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REMARKS ON NON CONTROLLABILITY OF THE HEAT EQUATION
WITH MEMORY ∗, ∗∗

Sergio Guerrero1 and Oleg Yurievich Imanuvilov2

Abstract. In this paper we deal with the null controllability problem for the heat equation with a
memory term by means of boundary controls. For each positive final time T and when the control is
acting on the whole boundary, we prove that there exists a set of initial conditions such that the null
controllability property fails.
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1. Introduction

Let Ω be a bounded domain with smooth boundary and let T > 0. We consider the following control system
associated to the heat equation with memory:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

yt − Δy −
∫ t

0

Δy dτ = 0 in Q := (0, T )× Ω,

y = v on (0, T )× ∂Ω,

y(0, ·) = y0(·) in Ω.

(1.1)

Here, v ∈ L2((0, T ) × ∂Ω) is a control function which is acting on our system at the boundary. Furthermore,
y0 is the initial condition which is supposed to be in L2(Ω). Under these assumptions, it is classical to see (e.g.
by transposition method [6]) that there exists a unique solution y of system (1.1) which belongs to the space
L2(Q) and a constant K0 > 0 such that

‖y‖L2(Q) ≤ K0(‖y0‖L2(Ω) + ‖v‖L2((0,T )×∂Ω)). (1.2)

The null controllability property for system (1.1) reads as follows: given y0 ∈ L2(Ω), does there exist a control
v ∈ L2((0, T ) × ∂Ω) such that the corresponding solution of (1.1) satisfies y(T, ·) ≡ 0 in L2(Ω)? This property
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is very well-known to be true for the heat equation (see, for instance, [1, 2, 4, 7]). The purpose of this paper is
to prove that this is not the case of the heat equation with a memory term.

The problem (1.1) naturally appears in some models developed for the approximation of the Navier-Stokes
system (see, for instance, [8]).

In [3], for a one-dimensional heat equation with memory, the authors proved the lack of “controllability to
the rest” for some initial conditions when controlling through one endpoint. This notion of controllability means
that, with the help of a control, one can prove that y(T, ·) ≡ 0 and

∫ T

0
y(t, ·) dt ≡ 0.

As we said above, the main result of this paper states that the null controllability of system (1.1) does not
hold for all initial conditions. The precise formulation of this result is given in the following theorem:

Theorem 1.1. Let T > 0. Then, there exist initial conditions y0 ∈ L2(Ω) such that for any control function
v ∈ L2((0, T ) × ∂Ω) the associated solution y ∈ L2(Q) to (1.1) is not identically equal zero at time T .

In order to prove Theorem 1.1, we will suppose that Ω is a cube. Then, if Ω is a general bounded domain in
RN we consider a cube K ⊂ Ω. Once the proof is established for K, we would have that for any fixed positive T
there exists an initial condition ŷ0 ∈ L2(K) such that for any boundary control v ∈ L2((0, T )×∂K) the solution
y at moment T is not identically equal zero. We extend ŷ0 on Ω\K. Obviously for such an initial condition the
null controllability property at moment T fails.

Consider now the similar problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
yt − Δy +

∫ t

0

y dτ = 0 in Q,

y = v on (0, T )× ∂Ω,

y(0, ·) = y0(·) in Ω.

(1.3)

Theorem 1.2. Let T > 0. Then, there exist initial conditions y0 ∈ L2(Ω) such that for any control function
v ∈ L2((0, T ) × ∂Ω) the associated solution y ∈ L2(Q) to (1.3) is not identically equal to zero at time T .

The proof of this theorem is completely analogous to that of Theorem 1.1, so we omit it.

Remark 1.3. The same non null controllability results hold for interior controls v1ω, where ω is an open set
satisfying ω ⊂ Ω.

Remark 1.4. There have recently been several published papers which claim to prove the observability inequal-
ity for the heat equation with memory. In the process of the proof of Theorem 1.1 we establish in particular
that this observability inequality is not true.

