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EXISTENCE OF SOLUTIONS FOR A SEMILINEAR ELLIPTIC SYSTEM

Mohamed Benrhouma1

Abstract. This paper deals with the existence of solutions to the following system:

{−Δu + u = α
α+β

a(x)|v|β|u|α−2u in R
N

−Δv + v = β
α+β

a(x)|u|α|v|β−2v in R
N .

With the help of the Nehari manifold and the linking theorem, we prove the existence of at least
two nontrivial solutions. One of them is positive. Our main tools are the concentration-compactness
principle and the Ekeland’s variational principle.
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1. Introduction

In this paper, we are concerned with the existence of solutions of the following system:⎧⎨
⎩

−Δu+ u = α
α+β a(x)|v|β |u|α−2u in R

N

−Δv + v = β
α+β a(x)|u|α|v|β−2v in R

N .
(1.1)

Our main hypotheses are cited below:

(H1) N > 2, 1 < α <
N

N − 2
, 1 < β <

N

N − 2
, and max(α, β) ≤ 2.

(H2) a ∈ L∞(RN ), a ≥ 0, a �= 0 and lim
|x|→∞

a(x) = 0.

The problem of existence of solutions for the semilinear elliptic system⎧⎨
⎩

−Δu = f(x, u, v)

−Δv = g(x, u, v)
x ∈ Ω, (1.2)
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with various boundary conditions as well as a bounded domain has been studied by many authors during last
decades. we can see for instance [1, 5, 7, 8, 12, 19, 21] and the references therein. A good survey on the existence
and nonexistence results for (1.2) with f(x, u, v) = vp and g(x, u, v) = up can be found by Serrin and Zou in [19].
By the contrast, it seems to us that there are few results are known in R

N , we can quote [3, 4, 9, 11, 13, 14] in
which the authors treated the special case of system (1.2),

f(x, u, v) = −u+ F (x, v) and g(x, u, v) = −v +G(x, u).

De Figueiredo and Yang [9] proved the existence of a strong radial solution pair of (1.2) and the exponential
decay of the solution under the assumptions that f(x, t) and g(x, t) are radially symmetric with respect to x.
Gongbao and Chunhua [11] proved the existence of at least one positive solution of (1.2) by using a linking
theorem and the concentration-compactness principle. Li and Yang [14] obtained the existence of a positive
solution pair to (1.2) where f(x, t), g(x, t) are asymptotically linear. In the case,

f(x, u, v) = −a(x)u + Fu(x, u, v) and g(x, u, v) = −b(x)v + Fv(x, u, v),

among other results, D.G. Costa [6] proved the existence of a nontrivial solution of (1.2) by using the Generalized
Mountain Pass theorem.

In the present work, we are interested in finding the existence of two nontrivial solutions of (1.1) and one of
them is positive (i.e.: (u, v) is a positive if u > 0 and v > 0 a.e.).

The main difficulties to deal with the system (1.1) consist in at least two aspects. In the first hand, on the
contrary of the most of the works cited above, the nonlinear part of the system (1.1) (f(x, u, v), g(x, u, v))
depends at the same time on u and v. In the second hand, as R

N is translation invariant, the Sobolev compact
imbedding does not hold on R

N . To overcome these difficulties, we study the minimization problem of the
appropriate functional on the Nehari manifold [17] corresponding to (1.1). Our mains tools are the concentration-
compactness principle due to Lions [15, 16] and the Ekeland’s variational principle [10]. Our main result is the
following.

Theorem 1.1. Assume (H1) and (H2) hold. Then, the system (1.1) possesses at least two nontrivial solutions.
One of them is positive.

We organise this paper into four sections. In Section 2, we give some preliminaries and useful results. In
Section 3, we prove the existence of a first solution by minimization problem on the Nehari manifold. the
compactness of this problem is solved in three steps while applying the cencentration-compactness principle
and a major difficulty arise to show the no vanishing of the minimizing sequence. In the last section, we show
the existence of a second solution by using the linking theorem [2, 18, 20] applicable to an auxiliary problem
depending of the first solution.

2. Preliminary

Let H = H1(RN ) ×H1(RN ) and define the inner product (u, v) ∈ H and (ϕ, ψ) ∈ H by

〈(u, v), (ϕ, ψ)〉H =
∫

RN

(∇u∇ϕ+ uϕ)dx+
∫

RN

(∇v∇ψ + vψ)dx

and for z = (u, v) ∈ H , the norm of z is given by

‖z‖ = (〈(u, v), (u, v)〉H)
1
2 .

