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OPTIMAL CONTROL OF LINEARIZED COMPRESSIBLE NAVIER–STOKES
EQUATIONS

Shirshendu Chowdhury1 and Mythily Ramaswamy1

Abstract. We study an optimal boundary control problem for the two dimensional unsteady linearized
compressible Navier–Stokes equations in a rectangle. The control acts through the Dirichlet boundary
condition. We first establish the existence and uniqueness of the solution for the two-dimensional
unsteady linearized compressible Navier–Stokes equations in a rectangle with inhomogeneous Dirichlet
boundary data, not necessarily smooth. Then, we prove the existence and uniqueness of the optimal
solution over the control set. Finally we derive an optimality system from which the optimal solution
can be determined.
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1. Introduction

The Navier–Stokes equations for a viscous compressible isentropic fluid in Ω ⊂ R
N is

∂ρ

∂t
(t, x) + div[ρ(t, x)v(t, x)] = 0,

ρ(t, x)
[
∂v

∂t
(t, x) + (v(t, x) · ∇)v(t, x)

]
= −∇p(t, x) + μ�v(t, x) + (λ+ μ)∇ [div v(t, x)] ,

p(t, x) = aργ(t, x), t > 0, x ∈ Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.1)

where ρ(t, x) is the density of the fluid, v(t, x) = (v1(t, x), . . . , vN (t, x)) denotes the velocity vector in R
N and

p(t, x) denotes the pressure. Note that the second equation of (1.1) componentwise is

ρ

(
∂vi

∂t
+ v · ∇vi

)
= − ∂p

∂xi
+ μ�vi + (λ+ μ)

∂

∂xi
[div v], i = 1, 2, . . . , N.

Throughout this paper, we follow this same notational convention and use bold script to denote vectors and
product spaces. The viscosity coefficients μ, λ are assumed to be constant satisfying the following thermodynamic
restrictions: μ > 0, λ+ μ � 0 and the constants a > 0, γ > 1.
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In this paper, we study the following system, linearized around the steady state solution (qs(x),vs(x)) of (1.1)
in (0, T ) ×Ω

∂σ

∂t
(t, x) + div[σ(t, x)vs(x)] = −div[qs(x)u(t, x)], (1.2)

∂u
∂t

(t, x) − μ

qs(x)
�u(t, x) − (λ+ μ)

qs(x)
∇[divu(t, x)] + (vs(x) · ∇)u(t, x) + (u(t, x) · ∇)vs(x)

= −aγqγ−2
s (x)∇σ(t, x) +

σ(t, x)
qs(x)

[f(x) − (vs(x) · ∇)vs(x)]. (1.3)

We consider system (1.2)–(1.3) in

Ω = {x = (x1, x2) ∈ R
2 : 0 < x1 < 1, 0 < x2 < h}

with boundary ∂Ω, consisting of three disjoint portions

Γin = {0} × (0, h), Γ0 = [0, 1]× {0, h}, Γout = {1} × (0, h).

Let us denote
ΩT = (0, T ) ×Ω; ΣT = (0, T )× ∂Ω.

The initial and boundary conditions are

σ(0, x) = σ0(x), u(0, x) = u0(x) in Ω, (1.4)
σ(t, x) = w(t, x) on (0, T )× Γin, u(t, x) = ξ(t, x) on ΣT , (1.5)

where

σ0 ∈ L2(Ω), u0 ∈ L2(Ω), w ∈ L2(0, T ;L2(Γin)), ξ ∈ L2(0, T ;L2(∂Ω)), f ∈ L∞(Ω) ∩ H1(Ω). (1.6)

We assume that (qs(x),vs(x)) = (qs(x), vs1(x), vs2(x)) ∈ R
3 satisfies the following conditions:

qs ∈ C2(Ω), qs(x) > 0 on Ω, (1.7)

vs ∈ C2
c(R

2), vs1 ≥ α > 0 on Γin ∪ Γout for some constant α and vs2 = 0 on Γ0. (1.8)

We first prove that the linearized system (1.2)–(1.5) has a unique solution (σ,u) in L2(0, T ; [H1(Ω)]′) ×
L2(0, T ;L2(Ω)) in the sense of transposition, where [H1(Ω)]′ denotes the dual of H1(Ω). Then we consider the
following optimal control problem:

(P ) inf{ J(σ,u, w, ξ) | (w, ξ) ∈ L2(0, T ;L2(Γin)) × L2(0, T ;L2(∂Ω)), (σ,u, w, ξ) satisfies (1.2)−(1.5)},

where

J(σ,u, w, ξ) =
1
2

∫ T

0

|||σ − σd|||2[H1(Ω)]′dt+
1
2

∫ T

0

∫
Ω

|u− ud|2dxdt

+
β

2

[∫ T

0

∫
Γin

w2dsdt+
∫ T

0

∫
∂Ω

|ξ|2dsdt
]
, (1.9)

β > 0, (σd,ud) = (σd, ud
1, u

d
2) ∈ L2(0, T ; [H1(Ω)]′) × L2(0, T ;L2(Ω)) is the desired profile and |||.|||[H1(Ω)]′ is a

norm in the dual of H1(Ω), equivalent to the usual norm in [H1(Ω)]′. It is necessary to consider this norm to get
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a well posed optimality system. We discuss this norm in Section 4. Then we show the existence and uniqueness
of the optimal solution over the control set and derive the optimality system.

In our system, the coupling between the hyperbolic character of the first order transport equation and the
parabolic character of the second order linearized momentum equation leads to some difficulties mainly regarding
regularity which are interesting to understand.

The main novelty here is that the boundary data are not too regular. If they are regular, one can use the lifting
procedure and the standard fixed point argument in suitable function spaces for (1.2)–(1.5) to get the existence
of a solution. We mention some details regarding this in Remark 3.8. But here we need to interpret the solution
of (1.2)–(1.5) in the sense of transposition to get the solution (σ,u) ∈ L2(0, T ; [H1(Ω)]′)×L2(0, T ;L2(Ω)). For
this we first study the adjoint system for regular data and prove the existence of a unique solution using fixed
point method.

Such a linearized system around a steady solution is also considered by Girinon [5] in R
2 but with homogeneous

Dirichlet boundary condition and slightly different assumptions on qs,vs and f :

qs ∈ C1(Ω), qs(x) > 0 on Ω, vs ∈ C2
c(R

2), vs1 > 0 on Γin ∪ Γout, vs = 0 on Γ0 and f ∈ L∞(Ω).

He proved in [5], the existence and uniqueness of the solution for the linearized system. Here we consider the
linearized system with nonhomogeneous Dirichlet L2 boundary data, f ∈ L∞(Ω)∩H1(Ω) and assumptions (1.7)–
(1.8). The C2 assumptions on (qs,vs), vs1 ≥ α > 0 on Γin ∪ Γout and f ∈ L∞(Ω) ∩ H1(Ω) are used to get H1

estimate for the solution of the transport equation in the next section.
Geymonat and Leyland study in [4] the linearized system in a bounded domain with homogeneous Dirichlet

boundary conditions in R
N , N ≥ 2 using semigroup theory for both the transport and the Stokes part and

proved the existence of a unique mild solution in C([0, T ];L2(Ω)) for the full system. The space regularity that
can be obtained for the transport equation using semigroup theory is not sufficient for us to get a well posed
adjoint system. So we use the representation formula for the transport equation to get H1 regularity.

Neustupa in [8] studies the linearized system in a bounded domain Ω in R
3 with homogeneous Dirichlet

boundary condition for velocity when the boundary of the domain is C2,α, α ∈ (0, 1), (qs,vs) ∈ C3,α(Ω) and
vs · n = 0 on ∂Ω, where n denotes unit outward normal to ∂Ω. Using semigroup approach, he proved the
existence of a unique mild solution in C([0, T ];X ), where X

X =
{

(σ,v) ∈ C1,α(Ω) × C0,α(Ω) |
∫

Ω

σdx = 0
}
.

He used the representation formula to study the initial value problem for the transport equation. Here we
study the initial boundary value problem for the transport equation and show the existence of the solution in a
Sobolev space. Using the classical method of characteristics, we find the representation formula for the solution
of the transport equation and prove H1 estimate of solution. Regularity results for the initial value problem
for transport equation using the representation formula, are already known. Regularity estimate for the initial
boundary value problem of transport equation in regular bounded domain has also been studied by Judovič and
Valli. Using the representation formula, Judovič in [7] established the existence of classical solution in a bounded
domain in R

2 with C4 boundary. Valli and Zajczkowski in [11] proved existence of H2 solution for transport
equation with a lower order term in a bounded domain in R

3 with C2 boundary. To the authors knowledge, H1

estimate of the solution for the initial boundary value problem for the transport equation in a rectangle in R
2

is new and so the detailed Proof of Theorem 2.6 is one of the contributions of our work in this paper.
Raymond considered the linearized problem for incompressible Navier–Stokes equation in a bounded domain

in R
2 and R

3 with weaker boundary data and proved the existence of the global weak solution in [9]. An
optimal control problem for the linearized Boussinesq system has been studied by Raymond and Nguyen in [10]
and optimality conditions are derived. In Boussinesq system Convection-Diffusion equation is coupled with the
linearized incompressible Navier–Stokes equation, where both the equations are of similar nature unlike (1.2)–
(1.3). Our cost functional is inspired by the cost functional used by Gunzburger and Manservisi [6] for velocity
tracking problem for incompressible Navier–Stokes in a bounded two-dimensional domain.
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This paper is organized as follows. In Section 2, we study the adjoint system of (1.2)–(1.5) and prove the
existence and uniqueness of the solution. In Section 3, we study the existence of a unique solution for the
linearized system (1.2)–(1.5) with L2 boundary data via the transposition method. In Section 4, we establish
the existence of a unique optimal control. Then optimality conditions are derived. We give a detailed Proof of
Theorem 2.6 on H1 regularity estimate and some trace result for the transport equation in Appendix A.

2. Adjoint system

In order to define the solution of the linearized system (1.2)–(1.5) in the sense of transposition we consider
first the following adjoint system in ΩT with homogeneous terminal and boundary conditions

−∂ψ
∂t

(t, x) − vs(x) · ∇ψ(t, x) =
[f(x) − (vs(x) · ∇)vs(x)]

qs(x)
· φ(t, x) + aγ div[qγ−2

s (x)φ(t, x)] + F (t, x), (2.1)

−∂φ

∂t
(t, x) − μ�

[
φ(t, x)
qs(x)

]
− (λ+ μ)∇

{
div

[
φ(t, x)
qs(x)

]}
− (div[φ1(t, x)vs(x)], div[φ2(t, x)vs(x)])

+(∇vs)T φ(t, x) = qs(x)∇ψ(t, x) + G(t, x), (2.2)

ψ(T, x) = 0, φ(T, x) = 0 in Ω, (2.3)

ψ(t, x) = 0 on (0, T ) × Γout, φ(t, x) = 0 on ΣT , (2.4)

where (∇vs)T denotes the transpose of the Jacobian matrix of vs, i.e.

(∇vs)T =

⎛
⎜⎜⎜⎝
∂vs1

∂x1

∂vs2

∂x1

∂vs1

∂x2

∂vs2

∂x2

⎞
⎟⎟⎟⎠

and (F,G) ∈ L2(0, T ;H1(Ω)) × L2(0, T ;L2(Ω)).
For (F,G) ∈ L2(0, T ;H1(Ω))×L2(0, T ;L2(Ω)), the C2 assumptions in (1.7)–(1.8) on qs,vs and f ∈ L∞(Ω)∩

H1(Ω) are used to conclude that the R.H.S of (2.1)–(2.2) belongs to L2(0, T ;H1(Ω)) × L2(0, T ;L2(Ω)). Using
this in the next two subsections, we study the regularity of the solution of adjoint system (2.1)–(2.4).

2.1. Adjoint continuity equation

The first equation (2.1) of the adjoint system with homogeneous terminal and boundary conditions can be
written in the following form of an initial boundary value problem by defining ψ̌(t, x) = ψ(T − t, x). Then

∂ψ̌

∂t
(t, x) − vs(x) · ∇ψ̌(t, x) = ϕ(t, x) in ΩT ,

ψ̌(0, x) = 0 in Ω, ψ̌(t, x) = 0 on (0, T )× Γout,

⎫⎬
⎭ (2.5)

where (1.8) holds for vs. Our aim in this section is to find the explicit solution of (2.5) using the method of
characteristics, initially for ϕ smooth and later in L2(0, T ;H1(Ω)) and then use the representation formula to
study the H1 regularity of the solution. This will be required to show that the adjoint system (2.1)–(2.4) is well
posed.

