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Abstract. The paper deals with deterministic optimal control problems with state constraints and
non-linear dynamics. It is known for such problems that the value function is in general discontinuous
and its characterization by means of a Hamilton-Jacobi equation requires some controllability assump-
tions involving the dynamics and the set of state constraints. Here, we first adopt the viability point
of view and look at the value function as its epigraph. Then, we prove that this epigraph can always
be described by an auxiliary optimal control problem free of state constraints, and for which the value
function is Lipschitz continuous and can be characterized, without any additional assumptions, as the
unique viscosity solution of a Hamilton-Jacobi equation. The idea introduced in this paper bypasses the
regularity issues on the value function of the constrained control problem and leads to a constructive
way to compute its epigraph by a large panel of numerical schemes. Our approach can be extended to
more general control problems. We study in this paper the extension to the infinite horizon problem as
well as for the two-player game setting. Finally, an illustrative numerical example is given to show the
relevance of the approach.
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1. Introduction

This paper deals with the characterization of the value function of a deterministic optimal control problem
with state constraints. For a given finite horizon T > 0, consider the dynamical system

ẏ(s) = f(s, y(s), α(s)), a.e. s ∈ (t, T ), (1.1a)
y(t) = x. (1.1b)
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where α : [0, T ] → A is a measurable function and A is a compact set of R
p (p ≥ 1), and f : [0, T ]×R

d×A → R
d

is a continuous function (see Sect. 2 for precise assumptions). The corresponding absolutely continuous solution
will be denoted by y = yα

t,x.
For a given non-empty and closed subset K of R

d, we consider a control problem and its value function given
by

ϑ(t, x) := min
α∈L∞((t,T ),A)

{∫ T

t

�(s, yα
t,x(s), α(s))ds + ϕ(yα

t,x(T ))
∣∣∣∣ yα

t,x(θ) ∈ K ∀θ ∈ [t, T ]
}
, (1.2)

with the usual convention that inf ∅ = +∞, and where � : [0, T ]× R
d ×A → R and ϕ : R

d → R are continuous
functions (see Sect. 2 for precise assumptions). Without any further assumption, it may happen that the value
function is discontinuous.

In the case when K = R
d and ϕ is Lipschitz continuous, under classical assumptions on f and �, it is known

that the value function ϑ is the unique continuous viscosity solution of a Hamilton-Jacobi equation [6, 8, 24].
This result is extended also to the lower semicontinuous (l.s.c.) setting in [12, 26].

When the control problem is in presence of state constraints (K �= R
d) a state-space constrained HJB equation

has been associated to the value function (1.2) in [39, 40]. In our setting, this HJB equation takes the form:

−ut + H(t, x,∇xu) = 0 in (0, T ) ×K, (1.3a)
u(T, x) = ϕ(x) in K, (1.3b)

where H(t, x, p) := maxa∈A(−f(t, x, a) ·p− �(t, x, a)). In Soner’s formulation, a function u is a viscosity solution

of (1.3) if it is sub-solution in (0, T )× ◦
K and a super-solution on (0, T ) ×K.

Even though it is easy to establish that the value function ϑ satisfies (1.3) in the constrained viscosity
sense, it is more complicate to prove the uniqueness of the solution of (1.3). Actually, the uniqueness requires
restrictive controllability assumptions on K and on the dynamics. The main difficulty comes from the fact that
the state-space HJB equation may admit several solutions (in the constrained viscosity sense) if the behavior
of the solution on the boundary is not taken into account, see [16, 31].

The most classical controllability assumption is called “inward pointing qualification condition (IPQ)”. It
was first introduced by Soner in [39, 40]. It asks that at each point of the boundary of K there exists a field
of the system pointing inward K. Under this assumption the value function is Lipschitz continuous in K, and
uniqueness can be established. From the viewpoint of the dynamical system, the inward condition ensures
that all the trajectory hitting the boundary can be approximated by a sequence of trajectories that stay inside
the interior of K [29]. We refer to [18, 35, 36] for weaker inward pointing assumptions, and to [32, 33] for more
properties and numerical approximation of continuous constrained viscosity solutions.

Another controllability assumption, called “outward pointing condition” (OPQ), has been considered
in [27, 29]. This assumption states that each point on the boundary of K can be reached by a trajectory coming
from the interior of K. Under this assumption it is still possible to characterize the value function as the unique
lower semi-continuous solution of an HJB equation.

However there are many control problems where the controllability assumptions are never satisfied.
On the other hand, using the viability tools [1,4] and non-smooth analysis it is always possible to characterize

the value function and more precisely its epigraph, see [2, 5, 19, 20] and the references therein.
In the present work we show that the epigraph of ϑ can be described by using the knowledge of a Lipschitz

continuous function, which turns out to be the value function of an auxiliary control problem free of state
constraints. Then standard viscosity theory can be applied to characterize the new value function as the unique
continuous viscosity solution of a variational HJ equation. More precisely, our approach consists in considering
an auxiliary control problem defined by

wg(t, x, z) := inf
α∈L∞((t,T ),A)

( ∫ T

t

�(s, yα
t,x(s), α(s))ds + ϕ(yα

t,x(T )) − z

)∨
max

θ∈(t,T )
g(yα

t,x(θ)), (1.4)
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where a
∨
b := max(a, b), and g is a Lipschitz continuous function satisfying g(x) ≤ 0 ⇔ x ∈ K (for instance

the signed distance to K). In this new problem there is no state constraints and the value function wg can be
characterized as the unique continuous viscosity solution of the following HJ equation:

min
(
− ∂tu+ max

a∈A
(−f(t, x, a)∇xu+ �(t, x, a)∂zu, u− g(x)

)
= 0, t ∈ [0, T ), (x, z) ∈ R

d × R, (1.5a)

u(T, x, z) = (ϕ(x) − z) ∨ g(x), (x, z) ∈ R
d × R. (1.5b)

Moreover, under classical assumptions on f , � and ϕ, the epigraph3 of ϑ satisfies Epi(ϑ(t, ·)) = {(x, z) ∈
R

d × R, wg(t, x, z) ≤ 0}, and we have ϑ(t, x) = min{z, wg(t, x, z) ≤ 0}.
Let us point out that a class of control problems with maximum costs has been already studied in [10,11]. Here,

we use the term maxθ∈(t,T ) g(yα
t,x(θ)) as an exact penalization of the state constraints. This kind of penalization

has also already been successfully used to study the reachability analysis for some state constrained nonlinear
systems, see [15, 34]. Here, we use the exact penalization as a tool to bypass all the regularity issues in the
characterization of ϑ and get a description of the epigraph without requiring any inward or outward pointing
condition on the dynamics.

Our principal objective is to show that the exact penalization approach can be used in order to treat general
optimal control problems with state constraints. We show that for each optimal control problem, corresponds
an auxiliary control problem in with the state constraints are taken into account by an exact penalization. This
simple idea can be extended to a large class of optimal control problems. In the present paper, we investigate
the case of a finite horizon problem, the case of an infinite horizon control problem, and a two-player game
problem. In each case, we show how the auxiliary control problem should be defined. The important property of
the auxiliary control problem is to have a Lipschitz continuous value function, and that it can be characterized
as the unique solution of a corresponding HJ equation. This approach needs to introduce a supplementary state
variable, but it allows to have a proper way to characterize all the epigraph without controllability assumptions,
and opens the way to a large class of numerical methods for computing this epigraph.

The paper is organized as follows. The setting of the problem and the assumptions are made precise in
Section 2. Main results and proofs are presented in Section 3. The extension of the results to an infinite horizon
control problem as well as two-player games is done in Sections 4, 5. Finally, a numerical example is given in
Section 6.

2. Problem formulation

2.1. Statement of the state-constrained control problem

For a given non-empty compact subset A of R
p (p ≥ 1) and a given T ∈ R (T > 0), we consider the set of

admissible controls defined by:

A :=
{
α : (0, T ) → R

p measurable, α(t) ∈ A a.e.
}
.

