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Γ -LIMITS OF CONVOLUTION FUNCTIONALS
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Abstract. We compute the Γ -limit of a sequence of non-local integral functionals depending on a
regularization of the gradient term by means of a convolution kernel. In particular, as Γ -limit, we
obtain free discontinuity functionals with linear growth and with anisotropic surface energy density.
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1. Introduction

As it is well known, many variational problems which are recently under consideration, arising for instance
from image segmentation, signal reconstruction, fracture mechanics and liquid crystals, involve a free disconti-
nuity set (according to a terminology introduced in [19]). This means that the variable function u is required to
be smooth outside a surface K, depending on u, and both u and K enter the structure of the functional, which
takes the form given by

F(u,K) =
∫

Ω\K

φ(|∇u|) dx +
∫

K∩Ω

θ(|u+ − u−|, νK) dHn−1,

being Ω an open subset of R
n, K is a (n − 1)-dimensional compact subset of R

n, |u+ − u−| the jump of
u across K, νK the normal direction to K, while φ and θ given positive functions, whereas Hn−1 denotes the
(n− 1)-dimensional Hausdorff measure.

The classical weak formulation for such problems can be obtained considering K as the set of the discontinu-
ities of u and thus working in the space of functions with bounded variation. More precisely, the aforementioned
weak form of F takes on BV (Ω) the general form

F(u) =
∫

Ω

φ(|∇u|) dx +
∫

Su

θ(|u+ − u−|, νu) dHn−1 + c0|Dcu|(Ω), (1.1)

where Du = ∇uLn +(u+−u−)Hn−1 +Dcu is the decomposition of the measure derivative of u in its absolutely
continuous, jump and Cantor part, respectively, Su denotes the set of discontinuity points of u, and νu is a
choice of the unit normal at Su.
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The main difficulty in the actual minimization of F comes from the surface integral∫
Su

θ(|u+ − u−|, νu) dHn−1,

which makes it necessary to use suitable approximations guaranteeing the convergence of minimum points and
naturally leads to Γ -convergence.

As pointed out in [10], it is not possible to obtain a variational approximation for F by the typical integral
functionals

Fε(u) =
∫

Ω

fε(∇u) dx

defined on some Sobolev spaces. Indeed, when considering the lower semicontinuous envelopes of these func-
tionals, we would be lead to a convex limit, which conflicts with the non-convexity of F .

Heuristic arguments suggest that, to get rid of the difficulty, we have to prevent that the effect of large
gradients is concentrated on small regions. Several approximation methods fit this requirements. For instance
in [7, 12, 24] the case where the functionals Fε are restricted to finite elements spaces on regular triangulations
of size ε is considered. In [1,2,23] the implicit constraint on the gradient through the addition of a higher order
penalization is investigated. Moreover, it is important to mention the Ambrosio and Tortorelli approximation
(see [3, 4]) of the Mumford–Shah functional via elliptic functionals.

The study of non-local models, where the effect of a large gradient is spread onto a set of size ε, was first
introduced by Braides and Dal Maso in order to approximate the Mumford–Shah functional (see [10] and
also [11, 13–16]) by means of the family

Fε(u) =
1
ε

∫
Ω

f

(
ε

∫
Bε(x)∩Ω

|∇u|2 dy
)

dx, u ∈ H1(Ω), (1.2)

where, for instance, f(t) = t∧ 1/2 and Bε(x) denotes the ball of centre x and radius ε. A variant of the method
proposed in [10] has been used in [22] to deal with the approximation of a functional F of the form (1.1), with φ
having linear growth and θ independent on the normal νu (see also [20, 21]). More precisely, in [22] the Γ -limit
of the family

Fε(u) =
1
ε

∫
Ω

f

(
ε

∫
Bε(x)∩Ω

|∇u| dy
)

dx, u ∈W 1,1(Ω),

for a suitable concave function f , is computed.
In [25] (see also [13]) the case of an anisotropic variant of (1.2) has been considered. In particular it is proven

that the family

Fε(u) =
1
ε

∫
Ω

f
(
ε|∇u|p ∗ ρε

)
dx, u ∈ H1(Ω), p > 1,

Γ -converges to an anisotropic version of the Mumford–Shah functional.
In this paper we investigate the Γ -convergence of the family

Fε(u) =
1
ε

∫
Ω

fε

(
ε|∇u| ∗ ρε

)
dx, u ∈ W 1,1(Ω),

where the family (fε)ε>0 satisfies some conditions. The main difficulty to overcome is the estimate from below
for the lower Γ -limit in terms of the surface part, while the contribution arising from the volume and Cantor
parts has been treated along the same line of the argument already exploited in [25]. The estimate from above
has been achieved by density and relaxation arguments. We prove that the Γ -limit, in the strong L1-topology,
is given by

F(u) =
∫

Ω

φ(|∇u|) dx +
∫

Su

θ(|u+ − u−|, νu) dHn−1 + c0|Dcu|(Ω),
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where φ(t) ∼ 1
εfε(εt), as ε → 0+, is a convex and non-decreasing function with φ(0) = 0 and with φ(t)/t →

c0 > 0 as t→ +∞; moreover,

θ(s, ν) = inf
{

lim inf
j→+∞

1
εj

∫
Qν

f(εj |∇uj | ∗ ρεj ) dx : (uj) ∈W 0,s
ν , εj → 0+

}
,

being f the uniform limit, on compact subsets of [0,+∞), of fε, W a,b
ν the space of all sequences on the cylinder

Qν = {x ∈ R
n : |〈x, ν〉| ≤ 1, the orthogonal projection of x onto ν⊥ belongs to the unit ball},

which converge, shrinking onto the interface, to the function that jumps from a to b around the origin
(see Sect. 3.1 for details).

In Section 7 we have been able to show that the method used in [22] to write θ in a more explicit form works
only if n = 1. In the case n > 1 such an argument does not work. Let us briefly discuss the reason. Without loss
of generality we can suppose ν = e1. Let P⊥

C be the orthogonal projection of C onto {x1 = 0}. Denote by X
the space of all functions v ∈ W 1,1

loc (R × P⊥
C ) which are non-decreasing in the first variable and such that there

exist ξ0 < ξ1 with v(x) = 0 if x1 < ξ0 and v(x) = s if x1 > ξ1. Then, exploiting the same argument as in [22],
we have θ(s, e1) ≥ infX G, where

G(v) =
∫ +∞

−∞
f

(∫
C(se1)

∂1v(z)ρ(z − te1) dz
)

dt.

The estimate θ(s, e1) ≥ infX G turns out to be optimal if infX G = infY G, where Y is the space of all
functions v ∈ X such that v depends only on the first variable. This is due to the fact that proving the
inequality θ(s, e1) ≥ infX G we lose control on all the derivatives ∂iv for any i = 2, . . . , n. In the case C = B1

and ρ = 1
ωn

χB1 , treated in [22], one is able to prove that infX G = infY G computing directly infX G by a
discretization argument (see Prop. 5.7 in [22]). In general, infX G = infY G does not hold. Indeed proceeding at
first as in the proof of Proposition 5.6 in [22], one is able to show that for any C ⊂ R2 open, bounded, convex
and symmetrical set (i.e.C = −C) and for ρ = 1

|C|χC , it holds

inf
Y
G =

∫ h1

−h1

f

(
s

|C|H
1(C ∩ {z1 = t}

)
dt. (1.3)

Now if C is the parallelogram C = {(x, y) ∈ R2 : −2 ≤ y ≤ 2, x− 1 ≤ y ≤ x+ 1} applying (1.3), we get

inf
Y
G = 2f

(
2s
|C|
)

+ 2
∫ 2

0

f

(
sr

|C|
)

dr.

If we compute G on the function w given by

w(x, y) =
{

0 if y > x− 1
s if y ≤ x− 1,

(to do this we notice that the functional G makes sense also on BVloc(R×(−2, 2)) writing D1v instead of ∂1v dz)
we obtain

G(w) = 2f
(

4s
|C|
)
·

If f is strictly concave then

G(w) < 2f
(

2s
|C|
)

+ 2f
(

2s
|C|
)
< 2f

(
2s
|C|
)

+ 2
∫ 2

0

f

(
sr

|C|
)

dr = inf
Y
G.

By a density argument we deduce that infX G < infY G.
As a conclusion, it seems that for a generic anisotropic convolution kernel ρε the expression for θ can not be

further simplified when n > 1.
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2. Notation and preliminaries

We will denote by Lp(Ω) and by W k,p(Ω), for k ∈ N, k ≥ 1, and for 1 ≤ p ≤ +∞, respectively the classical
Lebesgue and Sobolev spaces on Ω. The Lebesgue measure of a measurable set A ⊂ Rn will be denoted by |A|,
whereas the Hausdorff measure of A of dimension m < n will be denoted by Hm(A). The ball centered in x with
radius r will be denoted by Br(x), while Br stands for Br(0); moreover, we will use the notation S

n−1 for the
boundary of B1 in Rn. The volume of the unit ball in Rn will be denoted by ωn, with the convention ω0 = 1.
Finally A(Ω) denotes the set of all open subsets of Ω.

2.1. Functions of bounded variation

For a thorough treatment of BV functions we refer the reader to [5]. Let Ω be an open subset of Rn. We
recall that the space BV (Ω) of real functions of bounded variation is the space of the functions u ∈ L1(Ω)
whose distributional derivative is representable by a measure in Ω, i.e.∫

Ω

u
∂ϕ

∂xi
dx = −

∫
Ω

ϕdDiu, ∀ϕ ∈ C∞
c (Ω), ∀i = 1, . . . , n,

for some Rn-valued measure Du = (D1u, . . . , Dnu) on Ω. We say that u has approximate limit at x ∈ Ω if there
exists z ∈ R such that

lim
r→0+

∫
Br(x)

|u(y) − z| dy = 0.

The set Su where this property fails is called approximate discontinuity set of u. The vector z is uniquely
determined for any point x ∈ Ω\Su and is called the approximate limit of u at x and denoted by ũ(x). We say
that x is an approximate jump point of the function u ∈ BV (Ω) if there exist a, b ∈ R and ν ∈ Sn−1 such that
a �= b and

lim
r→0+

∫
B+

r (x,ν)

|u(y) − a| dy = 0, lim
r→0+

∫
B−

r (x,ν)

|u(y) − b| dy = 0, (2.1)

where B+
r (x, ν) = {y ∈ Br(x) : 〈y − x, ν〉 > 0} and B−

r (x, ν) = {y ∈ Br(x) : 〈y − x, ν〉 < 0}. The set of
approximate jump points of u is denoted by Ju. The triplet (a, b, ν), which turns out to be uniquely determined
up to a permutation of a and b and a change of sign of ν, is usually denoted by (u+(x), u−(x), νu(x)). On Ω \Su

we set u+ = u− = ũ. It turns out that for any u ∈ BV (Ω) the set Su is countably (n − 1)-rectifiable and
Hn−1(Su \ Ju) = 0. Moreover,

Du Ju = (u+ − u−)νuHn−1 Ju

and νu(x) gives the approximate normal direction to Su for Hn−1-a.e. x ∈ Su.

