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THE POLARIZATION IN A FERROELECTRIC THIN FILM: LOCAL
AND NONLOCAL LIMIT PROBLEMS
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and Kamel Hamdache
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Abstract. In this paper, starting from classical non-convex and nonlocal 3D-variational model of
the electric polarization in a ferroelectric material, via an asymptotic process we obtain a rigorous
2D-variational model for a thin film. Depending on the initial boundary conditions, the limit problem
can be either nonlocal or local.
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1. Introduction

Ferroelectric materials are polar materials that exhibit, at temperature below the Curie point, spontaneous
electric polarization which can be reoriented using an applied electric field and a domain structure. In these
materials, for temperature above the Curie point, the internal energy has a unique minimum point (paraelectric
phase); whereas for the low temperature, it exhibits a double well profile and the polarization can be switched
from a minimum point to the other (for instance, see [12]).

In this paper, for reasons of simplicity and economy, especially by a numerical point of view, we deal with
3D − 2D dimensional reduction problems for ferroelectric materials.

Let

Ωn = ω ×
]
−hn

2
,
hn

2

[
, n ∈ N, (1.1)

be a 3D ferroelectric device with open polygonal cross-section ω ⊂ R
2 and small thickness hn, where hn ∈]0, 1[,

n ∈ N, is a parameter tending to zero. In this material, the response to an applied electric field changes the
electric displacement as D = εE + 4πp, where ε > 0 is the dielectric permeability, p is the spontaneous electric
polarization field and E = −Dϕ is the electric field which satisfies the electrostatic equation{

div(−εDϕ+ 4πp) = 0 in Ωn,
(−εDϕ+ 4πp) · ν = 0 on ∂Ωn,

Keywords and phrases. Electric polarization, thin film, nonlocal problems.
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with ν denoting the unit outer normal on ∂Ωn. We remark that we do not discuss piezoelectric models since we
are not considering deformations of the ferroelectric material. The free energy associated with Ωn is non-convex,
nonlocal and it is given by (for instance, see [4, 13, 14])

En : p =(p1, p2, p3) ∈ (H1(Ωn))3 → 1
hn

[
β

∫
Ωn

|rotp|2dx+
∫

Ωn

|divp|2dx+

+ α

∫
Ωn

(|p|2 − 1)2dx+
∫

Ωn

|Dϕ|2dx−
∫

Ωn

(gn · p)dx
]
, (1.2)

where α = −T−Tc

Tc
is the reduced temperature which verifies 0 < α < 1 since temperature T is assumed

smaller than Curie temperature Tc, β > 0 is a positive constant, gn ∈ (L2(Ωn)
)3 is an external electric field,

x = (x1, x2, x3) = (x′, x3) denotes the generic point of R
3 and · denotes the inner product in R

3. We remark
that the operator is anisotropic for β �= 1.

After having imposed appropriate convergence assumptions on the rescaled exterior field in Ω = ω× ]− 1
2 ,

1
2

[
(see (3.1) and (3.6)), the goal of this paper is to study the asymptotic behavior, as hn vanishes, of minimum
of energy (1.2) with suitable boundary conditions, for obtaining a mathematical justification of the in-plane
ferromagnetic model and of the uniaxial ferromagnetic model satisfied in a 2D domain. To this aim, we consider
two types of boundary conditions. Precisely, in the first case we assume

p · ν = 0 on ∂Ωn (1.3)

and we obtain (see Thm. 5.1) (H1(Ω))3-strong convergence for a subsequence of rescaled polarizations. The limit
is independent of x3, parallel to cross-section ω and the in-plane components solve in ω a problem analogous
to the original problem with an external field given by the average, in x3-direction, of the first two components
of the

(
L2(Ω)

