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ASYMPTOTIC BEHAVIOUR AND NUMERICAL APPROXIMATION
OF OPTIMAL EIGENVALUES OF THE ROBIN LAPLACIAN ∗
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Abstract. We consider the problem of minimising the nth-eigenvalue of the Robin Laplacian in RN .
Although for n = 1, 2 and a positive boundary parameter α it is known that the minimisers do not
depend on α, we demonstrate numerically that this will not always be the case and illustrate how the
optimiser will depend on α. We derive a Wolf–Keller type result for this problem and show that optimal
eigenvalues grow at most with n1/N , which is in sharp contrast with the Weyl asymptotics for a fixed
domain. We further show that the gap between consecutive eigenvalues does go to zero as n goes to
infinity. Numerical results then support the conjecture that for each n there exists a positive value of
αn such that the nth eigenvalue is minimised by n disks for all 0 < α < αn and, combined with analytic
estimates, that this value is expected to grow with n1/N .
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1. Introduction

Optimisation of eigenvalues of the Laplace operator is a classic topic in spectral theory, going back to the
work of Rayleigh at the end of the nineteenth century. The first result of this type is the well-known Rayleigh–
Faber–Krahn inequality which states that among all Euclidean domains of fixed volume the ball minimises the
first Dirichlet eigenvalue [12,18,19,24]. As a more or less direct consequence of this result, it is possible to obtain
that the second Dirichlet eigenvalue is minimised by two balls of equal volume. The case of other boundary
conditions has also received some attention and it has been known since the 1950’s that the ball is a maximiser
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for the first nontrivial Neumann eigenvalue [26, 27] and, more recently, that it also minimises the first Robin
eigenvalue with a positive boundary parameter [3, 5, 11], while two equal balls are again the minimiser for the
second eigenvalue [16].

In spite of this, for higher eigenvalues very little is known and even proving existence of minimisers in the
Dirichlet case poses great difficulties. Bucur and Henrot showed the existence of a minimiser for the third
eigenvalue among quasi-open sets in 2000 [6], and it is only very recently that Bucur [4] and Mazzoleni and
Pratelli [21] proved, independently, the existence of bounded minimisers for all eigenvalues in the context of
quasi-open sets.

Moreover, in the planar Dirichlet case and apart from the third and fourth eigenvalues, minimisers, are
expected to be neither balls nor unions of balls, as is already known up to the fifteenth eigenvalue [2]. In fact, it
is not to be expected that the boundaries of optimisers can explicitly be described in terms of known functions
either, which means that the type of result that one may look for should be of a different nature from the
Rayleigh–Faber–Krahn type.

For instance, and always assuming existence of minimisers, there are several qualitative questions which
may be raised with respect to this and related problems and which include multiplicity issues, symmetry and
connectedness properties, to name just a few. However, even such results might not hold in full generality, as
some recent numerical results seem to indicate [2].

All of the above issues make this field of research suitable ground for the combination of rigorous analytic
methods with accurate numerical calculations in order to explore the properties of such problems. Indeed, and
although numerical analysis of eigenvalue problems goes back many years, within the last decade there have been
several extensive numerical studies based on new methods which allow us to obtain insight into the behaviour
of such problems. To mention just two of the most recent related to eigenvalue optimisation, see [2, 23] for the
optimisation of Dirichlet and Dirichlet and Neumann eigenvalues, respectively.

The purpose of this paper is to consider the optimisation of higher eigenvalues λn of the N -dimensional Robin
eigenvalue problem and analyse some of its properties, combining both the approaches mentioned above. From
a theoretical perspective, we begin by establishing a Wolf–Keller type result, which is needed in the numerical
optimisation procedure in order to check for non-connected optimal domains. We then consider the asymptotic
behaviour of both optimal values of λn, which we shall call λ∗

n, and the difference between λ∗
n+1 and λ∗

n. The
main result here is the fact that λ∗

n grows at most with n1/N as n goes to infinity, and that the difference
between optima does go to zero in this limit. Note that this asymptotic behaviour for optimal eigenvalues is in
sharp contrast with Weyl’s law for the behaviour of the high frequencies for a fixed domain Ω, namely,

λn(Ω) =
4π2

(ωN |Ω|)2/N
n2/N + o(n2/N ) as n → ∞,

where ωN denotes the volume of the ball of unit radius in RN and |Ω| is the N -dimensional volume of Ω. Finally,
we prove some results regarding the behaviour of λn(tΩ, α) as a function of the parameters t and α. Although
intuitively obvious and part of the folklore, their proofs do not seem entirely trivial and it is difficult to source
them precisely in the literature. Hence we have included proofs.

At the numerical level, our results are obtained using a meshless method known as the Method of Fundamental
Solutions. Since it is, as far as we know, the first time that such a method has been applied to the Robin problem,
we begin by describing it and stating some basic properties. We then present the results of the optimisation
procedure. This allows us to conclude numerically, as was observed in [17], Section 3, that the optimiser will
depend on the value of α for n larger than two, and provides support for the conjecture that for small positive
values of α the nth eigenvalue is minimised by n identical balls. In fact, and assuming that the domain comprising
n equal balls stops being a minimiser when its nth eigenvalue becomes larger than that of the set formed by
n − 3 small balls and a larger ball, we show that the value of α at which this happens is increasing with n and
grows to infinity.
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The paper is divided into three parts. In the first we present the analytic results described above, together
with the corresponding proofs. This is followed by a description of the numerical method used, and finally we
present the numerical results obtained.

2. Theoretical results

We write the eigenvalue problem as
−Δu = λu in Ω,

∂u

∂ν
+ αu = 0 on ∂Ω

(2.1)

where ν is the outer unit normal to Ω and the boundary parameter α > 0 is a constant. We will assume
throughout this section that Ω ⊂ RN is a bounded, open set with Lipschitz boundary, not necessarily connected,
with N -dimensional volume |Ω| equal to some fixed constant V > 0. We will also use σ to denote surface measure.
As is standard, we will always interpret the problem (2.1) in the weak sense, so that an eigenvalue λ ∈ R and
associated eigenfunction u ∈ H1(Ω) solve the equation∫

Ω

∇u · ∇v dx +
∫

∂Ω

αuv dσ = λ

∫
Ω

uv dx (2.2)

for all v ∈ H1(Ω). It is well known that for each Ω ⊂ RN and α > 0, there is a discrete set of eigenvalues
{λn(Ω, α)}n≥1, all positive, ordered by increasing size, and repeated according to their respective multiplicities.
For each n ≥ 1, we are interested in the quantity

λ∗
n = λ∗

n(V, α) := inf{λn(Ω, α) : |Ω| = V } (2.3)

for each fixed V > 0 and α ≥ 0, where we assume Ω belongs to the class of all bounded, open, Lipschitz
subsets of RN , as well as the properties of any associated minimising domain(s) Ω∗ = Ω∗(n, V, α, N). As for the
Dirichlet problem, when n = 1, the unique minimising domain is a ball [5,11], while for n = 2 it is the union of
two equal balls [16, 17]. Unlike in the Dirichlet case, no existence result is known for any n ≥ 3; in R2, it was
shown in [17] that, for each n ≥ 3, there cannot be a minimiser independent of α > 0. As the dependence of
λ∗

n(V, α) on α ≥ 0 is one of the principal themes of this paper, we note here the following basic properties of
this function. The proof will be deferred until Section 2.4.

Proposition 2.1. Let V > 0 and n ≥ 1 be fixed and for each α ≥ 0 let λ∗
n(V, α) be given by (2.3). Then as

a function of α ∈ [0,∞), λ∗
n(V, α) is continuous and strictly monotonically increasing, with λ∗

n(V, 0) = 0 and
λ∗

n(V, α) < λ∗
n(V,∞), the infimal value for the corresponding Dirichlet problem.