Since the proof of Theorem 1.1 is rather technical, we have decided to first provide the proof for the one-
dimensional case. This is done in Section 1. Finally, in the second section we prove Theorem 1.1 in any dimension.

2. One dimensional case

In this section, we prove the following result:

Theorem 2.1. Let T > 0. Then, there exist initial conditions ȳ0 ∈ L2(0, 1) such that, for any control functions
v1, v2 ∈ L2(0, T ), the associated solution y ∈ L2(Q) to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

yt − yxx −
∫ t

0

yxx dτ = 0 (t, x) ∈ (0, T ) × (0, 1),

y(t, 0) = v1(t), y(t, 1) = v2(t) t ∈ (0, T ),

y(0, x) = ȳ0(x) x ∈ (0, 1)

(2.1)
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satisfies
y(T, ·) �≡ 0 in (0, 1). (2.2)

Proof. Let us introduce the adjoint system associated to our control problem (2.1):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−ϕt − ϕxx −

∫ T

t

ϕxx dτ = 0 (t, x) ∈ (0, T )× (0, 1),

ϕ(t, 0) = 0, ϕ(t, 1) = 0 t ∈ (0, T ),

ϕ(T, x) = ϕT (x) x ∈ (0, 1),

(2.3)

for ϕT ∈ L2(0, 1). It is very well-known by now (see, for instance, [7] or [5]) that the null controllability
of system (2.1) with L2-controls depending continuously on y0 is equivalent to the following observability
inequality: ∫ 1

0

|ϕ(0, x)|2 dx ≤ Cobs

∫ T

0

(|ϕx(t, 0)|2 + |ϕx(t, 1)|2) dt.

Our goal in this proof is to construct, for all sufficiently large M , a sequence of solutions {ϕM} of (2.3) such
that ‖ϕM |t=0‖L2(0,1) is estimated from below by C/M2 for some C independent of M and the quantity(

‖ϕM
x|x=0‖2

L2(0,T ) + ‖ϕM
x|x=1‖2

L2(0,T )

)1/2

is estimated from above by C/M3 for some (maybe different) C > 0 independent of M . Then, based on the
properties of this sequence, we will construct an initial condition ȳ0 ∈ L2(0, 1) such that system (2.1) is not null
controllable.

First, let
wj(x) := sin(jπx) x ∈ (0, 1), λj = (jπ)2, ∀j ∈ N∗ := N \ {0} (2.4)

be the eigenfunctions and eigenvalues of the Laplace operator with the Dirichlet boundary conditions in (0, 1):{−Δwj = λjwj in (0, 1),

wj(0) = wj(1) = 0.

Let us write
ϕT (x) =

∑
j≥1

βjwj(x) ∀x ∈ (0, 1)

for a sequence {βj}j≥1 ∈ �2 := {{yj} ∈ RN :
∑

j∈N∗ |yj |2 < +∞}.
The solution ϕ of (2.3) can be written as follows:

ϕ(t, x) =
∑
j≥1

αj(t)wj(x) (t, x) ∈ (0, T ) × (0, 1), (2.5)

where the function αj(t) satisfies{−α′′
j + λjα

′
j − λjαj = 0 in (0, T ),

αj(T ) = βj , −α′
j(T ) + λjαj(T ) = 0.

That is to say,
αj(t) = C1,jeμ+

j (T−t) + C2,jeμ−
j (T−t) t ∈ (0, T ),
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with

μ±
j = −λj

2
∓

√
λ2

j − 4λj

2
=

λj

2

(
−1 ∓

√
1 − 4/λj

)

and

C1,j = βj

μ−
j + λj

μ−
j − μ+

j

= βj
1 +

√
1 − 4/λj

2
√

1 − 4/λj

, C2,j = βj

μ+
j + λj

μ+
j − μ−

j

= βj
−1 +

√
1 − 4/λj

2
√

1 − 4/λj

· (2.6)

Observe that μ+
j gives faith of the parabolic character of this equation since it tends to −∞, while μ−

j represents
a completely different type of behavior (μ−

j → −1 when j → +∞).