Consider the controlled system:

ẏ(s) = f(s, y(s), α(s)), a.e. s ∈ (t, T ), (2.1a)
y(t) = x, (2.1b)

3The epigraph at time t is defined by Epi(ϑ(t, ·)) := {(x, z) ∈ R
d × R, ϑ(t, x) ≤ z}.
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where α ∈ A, and f : (0, T )×R
d ×A → R

d is continuous and is assumed to satisfy the following regularity and
growth properties:

(A1)

⎧⎨⎩ (i) f : [0, T ]× R
d ×A → R

d is continuous
(ii) There exists L ≥ 0, for any x, y ∈ R

d, for all a ∈ A, and for all t, s ∈ [0, T ]:
|f(t, x, a) − f(s, y, a)| ≤ L(|x− y| + |t− s|),

where |·| is a norm on R
d. It is known that under assumption (A1), for any α ∈ A and for any (t, x) ∈ (0, T )×R

d,
there exists a unique absolutely continuous trajectory y = yα

t,x satisfying (2.1). The set of all feasible trajectories
starting in x at time t will be denoted as:

S[t,T ](x) :=
{
y = yα

t,x, y satisfies (2.1) for some measurable α ∈ A
}
.

Under the assumption (A1), for any t ∈ [0, T ] and x ∈ R
d, S[t,T ](x) is a compact subset of W 1,1(t, T ) for the

topology of C([0, T ]; Rd). Moreover, the set-valued application x � S[t,T ](x) is Lipschitz continuous map from
R

d in C([0, T ]; Rd).
Let K be a non-empty closed set of R

d (no additional assumptions on K will be made). A trajectory y ∈
S[t,T ](x) will be said admissible (on the time interval (t, T )) if

y(s) ∈ K, for all s ∈ (t, T ). (2.2)

Now, consider a distributed cost function � : [0, T ]× R
d ×A → R, satisfying:

(A2)

⎧⎨⎩(i) � : [0, T ]× R
d ×A → R is continuous

(ii) There exists L ≥ 0, for any x, y ∈ R
d, for any a ∈ A and for any ∀t, s ∈ [0, T ],

|�(t, x, a) − �(s, y, a)| ≤ L(|x− y| + |t− s|),
and a given final cost function ϕ satisfying:

(A3) ϕ : R
d → R is Lipschitz continuous.

The state-constrained Bolza problem is formulated as follows:

ϑ(t, x) := inf
{∫ T

t

�(s, yα
t,x(s), α(s)) ds + ϕ(yα

t,x(T ))
∣∣∣∣ α ∈ A, and yα

t,x(s) ∈ K, ∀s ∈ [t, T ]
}
, (2.3)

with the convention that inf ∅ = +∞.
First, let us recall that the Bolza problem (2.3) can be recast as a Mayer problem. For this, we introduce the

following “augmented” dynamics f̂ defined by

f̂(t, (x, z), a) :=
(
f(t, x, a)
−�(t, x, a)

)
∀(x, z) ∈ R

d × R, ∀a ∈ A, ∀t ∈ (0, T )

(the choice of −� instead of � is just for notational convenience). Introduce also, for α ∈ A, the augmented
trajectory ŷ = ŷα

t,(x,z) solution of

˙̂y(s) = f̂(s, ŷ(s), α(s)), s ∈ (t, T ), (2.4a)
ŷ(t) = (x, z)T. (2.4b)

In particular, for any x̂ = (x, z) ∈ R
d × R, the solution of (2.4) is given by: ŷα

t,x̂(s) = (yα
t,x(s), ζα

t,x̂(s)), where
ζα
t,x̂(s) := z−∫ s

t
�(θ, yα

t,x(θ), α(θ)) dθ and yα
t,x is the solution of (2.1). Define the corresponding set of trajectories:

Ŝ[t,T ](x̂) :=
{
ŷ = (yα

t,x, ζ
α
t,x̂), ŷ satisfies (2.4) for some α ∈ A

}
,
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for x̂ = (x, z) ∈ R
d × R. The new control problem is then defined as follows:

ϑ̂(t, x̂) := inf
ŷ=(y,ζ)∈Ŝ[t,T ](x̂)

{
ϕ(y(T )) − ζ(T ), y(s) ∈ K, ∀s ∈ (t, T )

}
. (2.5)

It is clear that ϑ̂(t, x̂) = ϑ(t, x) − z for any x̂ := (x, z), and in particular ϑ(t, x) = ϑ̂(t, (x, 0)). In the sequel, for
simplicity of the presentation, the following assumption will be also assumed:

(A4) For any (t, x) ∈ [0, T ]× R
d, f̂(t, x,A) is a convex set.

Therefore, for any x̂ ∈ R
d × R, Ŝ[t,T ](x̂) is a compact set. Moreover, the value function ϑ (resp. ϑ̂) is l.s.c. in

[0, T ]× R
d (resp. in [0, T ]× R

d × R).

Remark 2.1. Notice that Ŝ[t,T ](x̂) may not be a closed set if (A4) is not satisfied, and therefore the infimum
value of ϑ̂ may not be achieved by an admissible trajectory. In this case, it would be natural to consider the
closure of Ŝ[t,T ](x̂) (for the topology induced by the C0([t, T ]) norm), see [13,28]. For this, one should introduce
f̂ � the convexified set-valued dynamics

f̂ �(t, x̂) := co(f̂(t, x̂,A)), for t ∈ [0, T ], x̂ ∈ R
d × R.

Here, since A is a compact set of R
d and f̂ is continuous, by the Carathéodory theorem co(f̂(t, x̂,A)) is also

a compact set and thus f̂ �(t, x̂) ≡ co(f̂(t, x̂,A)). Under assumptions (A1)–(A2) the following differential
inclusion admits absolutely continuous solutions in [t, T ] (see [3]):

ẏ(s) ∈ f̂ �(s, y(s)), a.e. s ∈ (t, T ), (2.6a)
y(t) = x. (2.6b)

Let us denote by Ŝ�
[t,T ](x, z) the set of all the solutions of (2.6). This set is precisely the closure of Ŝ�

[t,T ](x, z)
for the topology of C0(0, T ) (see for instance [28]):

Ŝ�
[t,T ](ξ) ≡ Ŝ[t,T ](x, z)

C0

. (2.7)

Moreover, by Filippov’s theorem, Ŝ�
[t,T ](x, z) is a compact set of C0([t, T ]). Now, define the relaxed control

problem, and its associated value function ϑ�, as follows:

ϑ�(t, x̂) := min
ŷ=(y,ζ)∈Ŝ�

[t,T ](x̂)

{
ϕ(y(T )) − ζ(T )

∣∣∣∣ y(s) ∈ K, ∀s ∈ (t, T )
}

(2.8)

where ŷ(s) = (y(s), ζ(s)) denotes the two components of a given trajectory of Ŝ�
[t,T ](x, z). In this case, the

function ϑ� is l.s.c. and the minimum in (2.8) is achieved.

2.2. Some properties of the value function ϑ̂

In order to state the dynamic programming principle (DPP), two more notations will be used: the set of
admissible trajectories starting from x̂

ŜK
[t,T ](x̂) :=

{
ŷ ∈ Ŝ[t,T ](x̂), ŷ(s) ∈ K × R for s ∈ [t, T ]

}
,

and the set of admissible backward trajectories arriving at x̂

ŜK,−
[τ,t] (x̂) : =

{
ŷ ∈ W 1,1(τ, t), ŷ satisfies (2.4a) for some measurable α ∈ A on [τ, t],

ŷ(t) = x and ŷ(s) ∈ K × R for s ∈ [τ, t]} .
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Lemma 2.2. Assume (A1)–(A4). For any x̂ ∈ R
d × R and any t ∈ [0, T [, the following statements hold:

(i) (Forward DPP) For any h > 0 such that t+ h ≤ T :

ϑ̂(t, x̂) = min
ŷ∈ŜK

[t,t+h](x̂)
ϑ̂(t+ h, ŷ(t+ h))

with the convention ϑ̂(t, x̂) = +∞ whenever ŜK
[t,t+h](x̂) = ∅.