)3-weak limit of the rescaled external field. Moreover, we obtain also (H1(Ω))-strong convergence
for the rescaled potential of electric field E associated with the polarization and the convergence of the energies.
In the second case, we assume

p ∧ ν = 0 on ∂Ωn, (1.4)

with ∧ denoting the cross product in R
3. Also in this case we obtain (see Thm. 5.3) (H1(Ω))3-strong convergence

for a subsequence of rescaled polarizations with a limit independent of x3, but now it is orthogonal to ω and
the out-plane component solves in ω the following local problem

min

{∫
ω

[
β|Dq|2 + α(|q|2 − 1)2 +

(
4π
ε

)2

|q|2 − g3q

]
dx′ : q ∈ H1

0 (ω)

}
,

where g3 is the average, in x3-direction, of the third component of the
(
L2(Ω)

)3-weak limit of the rescaled
external field. Moreover, we prove that the rescaled potential of electric field E associated with the polariza-
tion converges to zero (H1(Ω))-strongly and we prove also the convergence of the energies. In the sequel, for
simplifying computations, we assume ε = 4π.

We remark that both boundary conditions (1.3) and (1.4) allow to estimate ‖Dp‖(L2(Ωn))9 in terms of
‖rotp‖(L2(Ωn))3 and ‖divp‖L2(Ωn), independently of n ∈ N , and to obtain a priori estimates on the polar-
ization. Just for simplifying the proof of this point, we assume that Ωn is a polygon. We remark that a priori
estimates are not evident without assumption (1.3) or (1.4). We reformulate our problem on a fixed domain
through appropriate rescalings of the kind proposed by Ciarlet and Destuynder [5] and impose appropriate
convergence assumptions on the rescaled exterior fields. According to the boundary conditions, the limit of the
rescaled polarization is parallel or orthogonal to ω. This information plays an essential role in describing the
limit behavior of the rescaled potential of electric field E (see Prop. (4.1)). We conclude using the main idea of
Γ -convergence method introduced by De Giorgi and Franzoni [7].
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Our analysis is close to that of ferromagnetic thin films. In what concerns the study of a ferromagnetic thin
film, several results are present in literature. Gioia and James [10] were the first to prove that the magnetostatic
energy behaves, at the limit, like an anisotropic local term which forces the magnetization to be tangent to
the thin film. The time-dependent case was treated in [2] and in [3]. In [1] the authors proposed a model of
films with strong convergence of minimizers when the exchange parameter vanishes and with vertically invariant
configurations on the cylindrical domain. For reproducing the non uniform states observed experimentally in
thin films, very different regimes were considered in [8] and in [11], where h

l and λ
l vanish, h being the film

thickness, l the in-plane diameter and λ the exchange length of the ferromagnetic material. Joined ferromagnetic
thin films were recently studied in [9].

2. The setting of the problems

For every n ∈ N, let

Pn =
{
p ∈ (H1(Ωn)

)3
: p · ν = 0 on ∂Ωn

}
and Sn =

{
p ∈ (H1(Ωn)

)3
: p ∧ ν = 0 on ∂Ωn

}
.

Lemma 2.1. It results that

‖Dp‖2
(L2(Ωn))9 = ‖rotp‖2

(L2(Ωn))3 + ‖divp‖2
L2(Ωn), ∀p ∈ Pn ∪ Sn, ∀n ∈ N. (2.1)

Proof. It is known that this equality holds true in (Pn ∪ Sn) ∩ (H∞(Ωn))3 (see the Proof of Lem. 2.2 in [6]).
Consequently, using the density of Pn∩(H∞(Ωn))3 in Pn and the density of Sn∩(H∞(Ωn))3 in Sn (see Lem. 2.6
in [6]), one obtains (2.1). �

For every n ∈ N and p ∈ (L2(Ωn)
)3, Lax–Milgram theorem ensures that the following problem