With this notation, the integral ∫ 1

0

|ϕ(0, x)|2 dx

is given by ∫ 1

0

∣∣∣∣∣∑
j≥1

(
C1,jeμ+

j T + C2,jeμ−
j T

)
wj(x)

∣∣∣∣∣
2

dx =
1
2

∑
j≥1

(
C1,jeμ+

j T + C2,jeμ−
j T

)2

, (2.7)

thanks to the orthogonality of the eigenfunctions in L2(0, 1) and the fact that ‖wj‖2
L2(0,1) = 1/2.

On the other hand, the term ∫ T

0

e2(T−t)
(|ϕx(t, 0)|2 + |ϕx(t, 1)|2) dt

is given by

π2

∫ T

0

(
g
∑
j≥1

j
(
C1,je(1+μ+

j )(T−t) + C2,je(1+μ−
j )(T−t)

))2

dt

+ π2

∫ T

0

(∑
j≥1

(−1)jj
(
C1,je(1+μ+

j )(T−t) + C2,je(1+μ−
j )(T−t)

))2

dt.

(2.8)

Of course, it is equivalent to estimate (2.8) or ‖ϕx|x=0‖2
L2(0,T ) + ‖ϕx|x=1‖2

L2(0,T ) but we have chosen to esti-
mate (2.8) since the term e2(T−t) will somehow simplify the computations.

The idea of the proof is to find a particular choice of {βj} so that the ratio between (2.7) and (2.8) is large
enough. Let’s make this choice so that just a finite number of βj ’s will be different from zero. In fact, let M be
a large entire parameter; we take

βj = 0 for all j /∈ {12M + 2k : k ∈ N, 1 ≤ k ≤ 6}.
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Estimate from above of (2.8)
A direct computation shows that we can estimate (2.8) by A := A1 + A2, where

A1 := 4π2

∫ T

0

⎛⎜⎝ 6∑
j=12M+2k,

k=1

jC1,je(1+μ+
j )(T−t)

⎞⎟⎠
2

dt (2.9)

and

A2 := 4π2

∫ T

0

⎛⎜⎝ 6∑
j=12M+2k,

k=1

jC2,je(1+μ−
j )(T−t)

⎞⎟⎠
2

dt. (2.10)

We give an estimate of the first and of the second term separately:

• Estimate of A1. Taking into account the expression of the eigenvalues and using the notation

(k − 3/2)! = (k − 3/2)(k − 5/2) . . .1/2 ∀k ≥ 2 and (−1/2)! = 1,

we find

exp{(1 + μ+
j )(T − t)} = exp{−λj(T − t)} exp

⎧⎨⎩(T − t)

⎛⎝1 +
∑
k≥1

(k − 3/2)!
k!

(
4
λj

)k−1
⎞⎠⎫⎬⎭

:= exp{(2 − λj)(T − t)} exp{(T − t)Bj}, (2.11)

where Bj goes to zero (like j−2) as j goes to infinity.
We can rewrite A1 as follows:

A1 = 4π2

∫ T

0

e(4−288M2π2)(T−t)gM (t) dt, (2.12)

where gM (t) = fM (t)2, ∀t ∈ [0, T ] and fM is defined as follows:

fM (t) =
6∑

k=1

(12M + 2k)C1,12M+2k exp{(−(48kM + 4k2)π2 + B12M+2k)(T − t)}. (2.13)

Let us now impose the following seven conditions:

gM (T ) = g′M (T ) = g′′M (T ) = g′′′M (T ) = gIV
M (T ) = gV

M (T ) = gV I
M (T ) = 0. (2.14)

These conditions are fulfilled just by imposing four linear equations (which correspond to fM (T ) = f ′
M (T ) =

f ′′
M (T ) = f ′′′

M (T ) = 0): ⎧⎪⎪⎨⎪⎪⎩
6∑

k=1

(12M + 2k)C1,12M+2k((48kM + 4k2)π2 − B12M+2k)� = 0,

for every � = 0, 1, 2, 3.