(ii) (Backward DPP) For all s ∈ [0, t] and x̂ ∈ R
d × R, for every ŷ ∈ ŜK,−

[t−h,t](x̂):

ϑ̂(t, x̂) ≥ ϑ̂(t− h, ŷ(t− h)).

Since Ŝ[t,T ](x̂) is a compact set, the forward DPP leads to the statement that ϑ̂ satisfies the increasing
principle, i.e. for any (t, x̂) ∈ [0, T ]× R

d × R:

∃ŷ ∈ Ŝ[t,T ](x̂), ϑ̂(t, x̂) ≥ ϑ̂(t+ s, ŷ(t+ s)) for any s ∈ [t, T − t]. (2.9)

This amounts to saying that the epigraph of ϑ̂ is weakly invariant with respect to the set-valued application:

(t, x̂)� (1, f̂(t, x̂,A), 0)T.

Under assumption (A1)–(A4), the mapping (t, x) � f̂(t, x̂,A) is upper semi-continuous and has nonempty
convex compact images. Therefore, the characterization of the weak invariance principle by means of a HJB
inequality is straightforward. More precisely, one can prove that (see [9, 16, 22, 26]):

u satisfies (2.9) ⇐⇒ −∂tu(t, x̂) + sup
a∈A

(−f̂(t, x̂, a) ·Dx̂u(t, x̂)) ≤ 0 in[0, T ]×K × R.

On the other hand, the backward DPP expresses the fact that ϑ̂ satisfies also the decreasing principle of the
value function ϑ̂ along admissible backward trajectories ŷ ∈ ŜK,−

[t−s,t](x̂) for every x̂ ∈ K × R and every t ∈ [0, T ]
and s ∈ [0, t].

Let TK(x̂) denote the tangent cone of K at x̂. If we assume that K is smooth enough and has a nonempty
interior, and if the vector-field f̂(t, x̂,A) is assumed to satisfy f̂(t, x̂,A) ∩ TK(x̂) �= ∅, then from the decreasing
principle one can conclude that Epi(ϑ̂) is strongly invariant with respect to the application

(t, x̂)�

⎡⎣ −1
−(f̂(t, x̂,A) ∩ TK(x̂))

0

⎤⎦.
In general, although f̂ is Lipschitz continuous, the set-valued application (t, x̂)� f̂(t, x̂,A)∩TK(x̂) may have

empty images and may not be Lipschitz continuous. Therefore, the characterization of the strong invariance
principle by means of a HJB inequality is not clear (see [16, 22]). As mentioned in the introduction, several
works have been done to investigate the characterization of strong invariance under additional controllability
assumptions.

In the next section, we will follow a completely different reasoning and will prove that the epigraph of ϑ can
be described using a value function of an auxiliary control problem without state-constraints. This description
does not require any additional assumptions on K or the regularity of ϑ.

3. Characterization of the epigraph

3.1. Auxiliary control problem. Main result

Here we shall focus on the characterization of the epigraph of ϑ(t, .)

Epi(ϑ(t, .)) :=
{

(x, z) ∈ R
d × R, ϑ(t, x) ≤ z

}
.
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(This set also corresponds to {x̂ = (x, z) ∈ R
d × R, ϑ̂(t, x̂) ≤ 0}.) For this, consider a “level set” function

g : R
d → R, Lipschitz continuous, that represents the set of constraints K in the following way:

∀x ∈ R
d, g(x) ≤ 0 ⇔ x ∈ K. (3.1)

Since K is closed, such a function g exists. Indeed, if we denote by dK the signed distance to K (where dK(x) :=
d(x,K) if x /∈ K and dK(x) = −d(x,Rd\K) otherwise), then the function g ≡ dK(·) is Lipschitz continuous and
satisfies the statement (3.1). Therefore, for any y ∈ S[t,T ](x):(

y(θ) ∈ K, ∀θ ∈ [t, T ]
)

⇔ max
θ∈[t,T ]

g
(
y(θ)

) ≤ 0.

Now, introduce the auxiliary control problem and its associated value function wg defined by:

wg(t, x, z) := inf
ŷ=(y,ζ)∈Ŝ[t,T ](x,z)

(
ϕ(y(T )) − ζ(T )

) ∨
max

θ∈(t,T )
g(y(θ)) (3.2)

for x ∈ R
d, z ∈ R, t ∈ [0, T ], and where we have used, for convenience, the notation a ∨ b := max(a, b).

In this auxiliary control problem, the term “maxθ∈[t,T ] g
(
y(θ)

)
” is an exact penalization of the state con-

straints. Here, we shall use the problem (3.2) to characterize the epigraph of the value function ϑ without
requiring any additional assumptions on K or on the dynamics f̂ .

Theorem 3.1. Assume that (A1)–(A4) hold and that K is closed and non-empty. Then for any t ∈ [0, T ] and
(x, z) ∈ R

d × R, the following holds:

(i)
ϑ(t, x) − z ≤ 0 ⇐⇒ ϑ̂(t, (x, z)) ≤ 0 ⇐⇒ wg(t, x, z) ≤ 0;

(ii) moreover, the function ϑ is characterized by wg through the following relation

ϑ(t, x) = min
{
z ∈ R, wg(t, x, z) ≤ 0

}
. (3.3)

Proof. (i) Let us assume that ϑ(t, x) ≤ z. There exists a sequence yn of admissible trajectories of S[t,T ](x), such
that

lim
n→∞

∫ T

t

�(s, yn(s), α(s)) ds + ϕ(yn(T )) − z = ϑ(t, x) − z ≤ 0.

Since all the trajectories yn are admissible, we have, for all n ≥ 0, maxθ∈[t,T ] g(yn(θ)) ≤ 0. Hence

wg(t, x, z) ≤ lim inf
n→∞

( ∫ T

t

�(s, yn(s), α(s)) ds + ϕ(yn(T )) − z

)∨
max

θ∈[t,T ]
g(yn(θ))

≤ 0.

Conversely, let us assume that wg(t, x, z) ≤ 0. We know that Ŝ[t,T ](ξ) is a compact set in C0([t, T ]), hence the
infimum in wg(t, x, z) is achieved by some trajectory y ∈ Ŝ[t, T ]((x, z)). Moreover,

0 ≥ wg(t, x, z) =
( ∫ T

t

�(s, y(s), α(s)) ds+ ϕ(y(T )) − z

)∨
max

θ∈[t,T ]
g(y(θ)).

Therefore, on one hand, maxθ∈[t,T ] g(y(θ)) ≤ 0 and y satisfies the state constraints, and on the other hand,

ϑ(t, x) − z ≤
∫ T

t

�(s, y(s), α(s)) ds + ϕ(y(T )) − z ≤ 0

which is the desired result.
The proof of (ii) is a consequence of (i). �
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Remark 3.2. When the convexity assumption (A4) is not satisfied, the statements of the above theorem are
valid for the l.s.c. value function ϑ� instead of ϑ̂. Indeed, let � ≡ 0, f(t, x, α) := (1, α)T with α ∈ A := {±1},
K := {(x1, x2) ∈ R

2, |x2| ≤ |x1 − 1
2 |2}, and T = 1. One can check that, for x̄ = (0, 0)T, there exist no admissible

trajectories starting at x̄ and staying in K on [0, T ]. Hence ϑ̂(0, (x̄, z)) = +∞ for all z ∈ R. On the other hand,
let (yn)n≥1 be the sequence of trajectories defined for θ ∈ (0, T ) by

yn(θ) =

⎧⎨⎩ ( k
n , 0)T + (θ − k

n )(1, 1)T if θ ∈ [ k
n ,

k+1/2
n [,

(k+1/2
n , 1/2

n )T + (θ − k+1/2
n )(1,−1)T if θ ∈ [k+1/2

n , k+1
n [.

(3.4)

Then yn converges uniformly on [0, 1] toward the limit y(t) = (t, 0)T, and wg(0, x, z) will have a finite negative
value whenever ϕ((T, 0)T) < z.