Remark 2.2. Throughout this section, we will tend to assume for simplicity, especially in the proofs, that (2.3)
does in fact possess a minimiser Ω∗, for each n ≥ 1 and α > 0. This assumption can easily be removed by
considering an arbitrary sequence of domains Ω∗

k with λn(Ω∗
k) → λ∗

n. As this type of argument is quite standard,
we omit the details. Note that without loss of generality each domain Ω∗

k may be assumed to have at most n
connected components, as more could only increase λn (see [17], Rem. 3.2(ii)). In fact, such a sequence may
be assumed to be connected. This is a consequence of results on the stability of solutions to (2.1) with respect
to domain perturbation: for any domain Ω with n connected components, any α > 0 and any ε > 0, by [10],
Corollary 3.7, there exists another “dumbbell”-type connected domain Ω′, which has narrow passages joining
the disconnected components of Ω, such that |Ω′| = |Ω| and λn(Ω′, α) ≤ λn(Ω, α) + ε (cf. also [16], Ex. 2.2).

Our point of departure is the way the Robin problem behaves under homothetic scaling of the domain. That
is, if we denote by tΩ the rescaled domain {tx ∈ RN : x ∈ Ω}, then, by a simple change of variables, (2.1) is
equivalent to

−Δu =
λ

t2
u in tΩ,

∂u

∂ν
+

α

t
u = 0 on ∂(tΩ),

(2.4)
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that is, λn(Ω, α) = t2λn(tΩ, α/t), for all (bounded, Lipschitz) Ω ⊂ RN , n ≥ 1, α > 0 and t > 0. (This of
course remains valid considering the weak form (2.2)). We highlight the change in the boundary parameter.
This means that, unlike in the Dirichlet and Neumann cases, |tΩ| 2

N λn(tΩ, α) is not invariant with respect to
changes in t > 0; rather, the invariant quantity is

|tΩ|2/Nλn(tΩ, α/t). (2.5)

This will have a profound effect on the nature of the minimising value λ∗
n and any corresponding minimising

domains. We observe that λ∗
n(V, α) as a function of α ∈ (0,∞) may be reformulated as a function taking the

form λ∗
n(tV, α) for t ∈ (0,∞) and α > 0 fixed, arbitrary. The scaling relation gives us immediately that

t2λ∗
j

(
V,

α

t

)
= λ∗

j (t
−NV, α) (2.6)

for all j ≥ 1, all V > 0, all α > 0 and all t > 0, since (2.4) holds for every admissible domain Ω ⊂ RN , so that
the same must still be true of their infima. Proposition 2.1 may be reformulated as the following result, which
will be useful to us in the sequel. The proof will again be left until Section 2.4.

Proposition 2.3. Fix α > 0 and n ≥ 1. As a function of V ∈ (0,∞), λ∗
n(V, α) is continuous and strictly

monotonically decreasing, with λ∗
n(V, α) → ∞ as V → 0 and λ∗

n(V, α) → 0 as V → ∞.

2.1. A Wolf–Keller type result

An immediate consequence of (2.5) is that both the statement and proof of a number of results that are
elementary in the Dirichlet case now become more involved. Of particular relevance for us is the result of Wolf–
Keller [28], Theorem 8.1, that any disconnected domain minimising λn as in (2.3) must have as its connected
components minimisers of lower numbered eigenvalues. Here, (2.5) obviously means that we cannot hope to be
quite as explicit in our description of any potential minimiser.

Theorem 2.4. Given V > 0 and α > 0, suppose that there exists a disconnected domain Ω∗ such that |Ω∗| = V
and λ∗

n(V, α) = λn(Ω∗, α). For every 1 ≤ k ≤ n−1, there will exist a unique pair of numbers ξ1, ξ2 > 1 (depending
on k, V, α and N) with ξ−N

1 + ξ−N
2 = 1 which solve the problem

min
{

max
{

t21λ
∗
k

(
V,

α

t1

)
, t22λ

∗
n−k

(
V,

α

t2

)}
: t1, t2 > 1, t−N

1 + t−N
2 = 1

}
= min

{
max

{
λ∗

k(t−N
1 V, α), λ∗

n−k

(
t−N
2 V, α

)}
: t1, t2 > 1, t−N

1 + t−N
2 = 1

}
. (2.7)

Then we may write

(λ∗
n (V, α))

N
2 = min

1≤k≤n−1

{(
λ∗

k

(
V,

α

ξ1

))N
2

+
(

λ∗
n−k

(
V,

α

ξ2

))N
2
}
· (2.8)

Supposing this minimum to be achieved at some j between 1 and n− 1, denoting by Ω1 and Ω2 the respective
minimisers of λ∗

j (V, α
ξ1

) and λ∗
n−j(V, α

ξ2
), for this pair ξ1(j), ξ2(j) we have

Ω∗ =
1
ξ1

Ω1 ∪ 1
ξ2

Ω2. (2.9)

Because of (2.5), we have to define the scaling constants ξ1 and ξ2 in a somewhat artificial fashion, in terms
of a minimax problem (we emphasise that ξ1, ξ2 will vary with k), and cannot link them directly to the optimal
values λ∗

j (V, α) as would be the direct equivalent of [28], Theorem 8.1. Otherwise, the proof proceeds essentially
as in [28].
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Proof. We start by proving for each fixed k between 1 and n−1 the existence of the pair ξ1, ξ2 > 1 as claimed in
the theorem. First observe that the equivalence of the two minimax problems in (2.7) follows immediately from
(2.6). Now by Proposition 2.3, for V > 0, α > 0 and k ≥ 1 all fixed, as a function of t1 ∈ [1,∞), λ∗

k(t−N
1 V, α) is

continuous and strictly monotonically increasing from λ∗
k(V, α) at t1 = 1 to ∞ as t1 → ∞. Moreover, since t2 is

determined by t1 via the relation t2 = (1− t−N
1 )−1/N , we may also consider λ∗

n−k(t−N
2 V, α) as a continuous and

strictly monotonically decreasing function of t1 ∈ (1,∞], approaching ∞ as t1 → 1 and λ∗
n−k(V, α) as t1 → ∞.

That is,

λ∗
k

(
t−N
1 V, α

)⎧⎪⎨⎪⎩
< λ∗

n−k

((
1 − t−N

1

)−1/N
V, α

)
if t1 ≈ 1

> λ∗
n−k

((
1 − t−N

1

)−1/N
V, α

)
if t1 is large enough,

with the left hand side value strictly increasing and the right hand side strictly decreasing in t1. It follows
that there exists a unique t1 ∈ (1,∞) such that the two are equal. At this value, which we label as t1 =: ξ1,
t2 = (1 − ξ−N

1 )−1/N =: ξ2, the maximum of the two will be minimised.
Let us now suppose the minimiser Ω∗ of λ∗

n(V, α) is a disjoint union Ω∗ = U1 ∪ U2. Since the eigenvalues of
Ω∗ are found by collecting and ordering the respective eigenvalues of U1 and U2, there exists 1 ≤ k ≤ n − 1
such that λn(Ω∗, α) = λk(U1, α). For, if k = n, then U2 makes no contribution, so rescaling U1 would strictly
decrease λn by Lemma 2.13, contradicting minimality. A similar argument shows that λn(Ω∗, α) = λn−k(U2, α),
since otherwise, by expanding U1 and contracting U2, by Lemma 2.13 we could likewise reduce λn(Ω∗, α). It is
also clear that λk(U1, α) = λ∗

k(|U1|, α) and λn−k(U2, α) = λ∗
n−k(|U2|, α), since otherwise we could replace U1

and/or U2 with their respective minimisers and repeat the rescaling argument to reduce λn(Ω∗, α). Thus we
have shown

λ∗
n(V, α) = λn(Ω∗, α) = λk(U1, α) = λ∗

k(|U1|, α) = λn−k(U2, α) = λ∗
n−k(|U2|, α).