It easy to see that (H, 〈., .〉H) is a Hilbert space.
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We say that (u, v) is a weak solution pair of the problem (1.1), if (u, v) ∈ H and∫
RN

(∇u∇ϕ+ uϕ+ ∇v∇ψ + vψ)dx− α

α+ β

∫
RN

a(x)|v|β |u|α−2uϕdx− β

α+ β

∫
RN

a(x)|u|α|v|β−2vψdx = 0

∀(ϕ, ψ) ∈ C∞
c (RN ) × C∞

c (RN ).

It is clear that (0, 0) is a solution of (1.1). We are interested in getting nontrivial solutions to (1.1) which
correspond to critical points of the following functional,

I(u, v) =
1
2

∫
RN

(|∇u|2 + u2 + |∇v|2 + v2)dx − 1
α+ β

∫
RN

a(x)|u|α|v|βdx.

We have I ∈ C1(H,R) and any critical points of I on H is a weak solution pair of (1.1). The functional I is not
bounded neither above nor below on H so we introduce the Nehari manifold.

N =
{
(u, v) ∈ H \ {(0, 0)} ,

〈
I

′
(u, v), (u, v)

〉
= 0

}
and set

F (u, v) =
〈
I

′
(u, v), (u, v)

〉
= ‖(u, v)‖2 −

∫
RN

a(x)|u|α|v|βdx.

It is clear that F ∈ C1(H,R) and observe that F
′
(u, v) �= 0 for any (u, v) ∈ N .

At first, we prove that the Nehari manifold N is not empty.

Lemma 2.1. N �= ∅
Proof. Let (u, v) ∈ H such that u > 0 and v > 0 a.e. in R

N . Then,∫
RN

a(x)|u|α|v|βdx > 0.

Consider the following functional,

φu,v(t) =
t2

2

∫
RN

(|∇u|2 + u2 + |∇v|2 + v2)dx − tα+β

α+ β

∫
RN

a(x)|u|α|v|βdx

= I(tu, tv)

where (u, v) is fixed above. We have φ
′
u,v(t) =

〈
I

′
(tu, tv), (u, v)

〉
, then to prove that N �= ∅, we look for critical

points of φu,v. We have φ
′
u,v(0) = 0, φ

′
u,v(t) > 0 for t small enough and lim

t→+∞φ
′
u,v(t) = −∞. Thus, there exists

t0 > 0 such that φ
′
u,v(t0) = 0, it follows that (t0u, t0v) ∈ N. �

Now, we give some properties for the Nehari manifold N .

Lemma 2.2. (I(un, vn)) is bounded, if and only if (un, vn) is bounded in H, ∀ (un, vn) ∈ N .

Proof. Let (un, vn) be a sequence of N , we have

I(un, vn) =
1
2
‖(un, vn)‖2 − 1

α+ β

∫
RN

a(x)|un|α|vn|βdx

=
α+ β − 2
2(α+ β)

‖(un, vn)‖2
.

(2.1)

This gives the wanted result. �
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3. Existence of the first solution

In this section, we show the existence of a solution of (1.1) which is a local minimizer for I on N .
Consider the Nehari minimization problem

d = inf {I(u, v); (u, v) ∈ N} . (3.1)

The following lemma is needed to study the existence of a minimum for the functional I on N .

Lemma 3.1. d = inf {I(u, v); (u, v) ∈ N} > 0.

Proof. Let (u, v) ∈ N , we have

I(u, v) =
α+ β − 2
2(α+ β)

‖(u, v)‖2 > 0.

