
ESAIM: COCV 19 (2013) 780–810 ESAIM: Control, Optimisation and Calculus of Variations
DOI: 10.1051/cocv/2012033 www.esaim-cocv.org

A LEAST-SQUARES METHOD FOR THE NUMERICAL SOLUTION
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EQUATION IN DIMENSION TWO ∗
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Abstract. We address in this article the computation of the convex solutions of the Dirichlet problem
for the real elliptic Monge−Ampère equation for general convex domains in two dimensions. The
method we discuss combines a least-squares formulation with a relaxation method. This approach
leads to a sequence of Poisson−Dirichlet problems and another sequence of low dimensional algebraic
eigenvalue problems of a new type. Mixed finite element approximations with a smoothing procedure
are used for the computer implementation of our least-squares/relaxation methodology. Domains
with curved boundaries are easily accommodated. Numerical experiments show the convergence of
the computed solutions to their continuous counterparts when such solutions exist. On the other
hand, when classical solutions do not exist, our methodology produces solutions in a least-squares sense.

Résumé. Nous étudions, dans cet article, une méthode numérique, pour le calcul des solutions
convexes du problème de Dirichlet pour l’équation de Monge−Ampère elliptique, dans des domaines
bi-dimensionnel convexes. Une méthode de moindres carrés est couplée à un algorithme de relaxa-
tion, conduisant à la résolution d’une suite de problèmes de Poisson−Dirichlet, et d’une suite de
problèmes de valeurs propres de petite dimension d’un type nouveau. Une approximation par éléments
finis mixtes, couplée à une méthode de régularisation, est utilisée pour implémenter la méthode de
moindres-carrés/relaxation ci-dessus, de sorte que les domaines avec frontière courbe sont traités fa-
cilement. Des expériences numériques montrent la convergence des solutions calculées vers la solution
convexe du problème continu, lorsqu’une telle solution existe. Par ailleurs, si le problème n’a pas de
solution classique, notre méthodologie fournit des solutions au sens des moindres carrés.
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1. Introduction

If f is positive, the canonical Monge−Ampère equation

detD2ψ = f,

is considered by many mathematicians as the prototypical fully nonlinear elliptic equation. As such, it has
recently received considerable attention from both the analytical and computational standpoints as shown by,
e.g., [2, 5, 6, 14, 24, 37, 40, 41, 43, 44, 50], with applications in geometry, mechanics and physics.

In particular, augmented Lagrangian algorithms and least-squares techniques have been used for the nu-
merical solution of the Dirichlet problem for the Monge−Ampère equation in dimension two. These methods
are discussed in [13, 16–21, 32, 33]; actually, [32] contains a review of several methods for the solution of the
Monge−Ampère equation and related fully nonlinear elliptic equations such as Pucci’s.

Let Ω be a bounded, convex domain of R
2; we denote by ∂Ω the boundary of Ω. Assuming that f ∈ L1(Ω)

and g ∈ H3/2(∂Ω), it makes sense (since the operator ϕ→ detD2ϕ is continuous from H2(Ω) to L1(Ω)) to look
in H2(Ω) for the solutions (convex, in particular) of the Dirichlet problem for the Monge−Ampère equation,
that is

detD2ψ = f in Ω, ψ = g on ∂Ω; (1.1)

see [10,11,20,37] for details. Suppose that problem (1.1) has convex (or concave) solutions with theH2-regularity;
if Ω is a square domain, using the augmented Lagrangian and least-squares methods discussed in [13, 16–
21,32,33], combined with piecewise linear continuous finite element approximations, one has been able to solve
problem (1.1) rather accurately. Indeed, the numerical experiments reported in the above references show that
the L2 approximation error is O(h2), which is, generically, optimal for second order elliptic problems, using this
type of approximations. Using the above methodology, one has been able to compute least-squares solutions
of (1.1) when, despite the smoothness of the data f and g, this problem has no classical solutions, as it is the
case for example when Ω = (0, 1)2, f = 1, and g = 0 [11,20,37]. Moreover, our method can be easily generalized
to systems, unlike viscosity solutions which are based on maximum principles.

The least-squares methodology discussed in this article was introduced in [17] and further discussed in [21,32,
33]. Actually, the most detailed account-published so far-of our least-squares approach can be found in [21] (for
a detailed description of the augmented Lagrangian based methodology see [19]). The methodology discussed
in [17, 21, 32, 33] relies on the following ingredients:

(i) A well-chosen least-squares formulation in appropriate Hilbert spaces [4].
(ii) Associating with the optimality conditions of the above least-squares problem an initial value problem

(flow in the dynamical system terminology).
(iii) The time-discretization of the above initial value problem by an operator-splitting scheme decoupling

nonlinearity and differential operators.
(iv) The solution of the nonlinear (resp., linear) problems resulting from the splitting by a Newton’s type

algorithm (resp., by a preconditioned conjugate gradient algorithm).
(v) A mixed finite element approximation [8] of the Monge−Ampère problem (1.1) based on piecewise linear

continuous approximations of ψ and of its three second order derivatives.