ϕp ∈ H1(Ωn),
∫

Ωn

ϕpdx = 0,
∫

Ωn

((−Dϕp + p) ·Dϕ) dx = 0, ∀ϕ ∈ H1(Ωn), (2.2)

admits a unique solution.
For every n ∈ N , let

En : p ∈ (H1(Ωn))3 → 1
hn

∫
Ωn

[β|rotp|2 + |divp|2 + α(|p|2 − 1)2 + |Dϕp|2 − (gn · p)]dx, (2.3)

where gn ∈ (L2(Ωn)
)3 and ϕp is the unique solution of (2.2). By using (2.1) and the direct method of Calculus

of Variations, it is easy to see that the following problems

min{En(p) : p ∈ Pn}, (2.4)

min{En(p) : p ∈ Sn} (2.5)

admit solution. The aim of this paper is to study the asymptotic behavior, as n diverges, of problems (2.4)
and (2.5). The natural space for studying problem (2.4) and (2.5) would be

Πn = {p ∈ H(div, curl, Ωn) : p · ν = 0 on ∂Ωn} and Σn = {p ∈ H(div, curl, Ωn) : p ∧ ν = 0 on ∂Ωn} ,

respectively. On the other side, Lemma 2.1 provides that Πn = Pn and Σn = Sn.
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3. The rescaling

As it is usual (see [5]), problems (2.4) and (2.5) can be reformulated on a fixed domain through the following
rescaling:

x = (x1, x2, x3) ∈ Ω = ω ×
]
− 1

2
,
1
2

[
→ (x1, x2, hnx3) ∈ Ωn = ω ×

]
− hn

2
,
hn

2

[
.

Precisely, setting

P =
{
p ∈ (H1(Ω)

)3
: p · ν = 0 on ∂Ω

}
and S =

{
p ∈ (H1(Ω)

)3
: p ∧ ν = 0 on ∂Ω

}
where ν denotes also the unit outer normal on ∂Ω, and for every n ∈ N

fn : x = (x1, x2, x3) ∈ Ω → gn(x1, x2, hnx3), (3.1)

Dn : p ∈ (H1(Ω)
)3

(resp. H1(Ω)) →
(
∂p

∂x1
,
∂p

∂x2
,

1
hn

∂p

∂x3

)
∈ (L2(Ω))9

(
resp. (L2(Ω))3

)
,

divn : p = (p1, p2, p3) ∈
(
H1(Ω)

)3 → ∂p1

∂x1
+
∂p2

∂x2
+

1
hn

∂p3

∂x3
∈ L2(Ω),

rotn : p = (p1, p2, p3) ∈
(
H1(Ω)

)3 →
(
∂p3

∂x2
− 1
hn

∂p2

∂x3
,

1
hn

∂p1

∂x3
− ∂p3

∂x1
,
∂p2

∂x1
− ∂p1

∂x2

)
∈ (L2(Ω))3,

functional En defined in (2.3) is rescaled in the following one:

En : p ∈ (H1(Ω))3 →
∫

Ω

[β|rotnp|2 + |divnp|2 + α(|p|2 − 1)2 + |Dnφp|2 − (fn · p)]dx, (3.2)

where φp is the unique solution of the following problem

φp ∈ H1(Ω),
∫

Ω

φpdx = 0,
∫

Ω

((−Dnφp + p) ·Dnφ) dx = 0, ∀φ ∈ H1(Ω), (3.3)

which rescales problem (2.2). Then, the goal of this paper turns in studying the asymptotic behavior, as n
diverges, of the following problems

min{En(p) : p ∈ P}, (3.4)

min{En(p) : p ∈ S}. (3.5)

To this aim, we assume that
fn ⇀ f = (f1, f2, f3) weakly in (L2(Ω))3. (3.6)

We conclude this section recalling that (2.1) transforms into the following one:

‖Dnp‖2
(L2(Ω))9 = ‖rotnp‖2

(L2(Ω))3 + ‖divnp‖2
L2(Ω), ∀p ∈ P ∪ S, ∀n ∈ N. (3.7)

4. A convergence result for problem (3.3)

Proposition 4.1. Let {pn}n∈N ⊂ (L2(Ω)
)3 be such that

pn → q strongly in
(
L2(Ω)

)3
, (4.1)

with q = (q1, q2, q3) = (q′, q3) ∈ (L2(Ω)
)3 independent of x3. Moreover, let φpn be the unique solution of (3.3)
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with p = pn. Then,