We now rescale U1 and U2. Let s1, s2 > 0 be such that |s1U1| = |s2U2| = V . Since V = |U1| + |U2|, we have
s1, s2 > 1 and s−N

1 + s−N
1 = 1. Now by (2.6),(

λ∗
k

(
V,

α

s1

))N
2

=
(

λk

(
s1U1,

α

s1

))N
2

=
(
s−2
1 λk (U1, α)

)N
2 = s−N

1 (λ∗
n (V, α))

N
2 ,

with an analogous statement for λ∗
n−k and s2. Adding the two, and using that s−N

1 + s−N
2 = 1 from the volume

constraint, (
λ∗

k

(
V,

α

s1

))N
2

+
(

λ∗
n−k

(
V,

α

s2

))N
2

= (λ∗
n (V, α))

N
2 .

To show that s1 = ξ1 and s2 = ξ2, we simply note that, given this k, the unique minimising pair ξ1, ξ2 is the
only pair of real numbers for which ξ1, ξ2 > 1, ξ−N

1 + ξ−N
2 = 1 and for which there is equality ξ1

2λ∗
k(V, α

ξ1
) =

ξ2
2λ∗

k(V, α
ξ2

). As s1 and s2 satisfy exactly the same properties, s1 = ξ1 and s2 = ξ2.
Thus we have shown that Ω∗ has the form (2.9), and (2.8) holds for some 1 ≤ k ≤ n− 1. It remains to prove

that λ∗
n is attained by the minimum over all such k. To do so, we choose 1 ≤ j ≤ n − 1 arbitrary, label the

solution to (2.7) as j1, j2 > 1, and set Ωj
1 to be the domain of volume V such that

λj

(
Ωj

1 ,
α

j1

)
= λ∗

j

(
V,

α

j1

)
,

and analogously for Ωj
2 and λ∗

n−j(V, α/j1). Now set

Ωj =
1
j1

Ωj
1 ∪ 1

j2
Ωj

2.
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It is easy to check that |Ωj | = V and that, by choice of j1 and j2,

λj

(
1
j1

Ωj
1, α

)
= j2

1λj

(
Ωj

1,
α

j1

)
= j2

2λj

(
Ωj

2,
α

j2

)
= λj

(
1
j2

Ωj
2, α

)
,

meaning that λn(Ωj , α) must be equal to all the above quantities. Moreover, using the minimising properties of
Ωj

1 and Ωj
2, and that j−N

1 + j−N
2 = 1, we have

[λ∗
n(V, α)]

N
2 ≤ [λn(Ωj , α)]

N
2 =

[
λ∗

j

(
V,

α

j1

)]N
2

+
[
λ∗

n−j

(
V,

α

j2

)]N
2

,

proving (2.8). �

2.2. Asymptotic behaviour of the optimal values

Another consequence of (2.5) is that any eigenvalue λn(tΩ, α) grows more slowly than λn(Ω)2/N as t → 0.
It is thus intuitively reasonable that we might expect any optimising domain to have a greater number of
connected components than its Dirichlet counterpart. Indeed, recalling the variational characterisation of λn,
it is not surprising that increasing the size of the boundary in such a fashion carries a fundamentally smaller
penalty for the eigenvalues. As was noted in [17], Section 3, the domain given by the disjoint union of n equal
balls of volume V/n, call it Bn, is likely to play a prominent rôle in the study of λ∗

n for sufficiently small positive
values of α. Here we go further and observe that, simply by estimating λ1(Bn, α), we can already obtain quite
a strong estimate on the behaviour of λ∗

n with respect to n, for any α > 0.
In fact, the following theorem, which again may be seen as an immediate consequence of (2.5), shows that

we have λ∗
n = o(n1/N+ε) as n → ∞ (for any V, α, ε > 0), a fundamental divergence from the Weyl asymptotics

λn(Ω, α) = O(n2/N ) for any fixed domain Ω ⊂ RN . It is unclear whether this is optimal.

Theorem 2.5. Given V > 0 and n ≥ 1, let Bn denote the domain of volume V consisting of n equal balls of
radius r = (V/nωN )1/N . Then, for every α > 0,

λ∗
n(V, α) ≤ λn(Bn, α) ≤ Nα

(nωN

V

) 1
N · (2.10)

Proof. Since λn(Bn, α) = λ1(Bn, α), it certainly suffices to estimate the latter, that is, to estimate the first
eigenvalue of a ball of volume V/n and radius r = (V/nωN )1/N . Using concavity of λ1 with respect to α > 0
(Lem. 2.11), we estimate this from above by its tangent line at α = 0 (see Rem. 2.12). Since a ball of radius r
has volume rNωN and surface measure NrN−1ωN , (2.22) at α = 0 gives

λ1(Bn, α) ≤ λ′
1(Bn, 0)α =

σ(∂Bn)
|Bn| α = Nr−1α.

Substituting the value r = (V/nωN )1/N yields (2.10). �

2.3. The optimal gap

Adapting an argument of Colbois and El Soufi [7] for the Dirichlet case, we may also estimate the dimension-
ally appropriate difference (λ∗

n+1)
N/2 − (λ∗

n)N/2 for each positive V and α, which we do in Theorem 2.8. Such
an estimate serves two purposes, giving both a practical means to test the plausibility of numerical estimates,
and a theoretical bound on eigenvalue gaps. In particular, this complements Theorem 2.5 by showing that the
optimal gap tends to 0 as n → ∞, albeit not necessarily uniformly in α > 0 (see Cor. 2.10).

The idea is to take the optimising domain Ω∗ for λ∗
n, add to it a ball B whose first eigenvalue also equals λ∗

n

and then rescale to obtain a “test domain” for λ∗
n+1. Although the scaling issue (2.5) makes the new behaviour

possible, it also causes obvious complications, and so we cannot obtain as tight a result as in [7]. Instead, we
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will give two slightly different estimates. The first, (2.13), is tighter but more abstruse, and will be used for
computational verification, the second one (2.14) being more explicit, although only in the first case does the
bound converge to 0 with n (see Rem. 2.9 and Cor. 2.10).

Remark 2.6. The result that the optimal gap tends to 0 as n → ∞ is perhaps a priori surprising, and raises
the question of whether such a result might also be true in the Dirichlet case. Unfortunately, our method tells
us nothing about the latter, as it rests entirely on the scaling property (2.4). For each fixed n ≥ 1, our bound
(2.13) is of the form (λ∗

n+1)N/2 − (λ∗
n)N/2 ≤ C(λ1(B1, cnα))N/2 for appropriate constants C = C(N, V ) and

cn = c(N, V, n). The idea is then to show (using (2.4)) that cn → 0 as n → ∞. But fixing n ≥ 1 and letting
α → ∞, we recover the bound from [7] of the form C(N, V )λD

1 (B1), uniform in n ≥ 1. There is no evidence to
suggest the latter result could be improved.

The bound (2.13) relies on the following auxiliary lemma, needed for a good estimate of the constant cn

mentioned in Remark 2.6.

Lemma 2.7. Fix V > 0 and α > 0, let λ∗
n = λ∗

n(V, α) be as in (2.3), and denote by B = B(0, r) the ball centred
at 0 of radius r > 0. There exists a unique value of r > 0 such that

λ1

(
B,

(
V

V + |B|
) 1

N

α

)
= λ∗

n(V, α). (2.11)

The corresponding ball B satisfies

|B| ≤ min

⎧⎨⎩V, ωN

(
jN

2 −1,1√
λ∗

n

)N
⎫⎬⎭ , (2.12)

where ωN is the N -dimensional volume of the unit ball in RN and jN
2 −1,1 the first zero of the Bessel function

JN
2 −1 of the first kind.