Actually, since (a) the speed of convergence of the operator-splitting based iterative method mentioned in (iii)
improves as the time discretization step increases, and (b) the above algorithm reduces to a simpler to implement
relaxation algorithm à la block Gauss−Seidel when the time discretization step converges to +∞, it was decided
that relaxation will be the method of choice to go beyond the methodology discussed in [17, 21, 32, 33].

In [21] and related publications, all the test problems considered were posed in Ω = (0, 1)2 and the finite
element spaces were associated with uniform triangulations like the one on the left in Figure 2 (see Sect. 10).
When applied to problems where Ω has a curved boundary requiring unstructured meshes, or when using
uniform meshes like the one on the right in Figure 2, we observed a deterioration of the convergence properties
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when h→ 0, and even divergence for some test problems. This issue is addressed in this article: an obvious way
to overcome this difficulty is to proceed as in, e.g., [24, 25], that is, use mixed finite element approximations
of the convex solutions of problem (1.1), and of their second order derivatives, based on continuous, piecewise
polynomial functions of degree ≥ 2. This approach has several drawbacks, the main ones being that: (i) unlike
piecewise linear approximations, the higher order ones do not preserve the maximum principle when this principle
holds. (ii) Compared to piecewise linear approximations, the higher order ones are not easy to implement for
domains Ω with curved boundaries. Instead, in order to “rescue” the piecewise linear approximations, we
advocate a Tychonoff-like regularization method [49] when defining the discrete analogues of the second order
derivatives. With this approach we recover convergence of optimal (or nearly optimal) order, as h→ 0, even for
unstructured meshes, or for pathological structured ones like the triangulation on the right in Figure 2.

To summarize, in this article, we advocate a relaxation algorithm for the solution of a well-chosen least-squares
variant of problem (1.1). With such an algorithm we are able to decouple the treatment of the differential
operators from the treatment of the nonlinearities. Indeed, the treatment of the differential operators leads
to the solution of a sequence of elliptic linear biharmonic problems. The nonlinearity requires the solution of
an infinite family of low dimensional constrained minimization problems, one for almost every point of Ω (in
practice, one for each interior vertex of the finite element triangulation of Ω).

To solve the above linear biharmonic problems we advocate a conjugate gradient algorithm operating in well-
chosen sub-spaces ofH2(Ω). On the other hand, two quite different methods are considered for the solution of the
low dimensional constrained minimization problems: the first one based on the Newton’s method combined with
an appropriate parametrization of the two-dimensional manifold {z = {zi}3

i=1, z1 > 0, z2 > 0, z1z2 − z2
3 = 1}.

The second method is based on a novel algorithm for quadratically constrained minimization problems (denoted
by Qmin and introduced in [48]). Following [16–22, 35], mixed finite element approximations are used for the
discretization of (1.1). A regularization procedure for the approximation of second derivatives on arbitrary
meshes allows obtaining optimal (or nearly optimal) convergence properties.

This article is structured as follows: in Section 2, we introduce some fundamental function spaces and sets,
and use them to provide a least-squares formulation of problem (1.1). The relaxation algorithm is described
in Section 3. In Sections 4 and 5, we discuss the solutions of the local low dimensional constrained minimiza-
tion problems and of the linear variational bi-harmonic problems. The mixed finite element approximation of
problem (1.1) is discussed in Section 6, while Sections 7, 8 and 9 are dedicated to the discrete analogues of the
problems discussed in Sections 3, 4 and 5. In Section 10, the methodology discussed in the preceding sections
is applied to the solution of test problems, some of them borrowed from [13, 16–21, 32, 33]; these numerical
experiments include test cases where Ω has a curved boundary and/or when problem (1.1) has no solution in
H2(Ω) [11, 20, 37].

The methodology described in this article owes much to Calculus of Variations and Optimal Control. Indeed
the least-squares criterion that we use is nothing but a multi-dimensional integral defined on the subset of a
functional space à la Sobolev. Moreover adjoint equation techniques are used to compute some of the derivatives
of the discrete cost functional, resulting in substantial memory and computational time savings.

2. Formulation of the Dirichlet problem for the elliptic Monge−Ampère

equation in two dimensions

Let Ω be a bounded convex domain of R
2; we denote by Γ the boundary of Ω. The Dirichlet problem for the

canonical Monge−Ampère equation reads as follows:

det D2ψ = f in Ω, ψ = g on Γ, (2.1)

where D2ψ is the Hessian of the unknown function ψ, that is D2ψ =
(

∂2ψ

∂xi∂xj

)
1≤i,j≤2

.

When problem (2.1) has no solution (in H2(Ω)), we were tempted to call generalized solutions the solutions
“captured” by the least-squares/relaxation methodology discussed in the following sections. Actually, in the
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context of Monge−Ampère equations, generalized solution has a very precise meaning, namely the one introduced
by Aleksandrov (see [1, 46]) and further discussed in [37], Chapter 1. Following [37], ψ is a generalized solution
of problem (2.1) if Mψ = f in Ω and ψ = g on ∂Ω, Mψ being the Monge−Ampère measure associated with ψ,
a particular Borel measure whose precise definition can be found in [37], Chapter 1 (if ψ is smooth enough and
convex, we can identify Mψ with detD2ψ).