Let (τ, x) = (τ, x1, x2) be any point in the cube ΩT . We consider the O.D.E:

dX
dt

= −vs(X), X(t, τ, x) = x for t = τ, t ∈ R. (2.6)
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O(0, 0, 0)

H(0, 0, T )

G(0, 0, 1
k
)

t

A(1, 0, 0)
x1

B(1, h, 0)C(0, h, 0)

E(0, h, 1
k
)

x2

S

D1

D2

Figure 1. Partition of the cube for vs = (k, 0).

The solution
X(t, τ, x) = (X1(t, τ, x), X2(t, τ, x))

for t < τ can hit the boundary of the cube only at t = 0 or x1 = 1 plane because vs satisfies (1.8). This leads
us to the partition of the cube as follows

D1 := {(τ, x) ∈ ΩT : X(0, τ, x) ∈ Ω} (2.7)

D2 := {(τ, x) ∈ ΩT : X1(t2, τ, x) = 1 for some t2, 0 < t2 < τ} (2.8)

S := {(τ, x) ∈ ΩT : X1(0, τ, x) = 1}. (2.9)

Remark 2.1. If vs(x) = (k, 0) ∀x ∈ Ω̄, where k > 0 is a constant, then

X1(t, τ, x) = −kt+ x1 + kτ, X2(t, τ, x) = x2, t2(τ, x) =
1
k

(x1 − 1) + τ.

See Figure 1, where S denotes the interface, which is plane now and given by the equation: x1 + kt = 1 for
(t, x) ∈ ΩT .

Proposition 2.2. Under the assumption (1.8) on vs, there exists a function t2 : D2 −→ R such that t2(τ, x) is
a C2 function of all the variables and

∂t2
∂xi

(τ, x) =
∂X1
∂xi

(t2, τ, x)
vs1(X(t2, τ, x))

,
∂t2
∂τ

(τ, x) =
∂X1
∂τ (t2, τ, x)

vs1(X(t2, τ, x))
· (2.10)

Also,
∂t2
∂xi

(τ, x) ∈ L∞(D2) and
∂t2
∂τ

(τ, x) ∈ L∞(D2). (2.11)

Proof. For each (t0, x0) ∈ D2, the solution X(t, t0, x0) of (2.6) starting from x0 at t = t0, satisfies

X1(t02, t0, x0) = 1
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for some t02 ∈ (0, t0), by the definition of D2. Then vs1(X(t02, t0, x0)) > 0 as vs1 > 0 on {1}× [0, h] by (1.8). The
O.D.E (2.6) gives

dX1

dt
(t02, t0, x0) < 0

and hence in particular nonzero.
Define the function H(t, τ, x) = X1(t, τ, x) − 1 on R ×D2. Since vs(x) ∈ C2

c(R
2), X1(t, τ, x) is a C2 function

from R ×D2 into R and hence H is a C2 function on R ×D2. Further

H(t02, t0, x0) = 0 and
dH
dt

(t, τ, x)
∣∣∣∣
(t02,t0,x0)

�= 0.

Applying implicit function theorem on H at (t02, t0, x0), there exists a 3-dimensional open set W in D2 containing
(t0, x0) and a C2 map t2 : W −→ R such that

t2(t0, x0) = t02, X1(t2(τ, x), τ, x) = 1 for (τ, x) ∈ W.

After differentiation we get (2.10). Since vs1 ≥ α > 0 on {1}× [0, h], (2.11) follows from (2.10). This completes
the proof. �

Remark 2.3. Using the continuous dependence on initial data for the solution of ODE (2.6), we can show
that t2(τ, x) converges to zero when (τ, x) ∈ D2, converges to a point in S. It helps in the next proposition to
conclude that solution of (2.5) on D1 and D2 matches on S.

Proposition 2.4. Under assumption (1.8) on vs, for ϕ ∈ C∞
c (0, T ;C∞(Ω)) equation (2.5) has a strong solution

(i.e. satisfying the equation almost everywhere) ψ̌ ∈ C([0, T ];C(Ω)) and in fact ψ̌ is C1(D1 ∪D2).

Proof. Using (2.6) and the first equation of (2.5) for t < τ ,

d
dt

{ψ̌(t,X(t, τ, x))} = ϕ(t,X(t, τ, x)), (τ, x) ∈ ΩT .

Integrating this between T1 and T2 for 0 ≤ T1 ≤ T2 ≤ τ , we get

ψ̌(T2,X(T2, τ, x)) − ψ̌(T1,X(T1, τ, x)) =
∫ T2

T1

ϕ(s,X(s, τ, x))ds. (2.12)

Case 1. Let (τ, x) ∈ D1 ∪ S. Choosing T1 = 0, T2 = τ in (2.12) and using the second equation of (2.5) we get,

ψ̌(τ, x) =
∫ τ

0

ϕ(s,X(s, τ, x))ds.

Case 2. Let (τ, x) ∈ D2. Then choosing T1 = t2(τ, x), the time when the trajectory X(t, τ, x) hits x1 = 1 plane,
T2 = τ in (2.12) and using the second equation of (2.5) we get,

ψ̌(τ, x) =
∫ τ

t2(τ,x)

ϕ(s,X(s, τ, x))ds.

Combining both, the solution of (2.5) can be written as

ψ̌(t, x) =
{∫ t

0

ϕ(s,X(s, t, x))ds
}
χD1∪S +

{∫ t

t2(t,x)

ϕ(s,X(s, t, x))ds

}
χD2 . (2.13)
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X(s, t, x) is C2 on R × R × R
2. Also ϕ and t2 are C2 functions for all the variables on ΩT and D2 (using

Prop. 2.2) respectively. Therefore from (2.13), using Remark 2.3, we get ψ̌ is at least a continuous function of
(t, x) on ΩT .

Now let us calculate the derivatives of ψ̌ with respect to space and time. From (2.13) we get for i = 1, 2 and
(t, x) ∈ D1 ∪ S

∂ψ̌

∂xi
(t, x) =

∫ t

0

∂

∂xi
{ϕ(s,X(s, t, x))}ds,

∂ψ̌

∂t
(t, x) =

∫ t

0

∂

∂t
{ϕ(s,X(s, t, x))}ds+ ϕ(t, x). (2.14)

For (t, x) ∈ D2, since X1(t2, t, x) = 1,

∂ψ̌

∂xi
(t, x) =

∫ t

t2(t,x)

∂

∂xi
{ϕ(s,X(s, t, x))}ds− ∂t2

∂xi
(t, x)ϕ(t2(t, x), 1, X2(t2(t, x), t, x)), (2.15)

∂ψ̌

∂t
(t, x) =

∫ t

t2(t,x)

∂

∂t
{ϕ(s,X(s, t, x))}ds + ϕ(t, x) − ∂t2

∂t
(t, x)ϕ(t2(t, x), 1, X2(t2(t, x), t, x)). (2.16)

Hence from (2.14)–(2.16) we get ψ̌|D1 , ψ̌|D2 are C1 functions with respect t, x on D1 and D2 respectively. �

Remark 2.5. The hitting time t2(τ, x) will satisfy the following equation on D2

∂t2
∂τ

(τ, x) − vs(x) · ∇t2(τ, x) = 0. (2.17)

Using this equation (2.17), we can see that the representation formula (2.13) is indeed a solution of equation (2.5)
after differentiation.

Proposition 2.4 leads to the following H1 regularity result for ψ̌.

Theorem 2.6. If ϕ ∈ L2(0, T ;H1(Ω)), then equation (2.5) has a unique strong solution ψ̌ ∈ L∞(0, T ;H1(Ω))∩
H1(0, T ;L2(Ω)) and we have the following estimate:

max
[0,T ]

||ψ̌(t)||H1(Ω) +
∣∣∣∣
∣∣∣∣∂ψ̌∂t

∣∣∣∣
∣∣∣∣
L2(0,T ;L2(Ω))

≤ C(vs, T,Ω)||ϕ||L2(0,T ;H1(Ω)) (2.18)

for some constant C(vs, T,Ω). In fact ψ̌ ∈ C([0, T ];H1(Ω)) ∩ H1(0, T ;L2(Ω)) and solution is unique in the
class L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)).

Details of the L2 integrability of the derivatives of ψ̌ and uniqueness of ψ̌ required for the proof are given in
the appendix of this paper. This will be required in Section 2.3 to show that the adjoint system (2.1)–(2.4) is
well posed.

2.2. Adjoint linearized momentum equation

Let B be the operator defined in L2(Ω) by

D(B) = H2(Ω) ∩ H1
0(Ω), Bu = − μ

qs
�u− (λ+ μ)

qs
∇(divu) + (vs · ∇)u + (u · ∇)vs. (2.19)

In this section, we study the following system with homogeneous terminal and boundary condition:

−∂φ

∂t
(t, x) +B∗φ(t, x) = Υ (t, x) in ΩT ,

φ(T, x) = 0 in Ω, φ(t, x) = 0 on ΣT ,

⎫⎬
⎭ (2.20)
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where Υ ∈ L2(0, T ;L2(Ω)) and B∗φ = ((B∗φ)1, (B∗φ)2) is the adjoint of B from D(B∗) = H2(Ω) ∩H1
0(Ω) ⊂

L2(Ω) into L2(Ω) defined as:

B∗φ = −μ�
(

φ

qs

)
− (λ + μ)∇

[
div

(
φ

qs

)]
− (div(φ1 vs), div(φ2 vs)) + (∇vs)T φ

for φ = (φ1, φ2) ∈ H2(Ω) ∩ H1
0(Ω).

We look for a weak solution of equation (2.20) in the following sense:

Definition 2.7. A function φ ∈ L2(0, T ;L2(Ω)) is a weak solution of problem (2.20) if for all ζ in D(B),
(ζ,φ(t))L2(Ω) belongs to H1(0, T ) and

d
dt

(ζ,−φ(t))L2(Ω) = (−Bζ,φ(t))L2(Ω) + (ζ,Υ (t))L2(Ω),

(ζ,φ(T ))L2(Ω) = 0,

for almost all t in [0,T].

Let us define the bilinear form b on H1
0(Ω) × H1

0(Ω) associated with the operator B∗ as:

b(Φ, Ψ ) = μ

∫
Ω

[
∇Ψ : ∇

(
Φ

qs

)]
dx+ (λ+ μ)

∫
Ω

divΨ div
(

Φ

qs

)
dx+

∫
Ω

[(Ψ · ∇)vs · Φ + (vs · ∇)Ψ · Φ] dx,

where[
∇Ψ : ∇

(
Φ

qs

)]
=

2∑
i=1

(∇Ψi) · ∇
(
Φi

qs

)
, (Ψ · ∇)vs · Φ =

2∑
i=1

(Ψ · ∇vsi)Φi, (vs · ∇)Ψ · Φ =
2∑

i=1

(vs · ∇Ψi)Φi.

Clearly b is a continuous bilinear form on H1
0(Ω)×H1

0(Ω) and we can show that there exists λ0 > 0 and α > 0
such that

b(φ,φ) + λ0||φ||2L2(Ω) ≥ α||φ||2H1
0(Ω) ∀ φ ∈ H1

0(Ω).

Hence using Proposition 3 (Chap. XVII, Sect. 6) of Dautray and Lions [2] we get the following result.

Proposition 2.8. −B∗ generates an analytic semigroup S−B∗(t) on L2(Ω) with domain D(−B∗) = H2(Ω) ∩
H1

0(Ω).

Notice that defining η(t, x) = φ(T − t, x), we can write (2.20) as the following system for η with initial
condition

∂η

∂t
(t, x) +B∗η(t, x) = Υ (T − t, x) in ΩT ,

η(0, x) = 0 in Ω, η(t, x) = 0 on ΣT .

⎫⎬
⎭ (2.21)

Using the following theorem, we get the existence and regularity of the weak solution for the system (2.21).
Proof can be found in the book “Representation and Control of Infinite Dimensional Systems” [1] (Prop. 3.7 in
Sect. 3.6 of Part II, Chap. 1).

Theorem 2.9. Let A be the infinitesimal generator of a strongly continuous analytic semigroup {SA(t)}t�0

defined on a domain D(A) in the Hilbert space Z. Then for any T > 0 and f ∈ L2(0, T ;Z), the Cauchy problem

z′(t) = Az(t) + f(t), t ∈ [0, T ], z(0) = 0 ∈ Z

admits a unique weak solution

z(t) =
∫ t

0

〈SA(t− s), f(s)〉ds.