Which implies that d ≥ 0.
If d = 0, then there exists (un, vn) ∈ N such that I(un, vn) → 0. We conclude, by (2.1), that

‖(un, vn)‖ → 0. (3.2)

On the other hand, we have

‖(un, vn)‖2 −
∫

RN

a(x)|un|α|vn|βdx = 0. (3.3)

Dividing (3.3) by ‖(un, vn)‖2, we obtain

1 − 1
‖(un, vn)‖2

∫
RN

a(x)|un|α|vn|βdx = 0. (3.4)

Also, by (3.2), we get∣∣∣∣∣ 1
‖(un, vn)‖2

∫
RN

a(x)|un|α|vn|βdx

∣∣∣∣∣ ≤ 1
‖(un, vn)‖2 |a|∞ ‖un‖α

2α ‖vn‖β
2β

≤ 1
‖(un, vn)‖2S

α
1 S

β
2 |a|∞ ‖(un, vn)‖α+β

≤ Sα
1 S

β
2 |a|∞ ‖(un, vn)‖α+β−2 → 0,

(3.5)

where S1 (respectively S2) is the best Sobolev constant for the embedding of H1(RN ) in L2α(RN ) (respectively
L2β(RN )).

Using (3.5) and passing to the limit in (3.4), we obtain a contradiction. this achieves the proof of
Lemma 3.1. �

Remark 3.2. We can follow the arguments used in the proof of Lemma 3.1 for proving that the Nehari manifold
N is a complete space. So, we can apply the Ekeland’s variational principle [10] to the Nehari minimization
problem (3.1) which provides the existence of (un, vn) ∈ N and (λn) ∈ R such that

I(un, vn) → d and I
′
(un, vn) − λnF

′
(un, vn) → 0 in H

′
(3.6)

where H
′
is the dual space of H .

(un, vn) is called a (PS) sequence of the functional I on N .
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Lemma 3.3. Any (PS) sequence of the functional I on N is a (PS) sequence of the functional I on H.

Proof. Let (un, vn) ∈ N and (λn) ∈ R be the sequences as in the Remark 3.2. By Lemma 2.2, (un, vn) is
bounded in H . Consequently, by (3.6), we obtain that〈

I
′
(un, vn), (un, vn)

〉
− λn

〈
F

′
(un, vn), (un, vn)

〉
→ 0. (3.7)

It leads to,
λn

〈
F

′
(un, vn), (un, vn)

〉
→ 0. (3.8)

We have 〈
F

′
(un, vn), (un, vn)

〉
= ‖(un, vn)‖2 − (α+ β − 1)

∫
RN

a(x)|un|α|vn|βdx

= (2 − α− β) ‖(un, vn)‖2
.

The sequence
(〈
F

′
(un, vn), (un, vn)

〉)
is bounded and doesn’t possess a subsequence which is converging to

zero. Thus, we conclude, by (3.8), that λn → 0 and, by (3.6), that

I
′
(un, vn) → 0 in H

′
.

This gives the wanted result. �

Theorem 3.4. Assume (H1) and (H2) hold. Then, the system (1.1) possesses a nontrivial solution pair (u, v)
which is positive.

Proof. By Remark 3.2 and Lemma 3.3, there exists (un, vn) ∈ N such that

I(un, vn) → d and I
′
(un, vn) → 0 in H

′
.

Since (un, vn) is bounded in H , then there exist U and V in H1(RN ) such that

un ⇀ U and vn ⇀ V in H1(RN ).

Let (ϕ, ψ) ∈ C∞
c (RN ) × C∞

c (RN ), we have

〈
I

′
(un, vn), (ϕ, ψ)

〉
=

∫
RN

(∇un∇ϕ+ unϕ+ ∇vn∇ψ + vnψ)dx − α

α+ β

∫
RN

a(x)|vn|β|un|α−2unϕdx

− β

α+ β

∫
RN

a(x)|un|α|vn|β−2vnψdx→ 0. (3.9)

By the weak convergence of un and vn to U and V in H1(RN ) respectively, we get∫
RN

(∇un∇ϕ+ unϕ+ ∇vn∇ψ + vnψ)dx→
∫

RN

(∇U∇ϕ + Uϕ+ ∇V∇ψ + V ψ)dx. (3.10)

Since un → U in L2α(supp(ϕ)) and vn → V in L2β(supp(ϕ)), then there exist h ∈ L2α(supp(ϕ)),
ξ ∈ L2β(supp(ϕ)) and up to a subsequence,

a(x)|vn|β |un|α−2unϕ→ a(x)|V |β |U |α−2Uϕ a.e.

|a||vn|β |un|α−1|ϕ| ≤ |a|∞|ξ|β |h|α−1|ϕ| in L1.
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By the virtue of Lebesgue’s dominated convergence theorem, we deduce that