Concerning the existence and uniqueness of generalized solutions, it is proved in the above reference that if
Ω ⊂ R

d is a bounded strictly convex domain, μ is a Borel measure in Ω with μ(Ω) < +∞, and g ∈ C0(∂Ω),
then there exists a unique ψ ∈ C0(Ω) that is a convex solution to the boundary value problem Mψ = μ in
Ω and ψ = g on ∂Ω. It is difficult to be more general, particularly if we compare with the very demanding
conditions required from f, g and Ω, so that (2.1) will have a classical solution (see, e.g., [29], Chap. 17 for
details). It is also difficult to do better than Aleksandrov generalized solutions as long as problem (2.1) is
concerned; unfortunately, the Aleksandrov’s notion of weak solution does not generalize easily to other fully
nonlinear second order elliptic equations.

For those more general situations, the right concept seems to be the notion of viscosity solutions introduced
in the early eighties by M. Crandall and P.L. Lions. The basic reference concerning the viscosity solution of
second order partial differential equations is [15] (for application to a variety of nonlinear elliptic equations,
including Monge−Ampère’s, see [10–12, 26, 39, 43] or [37] and the references therein). Actually, it is proved
in [37], Chapter 1 that if ψ is a generalized solution to Mψ = f with f continuous, then ψ is a viscosity solution
of the Monge−Ampère equation. Conversely, it is also proved that if f ∈ C0(Ω), f > 0, and ψ is a viscosity
solution of detD2ψ = f , then ψ is a generalized solution of Mψ = f . Numerical methods for the solution of
problem (1.1), based on the Aleksandrov and viscosity solution approaches, can be found in [43, 44].

Among the various methods available for the solution of (2.1), we advocate the following one of the nonlinear
least-squares type: {

Find (ψ,p) ∈ Vg × Qf such that

J(ψ,p) ≤ J(ϕ,q), ∀(ϕ,q) ∈ Vg × Qf ,
(2.2)

where:
J(ϕ,q) =

1
2

∫
Ω

∣∣D2ϕ− q
∣∣2 dx, (2.3)

|·| being the Fröbenius norm, that is |T| =
√

T : T, with S : T =
∑2

i,j=1 sijtij , for all S = (sij), T = (tij) ∈
R

2×2. The functional spaces and sets in (2.2) are defined by:

Vg =
{
ϕ ∈ H2(Ω) , ϕ = g on Γ

}
, (2.4)

Qf = {q ∈ Q , detq = f, q11 > 0, q22 > 0} , Q =
{
q ∈ L2(Ω)2×2, q = qt

}
. (2.5)

The space Q in (2.5) is a Hilbert space for the scalar product (q,q′) →
∫
Ω q : q′dx, and the associated norm. In

order to have Vg and Qf both non-empty, we assume from now on that f ∈ L1(Ω), f > 0 and g ∈ H3/2(Γ ). The
introduction of the set Qf allows the decoupling of the differential operators (acting linearly on the unknown
function ψ) and of the nonlinearities (acting on the unknown tensor-valued function p). Indeed, the burden of
nonlinearity (algebraic here) has been reported on p, explaining the introduction of the nonlinear manifold Qf .

Note that the existence and uniqueness of a convex solution to the least-squares problem (2.2) is still an open
problem; however, the numerical experiments reported in Section 10, will show that our least-squares based
method never failed finding the convex solution of the test problems considered there, assuming it exists with
the right regularity properties (and sometimes even less, as shown in Sect. 10.12).

Remark 2.1. As shown in, e.g., [19–21], problem (2.2) may have smooth solutions, even if (2.1) has no such
solutions as it is the case if Ω = (0, 1)2, f = 1 and g = 0 [11, 37]. Generally speaking, (2.1) admits a smooth
solution when D2Vg ∩ Qf �= ∅, as illustrated in Figure 1 (left). On the other hand, when D2Vg ∩ Qf = ∅, it
makes sense to search for a solution, in the sense of (2.2) (see Fig. 1 (right)).
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Q

Qf

D2Vg

p = D2ψ

Q

Qf

D2Vg

p

D2ψ

Figure 1. The Monge−Ampère problem (2.1) has a solution in Vg (left), or no solution in Vg
(right).

3. A relaxation algorithm for the solution of problem (2.2)

In order to compute a convex solution of problem (2.2) (or at least to force the convexity of the solution) we
advocate the following relaxation algorithm: solve

−Δψ0 = −2
√
f in Ω, ψ0 = g on Γ. (3.1)

Then, for n ≥ 0, assuming that ψn is known, compute pn, ψn+1/2 and ψn+1 as follows:

pn = arg min
q∈Qf

J(ψn,q), (3.2)

ψn+1/2 = arg min
ϕ∈Vg

J(ϕ,pn), (3.3)

ψn+1 = ψn + ω(ψn+1/2 − ψn), (3.4)

with ω, 0 < ω < ωmax ≤ 2, a relaxation parameter.