This z in fact lies in L2(0, T ;D(A)) ∩H1(0, T ;Z) and hence is a strong solution of the Cauchy problem.
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Thus equation (2.21) has a unique strong solution

η(t) =
∫ t

0

〈S−B∗(t− s),Υ (T − s, x)〉ds

and hence using the change of variable τ = T − s and l = T − t we get,

φ(l) =
∫ T

l

〈S−B∗(τ − l),Υ (τ, x)〉dτ.

Thus for Υ ∈ L2(0, T ;L2(Ω)), equation (2.20) has a unique strong solution φ in H1(0, T ;L2(Ω))
∩ L2(0, T ;H2(Ω) ∩ H1

0(Ω)).

2.3. Solution for the adjoint system

In this section we consider the adjoint system (2.1)–(2.4) and we will show the existence and uniqueness of
the strong solution by a fixed point argument. For that we need to set up a map Π from a suitable function
space into itself.

Let F : H1(Ω) −→ L2(0, T ;L2(Ω)) be defined for G ∈ L2(0, T ;L2(Ω)) and q ∈ H1(Ω)

F(q) = qs∇q + G.

We want to show that for any (F,G) ∈ L2(0, T ;H1(Ω)) × L2(0, T ;L2(Ω)), the coupled system:

−∂ψ
∂t

− vs · ∇ψ =
[f − (vs · ∇)vs]

qs
· φ + aγ div(qγ−2

s φ) + F in ΩT ,

ψ(T, x) = 0 in Ω, ψ(t, x) = 0 on (0, T )× Γout,

⎫⎬
⎭ (2.22)

−∂φ

∂t
+B∗φ = F(ψ) in ΩT ,

φ(T, x) = 0 in Ω, φ(t, x) = 0 on ΣT ,

⎫⎬
⎭ (2.23)

admits a unique strong solution (ψ,φ) in [H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))] × [H1(0, T ;L2(Ω))
∩ L2(0, T ;H2(Ω) ∩ H1

0(Ω))].
Let 0 < T1 ≤ T . For y ∈ L2(0, T1;H1(Ω)), define φy as the solution in H1(0, T1;L2(Ω)) ∩ L2(0, T1;H2(Ω) ∩

H1
0(Ω)) for the equation

−∂φ

∂t
+B∗φ = F(y) in ΩT1 ,

φ(T1, x) = 0 in Ω, φ(t, x) = 0 on ΣT1 ,

⎫⎬
⎭ (2.24)

given by Theorem 2.9. For this φy,(
[f − (vs · ∇)vs]

qs
· φy + aγ div(qγ−2

s φy) + F

)
∈ L2(0, T1;H1(Ω)).

Let ψy ∈ L2(0, T1;H1(Ω)) denote the solution of the equation

−∂ψ
∂t

− vs · ∇ψ =
[f − (vs · ∇)vs]

qs
· φy + aγ div(qγ−2

s φy) + F in ΩT1 ,

ψ(T1, x) = 0 in Ω, ψ(t, x) = 0 on (0, T1) × Γout.

⎫⎬
⎭ (2.25)

Theorem 2.6 gives the existence of the ψy in L2(0, T1;H1(Ω)).
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Now we define a map Π from L2(0, T1;H1(Ω)) into itself by

Π(y) = ψy.

We want to show that Π is a contraction for small T1. For that we adapt the proof of Girinon to the case of
the adjoint system. However, we give the details since there are some major differences:

(i) We work in more regular spaces as we need more regularity for the solution of the adjoint system so as
to define the solution of the original system by transposition. In fact, Girinon gets a contraction map
in L2(0, T1, L

2(Ω)) for (1.2)–(1.5) with homogeneous boundary conditions whereas we get contraction in
L2(0, T1, H

1(Ω)) for adjoint system (2.1)–(2.4).
(ii) For the adjoint continuity equation we use explicit expression of the solution via method of characteristics

because we need H1 regularity of the solution while he uses the semigroup approach.
(iii) We use the semigroup approach to study the adjoint linearized momentum equation while Girinon studies

the linearized momentum equation by the variational method (Galerkin method). Thus using the method
of Girinon, we can get only a weak solution for adjoint continuity equation by semigroup and a weak
solution for adjoint linearized momentum equation using Galerkin method. But our approach gives strong
solutions for both the equations.

Proposition 2.10. There exists a natural number N depending on T, qs and vs such that for T1 = T
N , Π is a

contraction on L2(0, T1;H1(Ω)).

Proof. Let yi ∈ L2(0, T1;H1(Ω)) for i = 1, 2 and φi = φyi , ψi = ψyi be the solution of (2.24) and (2.25)
corresponding to yi for i = 1, 2. So (φ1 − φ2) is the solution of

−∂φ

∂t
+B∗φ = qs∇(y1 − y2) in ΩT1 ,

φ(T1, x) = 0 in Ω, φ(t, x) = 0 on ΣT1 .

⎫⎬
⎭

Hence using Theorem 2.9, for t ∈ [0, T1]

||φ1 − φ2||L2(0,T1;H2(Ω)) ≤ C3||qs∇(y1 − y2)||L2(0,T1;L2(Ω)) ≤ C4(qs,vs, T )||y1 − y2||L2(0,T1;H1(Ω)). (2.26)

Also (ψ1 − ψ2) is the solution of

−∂ψ
∂t

− vs · ∇ψ =
[f − (vs · ∇)vs]

qs
· (φ1 − φ2) + aγ div[qγ−2

s (φ1 − φ2)] in ΩT1 ,

ψ(T1, x) = 0 on Ω, ψ(t, x) = 0 on (0, T1) × Γout.

⎫⎬
⎭

Therefore using (2.18) of Theorem 2.6 we get for t ∈ [0, T1]

||ψ1(t) − ψ2(t)||H1(Ω) ≤ C(vs, T,Ω)|| [f − (vs · ∇)vs]
qs

· (φ1 − φ2) + aγdiv[qγ−2
s (φ1 − φ2)]||L2(0,T1;H1(Ω))

and hence using (2.26)

||ψ1(t) − ψ2(t)||H1(Ω) ≤ C5||φ1 − φ2||L2(0,T1;H2(Ω)) ≤ C6(vs, T, qs, Ω, f)||y1 − y2||L2(0,T1;H1(Ω)).

Thus
||Π(y1) −Π(y2)||L2(0,T1;H1(Ω)) ≤ C6(vs, T, qs, Ω, f)

√
T1||y1 − y2||L2(0,T1;H1(Ω)).

Consequently Π is a contraction for T1 < 1
C6(vs,T,qs,Ω,f)2

. Therefore if we choose a natural number N >

TC6(vs, T, qs, Ω, f)
2, then for T1 = T

N , Π is a contraction on L2(0, T1;H1(Ω)). �

Hence we have the following theorem for local existence of a solution.
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Theorem 2.11. Under assumptions (1.7)–(1.8), f ∈ L∞(Ω) ∩ H1(Ω) and for (F,G) ∈ L2(0, T ;H1(Ω)) ×
L2(0, T ;L2(Ω)), there exists T1 > 0 depending on vs, T, qs, Ω, f as in the above proposition such that, the
adjoint system (2.1)–(2.4) has a unique strong solution (ψ,φ) in [L2(0, T1;H1(Ω)) ∩ H1(0, T1;L2(Ω))] ×
[L2(0, T1;H2(Ω) ∩ H1

0(Ω)) ∩H1(0, T1;L2(Ω))].

It is standard to pass from local to global existence by subdividing [0, T ] for T > T1, into N subintervals and
getting the existence in each [kT

N , (k+1)T
N ] using Theorem 2.11. Hence we have the following theorem for global

existence of a solution. See for details, for example, the thesis of Girinon (Chap. IV, Sect. 4.3) [5].

Theorem 2.12. The adjoint system (2.1)–(2.4) admits a unique strong solution on (0, T ).

Remark 2.13. The solution map (F,G) �−→ (ψ,φ) is continuous from L2(0, T ;H1(Ω))×L2(0, T ;L2(Ω)) into
L2(0, T ;H1(Ω)) × L2(0, T ;H2(Ω) ∩ H1

0(Ω)) using closed graph theorem.

Remark 2.14. Note that if we choose F ∈ L2(0, T ;L2(Ω)) and G ∈ L2(0, T ;L2(Ω)), then using Girinon [5]
we already know that the adjoint system (2.1)–(2.4) has a unique weak solution (ψ,φ) in C([0, T ];L2(Ω)) ×
[L2(0, T ;H1

0(Ω)) ∩ C([0, T ];L2(Ω))]. In our set up we need H1 regularity of ψ. So we work with F ∈
L2(0, T ;H1(Ω)).

3. Solution by transposition for the linearized
system

In this section we prove the existence of a unique solution in the sense of transposition of system (1.2)–(1.3)
with inhomogeneous initial and boundary conditions (1.4)–(1.5) using the adjoint system (2.1)–(2.4) and obtain
continuity estimate of the solution.

Definition 3.1. A function (σ,u) ∈ L2(0, T ; [H1(Ω)]′)×L2(0, T ;L2(Ω)) is a solution to the system (1.2)–(1.5)
if for every (F,G) ∈ L2(0, T ;H1(Ω)) × L2(0, T ;L2(Ω)),

∫ T

0

〈σ, F 〉([H1(Ω)]′,H1(Ω)) dt+
∫ T

0

∫
Ω

G · udxdt =
∫

Ω

σ0ψ(0, x)dx +
∫

Ω

u0 · φ(0, x)dx +
∫ T

0

∫
Γin

wψvs1 dsdt

−
∫ T

0

∫
∂Ω

{
μ

[
∂

∂n

(
φ

qs

)]
+ (λ + μ)

[
div

(
φ

qs

)]
n
}
· ξdsdt,

where (ψ,φ) is the strong solution to the adjoint system (2.1)–(2.4) with this (F,G) ∈ L2(0, T ;H1(Ω)) ×
L2(0, T ;L2(Ω)).

Notice that the term
∫ T

0

∫
∂Ω

{
μ

[
∂

∂n

(
φ

qs

)]
+ (λ+ μ)

[
div

(
φ

qs

)]
n
}
· ξdsdt denotes

2∑
i=1

∫ T

0

∫
∂Ω

{
μ

[
∇
(
φi

qs

)
· n
]

+ (λ+ μ)
[
div

(
φ

qs

)]
ni

}
ξi dsdt.

We first consider system (1.2)–(1.3) with homogeneous initial condition in ΩT and inhomogeneous boundary
conditions namely, (1.2), (1.3) with

σ(0, x) = 0, u(0, x) = 0 in Ω, (3.1)

σ(t, x) = w(t, x) on (0, T )× Γin, u(t, x) = ξ(t, x) on ΣT . (3.2)

Now we show that the system {(1.2), (1.3), (3.1), (3.2)} is well posed.
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Theorem 3.2. For every (w, ξ) ∈ L2(0, T ;L2(Γin)) × L2(0, T ;L2(∂Ω)), the system {(1.2), (1.3), (3.1), (3.2)}
admits a unique solution (σ̂, û) ∈ L2(0, T ; [H1(Ω)]′) × L2(0, T ;L2(Ω)) in the sense of transposition and the
operator

(w, ξ) −→ (σ̂, û)

is linear and continuous from L2(0, T ;L2(Γin)) × L2(0, T ;L2(∂Ω)) into L2(0, T ; [H1(Ω)]′) × L2(0, T ;L2(Ω)).

Proof.
Uniqueness:
If (w, ξ) = (0,0), we have

∫ T

0

〈σ, F 〉([H1(Ω)]′,H1(Ω)) dt+
∫ T

0

∫
Ω

G · udxdt = 0

for all (F,G) ∈ L2(0, T ;H1(Ω)) × L2(0, T ;L2(Ω)). Thus (σ,u) = (0,0) and so the solution to system
{(1.2), (1.3), (3.1), (3.2)} is unique.

Existence:
Let us define a map Λ from L2(0, T ;H1(Ω)) × L2(0, T ;L2(Ω) using the solution (ψ,φ) of (2.1)–(2.4):

Λ(F,G) =
(
vs1ψ|Γin ,−μ

[
∂

∂n

(
φ

qs

)]
− (λ+ μ)

[
div

(
φ

qs

)]
n
)
.