3.2. A particular case: backward reachable sets

Consider the problem of backward reachable sets from a closed target C of R
d. It consists in characterizing,

for every t ∈ [0, T ], the set of all initial positions from which it is possible to find an admissible trajectory that
reaches the target at time T while lying in the set K on [t, T ]:

R(t) :=
{
x ∈ R

d : ∃y ∈ S[t,T ](x) such that y(T ) ∈ C, and y(s) ∈ K for s ∈ [t, T ]
}
.

In that case we can consider � ≡ 0 and a Lipschitz continuous function φ : R
d → R satisfying:

∀x ∈ R
d, x ∈ C ⇔ φ(x) ≤ 0.

As in [15], we consider the control problem:

vg(t, x) = inf
y∈S[t,T ](x)

φ(y(T ))
∨

max
θ∈(t,T )

g(y(θ)).

Similar value functions have been also considered by Margellos and Lygeros in [34]. Therefore, under the same
assumption (A1) and with a closed set K, the backward reachable set is equivalent to:

R(t) ≡ {
x ∈ R

d | vg(t, x) ≤ 0
}
,

in other terms, the region where the function vg(t, ·) is non-positive is precisely the backward reachable set at
time t, see [15]. In view of this result, Theorem 3.1 can be seen as a generalization to a more general setting
where the function ϕ is any Lipschitz continuous function. Actually, in the general case, the epigraph of the
function ϕ should be considered as the target set and the epigraph of ϑ̂(t, ·) represents the backward reachable
set under the dynamics f̂ . This claim can be proved by using viability tools, see for instance [2, 20]. Moreover,
taking this claim into account, one can compute the value function by using viability algorithm [5,38]. Here, we
use only viscosity arguments and give a description of the epigraph by means of a simple continuous solution
to a HJ equation. This opens the way to use a very large panel of numerical schemes (Semi-Lagrangian, ENO,
WENO, Discontinuous Galerkin, . . . ).

3.3. Properties of the auxiliary value function wg

The main feature of the auxiliary control problem (3.2) lies in the fact that this new problem is not under state
constraints any more. Moreover, function wg enjoys more regularity properties and can be characterized by a
Hamilton-Jacobi equation without making any controllability assumptions. Let us denote by H the Hamiltonian
defined on [0, T ]× R

d × R × R
d × R by:

H(t, x, z, p, q) := max
a∈A

(−f(t, x, a) · p+ �(t, x, a) · q) . (3.5)
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Proposition 3.3. Assume that (A1)–(A4) hold and let g be a Lipschitz continuous function satisfying (3.1).
Then wg is a locally Lipschitz continuous function on [0, T ]×R

d×R. Furthermore, for any t ∈ [0, T ], and h ≥ 0
such that t+ h ≤ T ,

wg(t, x, z) := min
ŷ=(y,ζ)∈Ŝ[t,t+h](x,z)

{
wg

(
t+ h, y(t+ h), ζ(t+ h)

) ∨
max

θ∈(t,t+h)
g(y(θ))

}
. (3.6)

Proof. The proof of the DPP (3.6) is classical and can be obtained by the same arguments as in [10,11]. Consider
x̂ = (x, z), x̂′ = (x′, z′) ∈ R

d×R, t ∈ [0, T ], and w0(x̂) := wg(0, x̂) ≡ max(ϕ(x)−z, g(x)). By using the definition
of wg and the elementary inequalities:

max(A,B) − max(C,D) ≤ max(A− C,B −D), and inf Aα − inf Bα ≤ sup(Aα −Bα), (3.7)

we get:

|wg(t, x̂) − wg(t, x̂′)| ≤ sup
α∈A

max
(∣∣∣w0(ŷα

t,x̂(T )) − w0(ŷα
t,x̂′(T ))

∣∣∣, max
θ∈(t,T )

∣∣∣g(yα
t,x(θ)) − g(yα

t,x′(θ))
∣∣∣) ,

≤ sup
α∈A

(
L0

∣∣ŷα
t,x̂(T ) − ŷα

t,x̂′(T )
∣∣, Lg max

θ∈(t,T )

∣∣yα
t,x(θ) − yα

t,x′(θ)
∣∣)

where L0 and Lg denotes respectively the Lipschitz constant of w0 and g. By assumption (A1), for θ ∈ (t, T ),∣∣ŷα
t,x̂(θ) − ŷα

t,x̂′(θ)
∣∣ ≤ eL̂(θ−t)|x̂ − x̂′| ≤ eL̂T |x̂ − x̂′| (where L̂ is the Lipschitz constant of f̂). Then we conclude

that:

|wg(t, x̂) − wg(t, x̂′)| ≤ max(L0, Lg)eL̂T |x̂− x̂′|. (3.8)

On the other hand, let x̂ = (x, z) be in R
d × R, and let t ≥ 0, h ≥ 0. Using that wg(t, x̂) ≥ g(x), we deduce

from the dynamic programming principle for wg that

|wg(t+ h, x̂) − wg(t, x̂)| =
∣∣∣∣inf

α
max

(
wg(t, ŷα

t,x̂(t+ h)), max
θ∈[t,t+h]

g(yα
t,x(θ))

)
− max

(
wg(t, x̂), g(x)

)∣∣∣∣
≤ sup

α
max

(∣∣wg(t, ŷα
t,x̂(t+ h)) − wg(t, x̂))

∣∣, max
θ∈(t,t+h)

∣∣g(yα
t,x(θ)) − g(x)

∣∣)
≤ max

(
max(L0, Lg)eL̂T |ŷα

t,x̂(t+ h) − x̂|, Lg max
θ∈(t,t+h)

|yα
t,x(θ) − x|

)

where we have used (3.8).
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Furthermore, denoting Cf := max
(s,a)∈(0,T )×A

|f(s, 0, a)| < ∞, we have |f(s, x, a)| ≤ Cf + L|x|. Hence by a

Gronwall estimate, we have |yα
t,x(θ)− x| ≤ (Cf +L|x|)eLhh ≤ (Cf +L|x|)eLTh for θ ∈ (t, t+ h). We obtain in

the same way the estimate: |ŷα
t,x̂(θ) − x̂| ≤ (Ĉf + L̂|x̂|)eL̂Th for every θ ∈ (t, t+ h).

Therefore, we conclude that |wg(t′, x̂) − wg(t, x̂)| ≤ C(1 + |x̂|)|t′ − t| for some constant C > 0. Combining
all the inequalities above, we get:

|wg(t′, x̂′) − wg(t, x̂)| ≤ C(1 + |x̂|) (|t′ − t| + |x̂′ − x̂|),

for some constant C ≥ 0. In particular the following linear growth holds: |wg(t, x̂)| ≤ C(1 + |x̂|). �

Moreover, the following proposition holds.

Proposition 3.4. Assume that (A1)–(A4) are satisfied. Then the function u = wg is the unique continuous
viscosity solution of the following HJB equation

min
(
− ∂tu(t, x, z) + H(t, x, z,∇xu, ∂zu), u(t, x, z) − g(x)

)
= 0, ∀t ∈ [0, T ), x ∈ R

d, z ∈ R, (3.9a)

u(T, x, z) = (ϕ(x) − z) ∨ g(x), x ∈ R
d, z ∈ R. (3.9b)

Proof. The HJB equation can be derived from the DPP satisfied by wg . For sake of completeness, we give here
the main lines of the proof. We first show that wg is a solution of (3.9). The fact that wg satisfies the initial
condition comes directly from the definition of wg.

Let us check the super-solution property of wg . From the DPP, we get that for any τ ≥ 0

wg(t, (x, z)) ≥ min
ŷ=(y,ζ)∈Ŝ[t,t+h](x,z)

wg(t+ h, y(t+ h), ζ(t + h)).

Hence, classical arguments in viscosity theory yield to:

−∂tw
g + H(t, x, z,∇xw

g , ∂zw
g) ≥ 0

in the viscosity sense. Moreover, by definition of wg , for every (t, x, z) ∈ [0, T ]× R
d × R, we have

wg(t, x, z) ≥ min
ŷ=(y,ζ)∈Ŝ[t,T ](x,z)

max
θ∈[t,T ]

g(y(θ)) ≥ g(x).