Proof. Consider the left hand side of (2.11) as a function of |B| ∈ (0,∞). An increase in |B| both increases
the volume of the domain and decreases the Robin parameter. By Lemma 2.13, the combined effect must be to
decrease λ1 continuously and strictly monotonically, the latter implying there can be at most one value of |B|
giving equality in (2.11). Now note that as |B| → 0, since V/(V + |B|) is bounded from below away from zero,
λ1(B, (V/(V + |B|))(1/N)α) → ∞, while if |B| = V ,

λ1(B, (1/2)
1
N α) < λ1(B, α) ≤ λ1(Ω∗, α) ≤ λn(Ω∗, α) = λ∗

n(V, α),

where Ω∗ is the minimising domain for (2.3), and the second inequality follows from the Rayleigh–Faber–Krahn
inequality for Robin problems [5], Theorem 1.1. Hence there must be a value of |B| in (0, V ) for which there
is equality in (2.11). To show that the other bound in (2.12) also holds, we consider Br, the ball of radius
r = jN

2 −1,1/
√

λ∗
n, where jp,q is the qth zero of the Bessel function Jp of the first kind of order p. Then we have

λ1(Br,

(
V

V + |Br|
) 1

N

α) < λ1(Br, α) < λD
1 (Br) = λ∗

n,

where λD
1 (Br) is the first Dirichlet eigenvalue of Br (cf. Lem. 2.11), and the last equality follows from our choice

of r. This implies our desired B must have radius less than r, giving us (2.12). �
Theorem 2.8. Fix V > 0 and α > 0 and let λ∗

n = λ∗
n(V, α) be as in (2.3). Let B∗ = B∗(V, n, α) be the ball

satisfying the conclusions of Lemma 2.7, and let B1 denote the ball of unit radius and ωN its N -dimensional
volume. Then (

λ∗
n+1

)N
2 − (λ∗

n)
N
2 ≤ ωN

V

[
λ1

(
B1,

(
V |B∗|

V + |B∗|
) 1

N

ω
− 1

N

N α

)]N
2

(2.13)
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and, weaker but more explicitly,

(
λ∗

n+1

)N
2 − (λ∗

n)
N
2 <

ωN

V

[
λ1

(
B1,

(
V

ωN

) 1
N

α

)]N
2

. (2.14)

Our proof will show, in a manner analogous to the Dirichlet case [7], that given any domain Ω̃ we can find
another domain Ω̂ of the same volume V such that[

λn+1(Ω̂, α)
]N

2 −
[
λn(Ω̃, α)

]N
2 ≤ ωN

V
[λ1(B1, tα)]

N
2

for some appropriate t ∈ (0, 1) inversely proportional to λn(Ω̃, α). We omit the details.

Proof. Given V, α > 0, B∗ and λ∗
n as in the statement of the theorem, we assume for simplicity that λ∗

n is
minimised by Ω∗. Let Ω̃ := Ω∗ ∪ B∗ (disjoint union), set

tN :=
V

V + |B∗|

and consider the problem (2.1) on Ω̃, with boundary parameter

α̂ :=
{

α on ∂Ω∗
tα on ∂B∗.

Then by choice of B∗ and definition of t,

λn+1(Ω̃, α̂) = λn(Ω∗, α) = λ1(B∗, tα).

Let us now rescale Ω̃ to tΩ̃. If we set

α̃ :=
{

α/t on ∂(tΩ∗)
α on ∂(tB∗),

we have
λn+1(tΩ̃, α̃) =

1
t2

λn+1(Ω̃, α̂).

Since |tΩ̃| = V ,
λ∗

n+1 ≤ λn+1(tΩ̃, α) ≤ λn+1(tΩ̃, α̃), (2.15)

the latter inequality holding since t < 1 so that α ≤ α̃ = α̃(x) at every point of ∂(tΩ̃). Hence

λ∗
n+1 ≤ 1

t2
λn+1(Ω̃, α̂) =

1
t2

λn(Ω∗) =
1
t2

λ1(B∗, tα).

Raising everything to the power of N/2, and subtracting (λ∗
n)N/2 = (λ1(B∗, tα))N/2,

(
λ∗

n+1

)N
2 − (λ∗

n)
N
2 ≤

(
1
tN

− 1
)

(λ1(B∗, tα))
N
2 .

Recalling the definition of t, we have 1/tN −1 = |B∗|/V . We will now rescale B∗, replacing it with a ball of unit
radius. That is, letting B∗ have radius r > 0, so that |B∗| = rNωN , and letting B1 denote the ball of centre 0
and radius 1,

(λ1(B∗, tα))
N
2 =

(
r−2λ1(B1, rtα)

)N
2 = r−N (λ1(B1, rtα))

N
2 .
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Writing

rt =
(

V |B∗|
V + |B∗|

) 1
N

ω
− 1

N

N (2.16)

and |B∗|/V = rNωN/V , we obtain

(
λ∗

n+1

)N
2 − (λ∗

n)
N
2 ≤ rNωN

V
r−N

[
λ1

(
B1,

(
V |B∗|

V + |B∗|
) 1

N

ω
− 1

N

N α

)]N
2

,

which is (2.13). To remove the explicit dependence on B∗ and thus obtain (2.14), we simplify the expression (2.16)
using the crude bounds |B∗| < V in the numerator and |B∗| > 0 in the denominator, giving rt < V (1/N)ω

−(1/N)
N .

Monotonicity of λ1 with respect to the Robin parameter, Lemma 2.11, now gives (2.14). �
Remark 2.9.

(i) The bound (2.14) is as explicit as possible for the Robin problem, λ1(B1, β) being given as the square of
the first positive solution of the transcendental equation

β√
λ1

= −
JN

2
(
√

λ1)

JN
2 −1(

√
λ1)

,

where Jp denotes the pth Bessel function of the first kind.
(ii) In the Dirichlet equivalent of Theorem 2.8, the bound is optimal exactly for those values of n for which the

optimising domain for λ∗
n+1 is obtained by adding an appropriate ball to the minimiser of λn, which is believed

to be true only when n = 1. In our case, since everything converges to its Dirichlet counterpart as α → ∞, (2.13)
and (2.14) are at least asymptotically sharp for n = 1. Moreover, for every n ≥ 1 the bounds converge to zero as
α → 0 (as we would hope given that λ∗

n → 0 as α → 0 for every n ≥ 1). However, even for n = 1, the scaling issue
makes it essentially impossible to obtain a precise bound for any particular α > 0. Taking N = 2 for simplicity,
we have λ∗

2 = 2λ∗
1 in the Dirichlet case, but in the Robin case λ∗

2(α) < 2λ∗
1(α) for all α > 0, since, denoting by B

the ball that minimises λ∗
1(α), we have λ∗

2(α) = λ1(2−1/2B, α) = 2λ1(B, α/2) < 2λ1(B, α) = 2λ∗
1(α), where we

have used the fact that the minimiser of λ∗
2(α) is the union of two equal balls [16], the scaling relation (2.4), strict

monotonicity of λ1(Ω, α) in α (Lem. 2.11) and the Rayleigh–Faber–Krahn inequality for Robin problems [5].
Our bound in (2.13) is, in this case, also smaller than 2λ∗

1(α) for all α > 0. However, constructing an estimate
that involves rescaling domains in this fashion will always tend to introduce some error (as happens at (2.15) in
our case), as we can never write down explicitly the change in the eigenvalues caused by introducing the scaling
parameter t into the boundary parameter.

We now prove the aforementioned result, a complement to Theorem 2.5, that the dimension-normalised gap
(λ∗

n+1)
N/2 − (λ∗

n)N/2 approaches zero as n goes to ∞ for every fixed positive value of V and α. The proof will
combine (2.13) with (2.12). In the process, we also obtain a growth estimate on λ∗

n, but this turns out to be
weaker than the one found directly in Theorem 2.5. We include the proof of the latter anyway, as both an
alternative method and to illustrate the principle.
Corollary 2.10. For V, α > 0 fixed, as n → ∞ we have[

λ∗
n+1(V, α)

]N
2 − [λ∗

n(V, α)]
N
2 → 0

and, for every ε > 0,
λ∗

n(V, α) = o(n
4

3N +ε).