(2.15)

Here we have four linear equations and six unknowns {C1,12M+2k}6
k=1. Hence the set of nontrivial solutions

of (2.15) is nonempty. Moreover, since (2.15) is a linear homogeneous system, we can choose a nontrivial
solution {C1,12+2k}6

k=1 which is bounded independently of M .
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Then, from (2.14) and using some integrations by parts, we have that∫ T

0

e(4−288M2π2)(T−t)gM (t)dt =
6∑

�=0

e(4−288M2π2)T

(4 − 288M2π2)�+1
g
(�)
M (0) −

∫ T

0

e(4−288M2π2)(T−t)

(4 − 288M2π2)7
g
(6)
M (t) dt.

Observe that the �th derivative of the function gM is estimated by M2+� for all � ∈ N. The conclusion is that
the term (2.12) is estimated by 1/M6.

• Estimate of A2. We develop in power series for j large enough:

C2,j =
βj

2

(
1 − (1 − 4/λj)−1/2

)
= −βj

2

∑
k≥1

(k − 1/2)!
k!

(
4
λj

)k

, (2.16)

and

e(1+μ−
j )(T−t) = exp

⎧⎨⎩
⎛⎝1 − λj

2
+

λj

2

⎛⎝1 −
∑
k≥1

(k − 3/2)!
2(k!)

(
4
λj

)k
⎞⎠⎞⎠ (T − t)

⎫⎬⎭ .

Observe that, since j is large enough we can suppose in particular that

T − t

(πj)2
< 1 ∀t ∈ [0, T ]

and so we obtain
e(1+μ−

j )(T−t) = 1 − T − t

λj
+ O(λ−2

j ). (2.17)

From the previous expressions (2.16) and (2.17) and the fact that λj = (πj)2, the jth term in the expression of
A2 (see (2.10)) is given by

−jβj

(
1

π2j2
+

3 − (T − t)
π4j4

+ O(λ−3
j )

)
. (2.18)

We impose that
6∑

k=1

β12M+2k

12M + 2k
= 0. (2.19)

Thanks to (2.6), this equation reads
6∑

k=1

C1,12M+2k

√
1 − 4/λ12M+2k

(12M + 2k)(1 +
√

1 − 4/λ12M+2k)
= 0,

where we recall that λj = (πj)2. Together with equations (2.15), this gives a linear homogeneous system of five
equations with six unknowns. Since we have supposed that {C1,12M+2k}6

k=1 are bounded independently of M ,
it is easy to see from the expression of C1,j (see (2.6)) that {β12M+2k}6

k=1 are also bounded independently of
M . Consequently, taking into account the definition of A2 (see (2.10)) and (2.18), we have

A2 = 2
∫ T

0

(
6∑

j=12M+2k,

k=1

jβj

(
1

π2j2
+

3 − (T − t)
π4j4

+ O(λ−3
j )

))2

dt.

Then, using (2.19), we get

A2 = 2
∫ T

0

(
6∑

j=12M+2k,

k=1

jβj

(
3 − (T − t)

π4j4
+ O(λ−3

j )
))2

dt,

which implies that A2 is estimated by 1/M6.
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Estimate from below of (2.7)
One can estimate from below the term (2.7) as follows:

I =
1
2

∑
j≥1

(
C1,jeμ+

j T + C2,jeμ−
j T

)2

=
1
2

6∑
k=1

(
C1,12M+2keμ+

12M+2kT + C2,12M+2keμ−
12M+2kT

)2

≥ 1
2

6∑
k=1

(
−3C2

1,12M+2ke2μ+
12M+2kT +

3C2
2,12M+2k

4
e2μ−

12M+2kT

)

=
1
2

6∑
k=1

⎛⎝−3C2
1,12M+2ke2μ+

12M+2kT +
3β2

12M+2k

4

(
μ+

12M+2k + λ12M+2k

μ+
12M+2k − μ−

12M+2k

)2

e2μ−
12M+2kT

⎞⎠ . (2.20)

Observe that, from (2.16) and the fact that μ−
j → −1 as j → +∞, we have that

inf
1≤k≤6

(
μ+

12M+2k + λ12M+2k

μ+
12M+2k − μ−

12M+2k

)2

≥ C

M4
,

for some C > 0 independent of M , while C2
1,12M+2ke2μ+

12M+2kT can be estimated by Ĉe−M2T . Consequently,

I ≥ C̃

M4
,

with C̃ > 0 independent of M . That is to say, we have

‖ϕM (0, ·)‖2
L2(0,1) ≥

C0

M4
, (2.21)

where C0 > 0 is independent of M .