∫
RN

a(x)|vn|β |un|α−2unϕdx→
∫

RN

a(x)|V |β |U |α−2Uϕdx. (3.11)

Also, by the same argument used above, we obtain

∫
RN

a(x)|un|α|vn|β−2vnψdx→
∫

RN

a(x)|U |α|V |β−2V ψdx. (3.12)

Combining (3.9)−(3.12), we get

〈
I

′
(U, V ), (ϕ, ψ)

〉
= 0, ∀ (ϕ, ψ) ∈ C∞

c (RN ) × C∞
c (RN )

and (U, V ) is a solution of the problem (1.1).
Now, we prove that d = I(U, V ).
We have un ⇀ U and vn ⇀ V in H1(RN ) respectively, then ‖(U, V )‖ ≤ lim ‖(un, vn)‖. We distinguish two

cases:
(•) Compactness: ‖(U, V )‖ = lim

n→∞ ‖(un, vn)‖ (up to a subsequence).

It follows that, (un, vn) → (U, V ) in H and by the continuity of I, we get I(U, V ) = d.

(••) Dichotomy: ‖(U, V )‖ < lim
n→∞ ‖(un, vn)‖.

We should prove, in two steps, that this case doesn’t occur. Set wn = un − U and sn = vn − V , we have
wn ⇀ 0 and sn ⇀ 0 in H1(RN ).

Step 1. There exists (y1
n) ⊂ R

N such that

wn(.+ y1
n) ⇀W �= 0 or sn(.+ y1

n) ⇀ S �= 0 in H1(RN ).

Proof. Suppose that ∀ (yn) ⊂ R
N , we have

wn(.+ yn) ⇀ 0 and sn(.+ yn) ⇀ 0 in H1(RN ).

Therefore,

∀R > 0 sup
y∈RN

∫
B(y,R)

|wn|2dx→ 0 and sup
y∈RN

∫
B(y,R)

|sn|2dx→ 0.

By arguments due to Lions [15, 16], we have

wn → 0 and sn → 0 in Lq(RN ) ∀ 2 < q < 2∗. (3.13)

First, observe that there exists C > 0 such that for any reals a and b, we have

|a|m + |b|m − C|a|m
2 |b|m

2 ≤ |a+ b|m ≤ |a|m + |b|m + C|a|m
2 |b|m

2 , ∀ 0 < m ≤ 2. (3.14)
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Replacing un by wn + U and vn by sn + V in the following expression,

〈
I

′
(un, vn), (un, vn)

〉
= ‖(un, vn)‖2 −

∫
RN

a(x)|un|α|vn|βdx

≥
∫

RN

(|∇wn|2 + w2
n + |∇U |2 + U2 + |∇sn|2 + s2n + |∇V |2 + V 2)dx

+ 2
∫

RN

(∇wn∇U + wnU + ∇sn∇V + snV )dx

−
∫

RN

a(x)(|U |α + |wn|α + C|U |α
2 |wn|α

2 )(|V |β + |sn|β + C|V | β
2 |sn|

β
2 )dx

≥
∫

RN

(|∇wn|2 + w2
n + |∇U |2 + U2 + |∇sn|2 + s2n + |∇V |2 + V 2)dx

+ 2
∫

RN

(∇wn∇U + wnU + ∇sn∇V + snV )dx

−
∫

RN

a(x)|U |α|V |βdx− |a|∞ ‖U‖α
2α ‖sn‖β

2β − C|a|∞ ‖U‖α
2α ‖sn‖

β
2
2β ‖V ‖

β
2
2β

− |a|∞ ‖wn‖α
2α ‖V ‖β

2β − |a|∞ ‖wn‖α
2α ‖sn‖β

2β − C|a|∞ ‖wn‖α
2α ‖sn‖

β
2
2β ‖V ‖

β
2
2β

− C|a|∞ ‖wn‖
α
2
2α ‖U‖α

2
2α ‖sn‖β

2β − C|a|∞ ‖wn‖
α
2
2α ‖U‖α

2
2α ‖V ‖β

2β

−C2|a|∞ ‖wn‖
α
2
2α ‖U‖α

2
2α ‖sn‖

β
2
2β ‖V ‖

β
2
2β. (3.15)

By the weak convergence of wn and sn to 0 in H1(RN ), we obtain∫
RN

(∇wn∇U + wnU + ∇sn∇V + snV )dx→ 0. (3.16)

Using (3.13), taking into account that 2 < 2α < 2∗, 2 < 2β < 2∗ and passing to the limit in (3.15), we get

0 ≥ lim
n→∞

∫
RN

(|∇wn|2 + w2
n + |∇sn|2 + s2n)dx+

〈
I

′
(U, V ), (U, V )

〉
.