(i) if q3 = 0, it results that
φpn → ψq′ strongly in H1(Ω), (4.2)

1
hn

∂φpn

∂x3
→ 0 strongly in L2(Ω), (4.3)

where ψq′ is the unique solution of the following problem

ψq′ ∈ H1(ω),
∫

ω

ψq′dx′ = 0,
∫

ω

((−Dψq′ + q′) ·Dψ) dx′ = 0, ∀ψ ∈ H1(ω); (4.4)

(ii) if q′ = 0, it results that
φpn → 0 strongly in H1(Ω), (4.5)

1
hn

∂φpn

∂x3
→ q3 strongly in L2(Ω). (4.6)

Proof. Since {pn}n∈N is bounded in
(
L2(Ω)

)3, there exists a positive constant c such that

‖Dnφpn‖(L2(Ω))3 ≤ c, ∀n ∈ N.

Consequently, by virtue of the Poincaré–Wirtinger inequality, there exist a subsequence of N, still denoted by
{n}, and (in possible dependence of the subsequence) τ ∈ H1(Ω), independent of x3 and with zero average, and
ξ ∈ L2(Ω) such that

φpn ⇀ τ weakly in H1(Ω), (4.7)

1
hn

∂φpn

∂x3
⇀ ξ weakly in L2(Ω). (4.8)

Now, we prove the first case, that is we assume q3 = 0. By passing to the limit in the equation satisfied by
φpn with test functions ψ independent of x3, that is ψ ∈ H1(ω), and recalling that q′ is independent of x3,
convergences (4.1) and (4.7) entail that

τ ∈ H1(ω),
∫

ω

τdx′ = 0,
∫

ω

((−Dτ + q′) ·Dψ) dx′ = 0, ∀ψ ∈ H1(ω). (4.9)

Since this equation admits a unique solution ψq′ , it results that τ = ψq′ , that is

φpn ⇀ ψq′ weakly in H1(Ω). (4.10)

By using (4.10), (4.8), a l.s.c. argument, (4.1) and (4.9), one obtains that∫
ω

|Dψq′ |2dx′ +
∫

Ω

|ξ|2dx ≤ lim
n

∫
Ω

|Dnφpn |2dx = lim
n

∫
Ω

(Dnφpn · pn) dx =
∫

ω

(Dψq′ · q′) dx′ =
∫

ω

|Dψq′ |2dx′,
(4.11)

which provides that ξ = 0 and that convergences (4.8) and (4.10) are strong. We notice that convergences (4.2)
and (4.3) hold true for the whole sequence since the limits are uniquely identified.

Now, we prove the second case, that is we assume q′ = 0. By passing to the limit in the equation satisfied by
φpn with test functions ψ independent of x3, that is ψ ∈ H1(ω), convergences (4.1) and (4.7) entail that

τ ∈ H1(ω),
∫

ω

τdx′ = 0,
∫

ω

(Dτ ·Dψ) dx′ = 0, ∀ψ ∈ H1(ω),

that is τ = 0.
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Now, passing to the limit in the equation satisfied by φpn with test functions hnφ, φ ∈ H1(Ω), by virtue
of (4.1), (4.7) and (4.8) one obtains that∫

Ω

(−ξ + q3)
∂φ

∂x3
= 0, ∀φ ∈ H1(Ω), (4.12)

from which, taking into account that q3 is independent of x3, it follows that also ξ is independent of x3.
Consequently, choosing in (4.12) φ = x3ψ with ψ ∈ C∞

0 (ω), it results that ξ = q3. One concludes the proof
arguing as in the first case. �

5. The main results

At first, we consider the case p · ν = 0 on ∂Ω. Let

P∞ =
{
q ∈ (H1(Ω)

)2
: q is independent of x3 and q · ν′ = 0 on ∂ω ×

]
−1

2
,
1
2

[}

�
{
q ∈ (H1(ω)

)2
: q · ν′ = 0 on ∂ω

}
(5.1)

and

E∞ : q ∈ P∞ → β

∫
ω

|rotq|2dx′+
∫

ω

|divq|2dx′+α
∫

ω

(|q|2−1)2dx′+
∫

ω

|Dψq|2dx′−
∫

ω

(∫ − 1
2

− 1
2

(f1, f2)dx3 · q
)

dx′,

(5.2)
where (f1, f2) is defined in (3.6), ψq is the unique solution of (4.4) and, for q = (q1, q2), rot(q1, q2) = ∂q2

∂x1
− ∂q1

∂x2
.