Combining these two inequalities, we get

min(∂tw
g + H(t, x, z,∇xw

g, ∂zw
g), wg − g) ≥ 0

in the viscosity sense, i.e., wg is a super-solution of (3.2).
It remains to prove that wg is a sub-solution. Let (x, z) ∈ R

d × R and t ∈ [0, T ]. If wg(t, x, z) ≤ g(x), then it
is clear that wg satisfies:

min(−∂tw
g + H(t, x, z,∇xw

g , ∂zw
g), wg(t, x, z) − g(x)) ≤ 0.

Now, assume that wg(t, x, z) > g(x). By continuity of g and wg , there exists some τ > 0 such that for every
ŷ = (y, ζ) ∈ Ŝ[t,t+h](x, z), we have: wg(θ, y(θ), ζ(θ)) > g(y(θ)) for all θ ∈ [t, t + h] (since y(θ) will stay in a
neighborhood of x). Hence, by using the DPP, we get that

wg(t, x, z) = min
ŷ=(y,ζ)∈Ŝ[t,T ](x,z)

wg(t+ h, y(t+ h), ζ(t+ h)), for any 0 ≤ h ≤ T − t.
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Therefore, with classical arguments [6] one can obtain that ∂tw
g(t, x, z) + H(t, x, z,∇xw

g, ∂zw
g) ≤ 0 in the

viscosity sense. Therefore, wg is a viscosity sub-solution of (3.2).
The fact that wg is the unique continuous viscosity solution of (3.2) follows from the general comparison

principle in Appendix A, and the fact that there exists C0 > 0 such that:

|H(t, x, z, p, q) −H(s, x′, z′, p, q)| ≤ C0(|p| + |q| + 1) (|t− s| + |x− x′| + |z − z′|), (3.10a)
|H(t, x, z, p, q) −H(t, x, z, p′, q′)| ≤ C0(|x| + 1)(|p− p′| + |q − q′|), (3.10b)

for every (x, z), (x′, z′) ∈ R
d × R and for every (p, q), (p′, q′) ∈ R

d × R. �

Remark 3.5 (link with optimal stopping time). The auxiliary value function wg can be also interpreted as the
value of an optimal stopping time problem, for t ≤ T :

u(t, x, z) := sup
τ∈[t,T ]

inf
(y,ζ)∈Ŝ[t,T ](x,z)

g(y(τ))1{τ<T} +
(
ϕ(y(τ)) − ζ(τ)

) ∨ g(y(τ)) 1{τ=T} (3.11)

(see for instance [6], Chap. III, Sect. 4.2). Indeed, the value function u is continuous, and viscosity solution of
the HJ equation (3.9). By the uniqueness of continuous viscosity solution of (3.9), we get that u = wg. This
interpretation of wg as an optimal value of a stopping-time problem can be also understood by remarking that:

max
τ∈[t,T ]

g(y(τ))
∨

(ϕ(y(τ)) − η(τ)) = sup
τ∈[t,T ]

(
g(y(τ))1{τ<T} +

(
ϕ(y(τ)) − ζ(τ)

) ∨ g(y(τ)) 1{τ=T}

)
.

Finally, let us stress that this equivalence between the penalized and the optimal-stopping problems does not
mean that the original state-constrained problem itself has any interpretation as an optimal-stopping time. The
only link is that when, for (t, x, z) ∈ (0, T )× R

d × R, the optimal-stoping time value u(t, x, z) is negative, then
(t, x, z) belongs to the epigraph of ϑ.

Remark 3.6. Notice that when K is a bounded set, then it is possible to modify f , � and g outside K in order to
get a bounded auxiliary value function. Indeed, if K ⊂ B(0, R) then by setting h(x) := d(x,B(0, R)), it is possible
to consider fR(t, x, α) := f(t, x, α)(1 − h(x))+, �R(t, x, α) := �(t, x, α)(1 − h(x))+ and gR(x) = max(g(x), R)
(the functions fR, �R and gR coincide respectively with f , � and g on K). Moreover, fR, �R and gR are still
Lipschitz continuous in (t, x), and compactly supported in B(0, R + 1). Therefore, the function wgR defined
using (fR, �R, gR) satisfies wgR(t, x, z) ≤ 0 ⇔ wg(t, x, z) ≤ 0, and it can be used for the characterization of
ϑ(t, x).

Let us point out that the value function wg depends on the choice of g. However, the set

{(x, z), wg(t, x, z) ≤ 0}
is independent of the choice of g.

Lemma 3.7. If g̃ and g are Lipschitz continuous function satisfying (3.1), then for all t ≤ T ,

{(x, z), wg(t, x, z) ≤ 0} = {(x, z), wg̃(t, x, z) ≤ 0}.
Remark 3.8 (Extension to terminal state constraints). Consider the case when the state variable is constrained
to satisfy a terminal constraint y(T ) ∈ C, in addition to (2.2), where C is a closed subset of R

d (of course C ∩K
has to be considered nonempty, otherwise the problem becomes trivial). Then the control problem is defined
by:

ϑ(t, x) := inf
{∫ T

t

�(s, yα
t,x(s), α(s)) ds+ϕ(yα

t,x(T ))
∣∣∣∣ α ∈ A, yα

t,x(T ) ∈ C and yα
t,x(s) ∈ K, ∀s ∈ [t, T ]

}
. (3.12)
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In this case, one should consider a Lipschitz continuous function ψ : R
d → R such that ψ(x) ≤ 0 ⇐⇒ x ∈ C

(since C is closed, such a Lipschitz function ψ exists). Hence the auxiliary control problem can be considered as:

wg(t, x, z) := inf
ŷ=(y,ζ)∈Ŝ[t,T ](x,z)

(
ϕ(y(T )) − ζ(T )

) ∨
max

θ∈(t,T )
g(y(θ))

∨
ψ(y(T )). (3.13)

Here again, the description of the value function ϑ is given by:

Epi(ϑ(t, ·)) = {(x, z) ∈ R
d × R | wg(t, x, z) ≤ 0},

and wg satisfies the same HJB equation as in Proposition 3.4 excepted the fact that the final condition at time
t = T is now: wg(T, x, z) = (ϕ(x) − z) ∨ g(x) ∨ ψ(x).

Before concluding this section, we would like to stress on the fact that considering the auxiliary function
wg allows to bypass all the regularity issues which arise when the control problem is in presence of state
constraints. This constructive way to describe the value function ϑ involves only the classical framework of
Lipschitz continuous viscosity solution, even though ϑ is only l.s.c. This approach opens the way for computing
the epigraph of ϑ by a large panel of schemes for continuous viscosity solutions. One can criticize the fact that
the definition of wg involves one more state component, however it is important to keep in mind that only the
level set {wg(t, x, z) = 0} is needed. Since wg is Lipschitz continuous, one can use a local numerical scheme (as
in [14,37]) to track this 0−level set in R

d+1 and reduce the numerical complexity to almost the same numerical
complexity of solving an HJ equation in a d-dimensional space.

4. Infinite horizon problem with state constraints

Here we consider the case of an infinite horizon optimal control problem with state constraints (see [6] for
standard results) and assume throughout this section that f , � satisfies (A1)–(A2) and (A4), and that these
functions do not depend on the time variable:

f : R
d ×A → R

d, � : R
d ×A → R.

Let A be the set of measurable controls α : (0,∞) → A. For any α ∈ A, consider the system obeying:

ẏ(s) = f(y(s), α(s)) a.e. s ∈ (0,∞), (4.1a)
y(0) = x, (4.1b)

and let y = yα
x denotes its solution. Let also K be a nonempty closed set of R

d. Set L is assumed to be a
majorant of the Lipschitz constants for f and � with respect to the x variable, as stated in (A1)–(A2), and set
λ > L. The infinite horizon control problem is:

ϑ̃(x) := min
α∈A

{∫ ∞

0

e−λs�(yα
x (s), α(s))ds

∣∣∣∣ yα
x (θ) ∈ K ∀θ ∈ (0,∞)

}
. (4.2)

(the existence of a minimum when ṽ < ∞ can be obtained by using the compact injection of S[0,∞)(x) into
C([0,∞[) for the W 1,1 weighted norm ‖y‖W 1,1 =

∫ ∞
0

(|y(s)| + |ẏ(s)|)e−λsds, see for instance [4]).
We again focus on the characterization of the epigraph of ϑ̃:

Epi(ϑ̃) :=
{

(x, z) ∈ R
d × R, ϑ̃(x) ≤ z

}
.