From Remark 2.13, by the continuity of the mapping (F,G) −→ (ψ,φ), the operator

Λ : L2(0, T ;H1(Ω)) × L2(0, T ;L2(Ω)) −→ L2(0, T ;L2(Γin)) × L2(0, T ;L2(∂Ω))

is linear and continuous. So its adjoint

Λ∗ : L2(0, T ;L2(Γin)) × L2(0, T ;L2(∂Ω)) −→ L2(0, T ; [H1(Ω)]
′
) × L2(0, T ;L2(Ω))

is linear and continuous. Let us denote Λ∗(w, ξ) := (σ̂, û). Then

∫ T

0

〈σ̂, F 〉([H1(Ω)]′,H1(Ω)) dt+
∫ T

0

∫
Ω

G.ûdxdt

= 〈Λ∗(w, ξ), (F,G)〉[L2(0,T ;[H1(Ω)]′)×L2(0,T ;L2(Ω));L2(0,T ;H1(Ω))×L2(0,T ;L2(Ω))]

= (Λ(F,G), (w, ξ))L2(0,T ;L2(Γin))×L2(0,T ;L2(∂Ω))

=
∫ T

0

∫
Γin

vs1ψwdsdt−
∫ T

0

∫
∂Ω

{
μ

[
∂

∂n

(
φ

qs

)]
+ (λ+ μ)

[
div

(
φ

qs

)]
n
}
· ξdsdt

for every (F,G) in L2(0, T ;H1(Ω)) × L2(0, T ;L2(Ω)). Hence for (w, ξ) ∈ L2(0, T ;L2(Γin)) × L2(0, T ;L2(∂Ω)),
(σ̂, û) is the solution of the system {(1.2), (1.3), (3.1), (3.2)} in the sense of Definition 3.1 and

||(σ̂, û)||L2(0,T ;[H1(Ω)]′)×L2(0,T ;L2(Ω)) =||Λ∗(w, ξ)||L2(0,T ;[H1(Ω)]′)×L2(0,T ;L2(Ω))

≤||Λ∗|| ||(w, ξ)||L2(0,T ;L2(Γin))×L2(0,T ;L2(∂Ω)). �

Now we look for a strong solution when initial conditions are nonhomogeneous and boundary conditions are
homogeneous for system (1.2)–(1.5). For that we study first the transport equation using the representation
formula as in Theorem 2.6, but now with a lower order term and nonhomogeneous initial condition.
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Theorem 3.3. Let

∂σ

∂t
(t, x) + div(σ(t, x)vs(x)) = g(t, x) in ΩT ,

σ(0, x) = σ0(x) in Ω, σ(t, x) = 0 on (0, T ) × Γin.

⎫⎬
⎭ (3.3)

Under assumption (1.8) on vs, if g ∈ L2(0, T ;H1(Ω)), σ0 ∈ H1(Ω) and σ0(x) = 0 for x ∈ Γin, then equa-
tion (3.3) has a unique strong solution σ ∈ L∞(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)) and we have the following
estimate:

max
[0,T ]

||σ(t)||H1(Ω) +
∣∣∣∣
∣∣∣∣∂σ∂t

∣∣∣∣
∣∣∣∣
L2(0,T ;L2(Ω))

≤ C(vs, T,Ω)[||σ0||H1(Ω) + ||g||L2(0,T ;H1(Ω))] (3.4)

for some constant C(vs, T,Ω).

To study the existence of a unique solution for the linearized momentum equation with inhomogeneous initial
condition, we note that since −B∗ generates an analytic semigroup S−B∗(t) in L2(Ω), −B also generates an
analytic semigroup S−B(t) in L2(Ω) with D(−B) = H2(Ω) ∩ H1

0(Ω). We recall the following theorem.

Theorem 3.4. Let A be the infinitesimal generator of a strongly continuous analytic semigroup {SA(t)}t�0,
with domain D(A) in a Hilbert space Z. Then for f ∈ L2(0, T ;Z) and z0 ∈ D = {z(0) : z ∈ L2(0, T ;D(A)) ∩
H1(0, T ;Z)} the Cauchy problem

z′(t) = Az(t) + f(t), t ∈ [0, T ], (3.5)
z(0) = z0, (3.6)

admits a unique strong solution z(t) ∈ L2(0, T ;D(A)) ∩H1(0, T ;Z) for any T, 0 < T <∞.

Proof of Theorem 3.4 can be found in the book “Representation and Control of Infinite Dimensional
Systems” [1] (Thm. 3.1 in Sect. 3.6 of Part II, Chap. 1).

Remark 3.5. Girinon also studies the continuity equation (3.3) using semigroup theory when g ∈
L2(0, T ;L2(Ω)), σ0 ∈ L2(Ω) in [5] (Chap. IV, Sect. 2.4) and the linearized momentum equation, which is
of the form (3.5)–(3.6) (taking A = −B, z0 = u0) in [5] (Chap. IV, Sect. 3) using variational method when
f ∈ L2(0, T ;H−1(Ω)) and z0 ∈ L2(Ω) and gets a weak solution. Since we have to do some integration by parts
in the next theorem, we consider (3.3) and (3.5)–(3.6) with more regular initial conditions σ0, z0 and force terms
g, f in Theorems 3.3 and 3.4 and we obtain a strong solution.

Theorems 3.3 and 3.4 will be required in the following to show the well posedness of system (1.2)–(1.5).

Theorem 3.6. For every (w, ξ) ∈ L2(0, T ;L2(Γin)) × L2(0, T ;L2(∂Ω)) and every (σ0,u0) ∈ L2(Ω) × L2(Ω),
the system (1.2)–(1.5) admits a unique solution (σ,u) ∈ L2(0, T ; [H1(Ω)]′) × L2(0, T ;L2(Ω)) in the sense of
transposition as in Definition 3.1.

Proof.

(i) Uniqueness:
If (σ0,u0) = (0,0) and (w, ξ) = (0,0), we have

∫ T

0

〈σ, F 〉([H1(Ω)]′,H1(Ω)) dt+
∫ T

0

∫
Ω

G · udxdt = 0

for all (F,G) ∈ L2(0, T ;H1(Ω))×L2(0, T ;L2(Ω)). Thus (σ,u) = (0,0) and so the solution to the linearized
system (1.2)–(1.5) is unique.
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(ii) Existence:
Now our target is to show that (σ,u) = (σ̌, ǔ) + (σ̂, û) is the solution of equation (1.2)–(1.5) in the sense
of Definition 3.1, where (σ̌, ǔ) is the solution of the system (3.8)–(3.11) corresponding to homogeneous
boundary condition and nonhomogeneous initial condition. The other part (σ̂, û) is the solution of the
system {(1.2), (1.3), (3.1), (3.2)} corresponding to nonhomogeneous boundary condition with homogeneous
initial condition, already studied in Theorem 3.2.

Step 1. From Theorem 3.2, we have Λ∗(w, ξ) = (σ̂, û) ∈ L2(0, T ; [H1(Ω)]′) × L2(0, T ;L2(Ω)) and for all
(F,G) ∈ L2(0, T ;H1(Ω)) × L2(0, T ;L2(Ω)),

∫ T

0

〈σ̂, F 〉([H1(Ω)]′,H1(Ω))dt+
∫ T

0

∫
Ω

G · ûdxdt

=
∫ T

0

∫
Γin

wψvs1dsdt−
∫ T

0

∫
∂Ω

{
μ

[
∂

∂n

(
φ

qs

)]
+ (λ+ μ)

[
div

(
φ

qs

)]
n
}
· ξdsdt. (3.7)

Step 2. From Girinon’s thesis [5] and [4], we know that for (σ0,u0) ∈ L2(Ω) × L2(Ω), the following system in
ΩT ,

∂σ̌

∂t
+ div(σ̌vs) = −div(qsǔ), (3.8)

∂ǔ
∂t

− μ

qs
�ǔ− (λ + μ)

qs
∇(divǔ) + (vs · ∇)ǔ + (ǔ · ∇)vs +

σ̌

qs
(vs · ∇)vs + aγqγ−2

s ∇σ̌ =
σ̌

qs
f , (3.9)

σ̌(0, x) = σ0(x), ǔ(0, x) = u0(x) in Ω, (3.10)

σ̌(t, x) = 0 on (0, T ) × Γin, ǔ(t, x) = 0 on ΣT , (3.11)

has a unique solution (σ̌, ǔ) ∈ L2(0, T ;L2(Ω)) × L2(0, T ;H1
0(Ω)).

In this step we will show that for (σ0,u0) ∈ L2(Ω) × L2(Ω) this weak solution (σ̌, ǔ) ∈ L2(0, T ;L2(Ω)) ×
L2(0, T ;H1

0(Ω)) satisfies:

∫ T

0

∫
Ω

F σ̌dxdt+
∫ T

0

∫
Ω

G · ǔdxdt =
∫

Ω

σ0ψ(0, x)dx +
∫

Ω

u0 · φ(0, x)dx (3.12)

for all (F,G) ∈ L2(0, T ;H1(Ω)) × L2(0, T ;L2(Ω)).

Case 1. Let us consider first the regular case when σ0 ∈ H1(Ω), σ0(x) = 0 ∀ x ∈ Γin and u0 ∈ H2(Ω)∩H1
0(Ω).

From Theorems 3.3 and 3.4, we get that the solution (σ̃, ũ) of (3.8)–(3.11) belongs to [L∞(0, T ;H1(Ω)) ∩
H1(0, T ;L2(Ω))] × [L2(0, T ;H2(Ω) ∩ H1

0(Ω)) ∩H1(0, T ;L2(Ω))] and so the integration by parts is justified in
these spaces.

Multiplying (2.1) by σ̃, using integration by parts, ψ(T, x) = 0, vs · n = 0 on Γ0, σ̃ = 0 on Γin, ψ = 0 on
Γout and (3.8) we get

∫ T

0

∫
Ω

σ̃

[
[f − (vs · ∇)vs]

qs
· φ + aγ div(qγ−2

s φ) + F

]
dxdt = −

∫ T

0

∫
Ω

σ̃
∂ψ

∂t
dxdt−

∫ T

0

∫
Ω

σ̃(vs · ∇ψ)dxdt

=
∫

Ω

∫ T

0

[
∂σ̃

∂t
+ div(σ̃vs)

]
ψdxdt+

∫
Ω

σ0ψ(0, x)dx

=
∫

Ω

∫ T

0

(qsũ) · ∇ψdxdt+
∫

Ω

σ0ψ(0, x)dx. (3.13)
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Multiplying (2.2) by ũ, using integration by parts, φ(T, x) = 0, ũ(0, x) = u0, and ũ = 0,φ = 0 on ∂Ω we get
for i = 1, 2 ∫ T

0

∫
Ω

ũi

(
qs
∂ψ

∂xi
+Gi

)
dxdt =

∫
Ω

∫ T

0

∂ũi

∂t
φi dxdt +

∫
Ω

(u0)i(x)φi(0, x)dx

−μ
∫ T

0

∫
Ω

φi

qs
�ũi dxdt+

∫ T

0

∫
Ω

φidiv(ũivs)dxdt

+ (−1)i

∫ T

0

∫
Ω

ũi∇vs(3−i) · (−φ2, φ1)dxdt − (λ+ μ)
∫ T

0

∫
Ω

ũi
∂

∂xi

[
div

(
φ

qs

)]
dxdt.

Thus for i = 1, 2∫ T

0

∫
Ω

ũi

(
qs
∂ψ

∂xi
+Gi

)
dxdt =

∫
Ω

∫ T

0

∂ũi

∂t
φidxdt− μ

∫ T

0

∫
Ω

φi

qs
�ũidxdt

+
∫

Ω

(u0)i(x)φi(0, x)dx − (λ+ μ)
∫ T

0

∫
Ω

ũi
∂

∂xi

[
div

(
φ

qs

)]
dxdt+

∫ T

0

∫
Ω

φi(vs · ∇ũi)dxdt

+
∫ T

0

∫
Ω

ũi

[
φ1
∂vs1

∂xi
+ φ2

∂vs2

∂xi

]
dxdt. (3.14)

Using integration by parts and φ = 0 = ũ on ∂Ω, we get∫
Ω

∇
[
div

(
φ

qs

)]
· ũdx = −

∫
Ω

div
(

φ

qs

)
div ũdx =

∫
Ω

φ

qs
· ∇(div ũ)dx. (3.15)

Therefore, using (3.14), (3.15) and (3.9)∫ T

0

∫
Ω

ũ · (qs∇ψ + G)dxdt =
∫

Ω

∫ T

0

∂ũ
∂t
.φdxdt+

∫
Ω

u0 · φ(0, x)dx− μ

∫ T

0

∫
Ω

φ

qs
· �ũdxdt

+
∫ T

0

∫
Ω

[(ũ · ∇)vs + (vs · ∇)ũ] · φdxdt− (λ+ μ)
∫ T

0

∫
Ω

φ

qs
· ∇(div ũ)dxdt

=
∫

Ω

u0 · φ(0, x)dx+
∫ T

0

∫
Ω

σ̃

qs
[f − (vs · ∇)vs] · φdxdt+ aγ

∫ T

0

∫
Ω

σ̃ div(qγ−2
s φ)dxdt. (3.16)

Thus adding (3.13) and (3.16) we get∫ T

0

∫
Ω

F σ̃dxdt +
∫ T

0

∫
Ω

G · ũdxdt =
∫

Ω

σ0ψ(0, x)dx +
∫

Ω

u0 · φ(0, x)dx. (3.17)

Case 2. Let us consider the general case when σ0 ∈ L2(Ω) and u0 ∈ L2(Ω). We will deduce equation (3.17)
through a limiting procedure in this case. C∞

c (Ω) is dense in L2(Ω). Because of this, {h0 ∈ H1(Ω) : h0(x) =
0 ∀ x ∈ Γin} is dense in L2(Ω), so is H2(Ω) ∩H1

0(Ω) in L2(Ω). So there exist sequences (σ0)n ∈ {h0 ∈ H1(Ω) :
h0(x) = 0 ∀ x ∈ Γin} and (u0)n ∈ H2(Ω) ∩ H1

0(Ω) such that

(σ0)n −→ σ0 in L2(Ω) and (u0)n −→ u0 in L2(Ω).

