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LOWER SEMICONTINUITY IN BV OF QUASICONVEX INTEGRALS
WITH SUBQUADRATIC GROWTH

Parth Soneji1

Abstract. A lower semicontinuity result in BV is obtained for quasiconvex integrals with subquadratic
growth. The key steps in this proof involve obtaining boundedness properties for an extension operator,
and a precise blow-up technique that uses fine properties of Sobolev maps. A similar result is obtained by
Kristensen in [Calc. Var. Partial Differ. Equ. 7 (1998) 249–261], where there are weaker asssumptions
on convergence but the integral needs to satisfy a stronger growth condition.
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1. Introduction

We consider the variational integral

F (u; Ω) :=
�

Ω

f(Du(x)) dx , (1.1)

where Ω is a bounded open subset of R
n, u : Ω → R

N is a vector-valued function, Du denotes the Jacobian
matrix of u and f is a nonnegative continuous function defined in the space R

N×n of all N × n matrices.
The aim of this paper is to prove a lower semicontinuity result for a quasiconvex integral with an integrand

f of subquadratic growth at infinity. Recall that a continuous function f is quasiconvex if for each ξ ∈ R
N×n

we have �
Rn

[f(ξ + Dφ(x)) − f(ξ)] dx ≥ 0

for all test functions φ ∈ C∞
0 (Rn; RN). We require that f satisfies the following growth condition for 1 < r < 2:

0 ≤ f(ξ) ≤ L(|ξ|r + 1) (1.2)

for a fixed finite L > 0 and all ξ ∈ R
N×n. Note that (1.2) implies that F is defined and continous on the Sobolev

Space W 1,r(Ω; RN ).
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The following theorem is our main result:

Theorem 1.1. Let f : R
N×n → R be a continuous quasiconvex function satisfying the growth condition (1.2)

for some exponent 1 < r < 2. Let Ω be an open subset of R
n.

Let (uj) be a sequence in W 1,r
loc (Ω; RN ) and u ∈ W 1,p

loc (Ω; RN ), where p ≥ 1 and p > r
2 (n − 1). Suppose

uj
∗
⇀ u in BVloc(Ω; RN ) (1.3)

and
(uj) uniformly bounded in Lq

loc(Ω; Rn) , (1.4)

where

q > max
{

1,
r(n − 1)

2 − r

}
· (1.5)

Then
lim inf
j→∞

�
Ω

f(Duj) dx ≥
�

Ω

f(Du) dx. (1.6)

Note that when n ≥ 3, the conditions of this theorem require that the limit map u is more regular than the
maps (uj). When n = 2, however, we can take u ∈ W 1,1

loc (Ω; RN ), so in this case u can be less regular than
the uj. In this case, however, there is a result by Kristensen [19] even for u ∈ BV : see Theorem 2.1. By (1.4)
we mean simply that for any compact set K ⊂ Ω, the sequence (uj) is uniformly bounded in Lq(K; RN ), i.e.
supj ‖uj‖Lq(K) ≤ C(K), where C(K) is a positive constant possibly depending on K. We may remark that
this is a natural condition if, for example, we assume that the maps uj and u are constrained to remain on a
compact manifold (in which case we would infer the stronger condition that the (uj) are uniformly bounded in
L∞(Ω; RN ). Indeed, many problems in materials science involve such constrained variational problems – see for
instance [10]).

The proof of this Theorem 1.1 relies on the following lemma (which is essentially the theorem in the special
case where the limit u is affine and where Ω is the open unit ball B in R

n) combined with a precise blow-up
technique which will be detailed later in this paper.

Lemma 1.2. Let B denote the open unit ball in R
n. Suppose (uj) ⊂ W 1,r(B; RN ), 1 < r < 2, and f : R

N×n →
R is as above. Suppose the following conditions hold:

(i)
uj → 0 strongly in L1(B; RN ); (1.7)

(ii)

sup
j

�
B

|Duj| dx < ∞; (1.8)

(iii) There exists a set F ⊂ (0, 1) such that for all 0 < δ < 1, |F ∩ (δ, 1)| > 0 and

sup
j

sup
�∈F

‖uj‖Lq(∂B�) < ∞ , (1.9)

where

q > max
{

1,
r(n − 1)

2 − r

}
· (1.10)

Then we have the following inequality:

lim inf
j→∞

�
B

f(Duj) dx ≥ L n(B) · f(0) . (1.11)
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The proof of this lemma relies on a technique originating in works by Malý et al. (see [11, 12, 21, 24]). A
key step in this proof involves obtaining an integral estimate for a trace-preserving extension operator. The
result, contained in the following lemma, involves adapting and generalising a result by Carozza et al. [7]. In the
statement of this result, as well as subsequently, we denote by B� the open ball in R

n with centre 0, radius �.

Lemma 1.3. Let 1 < r < 2. Then for q satisfying

q ≥ max
{

1,
r(n − 1)

2 − r

}
,

there exists a linear extension operator

E : (W 1,1 ∩ Lq)(∂B; RN ) → W 1,r(B2 \ B̄; RN )

with the following properties:

1. if g ∈ C1(∂B; RN ) then E(g) ∈ C∞(B2 \ B̄) with E(g)|∂B = g;
2. if (zj) ⊂ C∞(∂B; RN ) and limj→∞

�
∂B zj ·φdH n−1 = 0 for all φ ∈ C∞(∂B; RN ), then for any multi-index

α, ∂α[Ezj] → 0 locally uniformly in B2 \ B̄;
3. there exist positive constants c1, c2, dependent on n, N, r, such that:

(a) �
B2\B

|E(g)|r ≤ c1‖g‖r
Lq(∂B);

(b) �
B2\B

|DE(g)|r ≤ c2 ‖g‖
r
2
Lq(∂B) · ‖Dg‖L1(∂B)

for all g ∈ C1(∂B).

2. Preliminary remarks

2.1. Background

The classical lower semicontinuity result for quasiconvex integrands, essentially attributable to Morrey (see,
for example, [9]) says that the functional F (u; Ω) defined in (1.1) is (sequentially) weakly lower semicontinuous
in W 1,p(Ω; RN ) for f satisfying the growth condition

0 ≤ f(ξ) ≤ L(|ξ|q + 1) (2.1)

for a fixed finite L > 0, all ξ ∈ R
N×n, and where 1 ≤ q ≤ p < ∞.

Remaining in the quasiconvex setting, a key refinement of this result is obtained by Malý in [22]: under the
growth condition (2.1) (and imposing additional structure conditions), F (u; Ω) is proved to be lower semicon-
tinuous in W 1,q(Ω; RN ) with respect to weak convergence in W 1,p(Ω; RN ) for p ≥ q − 1. Other related works
appear in [6, 13, 23].