Let g : R
d → R be a Lipschitz continuous function satisfying (3.1). We introduce an auxiliary control problem

with value function w̃g defined for x ∈ R
d, z ∈ R, and λ > L, by:

w̃g(x, z) := min
α∈A

( ∫ ∞

0

e−λs�(yα
x (s), α(s)) ds − z

) ∨
sup

θ∈(0,∞)

(
e−λθg(yα

x (θ))
)
. (4.3)
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Theorem 4.1. Assume that (A1)–(A2) and (A4) hold, K is closed and non-empty, and λ > L.

(i) For any (x, z) ∈ R
d × R, the following holds:

ϑ̃(x) − z ≤ 0 ⇐⇒ w̃g(x, z) ≤ 0.

Moreover, the function ϑ̃ is characterized by w̃g through the following relation

ϑ̃(x) = min
{
z ∈ R, w̃g(x, z) ≤ 0

}
;

(ii) w̃g is Lipschitz continuous on R
d × R;

(iii) the function u = w̃g is the unique Lipschitz continuous viscosity solution of

min
(
λu+ max

a∈A
( − f(x, a) · ∇xu− (λz − �(x, a))∂zu

)
, u(x, z) − g(x)

)
= 0, x ∈ R

d, z ∈ R. (4.4)

The derivation of the HJ equation for w̃g is based on the following DPP principle. We define ζα
x,z(t) :=

eλtz − ∫ t

0 eλ(t−s)�(yα
x (s), α(s)) ds. Equivalently, ζ(t) = ζα

x,z(t) is the absolutely continuous solution of

ζ̇(s) = λζ(s) − �(yα
x (s), α(s)) a.e. s > 0, (4.5a)

ζ(0) = z. (4.5b)

Lemma 4.2 (Dynamic programming principle). For all h ≥ 0 and (x, z) ∈ R
d × R, we have

w̃g(x, z) = min
{(

e−λhw̃g(yα
x (h), ζα

(x,z)(h))
) ∨

max
θ∈(0,h)

(
e−λθg(yα

x (θ))
)
,

α : (0, h) → A measurable, (yα
x , ζ

α
(x,z)) solution of (4.5)

}
. (4.6)

Proof. The definition of w̃g involves the maximum between two terms, and the DPP presented here seems to
be new. Even though the proof is not difficult we prefer to present it for sake of completeness.

For any measurable control α : (0,∞) → A, we shall denote α1 the restriction of α on (0, h) and α2 the
measurable control of A such that α2(t) = α(t + h) a.e. t ≥ 0. Using yα

x (s + h) = yα2

y
α1
x (h)

(s), we obtain on the
first hand: ∫ ∞

0

e−λs�(yα
x (s), α(s)) ds − z =

∫ ∞

h

e−λs�(yα
x (s), α(s)) ds +

∫ h

0

e−λs�(yα
x (s), α(s)) ds − z

= e−λh

( ∫ ∞

0

e−λs�(yα
x (s+ h), α(s+ h)) ds− ζα1

x,z(h)
)

= e−λh

( ∫ ∞

0

e−λs�(yα2
y

α1
x

(s), α2(s)) ds − ζα1
x,z(h)

)
(4.7)

and on the other hand:

sup
θ∈(0,∞)

e−λθg(yα
x (θ)) = sup

θ∈(0,∞)

e−λ(θ+h)g(yα
x (θ + h))

∨
max

θ∈(0,h)
e−λθg(yα1

x (θ))

=
(

e−λh sup
θ∈(0,∞)

e−λθg(yα2

y
α1
x (h)

(θ))
) ∨

max
θ∈(0,h)

e−λθg(yα1
x (θ)). (4.8)
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Combining (4.7) and (4.8), taking measurable controls α1 : (0, h) → A and α2 ∈ A, we obtain

w̃g(x, z) = inf
α1

inf
α2

(
e−λh

∫ ∞

0

e−λs�(yα2

y
α1
x

(s), α2(s)) ds− ζα1
x,z(h)

) ∨(
e−λh sup

θ∈(0,∞)

e−λθg(yα2

y
α1
x (h)

(θ))
)

∨
max

θ∈(0,h)
e−λθg(yα1

x (θ))

= inf
α1

(
e−λhw̃g(yα1

x (h), ζα1
x,z(h))

) ∨
max

θ∈(0,h)
e−λθg(yα1

x (θ))

which is the desired result. �

Remark 4.3 (viability and link with optimal stopping time). In the particular case when � ≡ 0, the value
function (4.2) characterizes the viability kernel of the dynamics f in the set K:

V iabfK :=
{
x ∈ R

d, ∃y ∈ S[0,∞[(x), y(t) ∈ K ∀t ∈ (0,∞)
}
.

In this case, and as in Section 3.2, the penalized problem can be defined in the following form:

ũ(x) := min
α∈A

sup
θ∈(0,∞)

e−λθg(yα
x (θ)), (4.9)

without adding a new state component. One can show that ũ is the unique viscosity solution of

min
(
λũ+ max

a∈A
(−f(x, a) · ∇xũ), ũ(x) − g(x)

)
= 0 x ∈ R

d, (4.10)

and the viability kernel satisfies V iabfK = {x, ũ(x) ≤ 0}.
In this particular case, the problem (4.9) can be also interpreted as a stopping-time problem [6], Chap. III,

Section 4.2, see also Remark 3.5.

5. Two-player games with state constraints

The approach presented in the previous sections can be extended to more general control problems lacking
controllability assumptions. We consider here the case of two-player games [6, 7, 21, 25, 41, 42].

In addition to the player taking control values in A, we consider B a non empty compact set of R
m (m ≥ 1),

and the set controls for the second player:

B :=
{
β : (0, T ) → R

m measurable, β(t) ∈ B a.e.
}
.

We also consider a new dynamics f , distributed cost �, and terminal cost ϕ such that:

(A′
1)

⎧⎨⎩ (i) (t, x, a, b) ∈ [0, T ]× R
d ×A× B → f(t, x, a, b) ∈ R

d is continuous
(ii) ∃L ≥ 0, ∀x, y ∈ R

d, ∀(a, b) ∈ A× B, ∀t, s ∈ [0, T ],
|f(t, x, a, b) − f(s, y, a, b)| ≤ L(|x− y| + |t− s|),

(A′
2)

⎧⎨⎩ (i) (t, x, a, b) ∈ [0, T ]× R
d ×A× B → �(t, x, a, b) ∈ R

d is continuous
(ii) ∃L ≥ 0, ∀x, y ∈ R

d, ∀(a, b) ∈ A× B, ∀t, s ∈ [0, T ],
|�(t, x, a, b) − �(s, y, a, b)| ≤ L(|x− y| + |t− s|),

(A′
3) ϕ : R

d → R is Lipschitz continuous.

Again, we consider the “augmented” dynamics f̂ : [0, T ]× R
d+1 ×A× B → R

d+1 defined as follows:

f̂(t, (x, z), a, b) :=
(
f(t, x, a, b)
−�(t, x, a, b)

)
, ∀(x, z) ∈ R

d × R, a ∈ A, b ∈ B, t ∈ (0, T ).
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The following convexity assumption of f̂ will be considered:

(A′
4) ∀t, x, β, f̂(t, x,A, β) is a convex set.