Remark 3.1 (initialization strategy). The rationale behind (3.1) is as follows: denote by λ1 and λ2 the eigen-
values of D2ψ; we have then λ1λ2 = f . It follows from (λ1 + λ2)2 − (λ1 − λ2)2 = 4λ1λ2, that, if λ1 and λ2 are
close to each other, then Δψ = λ1 + λ2 
 2

√
λ1λ2 = 2

√
f , justifying thus the initialization (3.1).

The relaxation algorithm (3.1)–(3.4) looks simple but the solution of problems (3.2) and (3.3) leads to
technical issues that we will address in the following sections.

4. Numerical solution of the sub-problems (3.2)

4.1. Explicit formulation of problem (3.2)

An explicit formulation of problem (3.2) is given by

pn = arg min
q∈Qf

[
1
2

∫
Ω

|q|2 dx −
∫
Ω

D2ψn : qdx
]
. (4.1)

Since neither integrands in (4.1) contains derivatives of q, the minimization problem (4.1) can be solved point-
wise (in practice at the vertices of a finite element or finite difference grid). This leads us, a.e. in Ω, to the
solution of the following finite dimensional minimization problem

pn(x) = arg min
q∈Ef (x)

[
1
2
|q|2 − Dn(x) : q

]
, (4.2)

where Dn(x) = D2ψn(x) is a symmetric matrix and Ef (x) = {q ∈ R
2×2,q = qt, detq = f(x), q11 > 0, q22 > 0}.
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4.2. A Newton-type method for the numerical solution of problem (4.2)

Taking advantage of the symmetry of q and Dn(x), and using the notation z1 = q11, z2 = q22, z3 = q12 = q21
and Dn(x)ij = dnij(x), the minimization problem in (4.2) can be rewritten as

min
z∈Zf (x)

[
1
2
(z2

1 + z2
2 + 2z2

3) − dn11(x)z1 − dn22(x)z2 − 2dn12(x)z3

]
, (4.3)

with Zf (x) =
{
z ∈ R

3, z1 > 0, z2 > 0, z1z2 − z2
3 = f(x)

}
. To transform (4.3) into an unconstrained mini-

mization problem in R
2, we perform the change of variables z1 =

√
f(x)eρ cosh θ, z2 =

√
f(x)e−ρ cosh θ,

z3 =
√
f(x) sinh θ, for (ρ, θ) ∈ R

2, so that (4.3) becomes

min
(ρ,θ)∈R2

j(ρ, θ),

with j(ρ, θ) =
√
f(x)

2 (cosh 2ρ cosh2θ + cosh 2ρ + cosh 2θ − 1) − (dn11(x)eρ + dn22(x)e−ρ) cosh θ − 2dn12(x) sinh θ.
This leads us in turn to the solution of Dj(ρ, θ) = 0, where Dj(·) is the differential of the functional j(·). This
2 × 2 nonlinear system actually reads as follows:

Dj(ρ, θ)1 =
√
f(x)(1 + cosh 2θ) sinh 2ρ− (dn11(x)eρ − dn22(x)e−ρ) cosh θ = 0,

Dj(ρ, θ)2 =
√
f(x)(1 + cosh 2ρ) sinh 2θ − (dn11(x)eρ + dn22(x)e−ρ) sinh θ − 2dn12(x) cosh θ = 0.

This system can be solved by using a Newton method. Let (ρ0, θ0) ∈ R
2 be given. For k ≥ 0, we compute

(ρk+1, θk+1) from (ρk, θk) via the solution of

D2j(ρk, θk)
(
ρk+1 − ρk

θk+1 − θk

)
= −Dj(ρk, θk),

where D2j(ρ, θ) = (D2j(ρ, θ)ij)1≤i,j≤2 is given by:

D2j(ρ, θ)11 = 2
√
f(x) cosh 2ρ(1 + cosh 2θ) −

(
dn11(x)eρ + dn22(x)e−ρ

)
cosh θ,

D2j(ρ, θ)12 = D2j(ρ, θ)21 = 2
√
f(x) sinh 2ρ sinh 2θ −

(
dn11(x)eρ − dn22(x)e−ρ

)
sinh θ,

D2j(ρ, θ)22 = 2
√
f(x) cosh 2θ(1 + cosh 2ρ) −

(
dn11(x)eρ + dn22(x)e−ρ

)
cosh θ − 2d12(x) sinh θ.

Remark 4.1 (choice of the scalar product). Since we are dealing with symmetric matrices, we can equip Q
with the following scalar product (q,q′) →

∫
Ω

(q11q′11 + q22q
′
22 + q12q

′
12)dx. As shown in [13, 18, 32], this new

scalar product has given better results than the one defined by (q,q′) →
∫
Ω

q : q′dx when applied to the
numerical solution of the two-dimensional Dirichlet problem for the Pucci’s equation, that is αλ+ + λ− = f
in Ω, together with ψ = g on Γ , where λ+ (resp., λ−) denotes the largest (resp., the smallest) eigenvalue of
the Hessian D2ψ of the unknown function ψ, and where α ≥ 1. Using this new scalar product, (4.3) would be
replaced by

min
z∈Zf (x)

[
1
2

(
z2
1 + z2

2 + z2
3

)
− dn11(x)z1 − dn22(x)z2 − dn12(x)z3

]
,

with Zf (x) defined similarly. The same change of variables and Newton method can be applied to this problem.