For lower semicontinuity theorems in the BV context, we first refer to the monograph of Ambrosio et al. [3].
Firstly, note that it is not entirely clear how to define F (u; Ω) when u is a BV function. Following a method
that was first used by Lebesgue for the area integral, and then adopted by Serrin [28, 29] and, in the modern
context, by Marcellini [23], we may consider the functional

F (u, Ω) := inf
(uj)

{
lim inf
j→∞

�
Ω

f(Duj) dx

∣∣∣∣ (uj) ⊂ C1(Ω, RN )
uj → u in L1

loc(Ω, RN )

}
.
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F is known as the Lebesgue–Serrin extension of F and is an important quantity not only when we want to
define F (u; Ω) for a wider class of functions u but also, for example, when there is a lack of quasiconvexity. In
a paper of Ambrosio and Dal Maso [2], it is proved that if f has linear growth at infinity (so q = 1 in (2.1)),
then for every open set Ω ⊂ R

n and every u ∈ BV (Ω; RN ), we have

F (u; Ω) =
�

Ω

f(∇u) dx +
�

Ω

f∞

(
Dsu

|Dsu|
)
|Dsu| ,

where ∇u is the density of the absolutely continuous part of the measure Du with respect to Lebesgue measure,
Dsu is the singular part of Du, Dsu

|Dsu| is the Radon–Nikodym derivative of the measure Dsu with respect to its
variation |Dsu|, and f∞ : R

N×n → [0,∞) is the recession function of f defined by

f∞(ξ) := lim sup
t→∞

f(tξ)
t

·

In this connection see also [15], where the case of general integrands f = f(x, u,∇u) of linear growth is treated,
and [26] for a proof that avoids the use of Alberti’s rank-one theorem.

For lower semicontinuity theorems in the superlinear growth case, we have the following result by Kris-
tensen [19], which obtains a lower bound for a suitable Lebesgue–Serrin extension. This is similar to Theorem 1.1
and indeed provided the initial motivation for this paper. Here there are weaker assumptions on convergence
and on the maps uj , u, but the integrand f needs to satisfy a stronger growth condition.

Theorem 2.1. [19] Let f : R
N×n → R be a continuous quasiconvex function satisfying the growth condition

0 ≤ f(ξ) ≤ L(|ξ|q + 1)

for a fixed finite L > 0, a fixed exponent q ∈ [1, n
n−1 ), and all ξ ∈ R

N×n. Let Ω be an open, bounded subset of
R

n.
Suppose (uj) ⊂ W 1,q

loc (Ω; RN ) converges to u ∈ BVloc(Ω; RN ) in L1
loc(Ω; RN ) and

sup
j

�
ω

|Duj| < +∞ for all ω ⊂⊂ Ω.

Then

lim inf
j→∞

�
Ω

f(Duj) dx ≥
�

Ω

f(∇u) dx ,

where ∇u denotes the approximate gradient of u.

For related work in the compensated compactness set-up, see also [16]. Also of importance is the paper of
Carozza et al. [7] where a similar condition to (1.4) in Theorem 1.1 is used to obtain a lower semicontinuity
result. Namely, for an integrand f satisfying (2.1), where q = p+1 and p > 1, we have lower semicontinuity with
respect to sequences of functions (uj) in W 1,p+1

loc (Ω; RN ) that converge weakly to u in W 1,p
loc (Ω; RN ), provided

also that uj −u converges to 0 strongly in L∞
loc(Ω; RN ) and u ∈ C1(Ω; RN ). Finally we mention that the theory

discussed here is not vacuous. Indeed it has been shown by Šverák [30] that there exist quasiconvex functions
on R

2×2 that have subquadratic growth and are not polyconvex (and hence not convex). In this connection we
also mention [25, 31].
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2.2. General remarks on the result

The results of this paper can actually be stated with the following more general subquadratic growth condi-
tion:

Let Φ : [0,∞) → [0,∞) be a convex, doubling, non-decreasing function such that Φ(0) = 0 and, for some
σΦ > 0:

t �→ Φ(t)
t2−σΦ

is nonincreasing on (0,∞) and
� ∞

1

Φ(t)
1
2

t2
dt < ∞. (2.2)

(Recall that Φ is doubling means that, for a fixed constant c, Φ(2t) ≤ c Φ(t) for all t ≥ 0).
Assume that f satisfies

0 ≤ f(ξ) ≤ L(Φ(|ξ|) + 1)

for a fixed finite L > 0 and all ξ ∈ R
N×n.

This growth condition implies that F is defined and continous on the generalised Orlicz–Sobolev space
W 1,Φ(Ω; RN ). For further information on the subject of such spaces, we refer to the book of Iwaniec and
Martin [18]. We have focused in particular on the case where Φ is of the form Φ(t) = tr, which just puts us in
the more familiar setting of the Sobolev Space W 1,r(Ω; RN ), noting that for such Φ, (2.2) is satisfied whenever
1 < r < 2.

Our result for subquadratic quasiconvex integrands hinges on a result by Greco et al. in [17], concerning
integral estimates of the Hardy–Littlewood Maximal function. In this connection the condition (2.2) is sharp
and the proof provided cannot be weakened to include integrands of quadratic growth at infinity. Indeed, we
do not know if the main theorem is true for f satisfying (1.2) for r = 2, even when Ω = B, u = 0, uj

∗
⇀ 0 in

BV (B; RN ) and uj → 0 in L∞(B; RN ). However, what is clear is that the proof of such a result, if it is true,
needs to proceed by a different means. We may deduce from the following counterexample, established by Malý
in [20], that the result is certainly not true when f has at least cubic growth in some directions (and n, N ≥ 3).

Counterexample 2.2 ([20]). Let Q be the cube (0, 1)n, and 1 < r < n− 1. There is a sequence of orientation-
preserving C1-diffeomorphisms (uj) on Q such that uj converge weakly to the identity in W 1,r(Q, Rn) and

lim
j→∞

�
Q

detDuj dx = 0.

A suitable counterexample for our purposes immediately follows by taking n = 3 (or, if we want a result in
higher dimensions we can simply consider a suitable 3 × 3 minor of the Jacobian), Ω = Q, and f(ξ) = | det ξ|.
f is polyconvex, hence quasiconvex, and satisfies the growth condition

0 ≤ f(ξ) ≤ L(|ξ|3 + 1).