For a function u ∈ BV (Ω) let Du = Dau + Dsu be the Lebesgue decomposition of Du into absolutely
continuous and singular part. We denote by ∇u the density of Dau; the measures Dju := Dsu Ju and
Dcu := Dsu (Ω \ Su) are called the jump part and the Cantor part of the derivative, respectively. It holds
Du = ∇uLn + (u+ − u−)νuHn−1 Ju + Dcu. Let us recall the following important compactness theorem in
BV (see Thm. 3.23 and Prop. 3.21 in [5]):

Theorem 2.1. Let Ω be a bounded open subset of Rn with Lipschitz boundary. Every sequence (uh) in BV (Ω)
which is bounded in BV (Ω) admits a subsequence converging in L1(Ω) to a function u ∈ BV (Ω).

We say that a function u ∈ BV (Ω) is a special function of bounded variation, and we write u ∈ SBV (Ω), if
|Dcu|(Ω) = 0. We say that a function u ∈ L1(Ω) is a generalized function of bounded variation, and we write
u ∈ GBV (Ω), if uT := (−T ) ∨ u ∧ T belongs to BV (Ω) for every T ≥ 0. If u ∈ GBV (Ω), the function ∇u
given by

∇u = ∇uT a.e. on {|u| ≤ T } (2.2)



490 L. LUSSARDI AND A. MAGNI

turns out to be well-defined. Moreover, the set function T �→ SuT is monotone increasing; therefore, if we set
Su =

⋃
T>0 JuT , for Hn−1-a.e.x ∈ Su we can consider the functions of T given by (uT )−(x), (uT )+(x), νuT (x).

It turns out that

u−(x) = lim
T→+∞

(uT )−(x), u+(x) = lim
T→+∞

(uT )+(x), νu(x) = lim
T→+∞

νuT (x) (2.3)

are well-defined for Hn−1-a.e.x ∈ Su Finally, for a function u ∈ GBV (Ω), let |Dcu| be the supremum, in the
sense of measures, of |DcuT | for T > 0. It can be proved that for any Borel subset B of Ω

|Dcu|(B) = lim
T→+∞

|DcuT |(B). (2.4)

2.2. Slicing

In order to obtain the estimate from below of the lower Γ -limit (see next paragraph) we need some basic
properties of one-dimensional sections of BV -functions. We first introduce some notation. Let ξ ∈ Sn−1, and let
ξ⊥ be the vector subspace orthogonal to ξ. If y ∈ ξ⊥ and E ⊆ R

n we set Eξ,y = {t ∈ R : y+ tξ ∈ E}. Moreover,
for any given function u : Ω → R we define uξ,y : Ωξ,y → R by uξ,y(t) = u(y + tξ). For the results collected in
the following theorem see [5], Section 3.11.

Theorem 2.2. Let u ∈ BV (Ω). Then uξ,y ∈ BV (Ωξ,y) for every ξ ∈ Sn−1 and for Hn−1-a.e. y ∈ ξ⊥. For
such values of y we have u′ξ,y(t) = 〈∇u(y + tξ), ξ〉 for a.e. t ∈ Ωξ,y and Juξ,y

= (Ju)ξ,y, where u′ξ,y denotes the
absolutely continuous part of the measure derivative of uξ,y. Moreover, for every open subset A of Ω we have∫

ξ⊥
|Dcuξ,y|(Aξ,y) dHn−1(y) = |〈Dcu, ξ〉|(A).

2.3. Γ -convergence

For the general theory see [9, 18]. Let (X, d) be a metric space. Let (Fj) be a sequence of functions X → R.
We say that (Fj) Γ -converges, as j → +∞, to F : X → R, if for all u ∈ X we have:

(a) for every sequence (uj) converging to u it holds

F(u) ≤ lim inf
j→+∞

Fj(uj);

(b) there exists a sequence (uj) converging to u such that

F(u) ≥ lim sup
j→+∞

Fj(uj).

The lower and upper Γ -limits of (Fj) in u ∈ X are defined as

F ′(u) = inf
{

lim inf
j→+∞

Fj(uj) : uj → u
}
, F ′′(u) = inf

{
lim sup
j→+∞

Fj(uj) : uj → u
}

respectively. We extend this definition of convergence to families depending on a real parameter. Given a family
(Fε)ε>0 of functionsX → R, we say that it Γ -converges, as ε→ 0, to F : X → R if for every positive infinitesimal
sequence (εj) the sequence (Fεj ) Γ -converges to F . If we define the lower and upper Γ -limits of (Fε) as

F ′(u) = inf
{
lim inf

ε→0
Fε(uε) : uε → u

}
, F ′′(u) = inf

{
lim sup

ε→0
Fε(uε) : uε → u

}
respectively, then (Fε) Γ -converges to F in u if and only if F ′(u) = F ′′(u) = F(u). It turns out that both F ′

and F ′′ are lower semicontinuous on X . In the estimate of F ′ we shall use the following immediate consequence
of the definition:

F ′(u) = inf
{

lim inf
j→+∞

Fεj (uj) : εj → 0+, uj → u

}
.

It turns out that the infimum is attained.
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An important consequence of the definition of Γ -convergence is the following result about the convergence
of minimizers (see e.g. [18], Cor. 7.20):

Theorem 2.3. Let Fj : X → R be a sequence of functions which Γ -converges to some F : X → R; assume that
infv∈X Fj(v) > −∞ for every j. Let (σj) be a positive infinitesimal sequence, and for every j let uj ∈ X be a
σj-minimizer of Fj, i.e.

Fj(uj) ≤ inf
v∈X

Fj(v) + σj .

Assume that uj → u for some u ∈ X. Then u is a minimum point of F , and

F(u) = lim
j→+∞

Fj(uj).

Remark 2.4. The following property is a direct consequence of the definition of Γ -convergence: if Fε
Γ→ F

then Fε + G Γ→ F + G whenever G : X → R is continuous.

2.4. Supremum of measures

In order to prove the Γ -liminf inequality we recall the following useful tool, which can be found in [8].

Lemma 2.5. Let Ω be an open subset of Rn and denote by A(Ω) the family of its open subsets. Let λ be a
positive Borel measure on Ω, and μ : A(Ω) → [0,+∞) a set function which is superadditive on open sets with
disjoint compact closures, i.e. if A,B ⊂⊂ Ω and A ∩B = ∅, then

μ(A ∪B) ≥ μ(A) + μ(B).

Let (ψi)i∈I be a family of positive Borel functions. Suppose that

μ(A) ≥
∫

A

ψi dλ for every A ∈ A(Ω) and i ∈ I.

Then
μ(A) ≥

∫
A

sup
i
ψi dλ for every A ∈ A(Ω).

2.5. A density result

The right bound for the upper Γ -limit from above will be first obtained for a suitable dense subset of SBV (Ω).
More precisely, let W(Ω) be the space of all functions w ∈ SBV (Ω) such that

(a) Hn−1(Sw \ Sw) = 0;
(b) Sw is the intersection of Ω with the union of a finite member of (n− 1)-dimensional simplexes;
(c) w ∈W k,∞(Ω \ Sw) for every k ∈ N.

Theorem 3.1 in [17] gives us the density property of W(Ω) we need; here

SBV 2(Ω) = {u ∈ SBV (Ω) : |∇u| ∈ L2(Ω), Hn−1(Su) < +∞}.
Theorem 2.6. Assume that ∂Ω is Lipschitz. Let u ∈ SBV 2(Ω) ∩ L∞(Ω). Then there exists a sequence (wh)
in W(Ω) such that wh → u strongly in L1(Ω), ∇wh → ∇u strongly in L2(Ω,Rn), with lim suph→+∞ ‖wh‖∞ ≤
‖u‖∞ and such that

lim sup
h→+∞

∫
Swh

ψ(w+
h , w

−
h , νwh

) dHn−1 ≤
∫

Su

ψ(u+, u−, νu) dHn−1

for every upper semicontinuous function ψ such that ψ(a, b, ν) = ψ(b, a,−ν) whenever a, b ∈ R and ν ∈ Sn−1.
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2.6. A relaxation result

To conclude this section we prove a relaxation result which will be used in the sequel. Recall that given X be
a topological space and F : X → R ∪ {±∞}, the relaxed functional of F , denoted by F , is the largest lower
semicontinuous functional which is smaller than F .

Theorem 2.7. Let φ : [0,+∞) → [0,+∞) be a convex, non-decreasing and lower semicontinuous function with
φ(0) = 0 and with

lim
t→+∞

φ(t)
t

= c ∈ (0,+∞).

Let θ : [0,+∞) × S
n−1 → [0,+∞) be a lower semicontinuous function such that θ(s, ν) ≤ c′s for any (s, ν) ∈

[0,+∞) × Sn−1, for some c′ > 0. For any A ∈ A(Ω) let

F(u,A) =

⎧⎪⎨
⎪⎩
∫

A

φ(|∇u|) dx+
∫

Su∩A

θ(|u+ − u−|, νu) dHn−1 if u ∈ SBV 2(Ω) ∩ L∞(Ω)

+∞ otherwise in L1(Ω).

Then the relaxed functional of F with respect to the strong L1-topology satisfies

F(u) ≤
∫

Ω

φ(|∇u|) dx +
∫

Su

θ(|u+ − u−|, νu) dHn−1 + c|Dcu|(Ω)

for any u ∈ BV (Ω).

Proof. Combining a standard convolution argument with a well known relaxation result (see, for instance,
Thm. 5.47 in [5]) we can say that the relaxed functional of

G(u,A) =

⎧⎪⎨
⎪⎩
∫

A

φ(|∇u|) dx if u ∈ C1(Ω)

+∞ otherwise in L1(Ω)

is given by

G(u,A) =

⎧⎪⎨
⎪⎩
∫

A

φ(|∇u|) dx + c|Dsu|(A) if u ∈ BV (Ω)

+∞ otherwise in L1(Ω).

Since C1(Ω) ⊆ SBV 2(Ω) ∩ L∞(Ω) then we get F(u,A) ≤ G(u,A). Hence for any A ∈ A(Ω) and for any
u ∈ BV (Ω)

F(u,A) ≤
∫

A

φ(|∇u|) dx + c|Dsu|(A).

We can now conclude using the fact that for every u ∈ BV (Ω) the set function F(u, ·) is the trace on A(Ω) of
a regular Borel measure μ. This can be proven exactly along the same line of Proposition 3.3 in [6]. Hence

F(u) = μ(Ω) = μ(Ω \ Su) + μ(Ω ∩ Su) ≤
∫

Ω

φ(|∇u|) dx+ c|Dcu|(Ω) +
∫

Su

θ(|u+ − u−|, νu) dHn−1

which is what we wanted to prove. �
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3. Statement of the main results

Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. Let φ : [0,+∞) → [0,+∞) be a convex and
non-decreasing function with φ(0) = 0 and

lim
t→+∞

φ(t)
t

= c0 ∈ (0,+∞). (3.1)

For any ε > 0 let fε : [0,+∞) → [0,+∞) be such that:

(A1) fε is non-decreasing, continuous, with fε(0) = 0.

(A2) It holds lim
(ε,t)→(0,0)

fε(t)
εφ
(

t
ε

) = 1.

(A3) fε converges uniformly on the compact subsets of [0,+∞) to a concave function f .

Example 3.1. Given f and φ as above, a possible choice for fε satisfying A1–A3 is given by

fε(t) =
{
εφ
(

t
ε

)
if 0 ≤ t ≤ tε

f(t− tε) + εφ
(

tε

ε

)
if t > tε

where tε → 0, and tε/ε → +∞. The only non-trivial assumption to verify is A2. Since ε/tφ(t/ε) → c0 as
(ε, t) → (0, 0), with t ≥ tε, the check amounts to verify that

lim
(ε,t)→(0,0)

t≥tε

f(t− tε) + εφ
(

tε

ε

)
t

= c0.