4.3. The quadratically constrained minimization method for the numerical solution
of problem (4.3)

In [48], a class of quadratically constrained minimization problems has been addressed with a new algorithm
denoted by Qmin. This algorithm allows the solution of some specific eigenvalue-constrained matrix optimiza-
tion problems of dimension N (≥2), its complexity being O(N3). The particular case associated with N = 2
corresponds to (4.2).
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This method relies on the following equivalent formulation of problem (4.2):

pn(x) = Sn(x)Λn(x)Sn(x)t, (Λn(x),Sn(x)) = arg min
(Λ,S)∈Ef

[
1
2
(μ2

1 + μ2
2) − trace

(
Dn(x)SΛSt

)]
, (4.4)

where Ef (x) = {(Λ,S),Λ = diag(μ1, μ2), μ1μ2 = f(x),StS = I}. The algorithm developed in [48] applies
beautifully to the solution of (4.4). After scaling of Dn(x) by

√
f(x), (4.4) is equivalent to

arg min
A∈A1

trace [AA − 2DnA] , (4.5)

where A1 = {A ∈ R2×2,A = At, 
tM
 = 2,M
 ≥ 0}, M =
(

0 1
1 0

)
, and 
 = (μ1, μ2)t, {μ1, μ2} being the

spectrum of A. The constraint 
tM
 = 2 corresponds to λ1 + λ2 = 1, while the constraint M
 ≥ 0 ensures
λ1, λ2 ≥ 0 to obtain convex solutions. Ultimately, for N = 2 the solution is found by solving a simple rational
equation of the form

β2
1

(1 + μ)2
= 2 +

β2
2

(1 − μ)2
,

where β1 = (λ1 + λ2)/
√

2 and β2
2 = (λ2

1 + λ2
2)/2 − λ1λ2, {λ1, λ2} being the spectrum of Dn(x)/

√
f(x).

Remarkably, the same rational equation holds essentially for arbitrary N ≥ 2. This equation is efficiently solved
numerically by first taking reciprocals and then square roots on both sides and applying Newton’s method.
With a starting guess μ0 = −1, the method converges typically in 3 to 5 iterations. This occurs because the
reciprocal square root transformation yields a problem that is essentially the intersection of two straight lines.
For more details, see [48], where this algorithm is developed for arbitrary N ≥ 2.

5. Conjugate gradient solution of the sub-problems (3.3)

Written in variational form, the Euler−Lagrange equation of the sub-problem (3.3) reads as follows:

Find ψn+1/2 ∈ Vg such that
∫
Ω

D2ψn+1/2 : D2ϕdx =
∫
Ω

pn : D2ϕdx, ∀ϕ ∈ V0, (5.1)

where V0 = H2(Ω) ∩ H1
0 (Ω). The linear variational problem (5.1) is well-posed and belongs to the following

family of linear variational problems:

u ∈ Vg :
∫
Ω

D2u : D2vdx = L(v), ∀v ∈ V0, (5.2)

with the functional L(·) linear and continuous over H2(Ω); problem (5.2) is clearly of the biharmonic type. The
conjugate gradient solution of linear variational problems in Hilbert spaces, such as (5.2), has been addressed
in, e.g., [30], Chapter 3. Following the above reference, we are going to solve (5.2) by a conjugate gradient
algorithm operating in the spaces V0 and Vg, both spaces being equipped with the scalar product defined by
(v, w) →

∫
Ω
ΔvΔwdx, and the corresponding norm. This conjugate gradient algorithm reads as follows:

Step 1.
u0 ∈ Vg given. (5.3)

Step 2. Solve:

Find g0 ∈ V0 such that
∫
Ω

Δg0Δvdx =
∫
Ω

D2u0 : D2vdx − L(v), ∀v ∈ V0, (5.4)

and set the first descent direction:
w0 = g0. (5.5)
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Then, for k ≥ 0, uk, gk, and wk being known, the last two different from zero, we compute uk+1, gk+1 and, if
necessary, wk+1 as follows.

Step 3. Solve:

Find ḡk ∈ V0 such that
∫
Ω

ΔḡkΔvdx =
∫
Ω

D2wk : D2vdx, ∀v ∈ V0, (5.6)

and compute the new iterates as follows:

ρk =

∫
Ω

∣∣Δgk∣∣2 dx∫
Ω Δḡ

kΔwkdx
, (5.7)

uk+1 = uk − ρkw
k, (5.8)

gk+1 = gk − ρkḡ
k. (5.9)

Step 4. Compute

δk =

∫
Ω

∣∣Δgk+1
∣∣2 dx∫

Ω |Δg0|2 dx
. (5.10)

If δk < ε (meaning that the residual is small enough), take u = uk+1; otherwise, compute:

γk =

∫
Ω

∣∣Δgk+1
∣∣2 dx∫

Ω
|Δgk|2 dx

, (5.11)

and update the descent direction via
wk+1 = gk+1 + γkw

k. (5.12)

Step 5. Do k + 1 → k and return to Step 3.
The numerical experiments reported in Section 10 show that the conjugate gradient algorithm (5.3)–(5.12)

enjoys a fast convergence, typically less than 10 iterations for all the meshes and mesh sizes which have been
considered. Combined with an appropriate mixed finite element approximation, it requires, at each iteration,
the solution of two discrete Poisson problems.