Moreover the uj , being diffeomorphisms of Q onto Q, are clearly uniformly bounded in Lq(Q, Rn) for any
1 ≤ q ≤ ∞, and weak convergence in W 1,r for 1 < r < 2 obviously implies weak* convergence in BV . And
if u is the identity map on Q, then

�
Q

detDu dx = 1. So all the conditions of Theorem 1.1 except the growth
condition are satisfied, but lower semicontinuity does not obtain.

It is interesting to note that we can also set the main result of this paper in the context of W 1,1-quasiconvexity.
The condition of W 1,p-quasiconvexity, which generalises in a natural way the quasiconvexity condition of Morrey,
is defined and studied in the well-known paper of Ball and Murat [4]. Namely, a continuous integrand f is said
to be W 1,p-quasiconvex (where 1 ≤ p ≤ ∞) if it is bounded below and satisfies

�
Rn

[f(ξ + Dφ(x)) − f(ξ)] dx ≥ 0

for all ξ ∈ R
N×n and φ ∈ W 1,p

0 (Rn; RN ). If p = ∞ then this condition is just the usual definition of quasicon-
vexity. In the Proof of Lemma 1.2, we use the well known result that the conditions on f in Theorem 1.1, in
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particular its continuity, quasiconvexity and growth condition (1.2), imply that it is W 1,r-quasiconvex. Crucially,
this is why we need the maps uj in Theorem 1.1 to be in W 1,r

loc (Ω; RN ). However, if we assume the stronger
condition that f is W 1,1-quasiconvex, we only require the (uj) to be in W 1,1

loc (Ω; RN ). That is, we have the
following result, which has virtually the same proof as Theorem 1.1.

Theorem 2.3. Let f : R
N×n → R be a continuous W 1,1-quasiconvex function satisfying the growth condi-

tion (1.2) for some exponent 1 < r < 2. Let Ω be an open subset of R
n.

Let (uj) be a sequence in W 1,1
loc (Ω; RN ) and u ∈ W 1,p

loc (Ω; RN ), where p ≥ 1 and p > r
2 (n − 1). Suppose

uj
∗
⇀ u in BVloc(Ω; RN )

and
(uj) uniformly bounded in Lq

loc(Ω; Rn) ,

where

q > max
{

1,
r(n − 1)

2 − r

}
·

Then

lim inf
j→∞

�
Ω

f(Duj) dx ≥
�

Ω

f(Du) dx.

It is also worth briefly discussing more generally the regularity assumptions of the maps uj, u in the main result.
The increased regularity requirement on u, that it is in W 1,p

loc (Ω; RN ) where p ≥ 1 and p > r
2 (n− 1), is required

to make use of the fact that the (uj) are uniformly bounded in Lq
loc(Ω; RN ) for q satisfying (1.5) when using

the “blow-up argument” to obtain the proof of Theorem 1.1 from Lemma 1.2.
Another issue is that if we just assume that f is quasiconvex in the sense of Morrey, then we could consider

whether lower semicontinuity still obtains if the maps (uj) are less regular than W 1,r
loc (Ω; RN ). Even though

it is still an open question whether lower semicontinuity obtains when f has quadratic growth, the following
counterexample provided in [4] demonstrates (if we take n = 2) that in this case we would certainly require at
least that the (uj) are in W 1,2

loc (Ω; RN ).

Counterexample 2.4 ([4]). Let n > 1 and Ω be an open bounded subset of R
n. Let 1 ≤ r < n. Then there

exist (uj) ⊂ W 1,r(Ω; Rn) such that uj converge weakly in W 1,r(Ω; Rn) to the identity map, as well as strongly
in L∞(Ω; Rn) (hence the (uj) are uniformly bounded in L∞(Ω; Rn)), but for all j, detDuj(x) = 0 for almost
all x ∈ Ω.

Let us now consider properties of a suitable Lebesgue–Serrin extension, and introduce the functional (for
1 < r < 2 and q satisfying (1.5))

F (u, Ω) := inf
(uj)

⎧⎨
⎩lim inf

j→∞

�
Ω

f(Duj) dx

∣∣∣∣∣∣
(uj) ⊂ W 1,r

loc (Ω, RN )
(uj) uniformly bounded in Lq

loc(Ω, RN )
uj

∗
⇀ u weakly∗ in BVloc(Ω, RN )

⎫⎬
⎭ .

Note that Theorem 1.1 implies the following result:

Corollary 2.5. Let f : R
N×n → R, satisfy the conditions in Theorem 1.1. Then

– If n ≥ 3, p ≥ 1 and p > r
2 (n−1), and q satisfies (1.5), F (u; Ω) = F (u; Ω) for all u ∈ (W 1,p

loc ∩Lq
loc)(Ω; RN );

– if n = 2, then this equality holds for all u ∈ (W 1,r
loc ∩ Lq

loc)(Ω; RN ).
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Proof. For any n, Theorem 1.1 tells us that if u ∈ W 1,p
loc (Ω; RN ) for p satisfying the stated conditions, and (uj)

is a sequence satisfying the conditions given in the definition of F (u; Ω), then

lim inf
j→∞

�
Ω

f(Duj) dx ≥ F (u; Ω).

Taking the infimum of all such (uj), we get

F (u; Ω) ≥ F (u; Ω) when u ∈ W 1,p
loc (Ω; RN ).

Now note that if u ∈ (W 1,r
loc ∩Lq

loc)(Ω; RN ), then by simply taking uj = u for all j, we get a sequence satisfying
the conditions in F (u; Ω), so certainly

F (u; Ω) ≥ F (u; Ω) when u ∈ (W 1,r
loc ∩ Lq

loc)(Ω; RN ).

We conclude by noting that since 1 < r < 2, for n ≥ 3 we have

W 1,p
loc (Ω, RN ) ⊂ W 1,r

loc (Ω, RN ) ,

and for n = 2, since in this case we can take p = 1,

W 1,r
loc (Ω, RN ) ⊂ W 1,p

loc (Ω, RN ). �

If we wish to describe F for an even wider class of functions u, things can be more difficult. Certainly, if
u /∈ Lq

loc(Ω; RN ) then there can be no sequence (uj) uniformly bounded in Lq
loc(Ω; RN ) satisfying uj

∗
⇀ u in

BVloc(Ω; RN ) (or even just strongly in L1
loc), since this would imply that u is itself in Lq

loc(Ω; RN ). Hence we
have

F (u, Ω) = inf ∅ = +∞.