This follows immediately from f(t− tε)/(t− tε) → c0 and ε/tεφ(tε/ε) → c0 as (ε, t) → (0, 0), and t ≥ tε.

Let C ⊂ Rn be open, bounded, and connected with 0 ∈ C. Let ρ : C → (0,+∞) be a continuous and bounded
convolution kernel with ∫

C

ρ dx = 1.

For any ε > 0 and for any x ∈ Rn we will denote by Cε(x) the set x+ εC. For any x ∈ εC let

ρε(x) =
1
εn
ρ
(x
ε

)
·

We consider the family (Fε)ε>0 of functionals L1(Ω) → [0,+∞] defined by

Fε(u) =

⎧⎪⎨
⎪⎩

1
ε

∫
Ω

fε(ε|∇u| ∗ ρε) dx if u ∈W 1,1(Ω)

+∞ otherwise in L1(Ω)

(3.2)

where, for any x ∈ Ω,

|∇u| ∗ ρε(x) =
∫

Cε(x)∩Ω

|∇u(y)|ρε(y − x) dy (3.3)

is a regularization by convolution of |∇u| by means of the kernel ρε.

Remark 3.2. Notice that with the choice C = B1 and ρ = 1
ωn

χB1 we get

|∇u| ∗ ρε(x) =
∫

Bε(x)∩Ω

|∇u| dy

and thus the family (Fε)ε>0 reduces to the case already investigated in [20–22].
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In order to prove the Γ -convergence of Fε it is convenient to introduce a localized version of Fε: more
precisely, for each A ∈ A(Ω) we set

Fε(u,A) =

⎧⎪⎨
⎪⎩

1
ε

∫
A

fε(ε|∇u| ∗ ρε) dx if u ∈W 1,1(Ω)

+∞ otherwise in L1(Ω).

(3.4)

Clearly, Fε

(·, Ω) coincides with the functional Fε defined in (3.2). The lower and upper Γ -limits of
(Fε(·, A)

)
will be denoted by F ′(·, A) and F ′′(·, A), respectively.

3.1. The anisotropy

In this paragraph we define the surface density

θ : [0,+∞) × S
n−1 → [0,+∞)

which will appear in the expression of the Γ -limit of Fε.
Given ν ∈ Sn−1 and a, b ∈ R let us denote by ua,b

ν the function Rn → R given by

ua,b
ν (x) =

{
a if 〈x, ν〉 < 0
b if 〈x, ν〉 ≥ 0.

For any x ∈ Rn and any ν ∈ Sn−1 let P⊥
ν (x) be the orthogonal projection of x onto the subspace ν⊥ = {x ∈

Rn : 〈x, ν〉 = 0}. We define the cylinder

Qν = {x ∈ R
n : |〈x, ν〉| ≤ 1, P⊥

ν (x) ∈ B1 ∩ ν⊥}.
Given Ω′ ⊂ Rn with Qν ⊂⊂ Ω′ denote by W a,b

ν the space of all sequences (uj) in W 1,1
loc (Ω′) such that uj → ua,b

ν

in L1(Ω′), and such that there exist two positive infinitesimal sequences (aj), (bj) with uj(x) = a if 〈x, ν〉 < −aj

and uj = b if 〈x, ν〉 > bj . Let

θ(s, ν) =
1

ωn−1
inf
{

lim inf
j→+∞

1
εj

∫
Qν

f(εj |∇uj| ∗ ρεj ) dx : (uj) ∈ W 0,s
ν , εj → 0+

}
. (3.5)

Notice that θ(s, ν) does not depend on the choice of Ω′. Let us collect some easy properties of θ which imme-
diately descend from the definition.

Lemma 3.3. The following properties hold:

θ is continuous. (3.6)

θ(s, ν) = θ(s,−ν), ∀s ≥ 0, ∀ν ∈ S
n−1. (3.7)

inf
{

lim inf
j→+∞

1
εj

∫
Qν

f(εj |∇uj | ∗ ρεj ) dx : (uj) ∈ W 0,s
ν , εj → 0+

}

= inf
{

lim inf
j→+∞

1
εj

∫
Qν

f(εj|∇uj | ∗ ρεj ) dx : (uj) ∈W a,b
ν , εj → 0+

}
whenever |a− b| = s.

(3.8)

Moreover, for any x0 ∈ Rn, ν ∈ Sn−1 and s ≥ 0 we have

θ(s, ν) =
1

ωn−1
inf
{

lim inf
j→+∞

1
εj

∫
x0+Qν

f(εj|∇uj | ∗ ρεj ) dx : (uj(· − x0)) ∈W 0,s
ν , εj → 0+

}
. (3.9)
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3.2. Main results

We are now in position to state the main result of the paper.

Theorem 3.4. Let Fε be as in (3.2), with fε satisfying conditions A1–A3. Then Fε Γ -converges, with respect
to the strong L1-topology, as ε→ 0, to F : L1(Ω) → [0,+∞] given by

F(u) =

⎧⎨
⎩
∫

Ω

φ(|∇u|) dx+
∫

Su

θ(|u+ − u−|, νu) dHn−1 + c0|Dcu|(Ω) if u ∈ GBV (Ω)

+∞ otherwise in L1(Ω).

Remark 3.5. Notice that for any u ∈ GBV (Ω) the expression θ(|u+ − u−|, νu) turns out to be well defined
Hn−1-a.e.x ∈ Su, since (3.7) holds.

The proof of Theorem 3.4 will descend combining Proposition 5.10 (the Γ -liminf inequality) with
Proposition 6.3 (the Γ -limsup inequality).

As a typical consequence of a Γ -convergence result, we are able to prove a result of convergence of minima
by means of the following compactness result for equibounded (in energy) sequences, which will be proved in
Section 4.

Theorem 3.6. Let (εj) be a positive infinitesimal sequence, and let (uj) be a sequence in L1(Ω) such that
||uj ||∞ ≤ M, and such that Fεj (uj) ≤ M for some positive constant M independent of j. Then the sequence
(uj) converges, up to a subsequence, in L1(Ω) to a function u ∈ BV (Ω).

Theorem 3.7. Let (εj) be a positive infinitesimal sequence and let g ∈ L∞(Ω). For every u ∈ L1(Ω) and j ∈ N

let

Ij(u) = Fεj (u) +
∫

Ω

|u− g| dx, I(u) = F(u) +
∫

Ω

|u− g| dx.

For every j let uj ∈ L1(Ω) be such that
Ij(uj) ≤ inf

L1(Ω)
Ij + εj.

Then the sequence (uj) converges, up to a subsequence, to a minimizer of I in L1(Ω).

Proof. Since g ∈ L∞(Ω) and since Fεj decreases by truncation, we can assume that (uj) is equibounded in
L∞(Ω); for instance ||uj||∞ ≤ ||g||∞. Applying Theorem 3.6 there exists u ∈ BV (Ω) such that (up to a
subsequence) uj → u in L1(Ω). By Theorem 2.3, since (Ij) Γ -converges to I (see Thm. 3.4 and Rem. 2.4), u is
a minimum point of I on L1(Ω). �

4. Compactness

In this section we prove Theorem 3.6. Let us first recall a useful technical Lemma which can be found in [10],
Proposition 4.1. Actually such a proposition has been proved for |∇u|2, but, up to simple modifications, the
same proof works for |∇u|.

For every A ∈ A(Ω) and σ > 0 we set

Aσ = {x ∈ A : d(x, ∂A) > σ}.

Lemma 4.1. Let g : [0,+∞) → [0,+∞) be a non-decreasing continuous function such that

lim
t→0

g(t)
t

= c
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for some c > 0. Let A ∈ A(Ω) with A ⊂⊂ Ω, and let u ∈ W 1,1(Ω) ∩ L∞(Ω). For any δ > 0 and for any ε > 0
sufficiently small, there exists a function v ∈ SBV (A) ∩ L∞(A) such that

(1 − δ)
∫

A

|∇v| dx ≤ 1
ε

∫
A

g

(
ε

∫
Bε(x)

|∇u| dy
)

dx,

Hn−1(Sv ∩A6ε) ≤ c′

ε

∫
A

g

(
ε

∫
Bε(x)

|∇u| dy
)

dx,

‖v‖L∞(A) ≤ ‖u‖L∞(A)

‖v − u‖L1(A6ε) ≤ c′‖u‖L∞(A)

∫
A

g

(
ε

∫
Bε(x)

|∇u| dy
)

dx,

where c′ is a constant depending only on n, δ and g.

Proof of Theorem 3.6. Let A ∈ A(Ω) with A ⊂⊂ Ω and ∂A smooth. Let r > 0 such that Br ⊂ C, and let
m = infBr ρ > 0. Then for any x ∈ A we have Brεj (x) ⊂ Cεj (x) and thus for j sufficiently large,

|∇uj| ∗ ρεj (x) =
∫

Cεj
(x)

|∇uj(y)|ρεj (y − x) dy ≥ m

εn
j

∫
Brεj

(x)

|∇uj(y)| dy = mrnωn

∫
Brεj

(x)

|∇uj(y)| dy

for any x ∈ A. Fix δ > 0. By A2 there exist tδ > 0 and jδ such that fεj (t) ≥ (1 − δ)εjφ(t/εj) for any t ∈ [0, tδ]
and j > jδ. Let α, β ∈ R, with α > 0 and β < 0, be such that φ(t) ≥ αt + β everywhere. Then, since fεj is
non-decreasing, we have fεj (t) ≥ gδ

εj
(t) for any t ≥ 0, being

gδ
εj

(t) =
{

(1 − δ)αt+ εjβ if t ∈ [0, tδ]
(1 − δ)αtδ + εjβ if t > tδ.

Therefore, letting hδ(t) = gδ
εj

(t) − εjβ, we have

Fεj (uj , A) ≥ 1
εj

∫
A

hδ(|∇uj | ∗ ρεj ) dx + β|A| ≥ 1
εj

∫
A

hδ

(
mrnωnεj

∫
Brεj

(x)

|∇uj | dy
)

dx+ β|A|. (4.1)

Let ηj = rεj and gδ,m,r(t) = 1
r gδ(mrn−1ωnt). Notice that, by construction,

lim
t→0

gδ,m,r(t)
t

exists and is finite. Then inequality (4.1) becomes

Fεj (uj , A) − β|A| ≥ 1
ηj

∫
Ω

gδ,r,m

(
ηj

∫
Bηj

(x)

|∇uj | dy
)

dx.

Applying Lemma 4.1 we find a sequence (vj) in SBV (A) and a constant C independent of A such that
‖vj‖BV (A) ≤ C and ‖vj‖L∞(A) ≤ C. Moreover,

‖vj − uj‖L1(A) → 0. (4.2)

Hence, by Theorem 2.1, the sequence (vj) converges, up to a subsequence not relabeled, to some u ∈ BV (A),
with ‖u‖BV (A) ≤ C. By (4.2) also uj converges to u in L1(A). The arbitrariness of A and a diagonal argument
allow to find a subsequence (ujk

) which converges in L1
loc(Ω) to a function u ∈ BVloc(Ω), and the uniform

bound of ‖uj‖L∞(Ω) implies the convergence is strong in L1(Ω). �
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5. The Γ -liminf inequality

In this section we will prove that for any u ∈ L1(Ω) the inequality

F(u) ≤ lim inf
j→+∞

Fεj (uj)

holds for any uj → u in L1(Ω). First we will investigate two particular situations.