6. On a mixed finite element approximation

6.1. Generalities

Considering the highly variational flavor of the methodology discussed in the preceding sections, it makes
sense to look for finite element based methods for the approximation of (2.1). In order to avoid the complications
associated with the construction of finite element sub-spaces ofH2(Ω) (see, however, [5,25] for such an approach),
we employ here a mixed finite element approximation (closely related to those discussed in, e.g., [22, 23, 31,
36, 47] for the solution of linear and nonlinear bi-harmonic problems). Following this approach, it is possible
to solve (2.1) employing approximations commonly used for the solution of second order elliptic problems
(piecewise linear and globally continuous over a triangulation of Ω for example). The use of low order finite
elements is justified in order to have the flexibility to consider computational domains with arbitrary (convex)
shapes. However, since low order finite elements may have difficulties at handling some biharmonic problems,
an additional regularization may be required, when approximating the second derivatives.
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6.2. Mixed finite element approximation

For simplicity, we assume that Ω is a bounded polygonal domain of R
2. Let us denote by Th a finite element

triangulation of Ω as discussed in, e.g., [31], Appendix 1. From Th, we approximate the spaces L2(Ω), H1(Ω)
and H2(Ω) (respectively, H1

0 (Ω) and H2(Ω) ∩ H1
0 (Ω)) by the finite dimensional space Vh (respectively, V0h)

defined by:

Vh =
{
v ∈ C0

(
Ω

)
, v|T ∈ P1, ∀T ∈ Th

}
, V0h = Vh ∩H1

0 (Ω) = {v ∈ Vh, v = 0 on Γ} , (6.1)

with P1 the space of the two-variables polynomials of degree ≤ 1.
For a function ϕ being given in H2(Ω), we denote ∂2ϕ/∂xi∂xj by D2

ij(ϕ). It follows from Green’s formula
that ∫

Ω

∂2ϕ

∂xi∂xj
vdx = −1

2

∫
Ω

[
∂ϕ

∂xi

∂v

∂xj
+
∂ϕ

∂xj

∂v

∂xi

]
dx, ∀v ∈ H1

0 (Ω), ∀i, j = 1, 2. (6.2)

Consider now ϕ ∈ Vh. Taking advantage of the relations (6.2), we define the discrete analogues of the differential
operators D2

ij by

D2
hij(ϕ) ∈ V0h,

∫
Ω

D2
hij(ϕ)vdx = −1

2

∫
Ω

[
∂ϕ

∂xi

∂v

∂xj
+
∂ϕ

∂xj

∂v

∂xi

]
dx, ∀v ∈ V0h, ∀i, j = 1, 2. (6.3)

The functions D2
hij(ϕ) are uniquely defined by the relations (6.3). However, in order to simplify the computation

of the above discrete second order partial derivatives, it is tempting to consider using the trapezoidal rule to
evaluate the integrals in the left hand sides of (6.3). Owing to their practical importance, let us detail these
calculations:

(i) First, we introduce the set Σh of the vertices of Th and then Σ0h = {P ∈ Σh , P /∈ Γ}. Next, we define
the integers Nh and N0h by Nh = Card(Σh) and N0h = Card(Σ0h). We have then dimVh = Nh and
dimV0h = N0h. We suppose that Σ0h = {Pj}N0h

j=1 and Σh = Σ0h ∪ {Pj}Nh

j=N0h+1.
(ii) With each Pk ∈ Σh, we associate the function wk uniquely defined by

wk ∈ Vh, w
k(Pk) = 1, wk(Pl) = 0, ∀l = 1, . . . , Nh, l �= k.

It is well-known (see, e.g., [31], Appendix 1) that the sets Bh = {wk}Nh

k=1 and B0h = {wk}N0h

k=1 are vector
bases for Vh and V0h, respectively.

(iii) Let us denote by Ak the area of the polygonal domain which is the union of those triangles of Th which
have Pk as a common vertex. Applying the trapezoidal rule to the integrals in the left-hand side of the
relations (6.3), we obtain

D2
hij(ϕ) ∈ V0h, D2

hij(ϕ)(Pk) = − 3
2Ak

∫
Ω

[
∂ϕ

∂xi

∂wk

∂xj
+
∂ϕ

∂xj

∂wk

∂xi

]
dx, ∀k = 1, . . . , N0h, ∀i, j = 1, 2.

(6.4)
Computing the integrals in the right hand side of (6.4) is quite simple since the first order derivatives
of ϕ and wk are piecewise constant. Finally, with ϕ ∈ Vh, we associate Δhϕ ∈ V0h uniquely defined by
Δhϕ(Pk) = D2

h11(ϕ)(Pk) +D2
h22(ϕ)(Pk), for k = 1, . . . , N0h.