Theorem 5.1. Assume (3.6). For every n ∈ N, let En be defined in (3.2), pn be a solution of (3.4) and φpn be
the unique solution of (3.3) with p = pn. Moreover, let P∞ and E∞ be defined in (5.1) and (5.2), respectively.
Then, there exist an increasing sequence of positive integer numbers {ni}i∈N and (in possible dependence of the
subsequence) q ∈ P∞ such that

pni → (q, 0) strongly in
(
H1(Ω)

)3
and strongly in

(
L4(Ω)

)3
, (5.3)

1
hn

∂pn

∂x3
→ 0 strongly in

(
L2(Ω)

)3
, (5.4)

φpni
→ ψq strongly in H1(Ω), (5.5)

1
hn

∂φpn

∂x3
→ 0 strongly in L2(Ω), (5.6)

where q is a solution of the following problem

E∞(q) = min{E∞(q) : q ∈ P∞}, (5.7)

and ψq is the unique solution of (4.4) with q′ = q. Moreover, the convergence of the energies holds true, that is

lim
n
En(pn) = E∞(q). (5.8)
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Proof. The proof of this theorem will be performed in several steps. The first step is devoted to prove that there
exist a subsequence of N, still denoted by {n}, and (in possible dependence of the subsequence) q ∈ P∞ and
z ∈ (L2(ω,H1

m(] − 1
2 ,

1
2 [))
)2 × L2(ω,H1

0 (] − 1
2 ,

1
2 [)) such that

pn ⇀ (q, 0) weakly in
(
H1(Ω)

)3
and strongly in

(
L4(Ω)

)3
, (5.9)

1
hn

∂pn

∂x3
⇀

∂z

∂x3
weakly in

(
L2(Ω)

)3
, (5.10)

where the subscript “m” means zero average.
Since 0 ∈ P , it results that∫

Ω

(β|rotnpn|2 + |divnpn|2 + α|pn|4 − 2α|pn|2)dx ≤ ‖fn‖(L2(Ω))3‖pn‖(L2(Ω))3 , ∀n ∈ N. (5.11)

By using the continuous embedding of (L4(Ω))3 into (L2(Ω))3, estimate (5.11) gives

α

|Ω| ‖pn‖3
L2(Ω) − 2α‖pn‖L2(Ω) ≤ ‖fn‖(L2(Ω))3 , ∀n ∈ N, (5.12)

from which, by virtue of (3.6), it follows the existence of a positive constant c such that

‖pn‖(L2(Ω))3 ≤ c, ∀n ∈ N. (5.13)

Then, combining (5.13), (3.6), (5.11) and (3.7), one obtains also the existence of a positive constant c such that

‖Dnpn‖(L2(Ω))9 ≤ c, ∀n ∈ N. (5.14)

Estimates (5.13) and (5.14) provide the existence of a subsequence of N, still denoted by {n}, and (in possible
dependence of the subsequence) p = (p1, p2, p3) ∈ P , independent of x3, such that

pn ⇀ p weakly in
(
H1(Ω)

)3
and strongly in

(
L4(Ω)

)3
.

In particular, since p3 is independent of x3 and p ·ν = 0 on ∂Ω, it results that p3 = 0. Then, setting (p1, p2) = q,
one has that q ∈ P∞ and (5.9) holds true.

To prove (5.10), for i = 1, 2 and for every n ∈ N set

mn,i : x′ ∈ ω −→
∫ 1

2

− 1
2

pn,i(x′, x3)dx3.