5.1. A preliminary estimate from below in terms of the volume and Cantor parts

In this paragraph we will take into account a simpler family of functionals. Let α, β > 0 and let g : [0,+∞) →
[0,+∞) given by g(t) = αt ∧ β. Let Gε : L1(Ω) ×A(Ω) → [0,+∞] be defined by

Gε(u,A) =

⎧⎪⎨
⎪⎩

1
ε

∫
A

g(ε|∇u| ∗ ρε) dx if u ∈W 1,1(Ω)

+∞ otherwise in L1(Ω).

We wish to estimate from below the lower Γ -limit G′(·, A) in terms of the volume and the Cantor parts of Du.
To this sake, we apply a slicing procedure, so that at first we will establish a suitable one-dimensional inequality.
The idea of the proof is the same as in [25], where the superlinear growth case is treated.

Let m ∈ N odd, let A be an open interval in R, and let (εj) be a positive infinitesimal sequence. Let
Aj = {x ∈ εjZ : x ∈ A}. For any j ∈ N and for any x ∈ Aj we define the interval

Ij(x) =
[
x− mεj

2
, x+

mεj

2

]
·

Lemma 5.1. Let α′, β′ > 0 and let hj : [0,+∞) → [0,+∞) given by hj(t) = α′t ∧ β′

εj
. Let u ∈ BV (A) and let

uj → u in L1(A) with uj ∈ W 1,1(A) for any j ∈ N. Then

lim inf
j→+∞

εj

∑
x∈Aj

hj

( ∫
Ij(x)

|u′j | dy
)
≥ α′

∫
A

|u′| dy + α′|Dcu|(A). (5.1)

Proof. For any j ∈ N and i = 0, . . . ,m− 1 let Ai
j = (iεj +mεjZ) ∩A. Obviously Aj is the disjoint union of Ai

j

for i ∈ {0, . . . ,m− 1}. Then

∑
x∈Aj

hj

( ∫
Ij(x)

|u′j | dy
)

≥ 1
m

m−1∑
i=0

∑
x∈Ai

j

mhj

( ∫
Ij(x)

|u′j| dy
)
.

Now let

Ai
j =

{
x ∈ Ai

j :
∫

Ij(x)

|u′j| dx ≤ β′

α′εj

}

and let vj ∈ SBV (A) given by

vj(x) =
{
uj(x) if x ∈ ⋃

y∈Ai
j

Ij(y)
0 otherwise in A.

Hence

∑
x∈Ai

j

mεjhj

( ∫
Ij(x)

|u′j| dy
)

≥
∑

x∈Ai
j

mεjhj

( ∫
Ij(x)

|u′j | dy
)

= α′ ∑
x∈Ai

j

∫
Ij(x)

|u′j| dy = α′
∫

A

|v′j | dy.
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Observe that since we can suppose, without loss of generality, that

εj

∑
x∈Aj

hj

( ∫
Ij(x)

|u′j | dy
)

≤M

for some M ≥ 0, we deduce that

M ≥ εj

∑
x∈Aj\

⋃m−1
i=0 Ai

j

hj

( ∫
Ij(x)

|u′j | dy
)

= εj
β′

εj
�

(
Aj \

m−1⋃
i=0

Ai
j

)

from which necessarily we have

εj�

(
Aj \

m−1⋃
i=0

Ai
j

)
→ 0, as j → +∞.

This implies that ||uj − vj ||L1(A) → 0 as j → +∞. Therefore, vj → u in L1(A). Finally, by the superadditivity
of the lim inf and by the lower semicontinuity of the total variation, we get

lim inf
j→+∞

εj

∑
x∈Aj

hj

( ∫
Ij(x)

|u′j| dy
)

≥ 1
m

m−1∑
i=0

lim inf
j→+∞

∑
x∈Ai

j

mεjhj

( ∫
Ij(x)

|u′j| dy
)

≥ α′ lim inf
j→+∞

∫
A

|v′j | dy ≥ α′|Du|(A)

≥ α′
∫

A

|u′| dy + α′|Dcu|(A)

which ends the proof. �

Now, by applying the slicing Theorem 2.2, we will reduce the n-dimensional inequality to the one-dimensional
inequality 5.1. Fix ξ ∈ Sn−1 and δ ∈ (0, 1); consider an orthonormal basis {ei} with en = ξ. Let

Qξ
δ =

{
x ∈ R

n : |〈x, ei〉| ≤ δ

2
, i = 1, . . . , n

}
, Qξ

δ(x) = x+Qξ
δ

and the lattice Zξ
δ = {x ∈ Rn : 〈x, ei〉 ∈ δZ, i = 1, . . . , n}. In what follows we will denote by gj(t) = 1

εj
g(εjt);

in particular it holds gj(t) = αt ∧ β
εj

and

Gεj (u,A) =
∫

A

gj(|∇u| ∗ ρεj ) dx, u ∈W 1,1(Ω).

Finally fix A ∈ A(Ω) and let Aξ
δ = {x ∈ Zξ

δ : Qξ
δ(x) ⊂ A}. The following Lemma is a standard easy application

of the mean value theorem (see also Lem. 4.2 in [10]).

Lemma 5.2. Let u ∈W 1,1(Ω). Then there exists τ ∈ Qξ
δ such that

Gεj (u,A) ≥
∑

x∈Aξ
δ

δngj(|∇u| ∗ ρεj (x+ τ)).

Proof. We have

Gεj (u,A) ≥
∑

x∈Aξ
δ

∫
Qξ

δ(x)

gj(|∇u| ∗ ρεj (y)) dy =
∫

Qξ
δ

∑
x∈Aξ

δ

gj(|∇u| ∗ ρεj (y + x)) dy.
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Applying the mean value theorem we get∫
Qξ

δ

∑
x∈Aξ

δ

gj(|∇u| ∗ ρεj (y + x)) dy =
∑

x∈Aξ
δ

gj(|∇u| ∗ ρεj (τ + x))

for some τ ∈ Qξ
δ, which concludes the proof. �

We are in position to apply the slicing procedure.

Proposition 5.3. Let u ∈ BV (Ω) and A ∈ A(Ω). Then

G′(u,A) ≥ α

∫
A

|∇u| dx and G′(u,A) ≥ α|Dcu|(A).

Proof. Fix ξ ∈ S
n−1. For any η > 0 let P ξ

η be the union of the squares Qξ
η(yi) ⊂ C with yi ∈ Zξ

η for i = 1, . . . ,m,
for some m ∈ N depending on η and ξ. Let ρη be a non-negative constant function on the squares Qξ

η(yi) with
0 < ρη ≤ ρ and such that

cη =
∫

C

ρη dx→ 1, as η → 0.

Let ci = ρη(yi); then we can rewrite cη as cη =
∑m

i=1 ciη
n. Let P ξ

ηεj
be the union of the squares Qξ

ηεj
(yi) ⊆ Cεj ,

with yi ∈ Zξ
ηεj

, for i = 1, . . . ,m. Let Aξ
j = Aξ

ηεj
; applying Lemma 5.2, since we can suppose, without loss of

generality, that uj ∈W 1,1(Ω), there exists τj ∈ Qξ
ηεj

such that

Gεj (uj , A) ≥
∑

x∈Aξ
j

(ηεj)ngj(|∇uj | ∗ ρεj (x+ τj)).

Let B ⊂⊂ A, and, for any j sufficiently large, let vj(y) = uj(y + τj). Then we get vj ∈ W 1,1(B) and vj → u in
L1(B). Thus

Gεj (uj , A) ≥
∑

x∈Bξ
j

(ηεj)ng(|∇vj | ∗ ρεj (x))

being Bξ
j = {x ∈ Zξ

ηεj
: Qξ

ηεj
⊆ B}. Now, for each x ∈ Bξ

j , we estimate the term |∇vj | ∗ ρεj (x); we have, for j
large enough,

|∇vj | ∗ ρεj (x) =
∫

Cεj

|∇vj(y + x)|ρεj (y) dy ≥ 1
εn

j

∫
P ξ

ηεj

|∇vj(y + x)|ρη

(
y

εj

)
dy

≥ 1
εn

j

m∑
i=1

ci

∫
Qξ

ηεj
(yi)

|∇vj(y + x)| dy =
m∑

i=1

ciη
n

cη

∫
Qξ

ηεj
(yi)

cη|∇vj(y + x)| dy.

Since
∑m

i=1
ciη

n

cη
= 1 and since gj is concave we get, for every x ∈ Bξ

j ,

gj(|∇vj | ∗ ρεj (x)) ≥
m∑

i=1

ciη
n

cη
gj

(
cη

∫
Qξ

ηεj
(yi)

|∇vj(y + x)| dy
)
.

Thus, reordering the terms, we deduce that

Gεj (uj , A) ≥
∑

x∈Dξ
j

(ηεj)ngj

(
cη

∫
Qξ

ηεj
(x)

|∇vj | dz
)
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for any D ⊂⊂ B and j sufficiently large, being, as usual, Dξ
j = {x ∈ Zξ

ηεj
: Qξ

ηεj
⊆ D}. For convenience we can

suppose ∇vj = 0 on
R

n
∖ ⋃

Qξ
ηεj

⊆D

Qξ
ηεj
.

Let 〈ξ〉 be the one-dimensional space generated by ξ. Let us denote by Z
ξ‖
ηεj and by Zξ⊥

ηεj
the orthogonal

projections of Zξ
ηεj

respectively on 〈ξ〉 and ξ⊥. Then

Gεj (uj , A) ≥
∑

x∈Zξ
ηεj

(ηεj)ngj

(
cη

∫
Qξ

ηεj
(x)

|∇vj | dz
)

≥
∑

x⊥∈Z
ξ⊥
ηεj

∑
x‖∈Z

ξ‖
ηεj

(ηεj)ngj

(
cη

∫
Qξ

ηεj
(x⊥+x‖)

|∇vj | dz
)

where x = x‖ + x⊥ turns out to be the unique decomposition of any x ∈ Zξ
ηεj

with x‖ ∈ Z
ξ‖
ηεj and x⊥ ∈ Zξ⊥

ηεj
.

Moreover, denoting by Qξ‖
ηεj and by Qξ⊥

ηεj
the projections of Qξ

ηεj
respectively on 〈ξ〉 and on ξ⊥, applying Jensen’s

inequality we deduce that

Gεj (uj , A) ≥
∑

x⊥∈Z
ξ⊥
ηεj

∑
x‖∈Z

ξ‖
ηεj

(ηεj)ngj

(
cη

∫
Q

ξ⊥
ηεj

(x⊥)

∫
Q

ξ‖
ηεj

(x‖)

|〈∇vj(z⊥ + z‖), ξ〉| dz‖ dz⊥

)

≥
∑

x⊥∈Z
ξ⊥
ηεj

∑
x‖∈Z

ξ‖
ηεj

(ηεj)n

∫
Q

ξ⊥
ηεj

(x⊥)

gj

(
cη

∫
Qξ‖

ηεj
(x‖)

|〈∇vj(z⊥ + z‖), ξ〉| dz‖
)

dz⊥

≥
∑

x⊥∈Z
ξ⊥
ηεj

∫
Q

ξ⊥
ηεj

(x⊥)

∑
x‖∈Z

ξ‖
ηεj

ηεjgj

(
cη

∫
Q

ξ‖
ηεj

(x‖)

|〈∇vj(z⊥ + z‖), ξ〉| dz‖
)

dz⊥

≥
∫

ξ⊥

∑
x‖∈Z

ξ‖
ηεj

ηεjgj

(
cη

∫
Q

ξ‖
ηεj

(x‖)

|〈∇vj(z⊥ + z‖), ξ〉| dz‖
)

dz⊥.