Proof. Estimating |B∗| from above by (2.12) and from below by 0 in the bound (2.13) gives us

(
λ∗

n+1

)N
2 − (λ∗

n)
N
2 <

ωN

V

[
λ1

(
B1,

jN
2 −1,1√

λ∗
n

α

)]N
2

.
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Now, noting that λ1(B1, · ) is concave in its second argument, we estimate it from above by the corresponding
value of its tangent line at α = 0, namely T (β) = λ′

1(B1, 0)β. Since λ′
1(B1, 0) = σ(∂B1)/ωN (see Rem. 2.12),

(
λ∗

n+1

)N
2 − (λ∗

n)
N
2 < V −1ωN

1−N
2

(
σ(∂B1)αjN

2 −1,1

)N
2

(λ∗
n)−

N
4 . (2.17)

Observe that, for fixed V, α > 0, the right hand side of (2.17) converges to 0 as n → ∞, proving the first
assertion of the corollary. To see the growth bound, label the coefficient of (λ∗

n)−N/4 in (2.17) as C(N, V, α).
Summing over n, the left hand side telescopes to give

(
λ∗

n+1

)N
2 < (λ∗

1)
N
2 + C(N, V, α)

n∑
k=1

(λ∗
k)−

N
4 . (2.18)

Suppose now that for some γ ∈ R, (λ∗
n)N/2 �= O(nγ) as n → ∞, that is, lim supn→∞(λ∗

n)N/2/nγ = ∞. Since λ∗
n is

increasing in n ≥ 1, a standard argument from elementary analysis shows that in fact limn→∞(λ∗
n)N/2/nγ = ∞,

that is, for all C0 > 0, there exists n0 ≥ 1 such that (λ∗
n)N/2 ≥ C0n

γ for all n ≥ n0. Hence for C0 > 0 fixed, for
all n ≥ n0 we have

n∑
k=1

(λ∗
k)−

N
4 ≤

n0−1∑
k=1

(λ∗
k)−

N
4 + C0

n∑
k=n0

k−γ
2 ≤ C1 + C0

n∑
k=1

k− γ
2 , (2.19)

where C1 =
∑n0−1

k=1 (λ∗
k)−N/4 depends only on N, V, α and n0, that is, C0. Now we observe

O(
n∑

k=1

k−γ/2) =

{
O(n1−γ

2 ) if γ ∈ (0, 2)
O(ln n) if γ = 2,

(2.20)

(use
∑n

k=1 k−s ∼ ∫ n

1 x−sdx if s ≤ 1), while
∑n

k=1 k−γ/2 ≤ 1 +
∫ n−1

1 x−γ/2 dx = 1 + (γ/2 − 1)−1 for all n ≥ 1,
if γ > 2. In particular, combining (2.18) and (2.19), fixing C0 > 0 and a corresponding n0 ≥ 1 arbitrary, for all
n ≥ n0, we have

(λ∗
n+1)

N
2 < (λ∗

1)
N
2 + C(N, V, α)

(
C1 + C0

n∑
k=1

k− γ
2

)
,

which we rewrite as

(λ∗
n)

N
2 < C2 + C3

n∑
k=1

k− γ
2 (2.21)

for all n ≥ n0, where C2, C3 > 0 and n0 ≥ 1 depend only on N, V, α and the free choice C0 > 0. Recalling that
(2.21) holds under the assumption (λ∗

n)N/2 �= O(nγ) as n → ∞ and using (2.20), this gives us an immediate
contradiction if γ > 2/3, forcing (λ∗

n)N/2 = o(n2/3+ε) for all ε > 0. �

2.4. Dependence of λn(tΩ, α) on t and α

We will now give some appendiceal, but important, results on the behaviour of the Robin eigenvalues λn(Ω, α)
with respect to homothetic changes in Ω or α. Although the material is folklore, we have included a proof as it
seems difficult to find one explicitly. We will also give the proofs of the corresponding statements for λ∗

n(V, α),
namely Propositions 2.1 and 2.3.

Lemma 2.11. For a given bounded, Lipschitz domain Ω ⊂ RN , and n ≥ 1, λn(Ω, α) is an absolutely continuous
and strictly increasing function of α ∈ [0,∞), which is differentiable almost everywhere in (0,∞). Where it
exists, its derivative is given by

d
dα

λn(Ω, α) =
‖u‖2

2,∂Ω

‖u‖2
2,Ω

, (2.22)
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where u ∈ H1(Ω) is any eigenfunction associated with λn(Ω, α). In addition, when n = 1, λ1(Ω, α) is concave,
with λ1(Ω, α) < λD

1 (Ω), the first Dirichlet eigenvalue of Ω, and if Ω is connected, then λ1(Ω, α) is analytic in
α ≥ 0.

Remark 2.12. The formula (2.22) is always valid when n = 1 and α = 0, for any bounded, Lipschitz Ω ⊂ RN .
In this case, since this corresponds to the Neumann problem and the first eigenfunction is always constant,
(2.22) simplifies to

d
dα

λ1(Ω, α)
∣∣∣
α=0

=
σ(∂Ω)
|Ω| , (2.23)

a purely geometric property of Ω. Equation (2.23) (which can be obtained from a trivial modification of our
proof of Lemma 2.11) is reasonably well known, and proofs may also be found in [13, 20], for example.

Lemma 2.13. Given Ω ⊂ RN bounded and Lipschitz, n ≥ 1 and α > 0, λn(tΩ, α) is a continuous and strictly
decreasing function of t ∈ (0,∞). If d

dβ λn(Ω, β) exists at β = tα > 0, then so does

d
dt

λn(tΩ, α) = − 1
t3

(
‖∇v‖2

2,Ω

‖v‖2
2,Ω

− λn(Ω, tα)

)
, (2.24)

where v ∈ H1(Ω) is any eigenfunction associated with λn(Ω, tα).

Proof of Lemma 2.11. For the first statement, we note that (weak) monotonicity and, when n = 1, concavity,
are immediate from the minimax formula for λn [8], Chapter VI. We can also derive continuity directly from
that formula, or use the general theory from [15], Sections VII.3, 4. That is, the form associated with (2.1) is

Qα(u) =
∫

Ω

|∇u|2 dx +
∫

∂Ω

αu2 dσ,

which is analytic in α ∈ R for each u ∈ H1(Ω). Hence the associated family of self-adjoint operators is
holomorphic of type (B) in the sense of Kato. It follows that each eigenvalue depends locally analytically on
α, with only a countable number of “splitting points”, that is, crossings of curves of eigenvalues, including the
possibility of splits in multiplicities. In our case, for each λn(α), the number of such points will certainly be
locally finite in α. In particular, this means λn(α) consists locally of a finite number of smooth curves intersecting
each other transversally, so it is absolutely continuous in the sense of [25], Chapter 7. (Throughout this lemma
we drop the Ω argument, as it is fixed). If n = 1 and Ω is connected, then λ1(α) has multiplicity one for all
α ≥ 0 and hence no splitting points, so that it is analytic.