Let (σ̃n, ũn) ∈ [L∞(0, T ;H1(Ω))∩H1(0, T ;L2(Ω))]×[L2(0, T ;H2(Ω)∩H1
0(Ω))∩H1(0, T ;L2(Ω))] be the solution

of (3.8)–(3.11) corresponding to (σ0)n and (u0)n. Therefore by case 1 we have∫ T

0

∫
Ω

F σ̃n dxdt+
∫ T

0

∫
Ω

G · ũn dxdt =
∫

Ω

(σ0)nψ(0, x)dx +
∫

Ω

(u0)n · φ(0, x)dx. (3.18)
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Since the solution map corresponding to homogeneous system (3.8)–(3.11) is linear and continuous,

||σ̃n||L2(0,T ;L2(Ω)) + ||ũn||L2(0,T ;H1
0(Ω)) ≤ C(vs, T )[||(σ0)n||L2(Ω) + ||(u0)n||L2(Ω)]. (3.19)

Thus we get (σ̃n, ũn) is a Cauchy sequence in L2(0, T ;L2(Ω))×L2(0, T ;H1
0(Ω)). Let (σ̃n, ũn) converge to (σ̌, ǔ)

in L2(0, T ;L2(Ω)) × L2(0, T ;H1
0(Ω)). Hence taking the limit as n −→ ∞ in (3.18) and (3.19) we get∫ T

0

∫
Ω

F σ̌dxdt+
∫ T

0

∫
Ω

G · ǔdxdt =
∫

Ω

σ0ψ(0, x)dx +
∫

Ω

u0 · φ(0, x)dx

and
||σ̌||L2(0,T ;L2(Ω)) + ||ǔ||L2(0,T ;H1

0(Ω)) ≤ C(vs, T )[||σ0||L2(Ω) + ||u0||L2(Ω)] (3.20)

for all (F,G) ∈ L2(0, T ;H1(Ω)) × L2(0, T ;L2(Ω)) and (σ0,u0) ∈ L2(Ω) × L2(Ω).
Hence adding (3.7) and (3.12) we get (σ,u) = (σ̌, ǔ) + (σ̂, û) is the solution of equations (1.2)–(1.5) in the

sense of Definition 3.1. �

Theorem 3.7. Let H be defined on L2(Ω) × L2(Ω) × L2(0, T ;L2(Γin)) × L2(0, T ;L2(∂Ω)) by

H(σ0,u0, w, ξ) = (σ,u).

Then H is linear and continuous from L2(Ω) × L2(Ω) × L2(0, T ;L2(Γin)) × L2(0, T ;L2(∂Ω)) into
L2(0, T ; [H1(Ω)]′) × L2(0, T ;L2(Ω)) and there exists a constant C such that

||σ||L2(0,T ;[H1(Ω)]′) + ||u||L2(0,T ;L2(Ω)) ≤ C[||σ0||L2(Ω) + ||u0||L2(Ω) + ||w||L2(0,T ;L2(Γin)) + ||ξ||L2(0,T ;L2(∂Ω))].
(3.21)

Proof. Clearly H is linear. To verify the continuity of H ,

||H(σ0,u0, w, ξ)||L2(0,T ;[H1(Ω)]′)×L2(0,T ;L2(Ω)) = ||Λ∗(w, ξ) + (σ̌, ǔ)||L2(0,T ;[H1(Ω)]′)×L2(0,T ;L2(Ω))

≤ ||Λ∗|| ||(w, ξ)||L2(0,T ;L2(Γin))×L2(0,T ;L2(∂Ω)) + ||σ̌||L2(0,T ;L2(Ω)) + ||ǔ||L2(0,T ;L2(Ω))

≤ C[||w||L2(0,T ;L2(Γin)) + ||ξ||L2(0,T ;L2(∂Ω)) + ||σ0||L2(Ω) + ||u0||L2(Ω)]

using (3.20). �

Remark 3.8. We consider the system (1.2)–(1.5) with less regular boundary data, namely L2 boundary data,
so that we get the solution via transposition in weaker spaces. If boundary data are little bit regular, then
solution of (1.2)–(1.5) has better regularity. In fact we show in the following that, if boundary data only for the
velocity has better space and time regularity, then solution of (1.2)–(1.5) will be more regular.

Let w ∈ L2(0, T ;L2(Γin)) and ξ ∈ H1(0, T ;H
1
2 (∂Ω)), then using the surjectivity of trace map T from H1(Ω)

on to H
1
2 (∂Ω) for our domain, a reactangle with Lipschitz boundary, we can pick a ξ̃ ∈ H1(0, T ;H1(Ω)) such

that T (ξ̃) = ξ. Thus by this lifting arument we obtain a homogeneous boundary value problem for (u− ξ̃) and
hence using [5] (Sect. 3 of Chap. 4 in Girinon) we get u in L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)). For the density
we first consider adjoint continuity equation for ψ with force term ϕ in L2(0, T ;L2(Ω)) and using multiplier
method (namely multiplying by ψ), we show the mild solution ψ ∈ C([0, T ];L2(Ω)) has a trace on inflow
boundary (hidden regularity), in fact ψ|Γin ∈ L2(0, T ;L2(Γin)) and the map ϕ → ψ|Γin is continuous from
L2(0, T ;L2(Ω)) into L2(0, T ;L2(Γin)) (For details see Sect. 5.2 in appendix). Then using transposition method
for the continuity equation we will get σ ∈ L2(0, T ;L2(Ω)) for w ∈ L2(0, T ;L2(Γin)). After that defining a
contraction map in L2(0, T1, L

2(Ω)) exactly like Girinon [5] (Sect. 4 of Chap. 4) for this nonhomogeneous
boundary conditions, we get the solution (σ,u) ∈ L2(0, T1;L2(Ω)) × [L2(0, T1;H1(Ω)) ∩ C([0, T1];L2(Ω))] and
then in L2(0, T ;L2(Ω)) × [L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω))].
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4. Optimal control problem

In this section we study the optimal control problem (P) mentioned in the introduction of this paper. First
we discuss the norm |||.|||[H1(Ω)]′ and then prove the existence of a unique solution to the problem (P) and
derive the optimality system.

Denote by ||.||[H1(Ω)]′ the dual norm,

||f ||[H1(Ω)]′ = sup
z∈H1(Ω)

〈f, z〉([H1(Ω)]′,H1(Ω))

||z||H1(Ω)
·

For f in [H1(Ω)]′, let u be the solution to the equation

−Δu+ u = f in Ω,
∂u

∂n
= 0 on ∂Ω. (4.1)

Denote u = (−Δ+ I)−1f .

Proposition 4.1. If we define

|||f |||[H1(Ω)]′ := 〈f, (−Δ+ I)−1f〉 1
2
([H1(Ω)]′,H1(Ω))

,

then it is a norm on [H1(Ω)]′ equivalent to the usual norm ||f ||[H1(Ω)]′ .

It is well known, so we omit the proof here.

4.1. Existence and uniqueness of solution to (P)

Theorem 4.2. Under assumptions (1.6)–(1.8), the control problem (P) admits a unique solution in
L2(0, T ;L2(Γin)) × L2(0, T ;L2(∂Ω)).

Proof.
(i) Existence:

Let
m̄ = inf

(w,ξ) ∈ L2(0,T ;L2(Γin))×L2(0,T ;L2(∂Ω))
J(σ,u, w, ξ).

So there exists a minimizing sequence (wn, ξn) ∈ L2(0, T ;L2(Γin)) × L2(0, T ;L2(∂Ω)) such that

lim
n→∞J(σn,un, wn, ξn) = m̄,

where (σn,un) is the solution of system (1.2)–(1.5) corresponding to the boundary value wn, ξn.
Now

lim
n→∞ J(σn,un, wn, ξn) = m̄⇒ J(σn,un, wn, ξn) ≤ D, for some constant D.

Thus wn, ξn, σn,un are bounded sequence in L2(0, T ;L2(Γin)), L2(0, T ;L2(∂Ω)), L2(0, T ; [H1(Ω)]′) and
L2(0, T ;L2(Ω)). So there exist subsequences of wn, ξn, σn,un (still indexed by n to simplify the notation)
and functions w, ξ, σ,u such that

wn ⇀ w in L2(0, T ;L2(Γin)), (4.2)
ξn ⇀ ξ in L2(0, T ;L2(∂Ω)), (4.3)

σn ⇀ σ in L2(0, T ; [H1(Ω)]
′
), (4.4)

un ⇀ u in L2(0, T ;L2(Ω)). (4.5)
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So

||w||2L2(0,T ;L2(Γin)) ≤ lim inf
n→∞ ||wn||2L2(0,T ;L2(Γin)), (4.6)

||ξ||2L2(0,T ;L2(∂Ω)) ≤ lim inf
n→∞ ||ξn||2L2(0,T ;L2(∂Ω)), (4.7)

||σ − σd||2L2(0,T ;[H1(Ω)]′) ≤ lim inf
n→∞ ||σn − σd||2L2(0,T ;[H1(Ω)]′), (4.8)

||u − ud||2L2(0,T ;L2(Ω)) ≤ lim inf
n→∞ ||un − ud||2L2(0,T ;L2(Ω)). (4.9)

Therefore from (4.6)–(4.9) we get

J(σ,u, w, ξ) ≤ lim inf
n→∞ J(σn,un, wn, ξn) = m̄.

Hence J(σ,u, w, ξ) = m̄. Now the proof of existence of optimal solution will be complete if we can show that
(σ,u) is the solution of system (1.2)–(1.5) corresponding to the boundary value (w, ξ). As (σn,un) is the solution
of system (1.2)–(1.5) corresponding to the boundary value wn, ξn, we have using Definition 3.1 of transposition:∫ T

0

〈σn, F 〉([H1(Ω)]′,H1(Ω)) dt+
∫ T

0

∫
Ω

G · un dxdt =
∫

Ω

σ0ψ(0, x)dx +
∫

Ω

u0 · φ(0, x)dx

+
∫ T

0

∫
Γin

wnψvs1 dsdt−
∫ T

0

∫
∂Ω

{
μ

[
∂

∂n

(
φ

qs

)]
+ (λ+ μ)

[
div

(
φ

qs

)]
n
}
· ξn dsdt

for all (F,G) ∈ L2(0, T ;H1(Ω)) × L2(0, T ;L2(Ω)), where (ψ,φ) is a solution to adjoint system (2.1)–(2.4).
Now using (4.2)–(4.5) and taking limit in the above equation we get∫ T

0

〈σ, F 〉([H1(Ω)]′,H1(Ω)) dt+
∫ T

0

∫
Ω

G · udxdt =
∫

Ω

σ0ψ(0, x)dx +
∫

Ω

u0 · φ(0, x)dx

+
∫ T

0

∫
Γin

wψvs1 dsdt−
∫ T

0

∫
∂Ω

{
μ

[
∂

∂n

(
φ

qs

)]
+ (λ+ μ)

[
div

(
φ

qs

)]
n
}
· ξdsdt

for all (F,G) ∈ L2(0, T ;H1(Ω)) × L2(0, T ;L2(Ω)), where (ψ,φ) is a solution to the adjoint system (2.1)–(2.4)
and hence (σ,u) is the solution of the system (1.2)–(1.5).