Results by Bouchitté et al. [5], Fonseca and Malý [11,12] indicate that, even for n ≥ 3, a measure representation
for F should exist for u ∈ (W 1,r

loc ∩Lq
loc)(Ω; RN ), but we have been unable to prove this yet. A counterexample

due to Acerbi and Dal Maso [1] shows that if r = n = N = 2 and u ∈ (BVloc ∩ L∞
loc)(Ω; RN ), then a measure

representation does not exist at all. Although their conditions are slightly different from ours, it is not difficult
to see from their paper that their counterexample also applies to our case. In fact, they present an example
where the set function ω �→ F (u; ω) is not even subadditive (for an alternative proof, see [8]).

3. Proof of the main result

Proof of Lemma 1.2. By approximation we may assume (uj) ⊂ C1(B̄; RN ). If the left hand side of (1.11) is
infinite then there is nothing to prove, so suppose it is finite. Moreover, by extracting a subsequence if necessary,
we can assume

l0 := lim inf
j→∞

�
B

f(Duj) dx = lim
j→∞

�
B

f(Duj) dx.

With reference to (1.9), write M = supj sup�∈F ‖uj‖Lq(∂B�). From (1.7), by the Fubini–Tonelli theorem and
the Rellich–Kondrachoff compactness theorem we have

lim
j→∞

� 1

0

�
∂B�

|uj | dH n−1 d� = lim
j→∞

�
B

|uj| dx = 0.

This implies there exists a subsequence {uj}j∈T such that

lim
j→∞, j∈T

�
∂B�

|uj | dH n−1 = 0 (3.1)
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for almost all � ∈ (0, 1). By Fatou’s Lemma and (1.8) we have
� 1

0

lim inf
j→∞, j∈T

�
∂B�

|Duj | dH n−1 d� ≤ lim inf
j→∞, j∈T

�
B

|Duj | dx < ∞.

Thus, for almost all � ∈ (0, 1)

lim inf
j→∞, j∈T

�
∂B�

|Duj | dH n−1 < ∞. (3.2)

Now fix 0 < δ < 1. By (3.1), (3.2) and (1.9) we can choose � ∈ (δ, 1) such that all the following hold:

1.
lim

j→∞, j∈T

�
∂B�

|uj| dH n−1 = 0;

2.
lim inf

j→∞, j∈T

�
∂B�

|Duj | dH n−1 < ∞;

3.
sup
j∈T

‖uj‖Lq(∂B�) ≤ M.

Now take a further subsequence {uj}j∈S , where S ⊆ T , so that

lim
j→∞, j∈S

�
∂B�

|Duj | dH n−1 = lim inf
j→∞, j∈T

�
∂B�

|Duj| dH n−1.

Relabel the sequence (uj) so that S = N. Now define the sequence (gj) ⊂ W 1,1(∂B; RN ) as:

gj(x) := uj |∂B�(�x) for x ∈ ∂B.

Take a cut-off function η ∈ C1(B; R) such that 1B� ≤ η ≤ 1B, |Dη| ≤ 2
1−� , and define (vj) ⊂ W 1,r

0 (B; RN ) as:

vj(x) :=
{

η(x) · (E(gj))(x
� ) if |x| ≥ � ,

uj(x) if |x| < � ,

where E is the extension operator from Lemma 1.3.
Since the function t �→ tr is convex, (s + t)r ≤ 2r−1(sr + tr) for all s, t ≥ 0. Hence from Lemma 1.3 we have

�
B\B�

|Dvj |r ≤
�

B\B�

(∣∣Dη ·Egj(·/�)
∣∣+ ∣∣ η · D[Egj(·/�)]

∣∣)r

≤ 2r−1

�
B\B�

|Dη|r · ∣∣Egj(·/�)
∣∣r + 2r−1

�
B\B�

|η|r · ∣∣D[Egj(·/�)]
∣∣r

≤ C

�
B\B�

∣∣Egj(·/�)
∣∣r + C

�
B\B�

∣∣D[Egj(·/�)]
∣∣r (3.3)

for some constant C. We estimate the two terms in (3.3) using Lemma 1.3 (3) as follows:
�

B\B�

∣∣D[Egj(·/�)]
∣∣r ≤ c2 ‖gj‖

r
2
Lq(∂B) · ‖Dgj‖L1(∂B)

by (1.9) ≤ c2 M
r
2 · ‖Dgj‖L1(∂B)

= C

�
∂B�

|Duj | dH n−1 (3.4)
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for another constant C. Now note that we may obtain the same inequality (albeit for a different constant C)
using Lemma 1.3 for any other r′ such that r < r′ < 2, and also (with reference to (1.10)) satisfying q > r′(n−1)

2−r′ .
Hence by (3.4) and Lemma 1.3, since

sup
j

�
∂B�

|Duj| dH n−1 < ∞ ,

we can use the De la Vallée Poussin criterion to deduce that the sequence |D[Egj ]|r is equi-integrable on B \B�.
By Lemma 1.3, since

sup
j

�
∂B�

|uj| dH n−1 → 0 as j → ∞ ,

D[Egj ] → 0 locally uniformly on B \B�, and hence so does |D[Egj]|r. Thus, by Vitali’s Convergence Theorem,
�

B\B�

∣∣D[Egj(·/�)]
∣∣r → 0 as j → ∞.

Similarly
�

B\B�

∣∣ [Egj(·/�)]
∣∣r ≤ c1 ‖gj‖r

Lq(∂B)

by (1.9) ≤ c1 M r ,

so |Egj |r is equi-integrable on B \ B�, and using Lemma 1.3 and Vitali,
�

B\B�

∣∣Egj(·/�)
∣∣r → 0 as j → ∞.

Combining these estimates in (3.3), we have

lim sup
j→∞

�
B\B�

|Dvj |r dx = 0. (3.5)

Now we use the quasiconvexity and nonnegativity of f to obtain
�

B

f(Duj) ≥
�

B�

f(Duj) =
�

B

f(Dvj) −
�

B\B�

f(Dvj) ≥ L n(B)f(0) −
�

B\B�

f(Dvj)

≥ L n(B)f(0) − L

�
B\B�

(
1 + |Dvj |r

)
.

Let j → ∞ to get, using (3.5),
l0 ≥ L n(B)f(0) − LL n(B \ B�).