Construction of the initial condition
Finally, we construct an initial condition ȳ0 ∈ L2(0, 1) such that the null controllability of (1.1) does not

hold. In fact, from (2.7) and (2.21) we deduce the existence of k0 ∈ {1, 2, 3, 4, 6} such that

1
2

(
C1,12M+2k0e

μ+
12M+2k0

T + C2,12M+2k0e
μ−

12M+2k0
T
)2

≥ C0

6M4
· (2.22)

Then, we define

ȳ0 =
∑
�≥1

1
�3/4

w12�+2k0 ∈ L2(0, 1)

(recall that the eigenfunction wj was defined in (2.4)). Let us prove that for any v1, v2 ∈ L2(0, T ), the solution
y of ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

yt − yxx −
∫ t

0

yxx dτ = 0 (t, x) ∈ Q,

y(t, 0) = v1(t), y(t, 1) = v2(t) t ∈ (0, T ),

y(0, x) = ȳ0(x) x ∈ (0, 1)

(2.23)
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satisfies y(T, ·) �≡ 0. Arguing by contradiction, let v1, v2 ∈ L2(0, T ) be such that y(T, x) = 0 for all x ∈ (0, 1).
Then, by duality with ϕM , we have∫ 1

0

ϕM (0, x) ȳ0(x) dx +
∫ T

0

v1(t)ϕM
x (t, 0) dx +

∫ T

0

(∫ t

0

v1(s) ds

)
ϕM

x (t, 0) dt

−
∫ T

0

v2(t)ϕM
x (t, 1) dx +

∫ T

0

(∫ t

0

v2(s) ds

)
ϕM

x (t, 1) dt = 0.

(2.24)

From the previous choice of ȳ0 and (2.22), we have that∣∣∣∣∫ 1

0

ϕM (0, x) ȳ0(x) dx

∣∣∣∣ ≥ C1

M11/4
·

Finally, since the term in (2.8) is estimated by C/M6, we have that∣∣∣∣∣
∫ T

0

v1(t)ϕM
x (t, 0) dx +

∫ T

0

(∫ t

0

v1(s) ds

)
ϕM

x (t, 0) dt

−
∫ T

0

v2(t)ϕM
x (t, 1) dx +

∫ T

0

(∫ t

0

v2(s) ds

)
ϕM

x (t, 1) dt

∣∣∣∣∣ ≤ C

M3
·

This contradicts identity (2.24) by taking M large enough.

This ends the proof of Theorem 2.1 in dimension 1. �

3. N-dimensional case

As explained in the introduction, it suffices to prove the desired result when Ω is a cube:

Ω := {(x1, . . . , xN ) ∈ RN : 0 < xk < 1, 1 ≤ k ≤ N}.
Let us introduce the adjoint system associated to our control problem (1.1):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−ϕt − Δϕ −
∫ T

t

Δϕdτ = 0 in (0, T )× Ω,

ϕ = 0 on (0, T ) × ∂Ω,

ϕ(T, ·) = ϕT (·) in Ω,

(3.1)

for ϕT ∈ L2(Ω).
Similarly to the 1-D case, let

wj(x) :=
N∏

k=1

sin(jkπxk) xk ∈ (0, 1), λj = π2
N∑

k=1

j2
k = π2|j|2, ∀j = (j1, . . . , jN ) ∈ NN

∗ (3.2)

be the eigenfunctions and eigenvalues of the Laplace operator with zero Dirichlet boundary conditions in Ω:{−Δwj = λjwj in Ω,

wj = 0 on ∂Ω.