So ‖(wn, sn)‖ → 0, which provides a contradiction. The proof of Step 1 is achieved. �

We can suppose, in the following, that wn(.+ y1
n) ⇀W �= 0 in H1(RN ).

Step 2. (y1
n) is not bounded.

Proof. Suppose that (y1
n) is bounded, then we can extract a subsequence of (y1

n) also denoted by (y1
n) such that

y1
n → y. Let ϕ ∈ C∞

c (RN ), since y1
n → y and wn ⇀ 0 in H1(RN ), then∫

RN

ϕ(x − y1
n)wn(x)dx→ 0.

On the other hand, we have∫
RN

ϕ(x − y1
n)wn(x)dx =

∫
RN

ϕ(x)wn(x+ y1
n)dx→

∫
RN

ϕ(x)W (x)dx.



EXISTENCE OF SOLUTIONS FOR A SEMILINEAR ELLIPTIC SYSTEM 581

Combining these last results, it follows that∫
RN

ϕ(x)W (x)dx = 0, ∀ϕ ∈ C∞
c (RN ).

Hence W = 0 a.e. in R
N which leads to a contradiction. We conclude that (y1

n) is not bounded. �

Conclusion. By Steps 1 and 2, there exists (y1
n) ⊂ R

N which is not bounded such that wn(. + y1
n) ⇀ W �= 0

in H1(RN ).
Now, we prove that W = 0 a.e. which leads to conclude that the case of Dichotomy does not occur. Indeed,

let ϕ ∈ C∞
c (RN ), put ϕ̃ = ϕ(.− y1

n), ũn = un(.+ y1
n), ã = a(.+ y1

n) and ṽn = vn(.+ y1
n). We have〈

I
′
(un, vn), (ϕ̃, 0)

〉
=

∫
RN

(∇un∇ϕ̃+ unϕ̃)dx− α

α+ β

∫
RN

a(x)|un|α−2un|vn|βϕ̃dx

=
∫

RN

(∇ũn∇ϕ+ ũnϕ)dx − α

α+ β

∫
RN

ã|ũn|α−2ũn|ṽn|βϕdx→ 0. (3.17)

Since |(y1
n)| → +∞, then ũn ⇀W in H1(RN ). It follows that,∫

RN

(∇ũn∇ϕ+ ũnϕ)dx→
∫

RN

(∇W∇ϕ+Wϕ)dx. (3.18)

Also, (ṽn) is bounded in H1(RN ) then there exists R ∈ H1(RN ) such that up to a subsequence ṽn → R in
Lq

loc(R
N ), ∀ 1 ≤ q < 2∗. Also, we have ũn → W in L2α(supp(ϕ)). Hence, there exist h1 ∈ L2α(supp(ϕ)),

h2 ∈ L2β(supp(ϕ)) and by (H2), we have

ã|ũn|α−2ũn|ṽn|βϕ→ 0 a.e.

|ã|ũn|α−1|ṽn|βϕ| ≤ |a|∞|h1|α−1|h2|β |ϕ| ∈ L1.

By the virtue of Lebesgue’s dominated convergence theorem, we deduce that∫
RN

ã|ũn|α−2ũn|ṽn|βϕdx→ 0. (3.19)

Combining (3.17)−(3.19), we obtain∫
RN

(∇W∇ϕ+Wϕ)dx = 0, ∀ϕ ∈ C∞
c (RN ).