(ii) Uniqueness:
Since J is strictly convex, the minimum is unique. Thus the problem (P) admits a unique solution. This completes
the proof. �

4.2. Green’s formula

To obtain the expression for the gradient of J , we need the following Green’s formula which is a simple
consequence of Definition 3.1.

Theorem 4.3. If w ∈ L2(0, T ;L2(Γin)), ξ ∈ L2(0, T ;L2(∂Ω)), F ∈ L2(0, T ;H1(Ω)) and G ∈ L2(0, T ;L2(Ω)),
then the solution (σ,u) of system {(1.2), (1.3), (3.1), (3.2)} and the solution (ψ,φ) of adjoint system (2.1)–(2.4)
satisfy the following∫ T

0

〈σ, F 〉([H1(Ω)]′,H1(Ω)) dt+
∫ T

0

∫
Ω

G · udxdt =
∫ T

0

∫
Γin

wψvs1 dsdt

−
∫ T

0

∫
∂Ω

{
μ

[
∂

∂n

(
φ

qs

)]
+ (λ+ μ)

[
div

(
φ

qs

)]
n
}
· ξdsdt.

(4.10)

This will be required to write the optimality system for problem (P) in the next section.
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4.3. Optimality system for (P)

Necessary and sufficient optimality conditions are stated in the following theorem.

Theorem 4.4. Under assumptions (1.6)–(1.8), if (w̄, ξ̄) is the optimal control for the problem (P) and (σ̄, ū)
is the corresponding solution of system (1.2)–(1.5), then

w̄ = − 1
β
{vs1ψ}|(0,T )×Γin, (4.11)

ξ̄ = − 1
β

{
μ

[
∂

∂n

(
φ

qs

)]
+ (λ+ μ)

[
div

(
φ

qs

)]
n
}
, (4.12)

where (ψ,φ) is the solution of the adjoint system (2.1)–(2.4) corresponding to

F = (−Δ+ I)−1(σ̄ − σd), G = ū − ud.

Conversely, if a pair ((σ̃, ũ), (ψ̃, φ̃)) obeys the coupled system

∂σ

∂t
+ div(σvs) = −div(qsu) in ΩT , (4.13)

∂u
∂t

− μ

qs
�u − (λ+ μ)

qs
∇(divu) + (vs · ∇)u + (u · ∇)vs = −aγqγ−2

s ∇σ +
σ

qs
[f − (vs · ∇)vs] in ΩT , (4.14)

σ(0, x) = σ0(x), u(0, x) = u0(x) in Ω, (4.15)

σ(t, x) = − 1
β
{vs1ψ}|(0,T )×Γin on (0, T )× Γin, (4.16)

u(t, x) = − 1
β

{
μ

[
∂

∂n

(
φ

qs

)]
+ (λ+ μ)

[
div

(
φ

qs

)]
n
}

on ΣT , (4.17)

−∂ψ
∂t

− vs · ∇ψ =
[f − (vs · ∇)vs]

qs
· φ + aγ div(qγ−2

s φ) + (−Δ+ I)−1(σ − σd) in ΩT , (4.18)

−∂φ

∂t
− μ�

(
φ

qs

)
− (λ+ μ)∇

[
div

(
φ

qs

)]
− (div(φ1 vs), div(φ2 vs)) + (∇vs)T φ = qs∇ψ + (u − ud), (4.19)

ψ(T, x) = 0, φ(T, x) = 0 in Ω, (4.20)

ψ(t, x) = 0 on (0, T )× Γout, φ(t, x) = 0 on ΣT , (4.21)

then the pair (
[σ̃, ũ] ;

[
− 1
β

{
vs1ψ̃

}
|(0,T )×Γin ,−

1
β

{
μ

[
∂

∂n

(
φ̃

qs

)]
+ (λ+ μ)

[
div

(
φ̃

qs

)]
n

}])

is the optimal solution to problem (P).



606 S. CHOWDHURY AND M. RAMASWAMY

Proof. First we obtain the necessary optimality conditions. Let

F1(w, ξ) = J(σ,u, w, ξ) =
1
2

∫ T

0

|||σ − σd|||2[H1(Ω)]′ dt+
1
2

∫ T

0

∫
Ω

|u− ud|2 dxdt

+
β

2

[∫ T

0

∫
Γin

w2 dsdt+
∫ T

0

∫
∂Ω

|ξ|2 dsdt

]
, (4.22)

where H(σ0,u0, w, ξ) = (σ,u), H is the solution map as defined in Theorem 3.7. Our aim is to compute the
gradient of F1.

Let (w̄, ξ̄) be the optimal control and (σ̄, ū) be the optimal state i.e. H(σ0,u0, w̄, ξ̄) = (σ̄, ū). Let
H(σ0,u0, w̄ + θw, ξ̄ + θξ) = (σθ,uθ). As H is linear, we have

H(0, 0, θw, θξ) = (σθ − σ̄,uθ − ū); H(0, 0, w, ξ) =
(
σθ − σ̄

θ
,
uθ − ū
θ

)
·

Now using (3.21) of Theorem 3.7 we have

||σθ − σ̄||L2(0,T ;[H1(Ω)]′) + ||uθ − ū||L2(0,T ;L2(Ω)) ≤ C|θ|[||w||L2(0,T ;L2(Γin)) + ||ξ||L2(0,T ;L2(Ω))].

Thus
(σθ ,uθ) −→ (σ̄, ū) in L2(0, T ; [H1(Ω)]

′
) × L2(0, T ;L2(Ω)), (4.23)

when θ −→ 0. Let us define

(σw,ξ,uw,ξ) =
(
σθ − σ̄

θ
,
uθ − ū
θ

)
· (4.24)

Then H(0, 0, w, ξ) = (σw,ξ,uw,ξ).

F1(w̄ + θw, ξ̄ + θξ) − F1(w̄, ξ̄) =
1
2

∫ T

0

[〈σθ − σd, (−Δ+ I)−1(σθ − σd)〉([H1(Ω)]′,H1(Ω))

−〈σ̄ − σd, (−Δ+ I)−1(σ̄ − σd)〉([H1(Ω)]′,H1(Ω))]dt+
1
2

∫ T

0

∫
Ω

(uθ − ū) · (uθ + ū − 2ud)dxdt

+
β

2

∫ T

0

∫
Γin

[2θww̄ + θ2w2]dsdt+
β

2

∫ T

0

∫
∂Ω

[2θξ · ξ̄ + θ2|ξ|2]dsdt

=
1
2

∫ T

0

[〈σθ − σ̄, (−Δ+ I)−1(σθ − σd)〉([H1(Ω)]′,H1(Ω)) + 〈σ̄ − σd, (−Δ+ I)−1(σθ − σ̄)〉([H1(Ω)]′,H1(Ω))]dt

+
1
2

∫ T

0

∫
Ω

(uθ−ū) · (uθ + ū− 2ud) dxdt+
β

2

∫ T

0

∫
Γin

[2θww̄ + θ2w2]dsdt+
β

2

∫ T

0

∫
∂Ω

[2θξ · ξ̄ + θ2|ξ|2]dsdt.

So using (4.24) we have,

(
F1(w̄ + θw, ξ̄ + θξ) − F1(w̄, ξ̄)

)
θ

=
1
2

∫ T

0

[〈σw,ξ, (−Δ+ I)−1(σθ − σd)〉([H1(Ω)]′,H1(Ω))

+〈σ̄ − σd, (−Δ+ I)−1σw,ξ〉([H1(Ω)]′,H1(Ω))]dt+
1
2

∫ T

0

∫
Ω

uw,ξ · (uθ + ū − 2ud)dxdt

+
θβ

2

∫ T

0

∫
Γin

w2dsdt+ β

∫ T

0

∫
Γin

ww̄dsdt+
θβ

2

∫ T

0

∫
∂Ω

|ξ|2dsdt+ β

∫ T

0

∫
∂Ω

ξ · ξ̄dsdt.
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Now taking limit as θ −→ 0 and using (4.23) we get

〈F ′
1(w̄, ξ̄), (w, ξ)〉 =

∫ T

0

〈σw,ξ, (−Δ+ I)−1(σ̄ − σd)〉([H1(Ω)]′,H1(Ω)) dt+
∫ T

0

∫
Ω

uw,ξ · (ū − ud)dxdt

+β
∫ T

0

∫
Γin

ww̄dsdt+ β

∫ T

0

∫
∂Ω

ξ · ξ̄dsdt, (4.25)

where (σw,ξ,uw,ξ) is the solution of the system in ΩT :

∂σ

∂t
+ div(σvs) = −div(qsu),

∂u
∂t

− μ

qs
�u− (λ + μ)

qs
∇(divu) + (vs · ∇)u + (u · ∇)vs +

σ

qs
(vs · ∇)vs + aγqγ−2

s ∇σ =
σ

qs
f ,

σ(0, x) = 0, u(0, x) = 0 in Ω,

σ(t, x) = w(t, x) on (0, T )× Γin, u(t, x) = ξ(t, x) on ΣT .

To derive an expression for F ′
1(w̄, ξ̄) we introduce the adjoint equation in ΩT

−∂ψ
∂t

− vs · ∇ψ =
[f − (vs · ∇)vs]

qs
· φ + aγ div(qγ−2

s φ) + (−Δ+ I)−1(σ̄ − σd), (4.26)

−∂φ

∂t
− μ�

(
φ

qs

)
− (λ+ μ)∇

[
div

(
φ

qs

)]
− (div(φ1 vs), div(φ2 vs)) + (∇vs)T φ = qs∇ψ + (ū − ud), (4.27)

ψ(T, x) = 0, φ(T, x) = 0 in Ω, (4.28)

ψ(t, x) = 0 on (0, T )× Γout, φ(t, x) = 0 on ΣT . (4.29)

With formula (4.10) applied to (ψ,φ) and (σw,ξ,uw,ξ) we have

∫ T

0

〈σw,ξ, (−Δ+ I)−1(σ̄ − σd)〉([H1(Ω)]′,H1(Ω)) dt+
∫ T

0

∫
Ω

uw,ξ · (ū − ud)dxdt

=
∫ T

0

∫
Γin

w{vs1ψ}dsdt−
∫ T

0

∫
∂Ω

ξ ·
{
μ

[
∂

∂n

(
φ

qs

)]
+ (λ + μ)

[
div

(
φ

qs

)]
n
}

dsdt.

So

〈F ′
1(w̄, ξ̄), (w, ξ)〉=

∫ T

0

∫
Γin

w[βw̄+vs1ψ]dsdt−
∫ T

0

∫
∂Ω

ξ ·
{
βξ̄ + μ

[
∂

∂n

(
φ

qs

)]
+(λ+ μ)

[
div

(
φ

qs

)]
n
}

dsdt.

Hence

F ′
1(w̄, ξ̄) =

(
βw̄ + {vs1ψ}|(0,T )×Γin , βξ̄ + μ

[
∂

∂n

(
φ

qs

)]
+ (λ+ μ)

[
div

(
φ

qs

)]
n
)
,

where (ψ,φ) is the solution of adjoint system (2.1)–(2.4) corresponding to

F = (−Δ+ I)−1(σ̄ − σd), G = ū − ud.
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Since (w̄, ξ̄) is the minimum of F1, F ′
1(w̄, ξ̄) = 0. Hence

w̄ = − 1
β
{vs1ψ}|(0,T )×Γin , ξ̄ = − 1

β

{
μ

[
∂

∂n

(
φ

qs

)]
+ (λ+ μ)

[
div

(
φ

qs

)]
n
}
,

where (ψ,φ) is the solution of the adjoint system (2.1)–(2.4) corresponding to F = (−Δ+ I)−1(σ̄ − σd), G =
ū − ud.