By using the Poincaré–Wirtinger inequality and recalling that pn · ν = 0 on ∂Ω entails pn,3(x1, x2, ·) ∈
H1

0

(]− 1
2 ,

1
2

[)
, one obtains the existence of a positive constant c such that, for x′ a.e. in ω,∥∥∥∥ 1
hn

(pn,i(x′, ·) −mn,i(x′))
∥∥∥∥

H1
m(]− 1

2 , 12 [)
≤ c

hn

∥∥∥∥∂pn,i(x′, ·)
∂x3

∥∥∥∥
L2(]− 1

2 , 1
2 [)
, ∀n ∈ N, i = 1, 2,

∥∥∥∥ 1
hn
pn,3(x′, ·)

∥∥∥∥
H1

0(]− 1
2 , 1

2 [)
≤ c

hn

∥∥∥∥∂pn,3(x′, ·)
∂x3

∥∥∥∥
L2(]− 1

2 , 12 [)
, ∀n ∈ N.

Thus, integrating these inequalities over x′ ∈ ω, estimate (5.14) gives (5.10).
The second step is devoted to identify q and z. Since (q1, q2, 0) ∈ P for every q = (q1, q2) ∈ P∞, it results

that
En(pn) ≤ En((q1, q2, 0)), ∀q = (q1, q2) ∈ P∞, ∀n ∈ N. (5.15)
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Then, passing to the limit in (5.15), by virtue of (3.6), Proposition 4.1, (5.9), (5.10) and a l.s.c. argument one
obtains that

β

∫
Ω

(∣∣∣∣ ∂z2∂x3

∣∣∣∣
2

+
∣∣∣∣ ∂z1∂x3

∣∣∣∣
2
)

dx+ β

∫
ω

|rotq|2 dx′ +
∫

Ω

∣∣∣∣divq +
∂z3
∂x3

∣∣∣∣
2

dx

+ α

∫
ω

(|q|2 − 1)2dx′ +
∫

ω

|Dψq|2dx′ −
∫

ω

(∫ 1
2

− 1
2

(f1, f2)dx3 · q
)

dx′

≤ lim inf
n

En(pn) ≤ lim sup
n

En(pn) ≤ E∞(q), ∀q ∈ P∞. (5.16)

On the other hand, since q is independent of x3 and z3 ∈ L2(ω,H1
0 (] − 1

2 ,
1
2 [)), it results that∫

Ω

∣∣∣∣divq +
∂z3
∂x3

∣∣∣∣
2

dx =
∫

ω

|divq|2 dx′ +
∫

Ω

∣∣∣∣ ∂z3∂x3

∣∣∣∣
2

dx. (5.17)

Hence, inserting (5.17) in (5.16), one has that

c

∫
Ω

∣∣∣∣ ∂z∂x3

∣∣∣∣
2

dx+ E∞(q) ≤ lim inf
n

En(pn) ≤ lim sup
n

En(pn) ≤ E∞(q), ∀q ∈ P∞, (5.18)

where c = min{1, β}, which entails that
∂z

∂x3
= 0, a.e. in Ω (5.19)

(in particular, z = 0 a.e. in Ω since z ∈ (
L2(ω,H1

m(] − 1
2 ,

1
2 [))
)2 × L2(ω,H1

0 (] − 1
2 ,

1
2 [))). Consequently,

inserting (5.19) in (5.18), one obtains that q solves problem (5.7) and convergence (5.8) holds true. We notice
that convergences in (5.8) and (5.10) hold true for the whole sequence since the limits are uniquely identified.
Moreover, (5.5) and (5.6) follow from (5.9) and Proposition 4.1.