Let us write
ϕT (x) =

∑
j∈NN∗

βjwj(x) ∀x ∈ Ω

for a sequence {βj}j∈NN∗ ∈ �2.
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The solution ϕ of (3.1) can be written as follows:

ϕ(t, x) =
∑

j∈NN∗

αj(t)wj(x) (t, x) ∈ (0, T )× Ω, (3.3)

where αj satisfies {−α′′
j + λjα

′
j − λjαj = 0 in (0, T ),

αj(T ) = βj , −α′
j(T ) + λjαj(T ) = 0.

That is to say,
αj(t) = C1,jeμ+

j (T−t) + C2,jeμ−
j (T−t) t ∈ (0, T ),

with

μ±
j = −λj

2
∓

√
λ2

j − 4λj

2
=

λj

2

(
−1 ∓

√
1 − 4/λj

)
(3.4)

and

C1,j = βj

μ−
j + λj

μ−
j − μ+

j

= βj
1 +

√
1 − 4/λj

2
√

1 − 4/λj

, C2,j = βj

μ+
j + λj

μ+
j − μ−

j

= βj
−1 +

√
1 − 4/λj

2
√

1 − 4/λj

·

Again, μ+
j goes to −∞ as |j| → +∞, while μ−

j tends to −1 when |j| → +∞.
With this notation, the quantity ‖ϕ(0, ·)‖2

L2(Ω) is given by

∫
Ω

∣∣∣∣∣ ∑
j∈NN∗

(
C1,jeμ+

j T + C2,jeμ−
j T

)
wj(x)

∣∣∣∣∣
2

dx =
1

2N

∑
j∈NN∗

(
C1,jeμ+

j T + C2,jeμ−
j T

)2

, (3.5)

thanks to the orthogonality of the eigenfunctions in L2(Ω) and the identity ‖wj‖2
L2(Ω) = 1/2N for all j ∈ NN∗ .

Consider the quantity ∥∥∥∥eT−t ∂ϕ

∂n

∥∥∥∥2

L2((0,T )×∂Ω)

.

Using (2.5), this norm is given by

π2

2N−1

∫ T

0

N∑
i=1

∞∑
jk = 1
k �=i

⎛⎝ ∞∑
ji=1

ji(C1,je(1+μ+
j )(T−t) + C2,je(1+μ−

j )(T−t))

⎞⎠2

dt

+
π2

2N−1

∫ T

0

N∑
i=1

∞∑
jk = 1
k �=i

⎛⎝ ∞∑
ji=1

ji(−1)ji(C1,je(1+μ+
j )(T−t) + C2,je(1+μ−

j )(T−t))

⎞⎠2

dt.

(3.6)

Here, we have used that for any i ∈ {1, . . . , N} and any h, � ∈ NN−1
∗ we have

∫
xi=0

N∏
k = 1
k �=i

N∏
m = 1
m �=i

sin(hkπxk) sin(�mπxm) dx′ =

{
1/2N−1 if h = �,

0 otherwise,

and cos(jiπxi)|xi=1 = (−1)ji .
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Now, we choose only a finite number of C1,j ’s and C2,j ’s to be non-zero, so that the previous expression can
be estimated by

π2

2N−2
(L1 + L2 + L3 + L4),

where the terms Li (1 ≤ i ≤ 4) are given by

L1 =
∫ T

0

N∑
i=1

∑
ji

′∈N
N−1
∗

⎛⎝ ∞∑
ji=1

jiC1,je(1+μ+
j )(T−t)

⎞⎠2

dt, L2 =
∫ T

0

N∑
i=1

∑
ji

′∈N
N−1
∗

⎛⎝ ∞∑
ji=1

jiC2,je(1+μ−
j )(T−t)

⎞⎠2

dt

and

L3 =
∫ T

0

N∑
i=1

∑
ji

′∈N
N−1
∗

⎛⎝ ∞∑
ji=1

ji(−1)jiC1,je(1+μ+
j )(T−t)

⎞⎠2

dt,

L4 =
∫ T

0

N∑
i=1

∑
ji

′∈N
N−1
∗

⎛⎝ ∞∑
ji=1

ji(−1)jiC2,je(1+μ−
j )(T−t)

⎞⎠2

dt,

where, for each i ∈ {1, . . . , N}, we have denoted

ji
′ := (j1, . . . , ji−1, ji+1, . . . , jN ) ∈ NN−1

∗ .