Since [15] also implies that the associated eigenprojections converge, given any non-splitting point α (at which
λn is analytic), αk → α and any eigenfunction u associated with λn(α), we can find eigenfunctions uk of λn(αk)
such that uk → u in L2(Ω). We now use a standard argument to show that in fact uk → u in H1(Ω). Denote
by ‖v‖∗ the norm on H1(Ω) given by (‖∇v‖2

2,Ω +α‖v‖2
2,∂Ω)1/2, equivalent to the standard one, and assume the

eigenfunctions are normalised so that ‖u‖2,Ω = ‖uk‖2,Ω = 1 for all k ≥ 1. Then

‖u − uk‖2
∗ =

∫
Ω

|∇u|2 + |∇uk|2 − 2∇u · ∇uk dx +
∫

∂Ω

α(u2 + u2
k − 2uuk) dσ

= λn(α) + λn(αk) − 2λn(α)
∫

Ω

uuk dx + (α − αk)
∫

∂Ω

u2
k dσ,

making repeated use of (2.2). Now we have αk → α by assumption, while we may use the crude but uniform
bound

∫
∂Ω u2

k dσ ≤ λn(αk)/αk for αk → α > 0 bounded away from zero. Meanwhile, by Hölder’s inequality,∣∣∣∣∫
Ω

uuk dx −
∫

Ω

u2 dx

∣∣∣∣ ≤ ‖u‖2,Ω‖u − uk‖2,Ω −→ 0
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as k → ∞, since we know uk → u in L2(Ω), meaning
∫

Ω uuk dx → 1 due to our normalisation. Hence, since
λn(αk) → λn(α) also,

‖u − uk‖2
∗ = λn(α) + λn(αk) − 2λn(α)

∫
Ω

uuk dx + (α − αk)
∫

∂Ω

u2
k dσ −→ 0,

proving uk → u in both the ‖ . ‖∗-norm and hence also in the usual H1-norm.
Let us now compute the derivative of λn(α) at any non-splitting point. Suppose α < β are two different

boundary parameters, with associated eigenfunctions u, v ∈ H1(Ω), respectively. Then, using the weak form of
λn, provided u and v are not orthogonal in L2(Ω), we get immediately that

λn(β) − λn(α) = (β − α)

∫
∂Ω

uv dσ∫
Ω

uv dx
·

Now divide through by β − α and let β → α. Since we have already seen that this forces v → u in H1(Ω) (also
implying that they are not orthogonal in L2(Ω) for β close to α), this gives (2.22). In particular, since this
is strictly positive, and valid except on a countable set of α, we conclude λn is strictly increasing. Note that
even at splitting points, we may still compute the left and right derivatives via this method; we see that it is
the change in multiplicity (leading to extra eigenfunctions giving different values of (2.22)) that causes these
derivatives to disagree.

That λ1(Ω, α) ≤ λD
1 (Ω) is an immediate consequence of the minimax formulae and the inclusion of the form

domains H1
0 (Ω) ⊂ H1(Ω). Strict inequality is immediate, since λ1(Ω, α) is strictly increasing in α > 0. �

Proof of Lemma 2.13. Since λn(tΩ, α) = t−2λn(Ω, αt), differentiability of the former at t is equivalent to
differentiability of the latter at β = αt, and

d
dt

λn(tΩ, α) =
d
dt

(
t−2λn(Ω, αt)

)
= −2t−3λn(Ω, αt) + αt−2 d

d(αt)
λn(Ω, αt).

Using (2.22) and simplifying yields (2.24). Continuity of λn(tΩ, α) at every t > 0 follows immediately from the
identity

λn(sΩ, α) − λn(tΩ, α) = s−2λn(Ω, sα) − t−2λ(Ω, tα)

together with continuity of λn(Ω, tα) in t, so that s−2λn(Ω, sα) → t−2λ(Ω, tα) as s → t.
Finally, observe that (2.24), holding almost everywhere, also confirms the strict monotonicity of λn(tΩ, α)

with respect to t > 0. Also note that even at points of discontinuity, as in Lemma 2.11, we can again compute
left and right derivatives, which may disagree due to the change in multiplicity. �

Proof of Proposition 2.1. It follows immediately from the definition of λ∗
n(V, α) as an infimum and the properties

of λn(Ω, α) given in Lemma 2.11 that λ∗
n(V, α) is strictly increasing and right continuous in α. Indeed, given

α0 ∈ [0,∞) and α > α0, if Ω∗
0 is a minimising domain so that λ∗

n(V, α0) = λn(Ω∗
0 , α0), and α > 0, then

0 ≤ λ∗
n(V, α) − λn(V, α0) < λ∗

n(Ω∗
0 , α) − λn(Ω∗

0 , α0) → 0 as α → α0. For strict monotonicity, if 0 ≤ α0 < α, we
let Ω∗ be such that λ∗

n(V, α) = λn(Ω∗, α) > λn(Ω∗, α0) ≥ λ∗
n(V, α0).

Left continuity is harder. We use the property that for each fixed domain Ω, by (2.22),

d
dα

λn(Ω, α) =
‖u‖2

2,∂Ω

‖u‖2
2,Ω

≤ λn(Ω, α)
α

(2.25)

for almost every α > 0. Fixing now α0 > 0 and an arbitrary sequence 0 < αk ≤ α0, k ≥ 1 with αk → α0

monotonically, we may rewrite (2.25) as

d
dα

λn(Ω, α) ≤ Cλn(Ω, α),
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for almost all α ∈ [α1, α0], where C = 1/α1 is independent of Ω. Integrating this inequality and using the
Fundamental Theorem of Calculus applied to the absolutely continuous function λn(Ω, α) [25], Theorem 7.18,

λn(Ω, α0) ≤ λn(Ω, αk)eC(α0−αk)

for all αk, k ≥ 1, and all Ω. Letting Ω∗
k be an optimising domain at αk for each k ≥ 1. Then

λ∗
n(V, α0) ≤ lim inf

k→∞
λn(Ω∗

k, α0) ≤ lim sup λn(Ω∗
k , αk)eα0−αk = lim

k→∞
λn(Ω∗

k , αk) = lim
k→∞

λ∗
n(V, αk).

Since this holds for an arbitrary increasing sequence αk → α0, and since the reverse inequality is obvious from
monotonicity, this proves continuity.

Finally, that λ∗
n(V, 0) = 0 follows from considering any domain with at least n connected components, while

to show that λ∗
n(V, α) < λ∗

n(V,∞), let Ω̂ be a domain such that |Ω̂| = V and λ∗
n(V,∞) = λD

n (Ω) > λn(Ω, α) ≥
λ∗

n(V, α). �

Proof of Proposition 2.3. As continuity and monotonicity mirror the Proof of Proposition 2.1 closely, we do
not go into great detail, but note that now left continuity is obvious and the proof of right continuity uses the
property (2.24) to give us the bound

d
dt

λn(tΩ, α) ≥ − 2
t3

λn(Ω, αt)

in place of (2.25). If tk → t0 is a decreasing sequence, then for C = 2/t31 this implies

λn(t0Ω, α) ≤ λn(tkΩ, α)eC(tk−t0)

for all k ≥ 1 and all Ω, from which right continuity follows in the obvious way.
We now prove that λ∗

n(V, α) → ∞ as V → 0. By (2.6), this is equivalent to t2λ∗
n(1, α/t) → ∞ as t → ∞. Now

λ∗
n(1, α/t) ≥ λ∗

1(1, α/t) = λ1(B′, α/t),

where B′ is any ball of volume 1. Since λ1(B′, β) is concave in β with λ1(B′, 0) = 0, we have λ1(B′, α/t) ≥
λ1(B′, α)/t, so that

t2λ∗
n(1, α/t) ≥ t2λ1(B′, α/t) ≥ tλ1(B′, α) −→ ∞

as t → ∞. Finally, to show that λ∗
n(V, α) → 0 as V → ∞, or equivalently, t2λ∗

n(1, α/t) → 0 as t → 0, we simply
note that

t2λ∗
n(1, α/t) ≤ t2λ∗

n(1,∞) = C(N, n)t2 −→ 0

as t → 0, where λ∗
n(1,∞) is, as usual, the corresponding infimum for the Dirichlet problem. �

3. General description of the numerical optimisation procedure

The numerical solution of the shape optimisation problem is divided in two steps. At a first level we will
describe the application of the Method of Fundamental Solutions (MFS) to the calculation of Robin eigenvalues
for a fixed domain. Then, we will use a steepest descent method (e.g. [22]) to determine optimal domains for
each of the Robin eigenvalues.
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3.1. Numerical calculation of Robin eigenvalues using the MFS

We will consider the numerical optimisation of Robin eigenvalues in the class of sets Ξ which are built with
a finite number of star shaped and bounded planar domains. For simplicity, for now, assume that Ω ∈ Ξ has
only one connected component. Thus, Ω is isometric to a domain Ω∞ defined in polar coordinates by

Ω∞ = {(r, θ) : 0 < r < r∞(t)}

where

r∞(t) = a0 +
∞∑

i=1

(ai cos(iθ) + bi sin(iθ)) .