Taking the above relations into account, approximating problem (2.1) is now fairly straightforward. Assuming
that the boundary function g is continuous over Γ (which is definitely the case if g ∈ H3/2(Γ )), let us denote
by gh the interpolant of g associated with the triangulation Th. We approximate the affine space Vg by Vgh =
{ϕ ∈ Vh , ϕ(P ) = g(P ), ∀P ∈ Σh ∩ Γ} and then problem (2.1) by:

Find ψh ∈ Vgh such that D2
h11(ψh)(Pk)D

2
h22(ψh)(Pk) −

∣∣D2
h12(ψh)(Pk)

∣∣2 = fh(Pk), k = 1, . . . , N0h, (6.5)



LEAST-SQUARES METHOD FOR THE ELLIPTIC MONGE−AMPÈRE EQUATION 789

where fh is a continuous approximation of f (we can always assume that fh ∈ Vh). In addition, we define the
discrete equivalent of Qf as follows:

Qfh = {q ∈ Qh , detq(Pk) = fh(Pk), q11(Pk) > 0, q22(Pk) > 0, k = 1, . . . , N0h} ,

with Qh = {q ∈ (V0h)2×2, q(Pk) = qt(Pk), k = 1, . . . , N0h}. We associate with V0h and Qh the following
discrete scalar products and corresponding Euclidean norms:

(v, w)0h =
1
3

Nh∑
k=1

Akv(Pk)w(Pk), ∀v, w ∈ V0h, ||v||20h = (v, v)0h, ∀v ∈ V0h,

((S,T))0h =
1
3

N0h∑
k=1

AkS(Pk) : T(Pk), ∀S,T ∈ Qh, |||S|||20h = ((S,S))0h, ∀S ∈ Qh.

The solution of problem (6.5) will be discussed in the sequel.

Remark 6.1. Suppose that Ω = (0, 1)2 and that the triangulation Th is uniform like the one shown in Figure 2
(left). Suppose that h = 1/(I + 1), I being a positive integer greater than one. In this particular case, the
sets Σh and Σ0h are given by Σh = {Pij = (ih, jh) , 0 ≤ i, j ≤ I + 1}, and Σ0h = {Pij = (ih, jh) , 1 ≤ i, j ≤ I},
implying that Nh = (I+2)2 and N0h = I2. It follows then from the relations (6.4) that (with obvious notation):

D2
h11(ϕ)(Pij) =

ϕi+1,j + ϕi−1,j − 2ϕij
h2

, 1 ≤ i, j ≤ I,

D2
h22(ϕ)(Pij) =

ϕi,j+1 + ϕi,j−1 − 2ϕij
h2

, 1 ≤ i, j ≤ I,

D2
h12(ϕ)(Pij) =

ϕi+1,j+1 + ϕi−1,j−1 + 2ϕij − (ϕi+1,j + ϕi−1,j + ϕi,j+1 + ϕi,j−1)
2h2

, 1 ≤ i, j ≤ I.

The above discrete second order derivatives of finite difference type have the easily verified yet remarkable
property that they are exact for polynomial functions of degree ≤ 2.

6.3. A smoothing procedure for the approximation of the second derivatives

As emphasized in [45], when using piecewise linear mixed finite elements, the a priori estimates for the error
on the second derivatives of the solution ψ are, in general, O(1) in the L2-norm. Therefore the convergence
properties of the solution method depend strongly on the type of triangulations one employs. Indeed, assuming
that the discrete second order derivatives have been computed via (6.3) and (6.4), numerical experiments
performed by the authors showed the triangulation dependence of the convergence; non-convergence cases (in

the L2-norm) were also observed. Unfortunately, the approximations of
∂2ϕ

∂xi∂xj
provided by (6.3) and (6.4)

converge to the above second derivative, no better than in H−1(Ω) in general. This allows oscillations and
explains the growth of the approximation error in L2(Ω) and H1(Ω) as h → 0. Such pathological behavior
can be observed in the results presented in Section 10. From that point of view a dramatic confirmation of
these non-convergence properties is provided by the numerical results associated with the structured symmetric
mesh shown on the right of Figure 2 (also called “British flag” mesh or “crisscross” pattern). To cure the non-
convergence properties associated with the approximations (6.3) and (6.4) of the second derivatives, we see two
options:

(i) Use, as in, e.g., [24, 25], mixed finite elements methods based on piecewise polynomial approximations of
degree ≥2. This approach has several drawbacks, among them: (a) it is more complicated to implement
than the mixed methods described in Section 6.2, particularly if Ω has a curved boundary. (b) These higher
order polynomial approximations do not preserve the maximum principle, if this principle takes place for
the continuous problem.
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(ii) Use a regularization procedure à la Tychonoff [49], while keeping a piecewise linear approximation based
mixed finite element approach.