It remains to prove that convergences in (5.9) and (5.10) are strong. To this aim, by combining (5.8)
with (3.6), (5.5), (5.6) and (5.9), one obtains that

lim
n

∫
Ω

(
β|rotnpn|2 + |divnpn|2

)
dx =

∫
Ω

(
β |rot(q, 0)|2 + |div(q, 0)|2

)
dx,

from which, using (5.9), (5.10) and (5.19), it follows that

rotnpn → rot(q, 0) strongly in
(
L2(Ω)

)3
, divnpn → div(q, 0) strongly in L2(Ω). (5.20)

Finally, combining (5.20) with (3.7), one derives that

Dnpn → D(q, 0) strongly in
(
L2(Ω)

)9
,

which provides that convergences in (5.9) and (5.10) are strong. �

Remark 5.2. Let P∞ = P∞ × {0} and E∞(p) =
{
E∞(p) in P∞,
+∞ in P \ P∞.

Then, Γ -convergence of En|P to E∞ in

the strong topology of (L2(Ω))3 follows easily from previous proofs.

Now, we consider the case p ∧ ν = 0 on ∂Ω. Let

M∞ : q ∈ H1
0 (ω) →

∫
ω

(
β|Dq|2 + α(|q|2 − 1)2 + |q|2 −

(∫ − 1
2

− 1
2

f3dx3q

))
dx′, (5.21)

where f3 is defined in (3.6).
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Theorem 5.3. Assume (3.6). For every n ∈ N, let En be defined in (3.2), pn be a solution of (3.5) and
φpn be the unique solution of (3.3) with p = pn. Moreover, let M∞ be defined in (5.21). Then, there exist
an increasing sequence of positive integer numbers {ni}i∈N and (in possible dependence of the subsequence)
q ∈ {q ∈ H1(Ω) : q independent of x3, q = 0 on ∂ω×]− 1

2 ,
1
2 [} � H1

0 (ω) such that

pni → (0, 0, q) strongly in
(
H1(Ω)

)3
and strongly in

(
L4(Ω)

)3
, (5.22)

1
hn

∂pn

∂x3
→ 0 strongly in

(
L2(Ω)

)3
, (5.23)

φpn → 0 strongly in H1(Ω), (5.24)

1
hni

∂φpni

∂x3
→ q strongly in L2(Ω), (5.25)

where q is a solution of the following problem:

M∞(q) = min{M∞(q) : q ∈ H1
0 (ω)}. (5.26)

Moreover, the convergence of the energies hold true, that is

lim
n
En(pn) = M∞(q). (5.27)

Proof. We sketch the proof. The first step is devoted to prove that there exist a subse-
quence of N, still denoted by {n}, and (in possible dependence of the subsequence) q ∈{
q ∈ H1(Ω) : q independent of x3, q = 0 on ∂ω×]− 1

2 ,
1
2 [
}

and z ∈ (
L2(ω,H1

0 (] − 1
2 ,

1
2 [))
)2 × L2(ω,H1

m(] −
1
2 ,

1
2 [)) such that

pn ⇀ (0, 0, q) weakly in
(
H1(Ω)

)3
and strongly in

(
L4(Ω)

)3
, (5.28)

1
hn

∂pn

∂x3
⇀

∂z

∂x3
weakly in

(
L2(Ω)

)3
. (5.29)

By using (3.7) and arguing as in the beginning of the Proof of Proposition 5.1, one can prove the existence
a positive constant c such that

‖Dnpn‖(L2(Ω))9 ≤ c, ∀n ∈ N, (5.30)

and the existence of a subsequence of N, still denoted by {n}, and (in dependence of the possible subsequence)
p = (p1, p2, p3) ∈ S, independent of x3, such that

pn ⇀ p weakly in
(
H1(Ω)

)3
and strongly in

(
L4(Ω)

)3
.

In particular, since p is independent of x3 and p∧ν = 0 on ∂Ω, it results that that p1 = 0 = p2 and p3 ∈ H1
0 (ω).

Then, (5.28) holds true with q = p3.
To prove (5.29), for for every n ∈ N let

mn,3 : x′ ∈ ω →
∫ 1

2

− 1
2

pn,3(x′, x3)dx3.