Recall � ∈ (δ, 1) for fixed 0 < δ < 1. Hence we conclude by taking δ arbitrarily close to 1. �

In order to obtain the proof of Theorem 1.1 from Lemma 1.2, we use a technique originating in work by
Foneseca and Müller, which was further developed by Fonseca and Marcellini (see [13,14]). However, this ”blow-
up argument” still does not apply completely for our purposes. In order to use the fact the sequence (uj) in
Theorem 1.1 is uniformly bounded in Lq

loc(Ω; RN ) for q satisfying (1.5), we need to be more careful in our choice
of blow-up functions. This involves applying the following lemma.
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Lemma 3.1. Let u ∈ W 1,p
loc (Ω; RN ), where 1 ≤ p < n− 1. Then for almost all x0 ∈ Ω the following holds: there

exists a set E ⊂ (0, 1) such that 0 is a point of right density one of E, and the difference quotient

�
∂B�

(∣∣u(x0 + z) − u(x0) − [Du(x0)]z
∣∣

|z|

) (n−1)p
n−1−p

dH n−1(z) (3.6)

tends to 0 as � → 0 through the set E. Moreover, the set E has the following property: there exists a sequence
tk ↘ 0 and corresponding sets Etk

⊂ [12 , 1] such that

E =
∞⋃

i=1

tiEti (3.7)

and, for any ε > 0, we can choose tk, Etk
such that∣∣∣∣∣

∞⋂
i=1

Eti

∣∣∣∣∣ >
1
2
− ε.

Proof of Lemma 3.1. For x0, y ∈ Ω, t > 0, define

v(t, y) :=
u(x0 + ty) − u(x0) − [Du(x0)](ty)

t
·

It is clear that, provided B(x0, t) ⊂ Ω, v(t, y) ∈ W 1,p(B; RN ). Moreover, it is well known that
�

B
|v(t, y)|p dy → 0

as t → 0 for almost all x0 ∈ Ω (see, for example, [32]). In addition, by considering Lebesgue points of Du, we
have �

B

|Dv(t, y)|p dy =
�

B

∣∣Du(x0 + ty) − Du(x0)
∣∣p dy −→ 0 as t → 0

for almost all x0 ∈ Ω. Fix such an x0 and, for 0 < t < dist(x0, ∂Ω), define

γ(t) :=
�

∂B

|v(t, y)| (n−1)p
n−1−p dH n−1(y) ,

and
α(t) :=

�
B

(|v(t, y)|p + |Dv(t, y)|p) dy.

Note that by our choice of x0 we have α(t) → 0 as t → 0. Since v(t, y) ∈ W 1,p(B) for t sufficiently small, we
have v(t, y) ∈ W 1,p(∂B�; RN ) for almost all � ∈ (0, 1). It then follows by the Rellich–Kondrachoff embedding

theorem that in fact v(t, y) ∈ L
(n−1)p
n−1−p (∂B�; RN ) for almost all � ∈ (0, 1).

Now let
φt(�) :=

�
∂B�

(|v(t, y)|p + |Dv(t, y)|p) dH n−1(y)

and let

Et :=
[
1
2
, 1
]
∩ {� : φt(�) < α(t)

1
2 }. (3.8)

Note

α(t) =
� 1

0

φt(�) d� ≥
� 1

1
2

φt(�) d� ≥
�
[ 1
2 ,1]\Et

φt(�) d� ≥
∣∣∣∣
[
1
2
, 1
]
\ Et

∣∣∣∣ · α(t)
1
2 ,

so ∣∣∣∣
[
1
2
, 1
]
\ Et| ≤ α(t)

1
2 .
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Next consider � ∈ Et. By the Sobolev Inequality we have for β = (n−1)p
n−1−p and some constant M = M(p, n):

( �
∂B�

|v(y, t)|β dH n−1(y)

) 1
β

≤ M

(�
∂B�

|v(y, t)|p + |Dv(t, y)|p dH n−1(y)

) 1
p

= Mφt(�)
1
p ≤ Mα(t)

1
2p .

Hence, again for � ∈ Et, we have

γ(�t) =
�

∂B

∣∣∣∣∣u(x0 + �ty) − u(x0) − [Du(x0)](�ty)
�t

∣∣∣∣∣
β

dH n−1(y)

= �1−n−β

�
∂B�

|v(t, y)|β dH n−1(y)

≤ M 2n+β+1 · α(t)
n−1

2(n−1−p) .

Now we may take any decreasing sequence (ti) ⊂ (0, dist(x0, ∂Ω)) such that ti ↘ 0 and let Eti be defined as
in (3.8). Note that we could also require ti+1 < ti/2, so that the Eti are disjoint. Now define E as stated in (3.7).
Thus 0 is a limit point of E, and γ(�) → 0 as r → 0, � ∈ E, so the main statement of the lemma is proved.

It remains to show that we can choose (ti) such that
∣∣⋂∞

i=1 Eti

∣∣ is arbitrarily close to 1
2 . Write Ec

t for [12 , 1]\Et.
Since Ec

t ↘ 0 as t ↘ 0, for a given ε > 0 we may choose ti ↘ 0 such that Ec
ti

< 2−iε for all i. Hence∣∣∣∣∣
∞⋃

i=1

Ec
ti

∣∣∣∣∣ ≤
∞∑

i=1

|Ec
ti
| < ε.

So ∣∣∣∣∣
∞⋂

i=1

Eti

∣∣∣∣∣ >
1
2
− ε.

This completes the proof of the lemma. �

Remark 3.2. If u ∈ W 1,p
loc (Ω; RN ) for p ≥ n − 1, then obviously u ∈ W 1,p′

loc (Ω; RN ) for any 1 ≤ p′ ≤ p, so we
can still apply the above lemma for 1 ≤ p′ < n − 1 to prove Theorem 1.1. In fact, if p > n − 1, then we have
a stronger result: namely that u has a regular approximate total differential at almost all x0 ∈ Ω. This means
that the difference quotient ∣∣u(x0 + z) − u(x0) − [Du(x0)]z

∣∣
|z|

tends to 0 uniformly for z ∈ ∂B� as � → 0 through a set E for which 0 is a point of right density one. A
scheme of a proof of this can be found in [32] (Chap. 3, Exercises), from which the Proof of Lemma 3.1 has
been adapted.

Proof of Theorem 1.1. We may assume that the left hand side of (1.6) is finite, as otherwise there is nothing to
prove. Taking a subsequence if necessary, we can also assume that

�
Ω

f(Duj) → lim inf
j→∞

�
Ω

f(Duj).

For our purposes, for (1.3) we require only the following fact which characterizes weak* convergence in BV .
That is, (1.3) is equivalent to:

uj → u in L1
loc(Ω; RN ) (3.9)

Duj
∗
⇀ Du in M (Ω; RN×n) , (3.10)
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where M (Ω; RN×n) is the space of N×n matrix-valued Borel measures on Ω. By (3.10) and the Uniform Bound-
edness Principle, supj

�
Ω |Duj| dL n < ∞. Since L n�f(Duj) and L n�|Duj| are bounded in M (Ω̄; RN×n), we

that have for some subsequence (for convenience not relabelled) there exist measures μ and ν in Ω̄ such that

f(Duj)
∗
⇀ μ

and |Duj | ∗
⇀ ν

}
in M (Ω̄; RN×n).

