
ω

∣∣∣ ∑
λi≤r

Re aiei

∣∣∣2dx. (6.7)

By the same argument, we can get∑
λj≤r

|Im aj |2 ≤ CeC
√

r

∫
ω

∣∣∣ ∑
λi≤r

Im aiei

∣∣∣2dx. (6.8)

From (6.7) and (6.8), we obtain ∑
λj≤r

|aj |2 ≤ CeC
√

r

∫
ω

∣∣∣ ∑
λi≤r

aiei

∣∣∣2dx. (6.9)

�
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