Which implies that W = 0 a.e.
From Steps 1–2, we conclude that the only possible case is the compactness.
Therefore, there exists (U, V ) ∈ H which is a nontrivial solution of (1.1) (I(U, V ) = d > 0).
Now, we prove that (|U |, |V |) is a positive solution of (1.1).
We have

〈
I

′
(|U |, |V |), (|U |, |V |)

〉
= 0 and (|U |, |V |) �= (0, 0) then (|U |, |V |) ∈ N . Furthermore, I(|U |, |V |) =

I(U, V ) = d, it follows that there exists λ ∈ R such that

I
′
(|U |, |V |) = λF

′
(|U |, |V |). (3.20)

Put (|U |, |V |) as a test function in (3.20), we get〈
I

′
(|U |, |V |), (|U |, |V |)

〉
= λ

〈
F

′
(|U |, |V |), (|U |, |V |)

〉
= λ(2 − α− β) ‖(U, V )‖2 = 0.
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This gives that λ = 0 and by (3.20), we obtain that I
′
(|U |, |V |) = 0. Which implies that, (|U |, |V |) is a

nonnegative solution of (1.1). Moreover, |U | is a weak nonnegative solution of

−Δ|U | + |U | =
α

α+ β
a(x)|V |β |U |α−1 in R

N . (3.21)

The right-hand side of (3.21) is nonnegative and not equivalently equal to 0. Then, by the maximum principle,
|U | is a weak positive solution of (3.21).

By the same argument used above, |V | is a weak positive solution of

−Δ|V | + |V | =
β

α+ β
a(x)|U |α|V |β−1 in R

N .

Combining the last results, we conclude that (|U |, |V |) is a positive solution of (1.1).
The proof of Theorem 3.4 is achieved. �

4. Existence of the second solution

In this section, we prove the existence of a second solution of the system (1.1) by using the linking theorem.
We introduce the following auxiliary problem⎧⎨

⎩
−Δu+ u = α

α+β a(x)
(|u+ U |α−2(u+ U)|v + V |β − Uα−1V β

)
−Δv + v = β

α+β a(x)
(|u+ U |α|v + V |β−2(v + V ) − UαV β−1

) (4.1)

where (U, V ) is the positive solution of (1.1) given by Theorem 3.4.

Lemma 4.1. If (u, v) is a solution of (4.1), then (u + U, v + V ) is a solution of (1.1).

Proof. Let (u, v) be a solution of (4.1) and (ϕ, ψ) ∈ C∞
c (RN ) × C∞

c (RN ),∫
RN

(∇(u + U)∇ϕ+ (u+ U)ϕ+ ∇(v + V )∇ψ + (v + V )ψ)dx

=
α

α+ β

∫
RN

a(x)(|u + U |α−2(u+ U)|v + V |β − Uα−1V β)ϕdx

+
β

α+ β

∫
RN

a(x)(|u + U |α|v + V |β−2(v + V ) − UαV β−1)ψdx

+
∫

RN

a(x)(
α

α + β
Uα−1V βϕ+

β

α+ β
UαV β−1ψ)dx

=
∫

RN

a(x)(
α

α + β
|u+ U |α−2(u+ U)|v + V |βϕ+

β

α+ β
|u+ U |α|v + V |β−2(v + V )ψ)dx.

Which gives the desire result. �

Consider the following functional,

J(u, v) =
1
2
‖(u, v)‖2 − 1

α+ β

∫
RN

a(x)|u + U |α|v + V |βdx

+
α

α+ β

∫
RN

a(x)Uα−1V βudx+
β

α+ β

∫
RN

a(x)UαV β−1vdx.

It is clear that J ∈ C1(H,R) and any critical point of J is a solution of (4.1).



EXISTENCE OF SOLUTIONS FOR A SEMILINEAR ELLIPTIC SYSTEM 583

Lemma 4.2. The functional J satisfies the Palais–Smale condition.

Proof. Let (un, vn) be a Palais–Smale sequence of the functional J :

(i.e.: J(un, vn)) is bounded and J
′
(un, vn) → 0 in H

′
).

Since J(un, vn) = I(un + U, vn + V ) − 1
2
‖(U, V )‖2, then I(un + U, vn + V ) is bounded and

I
′
(un + U, vn + V ) → 0 in H

′
.

Put wn = un +U and sn = vn +V , (wn, sn) is a (PS) sequence of I. It suffices to prove that (wn, sn) is bounded
in H .

For n large enough, we have |I(wn, sn)| < C1 and |
〈
I

′
(wn, sn), (wn, sn)

〉
| < ‖(wn, sn)‖. It follows that,

I(wn, sn) − 1
α+ β

〈
I

′
(wn, sn), (wn, sn)

〉
=
α+ β − 2
2(α+ β)

‖(wn, sn)‖2
< C1 +

1
α+ β

‖(wn, sn)‖.