Notice that, because f ≥ 0, the proof of the theorem follows if we can prove that

dμ

dL n
(x) ≥ f(Du(x)) (3.11)

holds for almost all x ∈ Ω.
Let Ω0 denote the set of points x ∈ Ω such that:

1.
dμ

dL n
(x) = lim

�→0+

μ(B(x, �))
L n(B(x, �))

exists and is finite;

2.
dν

dL n
(x) = lim

�→0+

ν(B(x, �))
L n(B(x, �))

exists and is finite;

3.
lim

�→0+

1
�

�
B(x,�)

|u(y) − u(x) − [Du(x)](x − y)| dy = 0;

4. Lemma 3.1 holds for u at x.

By standard results (see e.g. [27, 32]) and Lemma 3.1, Ω0 has full measure in Ω. Fix x0 ∈ Ω0. Let (rk) ⊂
(0, dist(x0, Ω)) be a sequence such that rk ↘ 0 and define

vj,k(y) :=
uj(x0 + rky) − u(x0) − [Du(x0)](rky)

rk
, y ∈ B. (3.12)

Our aim is to pick a suitable sequence (rk) so we may use vj,k to define a sequence (zk) ⊂ W 1,r(B; RN ), say,
that will enable us to apply Lemma 1.2 to obtain (3.11). In fact, we do not actually apply Lemma 1.2 for the
same q as in Theorem 1.1, but for an arbitrarily smaller q′ < q that nevertheless satisfies (1.10).

However, also note that in order to apply Lemmas 1.2 and 3.1, from (1.10) and (3.6) we need u ∈ W 1,p
loc (Ω; RN )

for 1 ≤ p < n − 1 satisfying
p(n − 1)
n − 1 − p

> max
{

1,
r(n − 1)

2 − r

}
·

It is straightforward to verify that this holds if and only if 1 ≤ p < n − 1 also satisfies p > r
2 (n − 1).

Recall from Lemma 3.1 that, for any ε > 0, we can choose a sequence tk ↘ 0, tk < dist(x0, ∂Ω), such that
|⋂Etk

| > 1
2 − ε, with Etk

defined as in (3.8). By (1.4) and (3.9), using De la Vallée Poussin and Vitali, we have
uj → u in Lq′

loc(Ω) for any 1 ≤ q′ < q. Hence, for any fixed k:

lim
j→∞

1

tq
′

k

�
B

∣∣uj(x0 + tky) − u(x0 + tky)
∣∣q′

dy = 0.

So, by Fubini–Tonelli,

lim
j→∞

1
tq

′
k

� 1

0

�
∂B�

∣∣uj(x0 + tky) − u(x0 + tky)
∣∣q′

dH n−1(y) d� = 0.
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Hence, for every k, there exists a subsequence (uj)j∈Sk
, Sk ⊆ N, such that

lim
j→∞,j∈Sk

1

tq
′

k

�
∂B�

∣∣uj(x0 + tky) − u(x0 + tky)
∣∣q′

dH n−1(y) = 0 (3.13)

for almost all � ∈ (0, 1). Now note that, by Egorov’s Theorem, for a given ε > 0, there exists a set Gk ⊂ (0, 1)
such that |(0, 1)\Gk| < ε2−k and (3.13) holds uniformly for � ∈ Gk. By discarding smaller elements of Sk if
necessary, this implies that

sup
j∈Sk

sup
�∈Gk

1
tq

′
k

�
∂B�

∣∣uj(x0 + tky) − u(x0 + tky)
∣∣q′

dH n−1(y) < 1.

We can obtain such Gk and Sk for all k ∈ N. Now note that we have, similarly to the remark to Lemma 3.1,
|⋂Gk| > 1 − ε, so |(1

2 , 1) ∩⋂Gk| > 1
2 − ε. Therefore

∣∣ ∞⋂
k=1

(Gk ∩ Etk
)
∣∣ >

1
2
− 2ε > 0 ,

provided ε is small enough. This means that
⋂

(Gk∩Etk
) contains a point of left density one θ, say (so θ ∈ (1

2 , 1)).
If we let

F = θ−1
∞⋂

k=1

(Gk ∩ Etk
) ,

then 1 is a point of left density one of F . Hence, for all 0 < δ < 1, |(δ, 1) ∩ F | > 0.
Now let rk = θtk. So

(
rk) ⊂ (0, dist(x0, Ω)

)
, rk ↘ 0. Note also that the set{

� ∈ (0, dist(x0, Ω)
)

: (μ + ν)
(
∂B(x0, �)

)
> 0
}

is at most countable, so has measure 0. Since there are uncountably many points of left density one, like θ,
above, we may assume in addition that (μ+ν)

(
∂B(x0, rk)

)
= 0 for all k for our choice of rk. Define vj,k in (3.12)

using this choice of rk. Observe that we may also write vj,k as follows:

vj,k(y) =
1
rk

(
u(x0 + rky) − u(x0) − [Du(x0)](rky)

)
+

1
rk

(
uj(x0 + rky) − u(x0 + rky)

)
= I + II , say.

We now consider I and II separately.

Estimating I. If � ∈ F , then θ� ∈ ⋂Etk
, so �θtk ∈ tkEtk

for all k. i.e. �rk ∈ tkEtk
for all k. So, with reference

to (3.7) in Lemma 3.1, we have that �rk ∈ E: so if y ∈ ∂B, then �rky ∈ A. So by Lemma 3.1 we have

sup
�∈F

�
∂B

(∣∣u(x0 + �rky) − u(x0) − [Du(x0)](�rky)
∣∣

|�rk|

) (n−1)p
n−1−p

dH n−1(y)

≤ C · α(tk)
n−1

2(n−1−p) −→ 0 as k → 0.