Next we derive the sufficient optimality conditions. Due to the previous calculations, we have for every
(ŵ, ξ̂) ∈ L2(0, T ;L2(Γin)) × L2(0, T ;L2(∂Ω)),

F ′
1(ŵ, ξ̂) =

(
βŵ + {vs1ψ̂}|(0,T )×Γin, βξ̂ + μ

[
∂

∂n

(
φ̂

qs

)]
+ (λ+ μ)

[
div

(
φ̂

qs

)]
n

)
,

where (ψ̂, φ̂) is the solution of the following system in ΩT

−∂ψ̂
∂t

− vs · ∇ψ̂ =
[f − (vs · ∇)vs]

qs
· φ̂ + aγ div(qγ−2

s φ̂) + (−Δ+ I)−1(σ̂ − σd),

−∂φ̂

∂t
− μ�

(
φ̂

qs

)
− (λ + μ)∇

[
div

(
φ̂

qs

)]
− (div(φ̂1 vs), div(φ̂2 vs)) + (∇vs)T φ̂ = qs∇ψ̂ + (û − ud),

ψ̂(T, x) = 0 in Ω, φ̂(T, x) = 0 in Ω,

ψ̂(t, x) = 0 on (0, T )× Γout, φ̂(t, x) = 0 on ΣT

and H(σ,u0, ŵ, ξ̂) = (σ̂, û).
Thus if ((σ̃, ũ); (ψ̃, φ̃)) satisfies system (4.13)–(4.21), we have F ′

1(�) = 0, where

� =

(
− 1
β
{vs1ψ̃}|(0,T )×Γin ,−

1
β

{
μ

[
∂

∂n

(
φ̃

qs

)]
+ (λ+ μ)

[
div

(
φ̃

qs

)]
n

})
.

Hence the convexity of the functional (w, ξ) �−→ F1(w, ξ) implies that

− 1
β

(
{vs1ψ̃}|(0,T )×Γin , μ

[
∂

∂n

(
φ̃

qs

)]
+ (λ+ μ)

[
div

(
φ̃

qs

)]
n

)

is the optimal control for problem (P). �

Corollary 4.5. From (4.11) and (4.12), using Theorems 2.11 and 2.12, we see that optimal control for problem
(P) are more regular, in fact (w̄, ξ̄) ∈ L2(0, T ;H

1
2 (Γin)) × L2(0, T ;H

1
2 (∂Ω)).

Appendix A

Here we prove Theorem 2.6 and then established the trace result for the adjoint continuity equation which
is mentioned in Remark 3.8.
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A.1 Proof of Theorem 2.6

Proof. Our target is to prove here the H1 regularity of the solution ψ̌ of (2.5) when the force term ϕ is in H1, by
getting the estimates for the derivatives of ψ̌. For this we first choose a smooth force term ϕ from a dense class
in H1 and use the representation formula to get an estimate for the derivative of ψ̌ on D1 and D2. The main
tool used for this estimate is the change of variable formula. After this, using a density argument we complete
the proof of H1 regularity and finally show that the solution is unique in H1.

Existence of H1 solution:
Case 1. Let ϕ ∈ C∞

c (0, T ;C∞(Ω)). This class is dense in L2(0, T ;H1(Ω)). For this ϕ, using Proposition 2.4 we
want to show the following estimates:

max
[0,T ]

∣∣∣∣
∣∣∣∣ ∂ψ̌∂xi

(t)
∣∣∣∣
∣∣∣∣
L2(Ω)

≤ C(vs, T,Ω) ||ϕ||L2(0,T ;H1(Ω)) , (A.1)

∣∣∣∣
∣∣∣∣∂ψ̌∂t

∣∣∣∣
∣∣∣∣
L2(0,T ;L2(Ω))

≤ C(vs, T,Ω)||ϕ||L2(0,T ;H1(Ω)). (A.2)

Now let us estimate the derivatives of ψ̌ w.r.t space and time variable. From (2.14) we get on D1∣∣∣∣ ∂ψ̌∂xi
(t, x)

∣∣∣∣ ≤
2∑

j=1

[∫ t

0

∣∣∣∣ ∂ϕ∂Xj
(s,X(s, t, x))

∣∣∣∣
∣∣∣∣∂Xj

∂xi
(s, t, x)

∣∣∣∣ ds
]
.

Since X1 and X2 are C2 functions, their derivative will be bounded on [0, T ] × Ω. Therefore from the above,
using Hölder’s inequality

∣∣∣∣ ∂ψ̌∂xi
(t, x)

∣∣∣∣ ≤ C1(vs, T,Ω)
√
T

2∑
j=1

{∫ t

0

∣∣∣∣ ∂ϕ∂Xj
(s,X(s, t, x))

∣∣∣∣
2

ds

} 1
2

and hence ∫
Dt

1

∣∣∣∣ ∂ψ̌∂xi
(t, x)

∣∣∣∣
2

dx ≤ C2(vs, T,Ω)
2∑

j=1

∫
Dt

1

∫ t

0

∣∣∣∣ ∂ϕ∂Xj
(s,X(s, t, x))

∣∣∣∣
2

dsdx, (A.3)

where
Dt

1 = {x ∈ Ω : (t, x) ∈ D1}.
Now for estimating the R.H.S of (A.3), we will use the change of variable formula. For that let us define the

map βt
1 : (0, t) ×Dt

1 −→ U1 by
βt

1(s, x) = (s,X(s, t, x)) = (z1, z2, z3),

where U1 = βt
1{(0, t) ×Dt

1} and show that it is a diffeomorphism.
Since X(s, t, x) is the unique C2 solution of the O.D.E:

dX
ds

= −vs(X), X(s, t, x) = x for s = t,

βt
1 is bijective, C1 and the Jacobian matrix of βt

1 is

Dβt
1(s, x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0

∂X1
∂s (s, t, x) ∂X1

∂x1
(s, t, x) ∂X1

∂x2
(s, t, x)

∂X2
∂s (s, t, x) ∂X2

∂x1
(s, t, x) ∂X2

∂x2
(s, t, x)

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Using Girinon [5] (Chap. IV, Sect. 2.1), we have∣∣∣∣∣∣
∂X1
∂x1

(s, t, x) ∂X1
∂x2

(s, t, x)

∂X2
∂x1

(s, t, x) ∂X2
∂x2

(s, t, x)

∣∣∣∣∣∣ = exp
(∫ s−t

0

divvs(X(r, 0, x))dr
)

and hence det[Dβt
1(s, x)] > 0. Therefore, βt

1 is a diffeomorphism. Let

M = sup
p∈R2

|divvs(p)|. (A.4)

As 0 < s < t ≤ T ,

−
∫ 0

s−t

divvs(X(r, 0, x))dr ≥ −M(t− s).

Then for (s, x) ∈ (0, t) ×Dt
1,

det[Dβt
1(s, x)] = exp

(∫ s−t

0

divvs(X(r, 0, x))dr
)

≥ exp(−MT )

and so
1

| det[Dβt
1(s, x)]|

≤ exp(MT ). (A.5)

Now using (A.5)

∫
Dt

1

∫ t

0

∣∣∣∣ ∂ϕ∂X1
(s,X(s, t, x))

∣∣∣∣
2

dsdx =
∫

Dt
1

∫ t

0

1
| det[Dβt

1(s, x)]|
∣∣∣∣ ∂ϕ∂X1

(βt
1(s, x))

∣∣∣∣
2

| det[Dβt
1(s, x)]|dsdx

≤ exp(MT )
∫

U1

∣∣∣∣ ∂ϕ∂z2 (z1, z2, z3)
∣∣∣∣
2

dz1dz2dz3

≤ exp(MT )
∫ T

0

∫
Ω

∣∣∣∣ ∂ϕ∂z2 (z1, z2, z3)
∣∣∣∣
2

dz1dz2dz3.

Thus we get for j = 1, 2

∫
Dt

1

∫ t

0

∣∣∣∣ ∂ϕ∂Xj
(s,X(s, t, x))

∣∣∣∣
2

dsdx ≤ exp(MT )||ϕ||2L2(0,T ;H1(Ω)). (A.6)

Hence combining (A.6) with (A.3), we get on D1

∫
Dt

1

∣∣∣∣ ∂ψ̌∂xi
(t, x)

∣∣∣∣
2

dx ≤ C(vs, T,Ω)||ϕ||2L2(0,T ;H1(Ω)). (A.7)

Also from (2.15), for a similar estimate on D2, we begin with

∫
Dt

2

∫ t

t2(t,x)

∣∣∣∣ ∂ϕ∂Xj
(s,X(s, t, x))

∣∣∣∣
2

dsdx,

where Dt
2 = {x ∈ Ω : (t, x) ∈ D2}. Since the interval (t2(t, x), t) changes w.r.to x, we cannot directly apply the

change of variable formula and estimate as before. So we go to a bigger interval (0, t) which does not vary with
x and estimate using change of variable as on D1. But notice that for (t, x) ∈ D2, (t2,X(t2, t, x)) is a point
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on the wall {x1 = 1} and (0,X(0, t, x)) is outside of (0, t) × (0, 1) × (0, h) where ϕ is not defined. So we use a
continuous H1 extension ϕ̃ ∈ L2(0, T ;H1(R2)) of ϕ ∈ L2(0, T ;H1(Ω)) and get for j = 1, 2

∫
Dt

2

∫ t

t2(t,x)

∣∣∣∣ ∂ϕ∂Xj
(s,X(s, t, x))

∣∣∣∣
2

dsdx ≤
∫

Dt
2

∫ t

0

∣∣∣∣ ∂ϕ̃∂Xj
(s,X(s, t, x))

∣∣∣∣
2

dsdx. (A.8)

Since Ω is a bounded domain with Lipschitz boundary, we know from Sobolev space theory that such continuous
H1 extension exists. For details see [3] (Chap. 4, Sect. 4.4, Thm. 1).

Now we will consider the change of variable βt
2 : (0, t) ×Dt

2 −→ U2 = βt
2{(0, t) ×Dt

2} defined by

βt
2(s, x) = (s,X(s, t, x)) = (z1, z2, z3)

and estimate the R.H.S of (A.8). Using
1

| det[Dβt
2(s, x)]|

≤ exp(MT ) and the continuity of the extension operator

we get

∫
Dt

2

∫ t

0

∣∣∣∣ ∂ϕ̃∂X1
(s,X(s, t, x))

∣∣∣∣
2

dsdx ≤ exp(MT )
∫

U2

∣∣∣∣ ∂ϕ̃∂z2 (z1, z2, z3)
∣∣∣∣
2

dz1dz2dz3

≤ exp(MT )
∫ T

0

∫
R2

∣∣∣∣ ∂ϕ̃∂z2 (z1, z2, z3)
∣∣∣∣
2

dz1dz2dz3

≤ exp(MT )||ϕ̃||2L2(0,T ;H1(R2)) ≤ C(vs, T,Ω)||ϕ||2L2(0,T ;H1(Ω)).

So from (A.8), we get for j = 1, 2

∫
Dt

2

∫ t

t2(t,x)

∣∣∣∣ ∂ϕ∂Xj
(s,X(s, t, x))

∣∣∣∣
2

dsdx ≤ C(vs, T,Ω)||ϕ||2L2(0,T ;H1(Ω)). (A.9)

Now we want to estimate: ∫
Dt

2

∣∣∣∣ ∂t2∂xi
(t, x)

∣∣∣∣
2

|ϕ(t2(t, x), 1, X2(t2(t, x), t, x))|2 dx.

We define a map Kt : Dt
2 −→ Kt(Dt

2),

Kt(x) = (Kt
1(x),K

t
2(x)) = (t2(t, x), X2(t2(t, x), t, x)) = (y1, y3).

Clearly Kt is bijective and C1.