For any σ > 0 small let Dσ = {x ∈ D : d(x, ∂D) > σ} and Dx⊥
σ = {x ∈ Dσ : x = x⊥ + x‖ξ, x‖ ∈ R}, for

x⊥ ∈ ξ⊥. For j sufficiently large, vj(x⊥ + ·) ∈ W 1,1(Dx⊥
σ ). Furthermore, vj → u in L1(Dx⊥

σ ) for a.e.x⊥ ∈ ξ⊥.
Let hj(t) = gj(cηt); then, by the very definition of g, it is easy to see that hj(t) = αcηt∧ β

εj
. We are in position

to apply Lemma 5.1 with choice α′ = αcη and β′ = β. Thus

lim inf
j→+∞

∑
x‖∈Z

ξ‖
ηεj

ηεjgj

(
cη

∫
Q

ξ‖
ηεj

(x‖)

|〈∇vj(z⊥ + z‖), ξ〉| dz‖
)

= lim inf
j→+∞

∑
x‖∈Z

ξ‖
ηεj

ηεjhj

( ∫
Q

ξ‖
ηεj

(x‖)

|〈∇vj(z⊥ + z‖), ξ〉| dz‖
)

≥ αcη

∫
D

z⊥
σ

|〈∇u(z⊥ + z‖), ξ〉| dz‖ + αcη|〈Dcu(z⊥ + ·), ξ〉|(Dz⊥
σ ).

Taking into account Theorem 2.2 and Fatou’s lemma we conclude that

lim inf
j→+∞

Gεj (uj, A) ≥ cηα

∫
Dσ

|〈∇u(z), ξ〉| dz + cηα|〈Dcu, ξ〉(Dσ).

Since cη → 1 as η → 0, let σ → 0 and D ↗ A. Then

G′(u,A) ≥ α

∫
A

|〈∇u(z), ξ〉| dz and G′(u,A) ≥ α|〈Dcu, ξ〉|(A) (5.2)
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for any ξ ∈ Sn−1. From the first inequality, using the superadditivity of G′ and Lemma 2.5 we easily deduce
that

G′(u,A) ≥ α

∫
A

|∇u| dz.

Now if ψξ =
〈

dDcu
d|Dcu| , ξ

〉
the second inequality in (5.2) can be rewritten as

G′(u,A) ≥ α

∫
A

|ψξ| d|Dcu|.

Another application of Lemma 2.5 yields

G′(u,A) ≥ α

∫
A

sup
ξ∈Sn−1

|ψξ| d|Dcu| ≥ α

∫
A

∣∣∣∣ sup
ξ∈Sn−1

ψξ

∣∣∣∣d|Dcu| = α|Dcu|(A).

This concludes the proof. �

5.2. A preliminary estimate in terms of the surface part

In this section we will consider the family of functionals L1(Ω) ×A(Ω) → [0,+∞] given by

Eε(u,A) =

⎧⎪⎨
⎪⎩

1
ε

∫
A

h(ε|∇u| ∗ ρε) dx if u ∈W 1,1(Ω)

+∞ otherwise in L1(Ω)

where h : [0,+∞) → [0,+∞) is a non-decreasing concave function with h(0) = 0 and with

lim
t→0

=
h(t)
t

= c′ > 0.

The aim of this section is to estimate from below the lower Γ -limit of Eε in terms of a surface integral; to do
this the main idea, as in [22], is to estimate from below the Radon–Nikodym derivative of the lower Γ -limit E ′

with respect to the Hausdorff measure Hn−1 by means of a blow-up argument around a jump point; then the
result follows applying Besicovitch’s differentiation theorem in a standard way.

Given x0 ∈ Rn, ν ∈ Sn−1 and a, b ∈ R, when considering E ′ for the blow up uν,a,b
x0

= ua,b
ν (·−x0) (see Sect. 3.1

for the definition of ua,b
ν ) on a unit ball B1 as below (or on a cylinder Qν as in the sequel), we will assume as

Ω any set Ω′ strictly containing B1 (or Qν): the lower Γ -limit of Eε(·, A) does not change by replacing Ω with
any Ω′ ⊃⊃ A.

For every A ∈ A(Ω) let E ′
−(·, A) be the inner regular envelope of E ′, i.e.

E ′
−(·, A) = sup{E ′(·, B) : B ∈ A(Ω), B ⊂⊂ A}.

Proposition 5.4. Let u ∈ BV (Ω) and let x0 ∈ Ju. Then

lim inf
�→0

E ′
−(u,B�(x))
�n−1

≥ E ′(uνu(x0),u
+(x0),u

−(x0)
x0

, B1(x0)).

Proof. Let δ ∈ (0, 1). Then E ′−
(
u,B�(x0)

) ≥ E ′(u,Bδ�(x0)
)

for every � > 0. Thus

lim inf
�→0

E ′−(u,B�(x0))
�n−1

≥ δn−1 lim inf
r→0

E ′(u,Br(x0))
rn−1

· (5.3)

Let us now estimate the lower limit in the right-hand side. Without loss of generality we can assume x0 = 0;
moreover, for the sake of simplicity, we will denote by u0 the function u

νu(0),u+(0),u−(0)
0 .
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Let (rk) be a decreasing infinitesimal sequence; for every k ∈ N there exists uj ∈ W 1,1(Ω) such that uj → u
in L1(Ω) and

lim inf
j→+∞

Eεj (uj , Brk
) ≤ E ′(u,Brk

) +
rn−1
k

2k
·

Let j̄ = j(k) be such that εj̄/rk ≤ 1/k and

Eεj̄
(uj̄ , Brk

) ≤ E ′(u,Brk
) +

rn−1
k

k
,

‖uj̄ − u‖L1(Ω) ≤ 1
k and such that ∫

B2

|uj̄(rkx) − u(rkx)| dx ≤ 1
k
·

Let vk = uj(k). We can suppose that the sequence j(k) is increasing, and we set σk = εj(k). Hence, vk → u in
L1(Ω),

Eσk
(vk, Brk

) ≤ E ′(u,Brk
) +

rn−1
k

k
(5.4)

and ∫
B2

|vk(rkx) − u(rkx)| dx ≤ 1
k
· (5.5)

Inequality (5.4) gives

lim inf
k→+∞

E ′(u,Brk
)

rn−1
k

≥ lim inf
k→+∞

Eσk
(vk, Brk

)
rn−1
k

while from (5.5) we get∫
B2

|vk(rkx) − u0(rkx)| dx ≤ 1
k

+
∫

B2

|v(rkx) − u0(rkx)| dx→ 0

as k → +∞. Let wk(t) = vk(rkt). Then wk → u0 in L1(B2); moreover, for every x ∈ Brk
we have, setting

y = rkt and observing that |∇wk(t)| = rk|∇vk(rkt)|,

|∇vk| ∗ ρσk
(x) =

∫
Cσk

(x)

|∇vk(y)|ρσk
(y − x) dy =

1
σn

k

∫
Cσk

(x)

|∇vk(y)|ρ
(
y − x

σk

)
dy

=
rn−1
k

σn
k

∫
Cσk/rk

(x/rk)

|∇wk(t)|ρ
(

t

σk/rk
− x

σk

)
dt.

Therefore, setting x = rkz, we obtain

Eσk
(vk, Brk

)
rn−1
k

=
1

rn−1
k σk

∫
Brk

h(σk|∇vk| ∗ ρσk
(x)) dx

=
1

rn−1
k σn

k

∫
Brk

h

(
rn−1
k

σn−1
k

∫
Cσk/rk

(x/rk)

|∇wk(t)|ρ
(

t

σk/rk
− x

σk

)
dt
)

dx

=
1

σk/rk

∫
B1

h

(
σk

rk

rn
k

σn
k

∫
Cσk/rk

(z)

|∇wk(t)|ρ
(
t− z

σk/rk

)
dt
)

dz

=
1

σk/rk

∫
B1

h

(
σk

rk
|∇wk| ∗ ρσk/rk

(z)
)

dz.

Since σk/rk → 0, and wk → u0 in L1(B2), by the arbitrariness of (rk) and the definition of E ′, we conclude
combining (5.3) with the arbitrariness of δ ∈ (0, 1). �
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Now we estimate from below E ′(uν,a,b
x0

, B1(x0)). Without loss of generality, we can assume x0 = 0 and ν = e1;
we will denote, for the sake of simplicity, by ua,b the function ue1,a,b

0 . In order to estimate from below E ′(ua,b, B1)
first we need to consider the problem on a suitable cylinder.

Recall that (see Sect. 3.1) Qe1 = {x ∈ Rn : |x1| < 1, P⊥
e1

(x) ∈ B1 ∩ e⊥1 }, being P⊥
e1

(x) the orthogonal
projection of x onto the subspace e⊥1 ; for simplicity of notation we will use Q instead of Qe1 .

Lemma 5.5. For any A open subset of Q there exist a positive infinitesimal sequence (εj) and a sequence uj

in W 1,1(Ω′) converging to ua,b in L1(Ω′) such that

lim
j→+∞

Eεj (uj, A) = E ′(ua,b, A) (5.6)

and such that
uj(x) = a, if x1 ≤ −aj and uj(x) = b, if x1 ≥ bj (5.7)

for some positive infinitesimal sequences (aj) and (bj).

Proof. We divide the proof in two steps.

Step 1. Fix A ∈ A(Q) with A ⊂⊂ Q, ε, σ > 0 sufficiently small. Let ϕ given by

ϕ(x) =

⎧⎨
⎩

0 x1 ≤ −2ε− σ
affine −2ε− σ < x1 < −2ε
1 x1 ≥ −2ε.

Obviously we have |∇ϕ| ≤ 1
σ . Let

Aε = {x ∈ R
n : x1 < −2ε− k1ε− σ}, Bε = {x ∈ R

n : x1 > −2ε+ εk2}

Sε = {x ∈ R
n : −2ε− εk1 − σ < x1 < −2ε+ εk2}

where k1 = supx∈C〈x, e1〉 and k2 = − infx∈C〈x, e1〉. Let u1, u2 ∈W 1,1(Ω′) and v = ϕu1 + (1 − ϕ)u2. Then

Eε(v,A) =
1
ε

∫
A∩Aε

h(ε|∇u2| ∗ ρε) dx+
1
ε

∫
A∩Bε

h(ε|∇u1| ∗ ρε) dx+
1
ε

∫
A∩Sε

h(ε|∇v| ∗ ρε) dx.

Taking into account the subadditivity of h we get

1
ε

∫
A∩Sε

h(ε|∇v| ∗ ρε) dx ≤ 1
ε

∫
A∩Sε

h(ε(ϕ|∇u1|) ∗ ρε) dx+
1
ε

∫
A∩Sε

h(ε((1 − ϕ)|∇u2|) ∗ ρε) dx

+
1
ε

∫
A∩Sε

h(ε(|∇ϕ||u1 − u2|) ∗ ρε) dx.

Then

Eε(v,A) ≤ Eε(u1, A ∩ (Bε ∪ Sε)) + Eε(u2, A ∩ (Aε ∪ Sε)) +
c′

σ

∫
A∩Sε

|u1 − u2| ∗ ρε dx

where we have used h(t) ≤ c′t for each t ≥ 0.