This implies that

sup
k

sup
�∈F

��� 1
rk

(
u(x0 + rk·) − u(x0) − [Du(x0)](rk·)

)���
Lq′ (∂B�)

< ∞

for any 1 ≤ q′ ≤ (n−1)p
n−1−p . Hence, as noted above, if p satisfies the conditions in Theorem 1.1, then we can choose

an appropriate q′ satisfying (1.10).
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Estimating II. Take a subsequence (ujk
) of (uj) such that jk ∈ Sk for all k. Hence we have for all � ∈ F ,

θ� ∈ ⋂Gk (so indeed �θ ∈ Gk for every k). So, for any 1 ≤ q′ < q,

1

rq′
k

�
∂B�

|ujk
(x0 + rky) − u(x0 + rky)|q′

dH n−1(y)

=
1

(θtk)q′

�
∂B�

|ujk
(x0 + θtky) − u(x0 + θtky)|q′

dH n−1(y)

=
1

(θtk)q′

�
∂B�θ

|ujk
(x0 + tky) − u(x0 + tky)|q′

θ1−n dH n−1(y)

< θ1−n−q′

for every k ∈ N, � ∈ F . Hence

sup
k

sup
�∈F

��� 1
rk

(
ujk

(x0 + rk·) − u(x0 + rk·)
)���

Lq′ (∂B�)
< ∞.

Therefore, combining these two estimates, we have shown that for this subsequence, (vjk ,k)k∈N satisfies (1.9) of
Lemma 1.2 (for q′ in place of q).

Now note
�

B

|Dvj,k(y) + Du(x0)| dy =
�

B

|Duj(x0 + rky)| dy

=
1

|B(x0, rk)|
�

B(x0,rk)

|Duj(y)| dy −→ dν

dL n
(x0) as j, k → ∞ ,

and similarly we can take a subsequence (ujk
) such that (by property (2) for Ω0 above), (1.8) of Lemma 1.2 is

satisfied.
In the same way, �

B

f(Dvj,k(y)) dy −→ dμ

dL n
(x0) as j, k → ∞ ,

and we can take a subsequence (ujk
) so that this convergence happens as k → ∞.

Thus, taking multiple subsequences, we can indeed create a sequence (zk) = (vjk,k) ⊂ W 1,r(B; RN ) satisfy-
ing (1.7)–(1.9). Hence, by Lemma 1.2,

lim inf
k→∞

�
B

f
(
Dzk(y) + Du(x0)

)
dy ≥ f

(
Du(x0)

)
,

i.e.
dμ

dL n
(x0) ≥ f

(
Du(x0)

)
. �

4. Proof of integral estimates for the extension operator

In this section we provide a Proof of Lemma 1.3, which provides us with an extension operator that enables us
to get higher integrability in the Proof of Lemma 1.2. By a standard localisation argument (see, for example, [24]),
it suffices to prove Lemma 4.1 below. We denote points in R

n by (x, t), where x ∈ R
n−1 and t ∈ R, and let

R
n
+ := {(x, t) ∈ R

n : t > 0}.
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Lemma 4.1. Let 1 < r < 2. Then for q satisfying

q ≥ max
{

1,
r(n − 1)

2 − r

}
,

there exists a linear extension operator

E : (W 1,1
loc ∩ Lq

loc)(R
n−1; RN ) → W 1,r

loc (Rn
+; RN )

with the following properties :
1. if h ∈ C1(Rn−1; RN ) then (Eh)(x, 0) := limt→0+(Eh)(x, t) = h(x) for all x ∈ R

n−1;
2. if (zj) ⊂ C∞(Rn−1; RN ) and zj → 0 in the sense of distributions, then for any multi-index α, ∂α[Ezj ] → 0

locally uniformly in R
n
+;

3. For all R > 0 there exist positive constants c1, c2, dependent on n, N , r, R, such that for all h ∈ (W 1,1 ∩
Lq)(Rn−1; RN ) with support contained in {x ∈ R

n−1 : |x| ≤ R} we have
(a) �

Rn
+

|Eh|r dL n ≤ c1‖h‖r
Lq(Rn−1);

(b) �
Rn

+

|D[Eh]|rL n ≤ c2 ‖g‖
r
2
Lq(Rn−1) ·

�
Rn−1

|Dh| dH n−1.

Since the function t �→ tr is convex, it suffices to prove Lemma 4.1 in the case where N = 1. For convenience,
let m = n− 1, and let Bm denote the open unit ball in R

m. To define E, we take a standard convolution kernel
K in R

m supported in Bm (i.e. K satisfies K ∈ C∞
c (Rm), K ≥ 0,

�
K = 1, supp(K) ⊂⊂ Bm) and a function

η ∈ C∞
c (R) with η(0) = 1, η(1) = 0. Then we let

(Eh)(x, t) := η(t)(Kt ∗ h)(x) , (x, t) ∈ R
n
+.

It is easily seen that E maps (W 1,1
loc ∩ Lq

loc)(R
m) into C∞(Rn

+) and that it satisfies properties (1) and (2). In
order to show that it maps the given domain into W 1,r

loc (Rn
+), it suffices to prove 3(b). We shall prove it for the x

derivative Dx(Eh(x, t)) only, since proving it for the t derivative is entirely similar, concluding for D(Eh) using
the convexity of r �→ tr. Throughout the proofs of 3(a), 3(b), we will use c to denote a constant, not always the
same from line to line, that depends at most on n, r, η, K, R, q.

Proof of 3(a). Note that

(Eh)(x, t) = η(t)
�
Bm

t−mK(y
t )h(x − y) dH m(y)

so
|Eh|r ≤

(
c‖η‖∞‖K‖∞

�
tBm

t−m|h(x − y)| dy

)r

.

Now we use Jensen’s Inequality to obtain, for any q ≥ 1,�
tBm

t−m|h(x − y)| dy = |tBm|t−m

�
tBm

|h(x − y)| dy

= |Bm|
((�

tBm

|h(x − y)| dy

)q) 1
q

≤ |Bm|
(�

tBm

|h(x − y)|q dy

) 1
q

= t−
m
q

(�
tBm

|h(x − y)|q dy

) 1
q

≤ t−
m
q ‖h‖Lq(Rm).
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Hence we have
|Eh|r ≤ c ‖h‖r

Lq(Rm) t−
mr
q .

Now note that
� 1

0
t−

mr
q dt is finite if and only if mr

q > −1, i.e. q > rm. Since 1 < r < 2, this is certainly satisfied
if q ≥ mr

2−r .
Moreover, if h is compactly supported in {x ∈ R

m : |x| ≤ R}, then Eh is supported in {(x, t) ∈ R
n
+ : |x| ≤

R + 1, t ∈ (0, 1)}. Hence, integrating |Eh|r first with respect to t, then x, we get, for q > rm,

�
Rn

+

|Eh|r dL n =
�
{|x|≤R+1}

� 1

0

|Eh|r dt dx ≤ c (R + 1)m |Bm| ‖h‖r
Lq(Rm) ·

� 1

0

t−
rm
q dt ≤ c1 ‖h‖r

Lq(Rm). �

The key component of the proof of 3(b) of Lemma 4.1 depends on the following lemma due to Greco et al.
(see [17]). Before stating this lemma, we shall establish some definitions. For g ∈ L1

loc(R
m) recall that the

Hardy–Littlewood maximal function is defined as:

(Mg)(x) := sup
�>0

�
�Bm

|g(x − y)| dy , x ∈ R
m.