By using the Poincaré–Wirtinger inequality and noticing that pn ∧ ν = 0 on ∂Ω entails (pn,1(x1, x2, ·),
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pn,2(x1, x2, ·)) ∈
(
H1

0

(]− 1
2 ,

1
2

[))2, there exists a positive constant c such that, for x′ a.e. in ω,

∥∥∥∥ 1
hn
pn,i(x′, ·)

∥∥∥∥
H1

0(]− 1
2 , 1

2 [)
≤ c

hn

∥∥∥∥∂pn,i(x′, ·)
∂x3

∥∥∥∥
L2(]− 1

2 , 12 [)
, ∀n ∈ N, i = 1, 2,

∥∥∥∥ 1
hn

(pn,3(x′, ·) −mn,3(x′))
∥∥∥∥

H1
m(]− 1

2 , 1
2 [)

≤ c

hn

∥∥∥∥∂pn,3(x′, ·)
∂x3

∥∥∥∥
L2(]− 1

2 , 1
2 [)
, ∀n ∈ N.

Thus, integrating these inequalities over x′ ∈ ω, estimate (5.30) gives (5.29).
The second step is devoted to identify q and z. Since (0, 0, q) ∈ S for every q ∈ H1

0 (ω), it results that

En(pn) ≤ En((0, 0, q)) ∀q ∈ H1
0 (ω), ∀n ∈ N. (5.31)

Then, passing to the limit in (5.31), by virtue of (3.6), Proposition 4.1, (5.28), (5.29) and a l.s.c. argument one
obtains that

∫
Ω

[
β

(∣∣∣∣ ∂q∂x2
− ∂z2
∂x3

∣∣∣∣
2

+
∣∣∣∣ ∂z1∂x3

− ∂q

∂x1

∣∣∣∣
2
)

+
∣∣∣∣ ∂z3∂x3

∣∣∣∣
2
]

dx+
∫

ω

[α(|q|2 − 1)2 + |q|2]dx′ −
∫

ω

(∫ 1
2

− 1
2

f3dx3q

)
dx′

≤ lim inf
n

En(pn) ≤ lim sup
n

En(pn) ≤M∞(q), ∀q ∈ H1
0 (ω). (5.32)

On the other hand, since q is independent of x3 and (z1, z2) ∈
(
L2(ω,H1

0 (] − 1
2 ,

1
2 [))
)2, it results that

∫
Ω

(∣∣∣∣ ∂q∂x2
− ∂z2
∂x3

∣∣∣∣
2

+
∣∣∣∣ ∂z1∂x3

− ∂q

∂x1

∣∣∣∣
2
)

dx =
∫

ω

|Dq|2 dx′ +
∫

Ω

(∣∣∣∣ ∂z1∂x3

∣∣∣∣
2

+
∣∣∣∣ ∂z2∂x3

∣∣∣∣
2
)

dx. (5.33)

Hence, inserting (5.33) in (5.32), one has that

c

∫
Ω

∣∣∣∣ ∂z∂x3

∣∣∣∣
2

dx+M∞(q) ≤ lim inf
n

En(pn) ≤ lim sup
n

En(pn) ≤M∞(q), ∀q ∈ H1
0 (ω), (5.34)

where c = min{1, β}, which entails that
∂z

∂x3
= 0, a.e. in Ω (5.35)

(in particular, z = 0 a.e. in Ω since z ∈ (
L2(ω,H1

0 (] − 1
2 ,

1
2 [))
)2 × L2(ω,H1

m(] − 1
2 ,

1
2 [))). Consequently,

inserting (5.35) in (5.34), one obtains that q solves problem (5.26) and convergence (5.27) holds true. One
can conclude arguing as in the end of the Proof of Theorem 5.1. �

Remark 5.4. Let S∞ = {(0, 0)} × {q ∈ H1(Ω) : q independent of x3, q = 0 on ∂ω×] − 1
2 ,

1
2 [} and M∞(p) ={

M∞(p) in S∞,
+∞ in S \ S∞.

Then, Γ -convergence of En|S to M∞ in the strong topology of (L2(Ω))3 follows easily from

previous proofs.
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