Notice that this includes the case when f(t, x, a, b) = f1(t, x, b) · a+ f2(t, x, b) and A is a convex set.
For every x ∈ R

d and (α, β) ∈ At × B we define the trajectory y = yα,β
t,x as the solution of

ẏ(s) = f(s, y(s), α(s), β(s)) for a.e. s ∈ [t, T ], y(t) = x, (5.1)

in the Carathéodory sense.
Following the formulation of Elliott and Kalton [25], we define the set of non-anticipative strategies a ≡ a[·]

as follows:

Γt :=
{
a : B → A, ∀(β, β̃) ∈ B, and ∀s ∈ [t, T ],

(
β(θ) = β̃(θ). a.e. θ ∈ [t, s]

)
⇒

(
a[β](θ) = a[β̃](θ), a.e. on [t, s]

)}
.

The value function for the first player is given by:

ϑ(t, x) := inf
a∈Γt

max
β∈B

{∫ T

t

�(s, ya[β],β
t,x (s), α(s), β(s)) ds + ϕ(ya[β],β

t,x (T ))
∣∣∣∣ yα

t,x(s) ∈ K, ∀s ∈ [t, T ]
}
. (5.2)

As in Section 3, we add a new state variable z ∈ R, and we define the following auxiliary control problem:

wg(t, x, z) := inf
a∈Γt

max
β∈B

(
ϕ

(
y

a[β],β
t,x (T )

)
− ζ

a[β],β
t,(x,z)(T )

) ∨
max

θ∈[t,T ]
g

(
y

a[β],β
t,x (θ)

)
, (5.3)

where f̂ = (f,−�)T and ŷ = ŷα,β
t,(x,z) ≡ (yα,β

t,x , ζ
α,β
t,(x,z))

T is an absolutely continuous solution of

˙̂y(s) = f̂(s, ŷ(s), α(s), β(s)) a.e. s ∈ (t, T ), (5.4a)
ŷ(t) = (x, z)T. (5.4b)

In a similar way to the case of a one-player game, one can check easily that we have:

Lemma 5.1. Let (A′
1)−(Ā′

4) hold.

(i) ϑ̄ is a lower semi-continuous function;
(ii) the infimum in (5.3) is reached. In particular,

wg(t, x, z) ≤ 0 ⇐⇒ ∃a[·] ∈ Γt, ∀β ∈ B,

∫ T

t

�
(
s, y

a[β],β
t,x (s), α(s), β(s)

)
ds+ ϕ

(
y

a[β],β
t,x (T )

)
≤ z,

y
a[β],β
t,x (θ) ∈ K, ∀θ ∈ [t, T ].

Therefore the value wg(t, x, z) is reached by some non-anticipative strategy, as soon as ϕ and g are continuous.
By using arguments similar to those of the previous sections, we get:

Theorem 5.2. Assume (A′
1)−(A′

4), and g Lipschitz continuous.

(i) ∀t ∈ [0, T ], ∀(x, z) ∈ R
d × R,

ϑ(t, x) ≤ z ⇔ wg(t, x, z) ≤ 0;
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(ii) the function wg is locally Lipschitz continuous on [0, T ] × R
d × R, more precisely there exists C ≥ 0 such

that
|wg(t′, x̂′) − wg(t, x̂)| ≤ C(1 + |x̂|) (|t′ − t| + |x̂′ − x̂|);

In particular, wg has a linear growth : |wg(t, x̂)| ≤ C(1 + |x̂|) for some constant C ≥ 0.
(iii) Furthermore, u = wg is the unique continuous viscosity solution of the following HJ equation:

min(−∂tu+ H(t, (x, z),∇u), u− g(x)) = 0, t ∈ (0, T ), x ∈ R
d, z ∈ R, (5.5a)

u(T, x, z) = max(ϕ(x) − z, g(x)), x ∈ R
d. (5.5b)

where H(t, (x, z), (p, q)) := max
α∈A

min
β∈B

−f̂(t, x, α, β) · (p, q) ≡ max
α∈A

min
β∈B

−f(t, x, α, β) · p+ �(t, x, α, β)q.

Corollary 5.3. Under (A′
1)−(A′

4), the function ϑ is characterized by means of the function wg through the
following relation

ϑ(t, x) = inf
{
z ∈ R, wg(t, x, z) ≤ 0

}
. (5.6)

This gives again a characterization of ϑ for two-player games with state constraints, by using a continuous
viscosity approach and without any controllability assumption.

6. Numerical example

We consider the classical Zermelo type problem. A boat with coordinates y(t) = (y1(t), y2(t)) navigates in a
canal R × [−2, 2], starting from y(0) = x = (x1, x2), and wants to reach an island B = B̄(0, r0), r0 > 0, with
minimal fuel consumption. The dynamics is given by

ẏ1 = v cos(u) + c− ay2
2 , (6.1a)

ẏ2 = v sin(u), (6.1b)

where u ∈ [0, 2π] is the first control (angle), v ∈ [0, Vmax] is a second control (the speed of the boat), and c−ay2
2

is the current drift (along the x1-axis). We shall choose the parameters Vmax = 1 and c = 2, a = 0.5. The
boundary y2 = ±√

c
a ≡ ±2 (where the drift term c− ay2

1 vanishes) corresponds to the coast. The evolution of
the fuel mass m(t) is given by

ṁ = −b v

Vmax
, (6.2)

where b = 1 and v
Vmax

is a speed ratio. Therefore, the fuel consumption
∫ T

t |ṁ(s)| ds is proportional to∫ T

t

v(s) ds.

Because of the drift term (which can be greater than Vmax), the system is not controllable. Consider the set
of constraints given by K := {x ∈ R

2, g(x) ≤ 0} where

g(x) := max
(
ra − ‖x− a‖∞

)
, rb − max(|x1 − b1|, 15 |x2 − b2|

)
(6.3)

and where ra = 0.4, a = (−0.5, 0.5) and rb = 0.2, b = (−1,−1.5). The target C ≡ B(c, r0) with r0 = 0.25 and
c = (1.5, 0) is represented by a function ψ defined by

ψ(x) := ‖x− c‖ − r0.
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Figure 1. Left: values of v(t, .) at time t = 0. Right: iso-values in logarithmic scale. Here the
values such that ϑ(0, x1, x2) = 10 correspond to a non-reachable zone.

The optimal control problem is to minimize, whenever this is possible, the following

ϑ(t, x) = inf

{∫ T

t

v(s) ds, α = (u, v) ∈ A, yα
x (T ) ∈ C,

(
yα

x (θ) ∈ K, ∀θ ∈ [t, T ]
)}

where A is the set of measurable controls α = (u, v) : (0, T ) → [0, 2π] × [0, 1]. Therefore we are in the situation
of Section 3.8. We consider �(t, x, (u, v)) := v, a terminal cost ϕ(x) ≡ 0, and the PDE becomes

min
(
− wt + max(0, ‖∇xw‖ + wz) − (c− ay2

2)wy1 , w(t, x, z) − g(x)
)

= 0,

t ∈ (0, T ), (x, z) ∈ R
2 × R, (6.4)

w(T, x, z) = max(−z, ψ(x), g(x)), (x, z) ∈ R
2 × R. (6.5)

This last HJ equation is then solved by a finite difference method (ENO scheme of second order in space, see
for instance [15]). Results are shown in Figure 1, at time t = 0 with T = 10 (computations done with 703 grid
point). The value function is recovered finally using ϑ(t, x) = min

{
z ∈ R, w(t, x, z) ≤ 0

}
.

We have considered a discretisation of 703 spatial mesh points of the domain [−3, 2]× [−2, 2]× [Zmin, Zmax]
where Zmin = −0.1 and Zmax = 10. The time interval is [0, T ] ≡ [0, 10]. This example was solved by using the
C++ HJB-solver “Binope-HJ” [17].

Acknowledgements. This work was partially supported by the EU under the 7th Framework Programme Marie Curie
Initial Training Network “FP7-PEOPLE-2010-ITN”, SADCO project, GA number 264735-SADCO.