Hence (wn, sn) is bounded in H which implies that wn ⇀ w, sn ⇀ s in H1(RN ) and〈
I

′
(wn, sn), (wn, sn)

〉
→ 0.

Also, we can follow the same argument used in the proof of Theorem 3.4, to prove that the only possible case
is the compactness (i.e.: (wn, sn) → (w, s) in H) that gives (un, vn) → (w − U, s− V ) in H . This achieved the
proof of Lemma 4.2. �

Now, we give a useful remark.

Remark 4.3. Let (U, V ) be the positive solution of (1.1) given by Theorem 3.4 and (ϕ, ψ) ∈ C∞
c (RN ) ×

C∞
c (RN ). We have

〈
J

′
(U, V ), (ϕ, ψ)

〉
= (2 − 2α+β−1)

∫
RN

a(x)Uα−1V β−1

(
α

α+ β
V ϕ+

β

α+ β
Uψ

)
dx. (4.2)

Subsequently,〈
J

′
(U, V ), (U, V )

〉
= (2 − 2α+β−1)

∫
RN

a(x)UαV βdx = (2 − 2α+β−1) ‖(U, V )‖2 �= 0.

Consequently there exists (ϕ0, ψ0) ∈ H such that
〈
J

′
(U, V ), (ϕ0, ψ0)

〉
= 1 and

H = KerJ
′
(U, V ) ⊕ R(ϕ0, ψ0).

Where
KerJ

′
(U, V ) =

{
(ϕ, ψ) ∈ H,

〈
J

′
(U, V ), (ϕ, ψ)

〉
= 0

}
.

Set X1 = KerJ
′
(U, V ), X2 = R(ϕ0, ψ0). We can check easily that Z = (β

αU,−V ) ∈ X1.
Consider

S = {u ∈ X1, ‖u− Z‖ ≤ R}
and

Q =
{
u2 − s

‖Z‖Z + Z, ‖Z‖ − r1 ≤ s ≤ ‖Z‖ + r1; u2 ∈ X2, ‖u2‖ ≤ r2

}
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with relative boundary

∂Q =
{
u2 − s

‖Z‖Z + Z, s ∈ {‖Z‖ − r1, ‖Z‖ + r1} ; or ‖u2‖ = r2

}
.

Where r1, r2, R > 0 will be fixed later such that r1 +R < ‖Z‖ .

Lemma 4.4. Let S and Q be fixed above, S and ∂Q link.

Proof. Firstly, we have S ∩ ∂Q = ∅ indeed, if u = u2 + ‖Z‖−s
‖Z‖ Z ∈ S ∩ ∂Q, then u2 = 0 and s ∈

{‖Z‖ − r1, ‖Z‖ + r1}. Which yield two cases:

(1) u = r1
‖Z‖Z and ‖u− Z‖ = ‖Z‖ − r1 ≤ R, which is absurd;

(2) u = − r1
‖Z‖Z and ‖u− Z‖ = ‖Z‖ + r1 ≤ R, which is absurd.

Secondly, let π : H → X2 denote the projection onto X2 and let h ∈ C(H,H) satisfy h|∂Q = id. We must
show that h(Q) ∩ S �= ∅. For t ∈ [0, 1], s ∈ R, u2 ∈ X2. Let

ht(s, u2) = (t ‖h(u) − π(h(u)) − Z‖ + (1 − t)s , tπ(h(u)) + (1 − t)u2)

where u = u2 + ‖Z‖−s
‖Z‖ Z and Z fixed above. This defines a family of maps ht : R ×X2 → R ×X2 depending

continuously on t ∈ [0, 1]. Moreover, if u ∈ ∂Q, we have

ht(s, u2) = (s, u2) �= (0, 0) for all t ∈ [0, 1].

Hence, if we identify Q with a subset of R×X2 via the decomposition u = u2 + ‖Z‖−s
‖Z‖ Z, the topological degree

deg(ht, Q, 0) is well-defined and by homotopy invariance

deg(h1, Q, 0) = deg(h0, Q, 0) = deg(id,Q, 0) = 1.

Thus, there exists u ∈ Q such that h1(s, u2) = (0, 0), which is equivalent to

π(h(u)) = 0 and ‖h(u) − Z‖ = 0.