Step 2. Now let (εj) be a positive infinitesimal sequence and let (vj) be a sequence in W 1,1(Ω′) such
that vj → ua,b in L1(Ω′) and

lim
j→+∞

Eεj (vj , A) = E ′(ua,b, A).
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Choosing u1 = vj and u2 = a we have, since Eεj (u2, A) = 0,

Eεj (ϕvj + (1 − ϕ)u2, A) ≤ Eεj (vj , A) +
c′

σ

∫
{x1<0}

|vj − u2| ∗ ρεj dx.

By standard properties of the convolution,∫
{x1<0}

|vj − u2| ∗ ρεj dx ≤ ||vj − u2||L1({x1<0}) → 0

as j → +∞. Therefore, by a diagonal argument, if σh → 0 we can find jh → +∞ be such that

lim
h→+∞

1
σh

∫
{x1<0}

|vjh
− u2| ∗ ρεjh

dx = 0.

Thus
lim sup
h→+∞

Eεjj
(ϕvjh

+ (1 − ϕ)u2, A) ≤ lim sup
h→+∞

Eεjh
(vjh

, A) = E ′(ua,b, A).

Setting

ujh
=
{
a x1 ≤ −2εjh

− σh

vjh
x1 ≥ 0

we easily have ujh
→ ua,b in L1(Ω′) and ujh

= a for x1 ≤ −aj for a suitable positive infinitesimal sequence
(aj). With the same argument one can prove that ujh

= b for x1 ≥ bj for another suitable positive infinitesimal
sequence (bj). Thus (ujh

) is optimal and (5.7) hold. �

Proposition 5.6. We have E ′(ua,b, B1) ≥ E ′(ua,b, Q).

Proof. Fix δ ∈ (0, 1). Let (uj) be given by the previous Lemma, applied with A = B1. Then uj(x) = a
if x1 ≤ −aj, and uj(x) = b if x1 ≥ bj , where (aj) and (bj) are suitable positive infinitesimal sequences. Let
Sj = (−aj , bj)×Rn−1. For j sufficiently large, we have δQ∩Sj ⊂⊂ B1, from which Eεj

(
uj , δQ∩B1

)
= Eεj

(
uj , δQ

)
.

Then
Eεj (uj , B1) ≥ Eεj (uj , B1 ∩ δQ) = Eεj (uj , δQ). (5.8)

Let vj(x) = uj(δx). Then by a simple scaling argument we have Eεj (uj , δQ) = δn−1Eεj/δ(vj , Q). Passing to the
limit in (5.8) we get

E ′(ua,b, B1) ≥ δn−1 lim inf
j→+∞

Eεj/δ(vj , Q) ≥ δn−1E ′(ua,b, Q).

We conclude by taking the limit as δ → 1− . �

Now, by an application of the Besicovitch’s Differentiation Theorem, we are able to prove the correct estimate
from below for the lower Γ -limit of Eεj . In order to apply such a Theorem, let us consider the set function
E ′
−(u, ·). It is well known that an increasing set function α : A(Ω) → [0,+∞] which satisfies α(∅) = 0, which is

subadditive, superadditive and inner regular, can be extended to a Borel measure on Ω (for instance see [18],
Thm. 14.23). This result can be applied to E ′

−(u, ·), the subadditivity of E ′
−(u, ·) being the only condition which

is not easy to prove, but it can be recovered as in the proof of Proposition 4.3 and Theorem 4.6 of [13]; these
results are established in the case p > 1, but the same arguments work if p = 1.

Denote by μu the Borel measure on Ω which extends E ′
−(u, ·).

Lemma 5.7. Let u ∈ BV (Ω). Then μu is a finite measure.
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Proof. Let (uh) be a sequence in L1(Ω) converging weakly∗ converging to u in BV (Ω). By definition

|Duh| ∗ ρε(x) =
∫

Cε(x)∩Ω

ρε(x− y) d|Duh|(y).

Since Duh
∗
⇀ Du as measures, by Fatou’s lemma and taking into account that f is non-decreasing and contin-

uous, we get

lim inf
h→+∞

1
ε

∫
Ω

h
(
ε|Duh| ∗ ρε

)
dx ≥ 1

ε

∫
Ω

h
(
ε lim inf

h→+∞
|Duh| ∗ ρε

)
dx ≥ 1

ε

∫
Ω

h(ε|Du| ∗ ρε) dx. (5.9)

Now let u ∈ BV (Ω) and let (uh) be a sequence in L1(Ω) strictly converging to u. In particular, |Duh| → |Du|
weakly∗ as measures (see, for instance, Prop. 3.15 in [5]). Note that that Dcu vanishes on the sets with finite
Hn−1 measure. Moreover, if S is σ-finite with respect to Hn−1, then {x ∈ Ω : Hn−1(S ∩ ∂Cε(x)) > 0} is at
most countable. Then (see, for instance, Prop. 1.62 in [5]), we have

lim
h→+∞

|Duh| ∗ ρε(x) = |Du| ∗ ρε(x), a.e.x ∈ Ω.

Applying the dominated convergence theorem, we obtain

lim
h→+∞

1
ε

∫
Ω

h (ε|Duh| ∗ ρε) dx =
1
ε

∫
Ω

h (ε|Du| ∗ ρε) dx. (5.10)

Combining (5.9) with (5.10) and taking into account that E ′
− is lower semicontinuous, we have

E ′
−(u) ≤ lim sup

ε→0

1
ε

∫
Ω

h (ε|Du| ∗ ρε) dx.

Notice that there exists γ > 0 such that |Cε(x) ∩ Ω| ≤ γεn for any x ∈ Ω. Denoting by
M = supC ρ and taking into Fubini’s Theorem, we get that for sufficiently small ε,∫

Ω

h (ε|Du| ∗ ρε) dx ≤ c′
∫

Ω

∫
Cε(x)∩Ω

ρε(y − x) d|Du|(y) dx = c′
∫

Ω

∫
Ω

ρε(y − x)χCε(x) dxd|Du|(y)

≤ c′M
∫

Ω

∫
Ω

|Cε(x) ∩Ω|
εn

d|Du|(y) ≤ c′Mγ|Du|(Ω)

and this yields the conclusion. �

Proposition 5.8. Let u ∈ BV (Ω) and A ∈ A(Ω). Then

E ′(u,A) ≥
∫

Su∩A

ψ(|u+ − u−|, νu) dHn−1,

where

ψ(s, ν) =
1

ωn−1
inf
{

lim inf
j→+∞

1
εj

∫
Qν

h(εj |∇uj| ∗ ρεj ) dx : (uj) ∈ W 0,s
ν , εj → 0+

}
.

Proof. For every k ∈ N let Sk = {x ∈ Su : |u+(x) − u−(x)| > 1/k}. Clearly we have Hn−1(Sk) < +∞; let
λk = Hn−1 Sk. Applying the Besicovitch’s differentiation theorem we deduce that the limit

g(x) = lim
�→0

μu(B�(x))
λk(B�(x))
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exists and is finite for λk-a.e. x ∈ Ω, and is λk-measurable. Moreover, the Radon–Nikodym decomposition of
μu is given by μu = gλk + μs, with μs ⊥ λk. By rectifiability for Hn−1-a.e. x ∈ Sk we get

lim
�→0

λk(B�(x))
ωn−1�n−1

= 1.

Thus, for Hn−1-a.e. x0 ∈ Sk we have, applying Propositions 5.4, 5.6 and taking into account (5.7),

g(x0) = lim
�→0

μu(B�(x0))
ωn−1�n−1

= lim inf
�→0

E ′
−(u,B�(x0))
ωn−1�n−1

≥ 1
ωn−1

inf
{

lim inf
j→+∞

1
εj

∫
x0+Qν

h(εj|∇uj | ∗ ρεj ) dx : (uj(· − x0)) ∈W
u+(x0),u

−(x0)
νu(x0)

, εj → 0+

}
.

Taking into account (3.8) and (3.9) (which obviously hold for h instead of f) we get

inf
{

lim inf
j→+∞

1
εj

∫
x0+Qν

h(εj |∇uj| ∗ ρεj ) dx : (uj(· − x0)) ∈ W
u+(x0),u

−(x0)
νu(x0)

, εj → 0+

}
= ψ(|u+(x0) − u−(x0)|, νu(x0)).

Since μs is non-negative, we deduce that

E ′
−(u,A) ≥

∫
A

ψ(|u+ − u−|, νu) dλk =
∫

Sk∩A

ψ(|u+ − u−|, νu) dHn−1.

By considering the supremum for k ∈ N we easily obtain

E ′
−(u,A) ≥

∫
Su∩A

ψ(|u+ − u−|, νu) dHn−1

and the conclusion follows by definition of E ′−. �

5.3. Proof of the Γ -liminf inequality

We are ready to prove the Γ -liminf inequality for the family (Fε)ε>0. The main step of the proof consists in
combining Proposition 5.3 with Proposition 5.8 and then using a supremum of measures argument.

Lemma 5.9. Let μ be as in Lemma 2.5. Let λ1, λ2 be mutually singular Borel measures, and ψ1, ψ2 positive
Borel functions. Assume that

μ(A) ≥
∫

A

ψi dλi

for every A ∈ A(Ω) and i = 1, 2. Then it holds

μ(A) ≥
∫

A

ψ1 dλ1 +
∫

A

ψ2 dλ2

for every A ∈ A(Ω).

Proof. Let E ⊆ Ω be such that λ1(Ω \ E) = 0 and λ2(E) = 0. Then we can suppose that ψ1 = 0 on Ω \ E
and ψ2 = 0 on E. Then max{ψ1, ψ2} = ψ1 + ψ2. We conclude by applying the lemma 2.5 with the choice
λ = λ1 + λ2. �

Proposition 5.10. Let u ∈ L1(Ω) and A ∈ A(Ω). Then

F ′(u,A) ≥
∫

A

φ(|∇u|) dx +
∫

Su∩A

θ(|u+ − u−|, νu) dHn−1 + c0|Dcu|(A).
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Proof. First notice that we can suppose u ∈ GBV (Ω). Indeed, if (Fεj (uj)) is bounded and uj → u in L1(Ω)
then u ∈ GBV (Ω): it suffices to apply Theorem 3.6 to uT

j = −T ∨ uj ∧ T , hence we get uT ∈ BV (Ω) which
means u ∈ GBV (Ω).

Now the key point of the proof is the construction of a suitable family of functions below fεj .

Step 1. Let δ ∈ (0, 1). We claim that there exists tδ > 0 and for any h ∈ N and for any ε > 0 there
exist cδh > 0, dδ

h < 0 and gδ
h : [tδ,+∞) → R such that if we let

fh,δ
ε (t) =

{
cδht+ εdδ

h if t ∈ [0, tδ]

cδhtδ + εdδ
h + gδ

h(t) if t > tδ

we have:
sup

h
(cδht+ dδ

h) = (1 − δ)φ(t), ∀t ≥ 0 (5.11)

fε(t) ≥ fh,δ
ε (t), ∀t ≥ 0, ∀h ∈ N, for ε sufficiently small, (5.12)

fh,δ
ε is continuous, non-decreasing and concave for any ε > 0 and any h ∈ N, (5.13)

fh,δ
ε − εdδ

h converges to (1 − δ)f uniformly on compact sets of [0,+∞) as h→ +∞. (5.14)

First of all we point out that

lim
t→0

f(t)
t

= c0. (5.15)

Indeed, by A2 for any σ ∈ (0, 1) there exist tσ, εσ > 0 such that fε(t) ≤ (1 + σ)εφ(t/ε) for each t ∈ [0, tσ] and
for each ε ∈ (0, εσ]. Since φ(s) ≤ c0s for any s ≥ 0, we have fε(t)/t ≤ (1 + σ)c0. By A3 the previous inequality
reduces to f(t)/t ≤ (1+σ)c0. On the other hand there exist t′σ, ε

′
σ > 0 such that fε(t) ≥ (1−σ)εφ(t/ε) for each

t ∈ [0, t′σ] and for each ε ∈ (0, ε′σ]. Since φ(s) ≥ c0s− q, for a suitable q > 0, we have fε(t)/t ≥ (1−σ)(c0t− εq).
We thus get f(t)/t ≥ (1 − σ)c0. By the arbitrariness of σ > 0 we have (5.15).