Now we consider the approximation

r∞(t) ≈ rM (t) := a0 +
M∑
i=1

(ai cos(iθ) + bi sin(iθ)) , (3.1)

for a given M ∈ N and the approximated domain ΩM defined by

ΩM = {(r, θ) : 0 < r < rM (t)} . (3.2)

Now we describe how to apply the MFS for the calculation of Robin eigenvalues of ΩM . We take the fundamental
solution of the Helmholtz equation

Φλ(x) =
i

4
H

(1)
0 (

√
λ ‖x‖) (3.3)

where ‖.‖ denotes the Euclidean norm in R2 and H
(1)
0 is the first Hänkel function. An eigenfunction solving the

eigenvalue problem (2.1) is approximated by a linear combination

u(x) ≈ ũ(x) =
Np∑
j=1

βjφj(x), (3.4)

where
φj(x) = Φλ(x − yj) (3.5)

are Np point sources centered at some points yj placed on an admissible source set which does not intersect Ω̄
(e.g. [1]). Each of the point sources φj satisfies the partial differential equation of the eigenvalue problem and
thus, by construction, the MFS approximation also satisfies the partial differential equation of the problem.
We take Np collocation points xi, i = 1, . . . , Np almost equally spaced on ∂ΩM and for each of these points
we determine the outward unitary vector ni which is normal to the boundary at xi. The source points yi are
calculated by

yi = xi + γ ni, i = 1, . . . , Np (3.6)

where γ is a constant (see [1] for details). This choice of collocation and source points is illustrated in Figure 1
where the collocation points on the boundary and the source points are shown in black and grey, respectively.
The coefficients in the MFS approximation (3.4) are determined by imposing the boundary conditions of the
problem at the collocation points,

∂ũ

∂ν
(xi) + αũ(xi) = 0, i = 1, . . . , Np.

This leads to a linear system
A(λ) · −→β =

−→
0 , (3.7)
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Figure 1. The collocation and source points.

where
Ai,j(λ) =

∂φj

∂ν
(xi) + αφj(xi), i, j = 1, . . . , Np,

writing
−→
β =

[
β1 . . . βNp

]T and
−→
0 = [0 . . . 0]T . As in [1], we calculate the approximations for the eigenvalues by

determining the values of λ such that the system (3.7) has non trivial solutions.

3.2. Numerical shape optimisation

Now we will describe the algorithm for the numerical solution of shape optimisation problem associated with
the Robin eigenvalues. Each vector C := (a0, a1, . . . , aM , b1, b2, . . . , bM ) defines a domain using (3.1) and (3.2).
The optimisation problems are solved by considering each Robin eigenvalue as a function of C, λn(C), and
determining optimal vectors C. Now we note that we must take into account the area constraint in problem
(2.3). For each vector C we define a corresponding normalised vector Ĉ given by

Ĉ =
C

|ΩM | 12
·

The domain associated to Ĉ has unit area. Now, for each component of the vector C, we define an approximation
for the derivative of a Robin eigenvalue with respect to this component, given simply by a finite difference

λ′
n,i =

λn

(
P̂i

)
− λn

(
Ĉ
)

ε
,

for a small value ε, where Pi = Ĉ + ε ei, i = 1, . . . , 2M + 1 and e1 = [1 0 . . . 0]T , e2 = [0 1 0 0 . . . 0]T ,
e3 = [0 0 1 0 . . . 0]T , . . . We then build the approximation of the gradient

dn =
[
λ′

n,1 λ′
n,2 . . . λ′

n,2M+1

]T

which defines the searching direction for the steepest descent method. We start by defining C0 = Ĉ and calculate
the next points Cn+1 solving the minimisation problem

Minx λn

(
̂Cn − xdn

)
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using the golden ratio search (e.g. [1]). Once we have calculated the optimal step length δ we define

Cn+1 = ̂Cn − δdn, n = 0, 1, . . .

An alternative procedure would be to apply an optimisation numerical method similar to that studied in [9],
considering the area constraint.

3.2.1. Multiple eigenvalues in the optimisation process

As in [2], in the optimisation process we must deal with multiple eigenvalues. For each n, we start minimising
λn

(
Ĉ
)

and once we obtain

λn

(
Ĉ
)
− λn−1

(
Ĉ
)
≤ θ,

for a small value θ < 1, we modify the function to be minimised and try to minimise

λn

(
Ĉ
)
− ωn−1 log

(
λn

(
Ĉ
)
− λn−1

(
Ĉ
))

for a sequence of constants ωn−1 ↘ 0. Then, once we obtain

λn

(
Ĉ
)
− λn−1

(
Ĉ
)
≤ θ and λn−1

(
Ĉ
)
− λn−2

(
Ĉ
)
≤ θ,

we change the function to be minimised to

λn

(
Ĉ
)
− ωn−1 log

(
λn

(
Ĉ
)
− λn−1

(
Ĉ
))

− ωn−2 log
(
λn−1

(
Ĉ
)
− λn−2

(
Ĉ
))

for suitable choice of constants ωn−1, ωn−2 ↘ 0 and continue applying this process, adding more eigenvalues to
the linear combination defining the function to be minimised until we find the optimiser and the multiplicity of
the corresponding eigenvalue.

3.2.2. The case of disconnected domains

In the case for which we have a set consisting of several connected components, we simply consider a vector C
defining each component, such that the sum of the areas is equal to one and then perform optimisation on these
vectors as described above. The application of the MFS in this case is straightforward, considering collocation
points uniformly distributed on the boundary of each of the components and for each of these collocation
points, calculate a source point by (3.6). Note that the parametrisation of domains that we considered limits
the possible shapes to finite unions of star-shaped components. We know that each domain Ω∗

k has at most k
connected components (see Rem. 2.2) and thus, in the shape optimisation of λk, there is only a finite number
of possibilities for building an optimal disconnected domain. These were studied exhaustively, working with a
fixed number of connected components at each step and using the Wolf–Keller type result above (Thm. 2.4) to
test the numerical results obtained. This process becomes more difficult for higher eigenvalues and in that case
it might be preferable to use a level set method, as in [23], for instance.

4. Numerical results

In this section we will present the main results obtained from our numerical study on the minimisation of
the first seven Robin eigenvalues for domains with unit area. We will write Bn as shorthand for the domain of
unit area composed of n equal balls. It is well known that the first and second Robin eigenvalues are minimised
by B1 and B2, respectively. Figure 2 shows the evolution of the optimal values of λ1 and λ2, as a function of
the Robin parameter α.

In Figure 3 we plot the optimal value of λ3. We can observe that there are two types of optimal domains
depending on the value of α. More precisely, for α ≤ α3 ≈ 14.51236, the third Robin eigenvalue is minimised
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Figure 3. Robin optimisers for λ3.

by B3, while for α ≥ α3, the ball B1 seems to be the minimiser. In particular, for α = α3 uniqueness of
the minimiser appears to fail, the optimal value of λ3 being attained by both domains. Note also that in the
asymptotic case when α → ∞ this result agrees with the conjecture that the ball is the Dirichlet minimiser of
the third eigenvalue (cf. [14, 28]).

While for λ3, the Dirichlet minimiser is also the Robin minimiser for α ≥ α3, the situation is different for
higher eigenvalues. In Figure 5-left we plot results for the minimisation of λ4. We have marked with a dashed
line the curve associated with the fourth Robin eigenvalue of the Dirichlet minimiser which is conjectured to be
the union of two balls whose radii are in the ratio

√
j0,1/j1,1, where j0,1 and j1,1 are respectively the first zeros

of the Bessel functions J0 and J1 (e.g. [14]). We can observe, as was to be expected, that it is not optimal. The
solid curve below it also corresponds to domains built with two balls with different areas, but whose optimal
ratio of the areas depends on the Robin parameter α. It is this family of domains which appears to be minimal
for larger α. Again we have a value α4 ≈ 16.75743 for which α ≤ α4 implies that the minimiser is B4. In Figure 4
we plot the area of the largest ball in the optimal set Ω∗

4 , as a function of α ∈ [α4, 100]. We marked with a

dashed line the asymptotic case of the Dirichlet optimiser for which this quantity is equal to
j2
1,1

j2
0,1+j2

1,1
≈ 0.7174.