The proof of Lemma 4.4 is achieved. �

Lemma 4.5. Let S and Q be fixed above, we have

inf
(u,v)∈S

J(u, v) > sup
(u,v)∈∂Q

J(u, v).

Proof. Let (u, v) ∈ ∂Q, then there exists δ ∈ R such that

(u, v) = δ(ϕ0, ψ0) +
‖Z‖ − s

‖Z‖ Z
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where Z =
(

β
αU,−V

)
and (ϕ0, ψ0) is fixed in Remark 4.3. Put λ = ‖Z‖−s

‖Z‖ with |λ| < 1 and using (3.14), we
get

J(u, v) = J

(
δϕ0 + λ

β

α
U, δψ0 − λV

)
=

1
2

∥∥∥∥
(
δϕ0 + λ

β

α
U, δψ0 − λV

)∥∥∥∥
2

− 1
α+ β

∫
RN

a(x)|δϕ0 +
(
λ
β

α
+ 1

)
U |α|δψ0 + (1 − λ)V |βdx+

α

α+ β

∫
RN

a(x)Uα−1V β

(
δϕ0 + λ

β

α
U

)
dx+

β

α+ β

∫
RN

a(x)UαV β−1(δψ0 − λV )dx

≤ δ2

2
‖(ϕ0, ψ0)‖2 +

λ2

2

∥∥∥∥
(
β

α
U,−V

)∥∥∥∥
2

+ δλ

∫
RN

(
β

α
(∇U∇ϕ0 + Uϕ0) − (∇V∇ψ0 + V ψ0)

)
dx

−
∣∣∣∣
(

1 + λ
β

α

)∣∣∣∣
α

|(1 − λ)|β 1
α+ β

∫
RN

a(x)UαV βdx+ o(|δ|, |λ|)

+δ
(

α

α+ β

∫
RN

a(x)Uα−1V βϕ0dx+
β

α+ β

∫
RN

a(x)UαV β−1ψ0dx
)

≤ δ2

2
‖(ϕ0, ψ0)‖2 +

λ2

2

∥∥∥∥
(
β

α
U,−V

)∥∥∥∥
2

+ |δ|
(∫

RN

a(x)Uα−1V β−1

(
V |ϕ0| + 2β

α+ β
U |ψ0|

)
dx

)

−
∣∣∣∣
(

1 + λ
β

α

)∣∣∣∣
α

|(1 − λ)|β 1
α+ β

∫
RN

a(x)UαV βdx+ o(|δ|, |λ|)

where
lim

|(|δ|,|λ|)|→0
o(|δ|, |λ|) = 0.

It follows that for r
′
1 and r

′
2 small enough such that |δ| < r

′
2 and |λ| < r

′
1, we obtain that

J(u, v) ≤ 0, ∀(u, v) ∈ ∂Q. (4.3)

We choose r1 < r
′
1 ‖Z‖ and r2 < r

′
2 ‖(ϕ0, ψ0)‖.

On the other hand, let (u, v) ∈ X1. We get, by (4.2), that

J(u, v) =
1
2
‖(u, v)‖2 − 1

α+ β

∫
RN

a(x)|u + U |α|v + V |βdx

and J(Z) = 1
2 ‖Z‖2. So, by the continuity of J , there exists R > 0 such that

J(u, v) >
1
4
‖Z‖2

, ∀(u, v) ∈ BR = {(u, v) ∈ H, ‖(u, v) − Z‖ ≤ R}. (4.4)

Choosing R small enough such that r1 +R < ‖Z‖ and S = BR ∩X1.
As desired by (4.3) and (4.4). �

Now, we give the main result of this section by applying the linking theorem.

Theorem 4.6. There exists a second nontrivial solution of the system (1.1).

Proof. Let S and Q be fixed in Remark 4.3. Recalling Lemmas 4.2, 4.4 and 4.5, we see that the
assumptions of linking theorem are satisfied. Thus J admits a nontrivial critical point (U1, V1) such that
J(U1, V1) ≥ 1

4 ‖Z‖2. By Lemma 4.1, (U1 + U, V1 + V ) is a second solution of (1.1). Furthermore, we have
I(U1 + U, V1 + V ) = J(U1, V1) + 1

2 ‖(U, V )‖2 > 0 then (U1 + U, V1 + V ) �= (0, 0).
The proof of lemma 4.6 is achieved. �
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