Let us start by taking

C1,j = C2,j = 0 if ∃i ∈ {1, . . . , N} such that ji is odd.

Recall that j = (j1, . . . , jN ). This readily implies that L1 = L3 and L2 = L4.
Let now M > 0 be a sufficiently large even number and p ∈ N (to be fixed). Then, we take

βj = 0 if there exists i ∈ {1, . . . , N} such that ji �∈ XM,p := {M + 2k : k ∈ N, 1 ≤ k ≤ p}.

Study of the terms L2 = L4

Let us take a closer look to L2. For this, we develop in power series for |j| large enough (recall that λj =
π2|j|2):

C2,j =
βj

2

(
1 − (1 − 4/λj)−1/2

)
= −βj

2

∑
k≥1

(k − 1/2)!
k!

(
4
λj

)k

, (3.7)

and

e(1+μ−
j )(T−t) = exp

⎧⎨⎩
⎛⎝1 − λj

2
+

λj

2

⎛⎝1 −
∑
k≥1

(k − 3/2)!
2(k!)

(
4
λj

)k
⎞⎠⎞⎠ (T − t)

⎫⎬⎭
= exp

⎧⎨⎩−(T − t)
∑
k≥2

(k − 3/2)!
k!

(
4
λj

)k−1
⎫⎬⎭ = 1 − T − t

λj
+ O(λ−2

j ). (3.8)

From (3.7) and (3.8), the term C2,je(1+μ−
j )(T−t) is given, for |j| large enough, by

C2,je(1+μ−
j )(T−t) = −βj

(
1
λj

+
3 − (T − t)

λ2
j

+ Rj

)
, (3.9)

where Rj = O(1/λ3
j).
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Then, let us freeze i ∈ {1, . . . , N} and impose the following pN−1 equations for the unknowns βj :∑
ji∈XM,p

ji
βj

λj
= 0 ∀ji

′ ∈ XN−1
M,p . (3.10)

Since this is done for each i ∈ {1, . . . , N}, we have imposed NpN−1 equations. The linearity of system (3.10)
allows us to choose βj such that |βj | ≤ C with C independent of M .

Thus, coming back to the expression of L2, we have

L2 =
∫ T

0

N∑
i=1

∑
ji

′∈XN−1
M,p

⎛⎝ ∑
ji∈XM,p

jiβj
3 − (T − t)

λ2
j

+ jiβjRj

⎞⎠2

dt.

Consequently,

L2 + L4 ≤ C

M6
,

with C independent of M .

Study of the terms L1 = L3

From the equation of μ+
j (see (3.4)), we find

exp{(1 + μ+
j )(T − t)} =exp{−λj(T − t)} exp

⎧⎨⎩(T − t)

⎛⎝1 +
∑
k≥1

(k − 3/2)!
k!

(
4
λj

)k−1
⎞⎠⎫⎬⎭

:= exp{(2 − λj)(T − t)} exp{(T − t)Dj}, (3.11)

where Dj goes to zero (like |j|−2) as |j| goes to infinity. With this, the expression of L1 is given by

N∑
i=1

∑
j′

i∈XN−1
M,p

∫ T

0

exp{(4 − 2NM2π2)(T − t)}gM,i,j(t) dt, (3.12)

where, for each i ∈ {1, . . . , N} and each j′
i ∈ XN−1

M,p , we have denoted gM,i,j := (fM,i,j)2 with

fM,i,j(t) =
∑

ji∈XM,p

jiC1,j exp
{(−2π2(|j|2 − NM2) + Dj

)
(T − t)

}
.