DKt(x) =

⎡
⎣ ∂t2

∂x1
(t, x) ∂t2

∂x2
(t, x)

∂X2
∂t2

(t2, t, x) ∂t2
∂x1

(t, x) + ∂X2
∂x1

(t2, t, x) ∂X2
∂t2

(t2, t, x) ∂t2
∂x2

(t, x) + ∂X2
∂x2

(t2, t, x)

⎤
⎦ ,

⇒ det[DKt(x)] =
∂t2
∂x1

(t, x)
∂X2

∂x2
(t2, t, x) − ∂t2

∂x2
(t, x)

∂X2

∂x1
(t2, t, x)

=
1

vs1(X(t2, t, x))

∣∣∣∣∣
∂X1
∂x1

(t2, t, x) ∂X1
∂x2

(t2, t, x)
∂X2
∂x1

(t2, t, x) ∂X2
∂x2

(t2, t, x)

∣∣∣∣∣ [using (2.10)]

=
1

vs1(X(t2, t, x))
exp

(∫ t2−t

0

divvs(X(r, 0, x))dr
)

�= 0. (A.10)
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Hence Kt is a diffeomorphism. Also from (A.10), using vs1 ≥ α > 0 on Γout and (A.4) we get

1
|det[DKt(x)]| ≤

exp(MT )
α

· (A.11)

So, using (2.11), (A.11) and the continuity of the trace map∫
Dt

2

∣∣∣∣ ∂t2∂xi
(t, x)

∣∣∣∣
2

|ϕ(t2(t, x), 1, X2(t2(t, x), t, x))|2 dx

≤ C1(vs, T,Ω)
∫

Dt
2

|ϕ(t2(t, x), 1, X2(t2(t, x), t, x))|2 dx

= C1(vs, T,Ω)
∫

Dt
2

1
|det[DKt(x)]|ϕ

2(Kt
1(x), 1,K

t
2(x))|det[DKt(x)]|dx

≤ C2(vs, T,Ω)
∫

Kt(Dt
2)

ϕ2(y1, 1, y3)dy1dy3

≤ C2(vs, T,Ω)
∫ T

0

[∫ h

0

ϕ2(y1, 1, y3)dy3

]
dy1

≤ C(vs, T,Ω)
∫ T

0

||ϕ(y1)||2H1(Ω)dy1 = C(vs, T,Ω)||ϕ||2L2(0,T ;H1(Ω)). (A.12)

Hence using (A.9) and (A.12) from (2.15) we get on D2∫
Dt

2

∣∣∣∣ ∂ψ̌∂xi
(t, x)

∣∣∣∣
2

dx ≤ C2(vs, T,Ω)
2∑

j=1

∫
Dt

2

∫ t

t2(t,x)

∣∣∣∣ ∂ϕ∂Xj
(s,X(s, t, x))

∣∣∣∣
2

dsdx

+ 2
∫

Dt
2

∣∣∣∣ ∂t2∂xi
(t, x)

∣∣∣∣
2

|ϕ(t2(t, x), 1, X2(t2(t, x), t, x))|2 dx

≤ C(vs, T,Ω)||ϕ||2L2(0,T ;H1(Ω)). (A.13)

Let us now estimate the time derivative. From (2.14) we get on D1∣∣∣∣∂ψ̌∂t (t, x)
∣∣∣∣ ≤

2∑
j=1

∫ t

0

∣∣∣∣ ∂ϕ∂Xj
(s,X(s, t, x))

∣∣∣∣
∣∣∣∣∂Xj

∂t
(s, t, x)

∣∣∣∣ ds+ |ϕ(t, x)|.

Thus
∣∣∣∣∂ψ̌∂t (t, x)

∣∣∣∣ ≤ C1(vs, T,Ω)
√
T

2∑
j=1

{∫ t

0

∣∣∣∣ ∂ϕ∂Xj
(s,X(s, t, x))

∣∣∣∣
2

ds

} 1
2

+ |ϕ(t, x)|.

So,
∫

Dt
1

∣∣∣∣∂ψ̌∂t (t, x)
∣∣∣∣
2

dx ≤ C2(vs, T,Ω)
2∑

j=1

∫
Dt

1

∫ t

0

∣∣∣∣ ∂ϕ∂Xj
(s,X(s, t, x))

∣∣∣∣
2

dsdx+ 2
∫

Dt
1

|ϕ(t, x)|2 dx. (A.14)

Using (A.6) we get from above

∫ T

0

∫
Dt

1

∣∣∣∣∂ψ̌∂t (t, x)
∣∣∣∣
2

dxdt ≤ TC3(vs, T,Ω)||ϕ||2L2(0,T ;H1(Ω)) + 2||ϕ||2L2(0,T ;L2(Ω)).
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Therefore, on D1

||∂ψ̌
∂t

||L2(D1) ≤ C(vs, T,Ω)||ϕ||L2(0,T ;H1(Ω)) (A.15)

and on D2,∫
Dt

2

∣∣∣∣∂ψ̌∂t (t, x)
∣∣∣∣
2

dx ≤ C2(vs, T,Ω)
2∑

j=1

∫
Dt

2

∫ t

t2(t,x)

∣∣∣∣ ∂ϕ∂Xj
(s,X(s, t, x))

∣∣∣∣
2

dsdx + 3
∫

Dt
2

|ϕ(t, x)|2 dx

+ 3
∫

Dt
2

∣∣∣∣∂t2∂t (t, x)
∣∣∣∣
2

|ϕ(t2(t, x), 1, X2(t2(t, x), t, x))|2 dx.

Hence using (2.11), (A.12) and (A.9) we get on D2:∣∣∣∣
∣∣∣∣∂ψ̌∂t

∣∣∣∣
∣∣∣∣
L2(D2)

≤ C(vs, T,Ω)||ϕ||L2(0,T ;H1(Ω)). (A.16)

Using the change of variables βt
1, β

t
2 and following the same estimation of derivative from representation formula,

we will get the L2 estimate of ψ̌(t)

max
[0,T ]

||ψ̌(t)||L2(Ω) ≤ C(vs, T,Ω)||ϕ||L2(0,T ;L2(Ω)). (A.17)

For proving the above L2 estimate in D2, note that we will choose ϕ̃ as zero extension of ϕ. Thus proof of (2.18)
is completed in this case.

Case 2. Let ϕ ∈ L2(0, T ;H1(Ω)). Since C∞
c (0, T ) is dense in L2(0, T ) and C∞(Ω) is dense in H1(Ω), there

exists a sequence {ϕn}{n∈N} ∈ C∞
c (0, T ;C∞(Ω)) such that

ϕn −→ ϕ in L2(0, T ;H1(Ω)).

Let ψ̌n be the solution of (2.5) corresponding to ϕn. From (2.18) and expressions (2.13)–(2.15), we see that
ψ̌n ∈ C([0, T ];H1(Ω)) is a Cauchy sequence in L∞(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)) and hence converges to
some ψ̌ in C([0, T ];H1(Ω))L∞(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)) ∩ H1(0, T ;L2(Ω)). Therefore we get a strong
solution ψ̌ ∈ C([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω)) of (2.5) for ϕ ∈ L2(0, T ;H1(Ω)).

Uniqueness: Now we will show that the solution of (2.5) is unique in the class L2(0, T ;H1(Ω)∩H1(0, T ;L2(Ω)).
Let ψ̌i ∈ L2(0, T ;H1(Ω))∩H1(0, T ;L2(Ω)), i = 1, 2 be two solutions of (2.5). Let us denote ψ̄ = ψ̌1 − ψ̌2. Then
ψ̄ satisfies

∂ψ̄

∂t
(t, x) − vs(x) · ∇ψ̄(t, x) = 0 in ΩT ,

ψ̄(0, x) = 0 in Ω, ψ̄(t, x) = 0 on (0, T )× Γout,

⎫⎬
⎭ (A.18)

where (1.8) holds for vs.
Multiplying (A.18) by ψ̄, using vs2 = 0 on Γ0, ψ̄ = 0 on (0, T ) × Γout, n1 = 0 on Γ0, n2 = 0 on Γin where

n = (n1, n2) denotes unit outward normal to ∂Ω and doing integration by parts we get

d
dt

||ψ̄||2L2(Ω) +
∫

Ω

div(vs)ψ̄2 dx+
∫

Γin

vs1ψ̄
2 ds = 0.

Since vs1 ≥ α > 0 on Γin,
d
dt

||ψ̄||2L2(Ω) ≤ −
∫

Ω

div(vs)ψ̄2 dx.
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Thus
d
dt

||ψ̄||2L2(Ω) ≤ ||div(vs)||L∞(Ω)||ψ̄||2L2(Ω) and ||ψ̄(0)||L2(Ω) = 0.

Hence using Gronwall’s inequality, we get ψ̄ = 0 and so ψ̌1 = ψ̌2. This completes the proof. �

A.2 Trace result for the adjoint continuity equation

In this section we give the proof of “hidden regularity”mentioned in Remark 3.8 for the adjoint continuity
equation. This trace result is required to define the solution of non homogeneous initial-boundary value problem
for continuity equation via transposition and to obtain a L2(0, T ;L2(Ω)) solution.

Let us consider
−∂ψ
∂t

− vs · ∇ψ = ϕ in ΩT ,

ψ(t, x) = 0 on (0, T )× Γout,

ψ(T, x) = 0 in Ω,

⎫⎪⎪⎬
⎪⎪⎭ (A.19)

where ϕ ∈ L2(0, T ;L2(Ω)) and (1.8) holds for vs. Following theorem, gives the existence of the weak solution
for the problem (A.19). The proof uses semigroup approach and can be found in [4] (Thm. I.12, p. 65).

Theorem A.1. For ϕ ∈ L2(0, T ;L2(Ω)), problem (A.19) admits a unique weak solution ψ ∈ C([0, T ];L2(Ω))
and we have the following estimate

||ψ(t)||L2(Ω) ≤ C(T )||ϕ||L2(0,T ;L2(Ω)) (A.20)

for some constant C(T ) > 0.

Theorem A.2 (Hidden regularity). If ϕ ∈ L2(0, T ;L2(Ω)), then ψ|Γin ∈ L2(0, T ;L2(Γin)) and the map ϕ →
ψ|Γin is continuous from L2(0, T ;L2(Ω)) into L2(0, T ;L2(Γin)).

Proof. We will prove this regularity result using multiplier method.

Case 1. Let us consider the case when ϕ ∈ L2(0, T ;H1(Ω)). Then from Theorem 2.6 we get ψ belongs to
H1(0, T ;L2(Ω)) ∩ C([0, T ];H1(Ω)). Now multiplying (A.19) by ψ and integrating over (0, T ) ×Ω we get

−
∫ T

0

∫
Ω

∂ψ

∂t
ψdxdt −

∫ T

0

∫
Ω

(vs · ∇ψ)ψdxdt =
∫ T

0

∫
Ω

ϕψdxdt.

Using integration by parts we get,

−1
2

∫
Ω

[ψ2(T, x) − ψ2(0, x)]dx+
1
2

∫ T

0

∫
Ω

(divvs)ψ2dxdt− 1
2

∫ T

0

∫
∂Ω

(vs · n)ψ2dsdt =
∫ T

0

∫
Ω

ϕψdxdt.

Since ψ(T, x) = 0,vs · n = 0 on Γ0, ψ = 0 on Γout and n = (−1, 0) on Γin, we get

1
2

∫
Ω

ψ2(0, x)dx +
1
2

∫ T

0

∫
Ω

(divvs)ψ2dxdt+
1
2

∫ T

0

∫
Γin

vs1ψ
2dsdt =

∫ T

0

∫
Ω

ϕψdxdt.

Thus ∫ T

0

∫
Γin

vs1ψ
2dsdt ≤M

∫ T

0

∫
Ω

ψ2dxdt + 2
∫ T

0

∫
Ω

|ϕ||ψ|dxdt,

where M is given by (A.4). Using vs1 ≥ α > 0 on Γin and Hölders inequality we get

α||ψ|Γin ||2L2(0,T ;L2(Γin)) ≤M ||ψ||2L2(0,T ;L2(Ω)) + 2||ϕ||L2(0,T ;L2(Ω))||ψ||L2(0,T ;L2(Ω)). (A.21)
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So from (A.20) and (A.21) we get

||ψ|Γin ||L2(0,T ;L2(Γin)) ≤ C(T,vs)||ϕ||L2(0,T ;L2(Ω)) ∀ ϕ ∈ L2(0, T ;H1(Ω)). (A.22)

Case 2. Let ϕ ∈ L2(0, T ;L2(Ω)). So there exists a sequence ϕn ∈ L2(0, T ;H1(Ω)) such that ϕn −→ ϕ ∈
L2(0, T ;L2(Ω)). Let ψn be the solution of (A.19) corresponding to ϕn. Then according to (A.22) we have

||ψn|Γin − ψm|Γin ||L2(0,T ;L2(Γin)) ≤ C||ϕn − ϕm||L2(0,T ;L2(Ω)). (A.23)

So ψn|Γin is a Cauchy sequence in L2(0, T ;L2(Γin)). Therefore ψn|Γin converges in L2(0, T ;L2(Γin)). From (A.20)
we have ψn converges to ψ in C([0, T ];L2(Ω)), where ψ ∈ C([0, T ];L2(Ω)) is the weak solution of (A.19)
corresponding to ϕ mentioned in Theorem 5.1. We define

ψ|Γin = lim
n−→∞ψn|Γin ,

the limit taken in L2(0, T ;L2(Γin)). According to (A.23) this definition does not depend on the particular choice
of regular functions approximating ϕ. Hence

||ψ|Γin ||L2(0,T ;L2(Γin)) ≤ C(T,vs)||ϕ||L2(0,T ;L2(Ω)) ∀ ϕ ∈ L2(0, T ;L2(Ω)).

This completes the proof. �
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bound in Hölder spaces. Navier–Stokes equations: theory and numerical methods (Varenna, 1997), Pitman. Research Notes
Math. Ser. 388 (1998) 86–100.

[9] J.P. Raymond, Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. Henri Poincaré
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