Let Φ : [0,∞) → [0,∞) be a non-decreasing, right-continuous function and define the function Ψ : [0,∞) → [0,∞)
as

Ψ(t) := Φ(t) + t

� t

0

Φ(s)
s2

ds , t ≥ 0. (4.1)

Lemma 4.2 ([17]). Let Φ, Ψ : [0,∞) → [0,∞) be defined as above. If g ∈ L1(Rm), then
�

Rm

Φ(Mg) dx ≤ 2 · 5m

�
Rm

Ψ(2|g|) dx.

Proof of 3(b). First observe that, by integration by parts and since K vanishes on ∂Bm, we may write the
derivative Dx(Eh) in both the following ways:

Dx(Eh)(x, t) = η(t)
�
Bm

Dh(x − ty)K(y) dy = η(t)
�
Bm

t−1h(x − ty)DK(y) dy.

Now fix x ∈ R
m. Integrating Dx(Eh) first with respect to t over (0, 1), we get

� 1

0

|Dx(Eh)(x, t)|r dt =
� δ

0

(∣∣∣∣ η(t)
�
Bm

Dh(x − ty)K(y) dy

∣∣∣∣
)r

dt

� 1

δ

(∣∣∣∣ η(t)
�
Bm

t−1h(x − ty)DK(y) dy

∣∣∣∣
)r

dt

= I + II , say. (4.2)

Estimating I. We obtain the following bound on I:

I =
� δ

0

( ∣∣∣∣ η(t)
�
Bm

Dh(x − ty)K(y) dy

∣∣∣∣
)r

dt

≤
� δ

0

‖η‖r
∞‖K‖r

∞

(�
Bm

|Dh(x − ty)| dy

)r

dt

≤ ‖η‖r
∞‖K‖r

∞

� δ

0

M(Dh)(x)r dt

≤ c δ (MDh)(x)r . (4.3)
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Estimating II. This is similar, albeit slightly more involved than, the proof of 3(a). First note that(∣∣ η(t)
�
Bm

t−1h(x − ty)DK(y) dy
∣∣ )r

≤
(
‖η‖∞‖DK‖∞t−1

�
Bm

|h(x − ty)| dy

)r

≤ c
(
t−1 · t−m

q ‖h‖Lq(Rm)

)r
= c t−

(m+q)r
q ‖h‖r

Lq(Rm). (4.4)

Here we have used Jensen’s Inequality just as in the proof of 3(a), but now we have an extra t−1 term to
incorporate.

Now assume 0 < δ < 1 and consider
� 1

δ t−
(m+q)r

q dt:

� 1

δ

t−
(m+q)r

q dt =
1

1 − (m+q)r
q

[
t1−

(m+q)r
q

]1
δ

=
q

(m + q)r − q

[
t1−

(m+q)r
q

]δ
1

≤ c δ1− (m+q)r
q .

Now note that δ1− (m+q)r
q ≤ δ−1 if and only if

1 − (m + q)r
q

≥ −1 ,

i.e.
q ≥ mr

2 − r
·

Therefore, from (4.4), and for such q, we get

II ≤ c

� 1

δ

t−
(m+q)r

q ‖h‖r
Lq(Rm) dt ≤ c δ−1 ‖h‖r

Lq(Rm). (4.5)

Now note that even if δ ≥ 1, then II ≤ 0, so clearly (4.5) is also true in this case.
Combining these estimates for I and II, we obtain

� 1

0

|Dx(Eh)(x, t)|r dt ≤ c δ (MDh)(x)r + c δ−1 ‖h‖r
Lq(Rm). (4.6)

If we take

δ =

( ‖h‖r
Lq(Rm)

(MDh)(x)r

) 1
2

,

then (4.6) becomes � 1

0

|Dx(Eh)(x, t)|r dt ≤ c (MDh)(x)
r
2 ‖h‖ r

2
Lq(Rm). (4.7)

Note that whereas the choice of δ to obtain (4.7) may depend on x, the constant c in (4.7) is independent of x.
So (4.7) holds for all x ∈ R

m. Define the function Φ : [0,∞) → [0,∞) as follows:

Φ(t) :=
{

t2 if t ∈ [0, 1) ,
t

r
2 if t ≥ 1.
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Then Ψ as defined in (4.1) satisfies, for t ≥ 1,

Ψ(t) = t
r
2 + t + t

� t

1

s
r
2−2 dt = t

r
2 + t + 2

2−r (1 − t
r
2−1) t ≤ ct.

Now apply Lemma 4.2, noting that {|Dh| ≥ 1} ⊆ {M(Dh) ≥ 1}:
�
{|Dh|≥1}

(MDh)(x)
r
2 dx ≤

�
{MDh≥1}

(MDh)(x)
r
2 dx

=
�
{MDh≥1}

Φ
(
(MDh)(x)

)
dx

≤ 2 × 5m

�
{MDh≥1}

Ψ
(
2|(Dh)(x)|) dx

≤ 2 × 5m × 2c

�
{MDh≥1}

|(Dh)(x)| dx

≤ c

�
Rm

|(Dh)(x)| dx. (4.8)

Therefore, applying (4.8) to (4.7), we obtain
�
{|Dh|≥1}

� 1

0

|Dx(Eh)(x, t)|r dt dx ≤ c ‖h‖ r
2
Lq(Rm) ·

�
Rm

|(Dh)(x)| dx. (4.9)

As observed in the proof of 3(a), if h is compactly supported in {x : |x| ≤ R}, then Eh (and also DxEh) is
supported in {(x, t) : |x| ≤ R + 1 , t ∈ (0, 1)}. Therefore we have

�
{|Dh|<1}

� 1

0

|Dx(Eh)(x, t)|r dt dx ≤ (‖η‖∞‖K‖∞|Bm|)r · L m
({x : |x| ≤ R + 1}). (4.10)

Combining (4.9) and (4.10) gives
�

Rn
+

|Dx(Eh)(x, t)|r d(x, t) ≤ c + c ‖h‖ r
2
Lq(Rm) ·

�
Rm

|(Dh)(x)| dx. (4.11)

Since E is a linear operator, 3(b) easily follows from (4.11) by taking a larger constant c. �
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