In Figure 5-right we show results for the minimisation of λ5. The curve corresponding to the Dirichlet minimiser
found in [2] is again marked with a dashed line and the dotted line below it represents a family of domains of a
very similar shape, deforming slowly, which appear to be optimisers at their respective values of α ≥ α∗ ≈ 40.
Then, for α5 ≤ α ≤ α∗, where α5 ≈ 18.73537, the minimiser is a set composed by a big ball and two small balls
of the same area, which corresponds to a union of scaled copies of B1 and B2, and where again the optimal
ratio of these two areas depends on α. For α ≤ α5, λ5 is minimised by B5.

In Figure 6-left we plot the results for the minimisation of λ6. The curve corresponding to the Dirichlet
minimiser is again marked with a dashed line, while the Robin optimisers for large α, again close to their
Dirichlet counterpart, are marked as a sequence of points below it. For some smaller values of α it appears that
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Figure 5. Robin optimisers of λ4 and λ5.

two balls of the same area are the minimiser and for α ≤ α6 ≈ 20.52358, λ6 is minimised by B6. Figure 6-right
shows a zoom of the previous figure in the region obtained for α ∈ [10, 40]. We can observe that there is a
particular value of α for which the three curves associated to unions of balls have an intersection. For this
particular α we have three distinct optimisers.

Finally, in Figure 7 we show the results for the minimisation of λ7. Again the dashed curve is associated to
the Dirichlet minimiser and the points below it the optimal values obtained for some domains which are very
similar to the Dirichlet optimiser.

It is interesting to note that for the region associated with α ≤ 100 which is plotted in the figure we have
a family of domains whose curve is below the curve associated to the type of domains which are very similar
to the Dirichlet optimiser. In the spirit of our Wolf–Keller type theorem (Thm. 2.4), this curve corresponds to
sets built with an optimiser of λ6 and a small ball, which is an optimiser for λ1. Since the Dirichlet optimiser
is connected (cf. [2]), we expect that for some α > 100 the value obtained for this type of domain will become
larger than the value obtained for domains similar to the Dirichlet minimiser, and indeed, testing the algorithm
for α = 300, we find that the optimal domain is connected. For α ≤ α7 ≈ 22.167800, the minimiser is B7, while
for α = α7 we have three different types of optimal unions of balls.
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Figure 6. Robin optimisers for λ6 and a zoom of the region associated with α ∈ [10, 40].
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Figure 7. Robin optimisers for λ7.
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4.1. Optimal unions of balls

The above results suggest that the minimiser of λn in two dimensions and for small α consists of the set Bn

formed by n equal balls, and that this situation changes when the line corresponding to Bn intersects the line
corresponding to n − 3 equal balls with the same radius and a larger ball, that is, a union of scaled copies of
Bn−3 and B1. The following lemma gives the value at which this intersection takes place in terms of the root
of an equation involving Bessel functions, showing that, for dimension N , this value grows with n1/N .

Lemma 4.1. Consider the Robin problem for domains in RN of volume V . The value αn for which the nth
eigenvalue of n equal balls equals the nth eigenvalue of the set formed by n − (N + 1) equal balls with the same
radius as before and a larger ball is given by

αn = γ0

JN
2
(γ0)

JN
2 −1(γ0)

(nωN

V

)1/N

,

where γ0 is the smallest positive solution of the equation

JN
2 −1(γ)JN

2
(CNγ) − CNγJN

2 −1(γ)JN
2 +1(CNγ) + CNγJN

2
(γ)JN

2
(CNγ) = 0, (4.1)

with CN = (N + 1)1/N .

Proof. The first eigenvalue of Bn, say λ, has multiplicity n and is given by the smallest positive solution of the
equation √

λJN
2

(√
λr1

)
− αJN

2 −1

(√
λr1

)
= 0,

where r1 is the radius of each ball, given by (V/(nωN ))1/N . If the smaller balls of the domain formed by
n − (N + 1) equal balls and a larger ball all have radius r1, then the larger ball will have volume (N + 1)V/n
and radius r2 = CNr1. We thus have that λ equals the nth eigenvalue of this second domain, provided that the
second eigenvalue of the larger ball, which has multiplicity N , also equals λ. This is now given by the smallest
positive solution of the equation

(1 + αr2)JN
2

(√
λr2

)
− r2

√
λJN

2 +1

(√
λr2

)
= 0.

Writing γ =
√

λr1, we see that we want to find γ which is a solution of⎧⎪⎨⎪⎩
(

1 + α√
λ

CNγ

)
JN

2
(CNγ) − CNγJN

2 +1(CNγ) = 0

√
λJN

2
(γ) − αJN

2 −1(γ) = 0.

Solving with respect to α/
√

λ in the second of these equations, and replacing the expression obtained in the
first equation yields the desired result. �

In the case of dimension two, equation (4.1) reduces to

J0(γ)J1(
√

3γ) −
√

3γJ0(γ)J2(
√

3γ) +
√

3γJ1(γ)J1(
√

3γ) = 0

whose first positive zero is γ0 ≈ 1.97021, yielding αn ≈ 8.37872
√

n. Table 1 shows the corresponding values of
λn for n between 3 and 10, together with the different possible unions of balls which also give the same nth
eigenvalue for α = αn.

The above numerical results together with Lemma 4.1 suggest that, at least in dimension two, given a fixed
value of α there will always exist n∗ sufficiently large such that the minimiser for λn is Bn for all n greater
than n∗.
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Table 1. Optimisers in dimension 2 for α = αn, n = 3, . . . , 10.

n αn Minimisers for α = αn

3 14.51236

4 16.75743

5 18.73537

6 20.52358

7 22.16800

8 23.69859

9 25.13615

10 26.49583
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Figure 8. Numerical values for bound (2.13) with n=1,2,. . . ,6.

4.2. Verification of numerical results using (2.13)

As a test of the plausibility of our numerical results, we finish by computing the error in bound (2.13) for
the case N = 2 and V = 1. This is shown in Figure 8 where we have plotted the quantity

λ∗
n+1 − λ∗

n − π λ1

(
B1,

( |B∗|
1 + |B∗|

) 1
2

π− 1
2 α

)

as a function of α, for n=1,2,. . . ,6, which according to (2.13) must always be negative.

5. Discussion

By combining computational and analytical techniques we were able to address the problem of optimizing
Robin eigenvalues of the Laplacian, obtaining results for the full frequency range and in general dimensions.
The application of the MFS to Robin problems provided a fast reliable method with which to apply a gradient-
type optimization algorithm, yielding minimizers for positive boundary parameters α and up to λ7. From this
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we conclude that, except for the first two eigenvalues, optimizers will depend on the boundary parameter and
approach the Dirichlet optimizer as α goes to infinity.

In order to address issues related to the connectedness of minimizers we derived a Wolf–Keller type result
for Robin problems which is also useful to identify points where there are multiple optimizers and transitions
between different branches occur. In particular, as α decreases (while keeping the volume fixed), optimizers
tend to become disconnected, in contrast with the limitting Dirichlet case. From the numerical simulations and
the analysis of the transition point between the nth eigenvalue of n equal balls and that of n − (N + 1) equal
balls and a larger ball, we conjecture that for each n there exists a transition point, say αn, below which the
optimizer for λn consists of n equal balls and that αn grows with n1/N .

Finally, we were able to show that optimizers do not follow Weyl’s law for the high frequencies, growing at
most with n1/N , as opposed to the asymptotics for a fixed domain whose leading term is of order n2/N . As far
as we are aware, it is the first time that such behaviour has been identified.
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