Formula (5.15) is useful in order to construct the family (fh,δ
ε ) as follows. By A2 there exists tδ > 0 such

that fε(t) ≥ (1 − δ)εφ(t/ε) for each t ∈ [0, tδ] and for each ε sufficiently small. Fix h ∈ N with h > 0 and let
(�h)h∈N be a family of affine functions such that suph �h(t) = φ(t) for any t ≥ 0 (recall that φ is convex); we
let �h(t) = cht+ dh. Let cδh = (1 − δ)ch and dδ

h = (1 − δ)dh. Then (5.11) holds and we obtain fε(t) ≥ cδht+ εdδ
h

for all t ∈ [0, tδ]. Now it is easy to conclude the construction of fh,δ
ε in such a way (5.12)–(5.14) hold: for

instance connecting the graphic of the affine piece with a suitable rotation and truncation of the graph of f
(see also (5.15)).

Step 2. Let δ ∈ (0, 1) and let (fh,δ
εj

) be the family constructed in Step 1. Let ψδ
h = fh,δ

εj
− εjd

δ
h. Then

we get

Fεj (u,A) ≥ 1
εj

∫
A

ψδ
h

(
εj|∇u| ∗ ρεj (x)

)
dx+ dδ

h|A| (5.16)

for any u ∈ W 1,1(Ω) and A ∈ A(Ω). Let A′, A′′ be open disjoint subsets of A such that |A′′| < δ, Su ⊂ A′′.
Therefore,

Fεj (u,A) ≥ 1
εj

∫
A′
ψδ

h

(
εj|∇u| ∗ ρεj (x)

)
dx+

1
εj

∫
A′′

ψδ
h

(
εj |∇u| ∗ ρεj (x)

)
dx+ dδ

h|A′| + δdδ
h. (5.17)

In particular we get

Fεj (u,A) ≥ 1
εj

∫
A′
ψδ

h

(
εj|∇u| ∗ ρεj (x)

)
dx+ dδ

h|A′|.
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Notice that ψδ
h is linear in [0, tδ]. Applying Proposition 5.3 with the choice g = ψδ

h ∧ ψδ
h(tδ) we obtain

F ′(u,A) ≥ cδh

∫
A′

|∇u| dx+ cδh|Dcu|(A) + dδ
h|A′| = (1 − δ)

∫
A′
�h(|∇u|) dx+ (1 − δ)ch|Dcu|(A′).

Since F ′(u, ·) is a superadditive function on open sets ofΩ with disjoint compact closures, by applying Lemma 2.5
and (5.11) we get, by the arbitrariness of A′ and δ,

F ′(u,A) ≥
∫

A

φ(|∇u|)dx + c0|Dcu|(A). (5.18)

Now (5.17) implies also

Fεj (u,A) ≥ 1
εj

∫
A′′

ψδ
h

(
εj|∇u| ∗ ρεj (x)

)
dx.

Applying now Proposition 5.8 with the choice h = ψδ
h we deduce that

F ′(u,A) ≥
∫

Su∩A′′
θδ

h(|u+ − u−|, νu) dHn−1,

being

θδ
h(s, ν) =

1
ωn−1

inf

{
lim inf
j→+∞

1
εj

∫
Qν

ψδ
h(εj |∇uj| ∗ ρεj ) dx : (uj) ∈ W 0,s

ν , εj → 0+

}
.

Using (5.14) and the arbitrariness of δ, it follows that θδ
h → θ as h → +∞ and δ → 0. Applying once more

Lemma 2.5, by the arbitrariness of A′′, we have

F ′(u,A) ≥
∫

Su∩A

θ(|u+ − u−|, νu) dHn−1. (5.19)

Applying Lemma 5.9 choosing λ1 = Ln, λ2 = Hn−1 Ju, λ3 = |Dcu| and taking into account (5.18) and (5.19),
we immediately obtain F ′(u) ≥ F(u) for any u ∈ BV (Ω).

Let us now consider the case u ∈ GBV (Ω). Let (uj) be a sequence in W 1,1(Ω) converging to u in L1(Ω) and
such that

lim
j→+∞

Fεj (uj) = F ′(u).

Define uT
j = (−T ) ∨ uj ∧ T , and uT = (−T ) ∨ u ∧ T. Since uT

j → uT in L1(Ω), and uT ∈ BV (Ω), we have

F ′(u) = lim inf
j→+∞

Fεj (uj) ≥ lim inf
j→+∞

Fεj (u
T
j ) ≥ F(uT ).

Applying (2.2)–(2.4) and taking into account the continuity of θ we obtain

lim
T→+∞

(∫
Ω

φ(|∇uT |) dx+
∫

S
uT

θ
(|(uT )+ − (uT )−|, νuT

)
dHn−1 + c0|DcuT |(Ω)

)
= F(u)

so we are done. �

6. The Γ -limsup inequality

In this section we will prove that F ′′(u) ≤ F(u) for any u ∈ L1(Ω); since, by definition, F(u) = +∞ for any
u ∈ L1(Ω) \GBV (Ω), it is sufficient to consider the case u ∈ GBV (Ω).
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Lemma 6.1. Let (εj) be a positive infinitesimal sequence, ν ∈ Sn−1 and s ≥ 0. Let (uj) ∈ W 0,s
ν be such that

ωn−1θ(s, ν) = lim
j→+∞

1
εj

∫
Qν

f(εj|∇uj | ∗ ρεj ) dx.

Then for any r > 0 there exists a positive infinitesimal sequence σj and (vj) ∈ W 0,s
ν such that for any σ > 0 it

holds
ωn−1r

n−1θ(s, ν) = lim
j→+∞

1
σj

∫
rQσ

ν

f(σj |∇vj | ∗ ρσj ) dx,

where Qσ
ν = {x ∈ Qν : |〈x, ν〉| < σ}.

Proof. Let σj = rεj and vj(x) = uj(rx). Then by the change of variables x = rz and y = rt we get

1
σj

∫
rQν

f(σj |∇vj | ∗ ρσj ) dx =
rn

σj

∫
Qν

f

(
σj

r

∫
Cσj/r

|∇vj(rz − rt)|ρσj /r(t) dt
)

dz

=
rn−1

εj

∫
Qν

f

(
εj

∫
Cεj

|∇uj(z − t)|ρεj (t) dt
)

dz.

Passing to the limit as j → +∞ we get

lim
j→+∞

1
σj

∫
rQν

f(σj |∇vj | ∗ ρσj ) dx = rn−1θ(s, ν).

Since the transition set of the optimal sequence (uj) shrinks onto the interface (see (5.7) or the definition of
W 0,s

ν ) we deduce that

lim
j→+∞

1
σj

∫
rQν

f(σj |∇vj | ∗ ρσj ) dx = lim
j→+∞

1
σj

∫
rQσ

ν

f(σj |∇vj | ∗ ρσj ) dx

for any σ > 0, hence we conclude. �

Proposition 6.2. For any u ∈ W(Ω) it holds F ′′(u) ≤ F(u).

Proof. By the very definition of W(Ω) (see Sect. 2.5) the set Su is contained in the union of a finite collection
K1, . . . ,Km of (n − 1)-dimensional simplexes; it will not be restrictive to assume m = 1 and K = K1 ⊆ {x ∈
R

n : x1 = 0}. Fix h ∈ N, h ≥ 1. Let Ωh = {x ∈ Ω \K : d(x,K) > 1/h}. Let S be the relative boundary of K;
obviously it holds Hn−1(S) = 0. Let Kh = {x ∈ K : d(x, S) > 1/h}. Let k ∈ N, k ≥ 1, x1, . . . , xk ∈ Kh and
r ≥ 0 be such that Br(xi) are pairwise disjoint, Br(xi) ∩ {x1 = 0} ⊆ Kh for any i = 1, . . . , k and

Hn−1

(
Kh \

(
k⋃

i=1

Br(xi) ∩ {x1 = 0}
))

<
1
h
· (6.1)

Let Qh = {x ∈ rQe1 : |x1| < 1/h} and Qh(x) = x+Qh for any x ∈ Rn. Moreover, let Q+
h = Qh ∩ {x1 > 0} and

Q−
h = Qh ∩ {x1 < 0}. At this point we divide the proof in two steps.

Step 1. Take a function v ∈ W(Ω) with Sv ⊆ K and such that v is constant in any xi + Q+
h and in

any xi +Q−
h . Denote by v+

i the value of v in xi +Q+
h and by v−i the value of v in xi +Q−

h . We claim that

F ′′(v) ≤
∫

Ω

φ(|∇v|) dx +
k∑

i=1

∫
K∩Br(xi)

θ(|v+
i − v−i |, e1) dHn−1 + c|Dv|(Ω′

h), (6.2)
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for some c > 0, where

Ω′
h = Ω \

(
Ωh ∪

k⋃
i=1

(xi +Qh)

)
.

Let (εj) be a positive infinitesimal sequence and let δ ∈ (0, 1). Accordingly to Lemma 6.1, let us define
vj ∈ W(Ω) be such that we have

lim
j→+∞

Fσj (vj , xi + δQh) = (δr)n−1θ(|v+
i − v−i |, e1), (6.3)

where σj = rεj . Otherwise in Ω we set vj = v. Then, using the same argument as in the proof of Lemma 5.7,
we deduce that

1
σj

∫
Ω

fσj (σj |∇vj | ∗ ρσj ) dx ≤ Fσj (v,Ωh) +
k∑

i=1

Fσj (vj , xi + δQh) + c|Dv|(Ω′
h,δ), (6.4)

being

Ω′
h,δ = Ω \

(
Ωh ∪

k⋃
i=1

(xi + δQh)

)
.

The first term on the right-hand side of (6.4) is given by

1
σj

∫
Ωh

fσj (σj |∇v| ∗ ρσj ) dx.

By standard properties of the convolution we have |∇v|∗ρσj → |∇v| in L1(Ω) and a.e. in Ω. From A2 we deduce
that

lim
ε→0

fε(εtε)
ε

= φ(t) (6.5)

whenever tε → t, for each t ≥ 0. By the dominated convergence theorem we get

lim
j→+∞

1
σj

∫
Ωh

fσj (σj |∇v| ∗ ρσj ) dx =
∫

Ωh

φ(|∇v|) dx ≤
∫

Ω

φ(|∇v|) dx.

Passing to the limsup in (6.4), using (6.3) and using the arbitrariness of δ ∈ (0, 1) we get (6.2).

Step 2. For any i = 1, . . . , k let

u+
i =

∫
Br(xi)∩K

u+ dHn−1, u−i =
∫

Br(xi)∩K

u− dHn−1

and

ui(x) =
{
u+

i if (xi)1 − x1 > 0
u−i if (xi)1 − x1 ≤ 0, x ∈ Br(xi).