Appendix A. Comparison principle for HJ equations with obstacle terms

The aim of this section is to prove a comparison principle for the following HJ equation in presence of an
obstacle term:

min(−ut +H(t, x,∇u), u− g(t, x)) = 0 on (0, T ) × R
d, (A.1)

u(T, x) = u0(x), x ∈ R
d (A.2)
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where T > 0 and g ∈ C((0, T ) × R
d), and H : (0, T ) × R

d × R
d → R is continuous and assumed to satisfy:

(H1) there exists C ≥ 0 such that, for all (t, x) in (0, T ) × R
d, p, q ∈ R

d,

|H(t, x, p) −H(t, x, q)| ≤ C(|x| + 1)|p− q|; (A.3)

(H2) for any R > 0, there exists a function wR : [0,∞) → [0,∞), limr→0+ wR(r) = 0 and

|H(t, x, p) −H(t, y, p)| ≤ wR((1 + |p|)|x− y|) (A.4)

for every (t, p) ∈ (0, T )× R
d, x, y ∈ BR, where BR denotes the open ball centered at 0 and of radius R.

Theorem A.1. Let u, v be two functions of C([0, T ] × R
d), and let g, h be in C([0, T ] × R

d). We assume that
u (resp. v) is a sub-solution (resp. super-solution) of (A.1) in (0, T )× R

d:

min(−ut +H(t, x,∇u), u− g) ≤ 0 in (0, T )× R
d, (A.5)

min(−vt +H(t, x,∇v), v − h) ≥ 0 in (0, T )× R
d. (A.6)

We denote uT (x) := u(T, x) and vT (x) := v(T, x). Then for all t ∈ [0, T ],

sup
Rd

(u(t, .) − v(t, .)) ≤ max
(

sup
Rd

(uT − vT ), sup
(t,T )×Rd

(g − h)
)
. (A.7)

Proof. The result without the obstacle term can be found for instance in Ishii [30]. It suffices to prove the result
for T > 0 small enough, the result for any T > 0 can then be deduced by immediate recursion.

Assuming that C > 0, we take T = 1/(2C) and L = L(x0) := 2C(|x0| + 1), and we define the following cone

Ox0 :=
{
(t, x) ∈ (0, T )× R

d, |x− x0| < Lt
}
.

(The case when C = 0 is trivial).
We claim that for every t0 ∈ (0, T ):

u(t0, x0) − v(t0, x0) ≤ max
(

sup
x0+BL(T−t0)

(uT − vT ), sup
Ox0

(g − h)
)
, (A.8)

which concludes (A.7). Let us consider t0 ∈ (0, T ) and prove our claim.
First, remark that for any (t, x) ∈ Ox0 , the following holds: C(|x|+1) ≤ C(|x0|+1)+C|x−x0| ≤ L

2 +CLT ≤
L
2 + 1

2L = L, and thus

|H(t, x, p) −H(t, x, q)| ≤ L|p− q| (t, x) ∈ Ox0 . (A.9)

We also define for any (t̄, x̄) ∈ Ωx0 and τ ∈ (t̄, T ) the following cone:

Ot̄,x̄,τ :=
{
(t, x) ∈ (t̄, τ) × R

d, |x− x0| < L(t− t̄)
}
.

According to Crandall and Lions [23], and Ishii [30], the following Lemma holds.

Lemma A.2. If u, v belongs to C(Ot̄,x̄,t) with t ∈ (t̄, T ), and are respectively viscosity solutions of

−ut +H(t, x,∇u) ≤ 0 in Ot̄,x̄,t, (A.10)
−vt +H(t, x,∇v) ≥ 0 in Ot̄,x̄,t, (A.11)

then

u(t̄, x̄) − v(t̄, x̄) ≤ sup
x̄+BL(t−t̄)

(u(t, .) − v(t, .)).
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Consider the set:
Σ := {(t, x) ∈ Ox0 , u(t, x) ≤ g(x)},

and its complementary in Ox0 :
Ω := Ox0\Σ.

Since u is a sub-solution of (A.5), u is also a sub-solution of ut+H(t, x,∇u) = 0 on the open set Ω. Furthermore
v being a super-solution of (A.6) on Ox0 , it is also a super-solution of vt +H(t, x,∇v) = 0 on the open set Ω.

On the other hand, from (A.6), it follows that v(t, x) ≥ g(x) everywhere. Hence

∀(t, x) ∈ Σ, u(t, x) − v(t, x) ≤ g(t, x) − h(t, x) ≤ sup
Ox0

(g − h). (A.12)

Now, assume that

u(t0, x0) − v(t0, x0) > M := max
(

sup
x0+BL(T−t0)

(u0 − v0), sup
Ox0

(g − h)
)
, (A.13)

and define, for τ ∈ [0, T ] (with τ > t0), the following cone:

Ot0,x0,τ :=
{
(t, x) ∈ (t0, τ) × R

d, |x− x0| < L(t− t0)
}
.

Using the continuity of u− v in (t0, x0), there exists a neighborhood Υ of (t0, x0) in Ox0 satisfying:

u(t, x) − v(t, x) > M ≥ sup
Ox0

(g − h) ∀(x, t) ∈ Υ.

Taking into account (A.12), it follows that Υ is necessarily included in Ω. Hence there exists τ > t0 such that
the cone Ot0,x0,τ is also included in Ω. Set

t1 := sup
{
τ ∈ (t0, T ], Ot0,x0,τ

⋂
Γ = ∅}.

(Ot0,x0,t1 is the greatest cone Ot0,x0,τ such that Ot0,x0,τ ⊂ Ω.) Applying Lemma A.2 in the cone Ot0,x0,t1 , we
obtain:

u(t0, x0) − v(t0, x0) ≤ sup
x0+BL(t1−t0)

(u(t1, .) − v(t1, .)).

If t1 = T , then u(t0, x0) − v(t0, x0) ≤ supx0+BLT
(uT − vT ) ≤ M , which contradicts (A.13). Hence t1 < T . We

consider a point x1 of the ball x0 +BL(t1−t0) and that reaches the maximum of u(t1, ·)− v(t1, ·), and we obtain

M < u(t0, x0) − v(t0, x0) ≤ u(t1, x1) − v(t1, x1).

We re-iterate the previous argument to obtain the existence of a t2 in (t1, T ) corresponding to the greatest cone
of the form Ot1,x1,t2 and satisfying Ot1,x1,t2 ⊂ Ω, and then the existence of a point x2 in x1 + BL(t2−t1) ⊂
x0 +BL(t2−t0) such that

M < u(t1, x1) − v(t1, x1) ≤ u(t2, x2) − v(t2, x2),

and so on. Therefore we construct an increasing sequence of times (tk), and a sequence of points (xk) s.t. all
the sequence (tk, xk) belongs to the cone Ox0 . Because Ox0 is a compact set, we can extract a convergent
subsequence towards an element (t∗, x∗) of Ox0 . Moreover,

M < u(t∗, x∗) − v(t∗, x∗).

If t∗ = T , we obtain a contradiction. Hence t∗ < T . Now by continuity, we still must have u(t, x)− v(t, x) > M
in a neighborhood of (t∗, x∗), for instance in a tube C centered at (t∗, x∗) and defined by

C := ]t∗ − τ0, t
∗ + τ0[ × (x∗ +BLτ0),

for a τ0 > 0 sufficiently small. In particular, for any x ∈ C, (t, x) /∈ Γ . On the other hand, as soon as t∗− tk < τ0,
we have Otk,xk,tk+1 ⊂ Otk,xk,t∗ ⊂ C ⊂ R

d\Γ ≡ Ω. This contradicts the fact that tk+1 is the maximal time τ
such that Otk,xk,τ ⊂ Ω. This concludes the proof of (A.8). �
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[2] J.-P. Aubin, Viability solutions to structured Hamilton-Jacobi equations under constraints. SIAM J. Control Optim. 49 (2011)
1881–1915.

[3] J.-P. Aubin and A. Cellina, Differential inclusions, Comprehensive Studies in Mathematics. Springer, Berlin, Heidelberg,
New York, Tokyo 264 (1984).

[4] J.-P. Aubin and H. Frankowska, Set-valued analysis, Birkhäuser Boston Inc., Boston, MA. Systems and Control: Foundations
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