As in the one dimensional case, for every i ∈ {1, . . . , N} and every ji
′ ∈ XN−1

M,p , we require the functions
gM,i,j to satisfy

g
(h)
M,i,j(T ) = 0 ∀0 ≤ h ≤ 6.

From the definition of gM,i,j , these conditions are satisfied as long as

f
(h)
M,i,j(T ) = 0 ∀0 ≤ h ≤ 3. (3.13)

We have thus imposed 4NpN−1 equations here.
Then, integrating by parts in (3.12), we find the following expression for L1:

N∑
i=1

∑
ji

′∈XN−1
M,p

(
6∑

h=0

exp{(4 − 2NM2π2)T }
(4 − 2NM2π2)h+1

g
(h)
M,i,j(0) +

∫ T

0

exp{(4 − 2NM2π2)(T − t)}
(4 − 2NM2π2)7

g
(6)
M,i,j(t) dt

)
.
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Since |g(6)
M,i,j | ≤ CM8, we have that

|L1| ≤ C

M6
,

where the constant C > 0 may depend on p and N but does not depend on M .

In these two steps, we have imposed 5NpN−1 equations while we have pN unknowns. Then, it suffices to
take p = 6N and a choice of non-trivial β′

js is possible. We call ϕM the corresponding solution to (3.1), which
satisfies ∥∥∥∥eT−t ∂ϕM

∂n

∥∥∥∥2

L2((0,T )×∂Ω)

≤ C

M6
· (3.14)

One can prove like in dimension one the estimate

‖ϕM (0, ·)‖2
L2(Ω) ≥

Ĉ0

M4
, (3.15)

with Ĉ0 > 0 independent of M .

Construction of the initial condition
Following the same ideas as in the one dimensional case, we construct an initial condition ŷ0 ∈ L2(Ω) such

that the null controllability of (2.1) does not hold. First, all the previous estimates hold if we suppose that M
is a multiple of 2p, since we only used that M is even and large enough. In fact, let us replace M by 2pM and
p by 6N in the above computations.

Then, from (3.5) and (3.15) we deduce the existence of (k1, . . . , kN ) ∈ {1, . . . , 6N}N such that for the index

j0(M) = (12NM + 2k1, . . . , 12NM + 2kN ),

we have
1

2N

(
C1,j0e

μ+
j0

T + C2,j0e
μ−

j0
T
)2

≥ Ĉ0

(6N)NM4
· (3.16)

Then, we define

ŷ0 =
∑
�≥1

1
�3/4

wj0(�) ∈ L2(Ω)

(recall that wj was defined in (3.2)). Let us prove that for any v ∈ L2((0, T ) × ∂Ω), the solution y of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
yt − Δy −

∫ t

0

Δy dτ = 0 in Q,

y = v on (0, T ) × ∂Ω,

y(0, ·) = ŷ0(·) in Ω

(3.17)

satisfies y(T, ·) �≡ 0. Arguing by contradiction, let v ∈ L2((0, T )×∂Ω) such that y(T, x) = 0 for all x ∈ Ω. Then,
by duality with ϕM , we have

−
∫

Ω

ϕM (0, x) ŷ0(x) dx +
∫ T

0

∫
∂Ω

v(t, x)
∂ϕM

∂ν
dσdt +

∫ T

0

∫
∂Ω

(∫ t

0

v(s, x) ds

)
∂ϕM

∂ν
(t, x) dσdt = 0. (3.18)

From the previous choice of ŷ0 and (3.16), we have that∣∣∣∣∫
Ω

ϕM (0, x) ŷ0(x) dx

∣∣∣∣ ≥ C1

M11/4
·
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Finally, using (3.14), we obtain∣∣∣∣∣
∫ T

0

∫
∂Ω

v(t, x)
∂ϕM

∂ν
dσ +

∫ T

0

∫
∂Ω

(∫ t

0

v(s, x) ds

)
∂ϕM

∂ν
(t, x) dσdt

∣∣∣∣∣ ≤ C

M3
·

This contradicts identity (3.18) by taking M large enough.
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