For any h ∈ N, h ≥ 1, let uh = ui on Qh(xi) and uh = u otherwise in Ω. Applying Step 1 with the choice
v = uh we get

F ′′(uh) ≤
∫

Ω

φ(|∇u|) dx +
k∑

i=1

∫
K∩Br(xi)

θ(|u+
i − u−i |, e1) dHn−1 + c|Du|(Ω′

h).
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Now |Ω′
h| → 0. Furthermore, taking into account (6.1) we deduce that Hn−1(Su ∩ Ω′

h) → 0 as h, k → +∞.
Hence |Du|(Ω′

h) → 0 as h, k → +∞. Exploiting the uniform continuity of the traces of u and the continuity of
θ, we also get

k∑
i=1

∫
K∩Br(xi)

θ(|u+
i − u−i |, e1) dHn−1 h,k→+∞−→

∫
Su

θ(|u+ − u−|, e1) dHn−1

and the lower semicontinuity of F ′′ yields the conclusion. �

Proposition 6.3. Let u ∈ GBV (Ω). Then it holds F ′′(u) ≤ F(u).

Proof. First let u ∈ SBV 2(Ω) ∩ L∞(Ω). We can apply Theorem 2.6, choosing

ψ(a, b, ν) = θ(|a− b|, ν)

(see (3.6) and (3.7)). Then there exists a sequence wj → u in L1(Ω), with wj ∈ W(Ω), such that ∇wj → ∇u
strongly in L2(Ω,Rn) and

lim sup
j→+∞

∫
Swj

θ(|w+
j − w−

j |, νwj ) dHn−1 ≤
∫

Su

θ(|u+ − u−|, νu) dHn−1. (6.6)

By the lower semicontinuity of F ′′ and by Proposition 6.2 we deduce that, applying the dominated convergence
theorem and (6.6),

F ′′(u) ≤ lim inf
j→+∞

F ′′(wj) ≤
∫

Ω

φ(|∇u|) dx +
∫

Su

θ(|u+ − u−|, νu) dHn−1.

Using relaxation Theorem 2.7 we get

F ′′(u) ≤
∫

Ω

φ(|∇u|) dx +
∫

Ju

θ(|u+ − u−|, νu) dHn−1 + c0|Dcu|(Ω)

for each u ∈ BV (Ω). Finally, let u ∈ GBV (Ω) and, for any T > 0, uT = −T ∨ u ∧ T . Then uT ∈ BV (Ω) for
each T > 0 and uT → u in L1(Ω) as T → +∞. Taking into account (2.2)–(2.4) we obtain, exploiting again the
lower semicontinuity of F ′′ and the continuity of θ,

F ′′(u) ≤ lim sup
T→+∞

(∫
Ω

φ(|∇uT |) dx+
∫

S
uT

θ(|(uT )+ − (uT )−|, νuT ) dHn−1 + c0|DcuT |(Ω)
)

=
∫

Ω

φ(|∇u|) dx +
∫

Su

θ(|u+ − u−|, νu) dHn−1 + c0|Dcu|(Ω)

which is what we wanted to prove. �

7. Computation of θ in the one-dimensional case

In this section we are able to give an explicit formula for θ if n = 1 along the same line of the discretization
argument used in [22].

Let n = 1, then we can set Ω = (a, b), C = I to be an open interval around 0, ρ : I → (0,+∞) continuous
and bounded with ∫

I

ρ dt = 1.

For any ε > 0 let ρε(t) = 1/ερ(t/ε) and Iε(x) = x+ εI.
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Theorem 7.1. It holds

θ(s) =
∫ +∞

−∞
f(sρ(t)) dt.

Proof. In the one-dimensional setting the expression for θ given by (3.5) reads

θ(s) = inf
{

lim inf
j→+∞

1
εj

∫ 1

−1

f(εj |u′j| ∗ ρεj ) dt : (uj) ∈W 0,s, εj → 0+

}
,

being W 0,s the space of all sequences (uj) in W 1,1
loc (Ω′), (−1, 1) ⊂ Ω′, such that uj → sχ(0,+∞) in L1(Ω′), and

such that there exist two positive infinitesimal sequences (aj), (bj) with uj(t) = 0 if t < −aj and uj = s if
t > bj . Let (uj) ∈ W 0,s and

vj(t) =
∫ t

−1

(u′j(r))
+ dr.

Moreover, let wj = 0 ∨ vj ∧ s. Then (wj) ∈W 0,s and by the change of variables y = εjz and t = εjr we get

1
εj

∫ 1

−1

f(εj|u′j | ∗ ρεj ) dt ≥ 1
εj

∫ 1

−1

f

(∫
Iεj

w′
j(t+ y)ρ

(
y

εj

))
dt

=
1
εj

∫ 1

−1

f

(
εj

∫
I

w′
j(t+ εjz)ρ(z)

)
dt

=
∫ 1/εj

−1/εj

f

(
εj

∫
I

w′
j(εjr + εjz)ρ(z)

)
dr

=
∫ 1/εj

−1/εj

f

(∫
I

w̃′
j(r + z)ρ(z)

)
dr,

where w̃j(t) = wj(εjt). Since (wj) ∈ W 0,s then the previous inequality becomes

1
εj

∫ 1

−1

f(εj |u′j| ∗ ρεj ) dt ≥
∫ +∞

−∞
f

(∫
I

w̃′
j(t+ z)ρ(z) dz

)
dt.

Denoting by X the space of all functions v ∈W 1,1
loc (R) which are non-decreasing and such that there exist ξ0 < ξ1

with v(t) = 0 if t < t0 and v = s if t > t1, we are led to solve the minimization problem infX G, being

G(v) =
∫ +∞

−∞
f

(∫
I(t)

v′(x)ρ(x − t) dx
)

dt, v ∈ X.

By a simple regularization argument it is not restrictive to assume f ∈ C2(0,+∞) and f strictly concave. For
each k ∈ N, with k ≥ 1, we now consider a discrete version Gk of G defined on the space of the functions on R

which are constant on each interval of the form

Jk
i =

[
i

k
,
i+ 1
k

)
, i ∈ Z.

We define Xk as the set of the functions v : R → [0, s], such that:

(a) v is constant on any Jk
i ; denote by vi the value of v on Jk

i ;
(b) vi ≤ vi+1 for any i ∈ Z;
(c) vi = 0 if i < i0 and vi = s if i > i1 for some i0 < i1.
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Let Ik = {i ∈ Z : Jk
i ⊂ I}. Finally, let Gk : Xk → R be defined by

Gk(v) =
1
k

∑
i∈Z

f
( ∑

h∈Ik

(vi+h+1 − vi+h)ρk
h

)
, ρk

h =
∫

Jk
h

ρ(z) dz.

Obviously Gk admit minimizers on Xk. We claim that each minimizer of Gk on Xk takes only the values 0
and s.

Let v be a minimizer of Gk on Xk. Suppose, by contradiction, that there exists i0 ∈ Z with vi0 = c ∈ (0, s).
We can assume that for a suitable r ∈ N it holds

vi0−1 < c, c = vi0 = vi0+1 = · · · = vi0+r, vi0+r+1 > c.

Given t ∈ R sufficiently small, we define vt ∈ Xk letting vi0+l
t = c+ t, if 0 ≤ l ≤ r, and vt = v otherwise. It is

easy to see that for some αk
i , β

k
i �= 0 which do not depend on t, we have

Gk(vt) =
1
k

∑
i∈J

f(αk
i + tβk

i )

for some finite set J ⊂ Z. The function t �→ Gk(vt) is twice continuously differentiable in t = 0, due to the
smoothness of f and we have

d2

dt2
Gk(vt)∣∣

t=0

=
1
k

∑
i∈J

f ′′(αk
i )(βk

i )2 < 0

by the strict concavity of f . This contradicts the fact that v is a minimizer for Gk on Xk.
Since Gk is invariant under translation, we have already shown that

min
Xk

Gk = Gk(v̂)

where v = sχ(0,+∞). Since

Gk(v̂) =
1
k

∑
i∈Z

f(sρk
−i).

by the definition of the Riemann integral as the limit of the Riemann sums, we deduce that

lim inf
k→+∞

min
Xk

Gk ≥
∫ +∞

−∞
f(sρ(t)) dt.

Given σ > 0 let vσ ∈ X be such that infX G ≥ G(vσ) − σ. Let wσ : R → [0, s] given by

wσ(t) = wi
σ =

∫
Jk

i

vσ(r) dr, t ∈ Jk
i .

Notice that wσ ∈ Xk. Let k be sufficiently large such that G(vσ) ≥ Gk(wσ) − σ. Hence

G(vσ) ≥ lim inf
k→+∞

min
Xk

Gk − σ ≥
∫ +∞

−∞
f(sρ(t)) dt− σ.

By the arbitrariness of σ > 0 we obtain

θ(s) ≥ inf
X
G ≥

∫ +∞

−∞
f(sρ(t)) dt.
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If we let

uj(t) =

⎧⎨
⎩

0 if ≤ −εj
s
εj
t+ s if t ∈ (−εj, 0)

s if t ≥ 0

for εj → 0+, we have (uj) ∈ W 0,s and a straightforward computation shows that

lim
j→+∞

1
εj

∫ 1

−1

f(εj|u′j | ∗ ρεj ) dt =
∫ +∞

−∞
f(sρ(t)) dt

and this yields the conclusion. �

Remark 7.2. Observe that when I = (−1, 1) and ρ = 1
2
χ

(−1,1) we get

θ(s) = 2f
(
s

2

)
·

Hence we recover the case investigated in [21].
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Γ -LIMITS OF CONVOLUTION FUNCTIONALS 515

[19] E. De Giorgi, Free discontinuity problems in calculus of variations, in Frontiers in pure and applied mathematics, edited
by R. Dautray. A collection of papers dedicated to Jacques-Louis Lions on the occasion of his sixtieth birthday, Paris 1988.
North-Holland Publishing Co., Amsterdam (1991) 55–62.

[20] L. Lussardi, An approximation result for free discontinuity functionals by means of non-local energies. Math.Methods Appl. Sci.
31 (2008) 2133–2146.

[21] L. Lussardi and E. Vitali, Non local approximation of free-discontinuity functionals with linear growth: the one dimensional
case. Ann. Mat. Pura Appl. 186 (2007) 722–744.

[22] L. Lussardi and E.Vitali, Non local approximation of free-discontinuity problems with linear growth. ESAIM: COCV 13 (2007)
135–162.

[23] M.Morini, Sequences of singularly perturbed functionals generating free-discontinuity problems. SIAM J. Math.Anal. 35
(2003) 759–805.

[24] M.Negri, The anisotropy introduced by the mesh in the finite element approximation of the Mumford–Shah functional. Numer.
Funct. Anal. Optim. 20 (1999) 957–982.

[25] M.Negri, A non-local approximation of free discontinuity problems in SBV and SBD. Calc. Var. 25 (2006) 33–62.


	Introduction
	Notation and preliminaries
	Functions of bounded variation
	Slicing
	-convergence
	Supremum of measures
	A density result
	A relaxation result

	Statement of the main results
	The anisotropy
	Main results

	Compactness
	The -liminf inequality
	A preliminary estimate from below in terms of the volume and Cantor parts
	A preliminary estimate in terms of the surface part
	Proof of the -liminf inequality

	The -limsup inequality
	Computation of  in the one-dimensional case
	References