Focusing on the second approach, a simple and novel (in this context) way to obtain better convergence properties
of the discrete second order derivatives is to use the following regularization procedure: with C > 0 and
|K| = meas(K), when computing the discrete second derivatives D2

hij(ϕ) replace (6.3) by:

Find D2
hij(ϕ) ∈ V0h such that, ∀v ∈ V0h, i, j = 1, 2,∫

Ω

D2
hij(ϕ)vdx + C

∑
K∈Th

|K|
∫
K

∇D2
hij(ϕ) · ∇vdx = −1

2

∫
Ω

[
∂ϕ

∂xi

∂v

∂xj
+
∂ϕ

∂xj

∂v

∂xi

]
dx, (6.6)

and (6.4) by

Find D2
hij(ϕ) ∈ V0h such that, ∀v ∈ V0h, i, j = 1, 2,

(D2
hij(ϕ), v)0h + C

∑
K∈Th

|K|
∫
K

∇D2
hij(ϕ) · ∇vdx = −1

2

∫
Ω

[
∂ϕ

∂xi

∂v

∂xj
+
∂ϕ

∂xj

∂v

∂xi

]
dx. (6.7)

The above linear systems can be solved by a sparse Cholesky solver (with the Cholesky factorization made once
and for all at the beginning of the algorithm). The overhead in computational time appears to be non significant.
Numerical results in Section 10 show that the above regularization procedure generally provides a significant
improvement to the orders of convergence of the approximations of the solution ψ of problem (2.1). On the other
hand, in the particular case of triangulations like the one on the left of Figure 2, the regularization associated
with (6.6) or (6.7), deteriorates significantly the L2(Ω)-approximation error, while preserving optimal orders of
convergence.

Remark 6.2. The regularization method we employed in (6.6) and (6.7) is reminiscent of the stabilization
one employed by Hughes et al. in [38] to construct convergent approximations of the Stokes problem using,
essentially, the same finite element spaces to approximate velocity and pressure (equal-order interpolation), a
very popular method indeed.

7. Discrete least-squares formulation and discrete relaxation algorithm

We advocate the following nonlinear least-squares method for the solution of problem (6.5):

Find (ψh,ph) ∈ Vgh × Qfh such that Jh(ψh,ph) ≤ Jh(ϕ,q), ∀(ϕ,q) ∈ Vgh × Qfh, (7.1)

where
Jh(ϕ,q) =

1
2

∣∣∣∣∣∣D2
h(ϕ) − q

∣∣∣∣∣∣2
0h
.

In order to solve the nonlinear least-squares problem (7.1), we suggest the following relaxation algorithm:

Find ψ0
h ∈ Vgh such that

∫
Ω

∇ψ0
h · ∇ϕdx = −2(

√
fh, ϕ)0h, ∀ϕ ∈ V0h. (7.2)

For n ≥ 0, assuming that ψnh is known, compute pnh, ψ
n+1/2
h and ψn+1

h as follows:

pnh = arg min
q∈Qfh

Jh(ψnh ,q), (7.3)

ψ
n+1/2
h = arg min

ϕ∈Vgh

Jh(ϕ,pnh), (7.4)

ψn+1
h = ψnh + ω(ψn+1/2

h − ψnh), (7.5)

with 0 < ω < ωmax ≤ 2. The solution of the finite dimensional problems (7.3) and (7.4) will be addressed in the
following sections.
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8. Numerical solution of the discrete sub-problems (7.3)

An explicit formulation of problem (7.3) is given by

pnh = arg min
q∈Qfh

[
1
2
|||q|||20h − ((D2

h(ψ
n
h),q))0h

]
.

This minimization problem can be solved point-wise, at each vertex of Th belonging to Σ0h, that is:

pnh(Pk) = arg min
q∈Efh(Pk)

[
1
2
|q|2 − Dn

h(Pk) : q
]
, k = 1, . . . , N0h,

where Dn
h(Pk) = D2

h(ψ
n
h)(Pk) and Efh(Pk) =

{
q ∈ R

2×2 , q = qt, detq = fh(Pk), q11 > 0, q22 > 0
}
. Both the

Newton’s and the Qmin methods presented in Section 4 apply here, after replacing x by Pk, k = 1, . . . , N0h.

9. Conjugate gradient solution of the discrete sub-problems (7.4)

9.1. Formulation of (7.4) as a discrete linear variational problem

The Euler−Lagrange equation associated with problem (7.4) reads as follows:

Find ψ
n+1/2
h ∈ Vgh such that ((D2

h(ψ
n+1/2
h ),D2

h(ϕ)))0h = ((pnh ,D
2
h(ϕ)))0h, ∀ϕ ∈ V0h. (9.1)

Problem (9.1) is a well-posed linear variational problem in the affine space Vgh. Following [30], Chapter 3, the
solution of problem (9.1) will be discussed in Section 9.3. However, as written, the linear problem (9.1) leads
to excessive computer resource requirements. This is easy to understand: to derive the linear system equivalent
to (9.1), we need to compute-via the solution of (6.6) or (6.7)-the matrix-valued functions D2

h(w
j), where the

functions wj form a basis of V0h. To avoid this difficulty, we are going to employ an adjoint equation approach
to derive an equivalent formulation of (9.1), well-suited to solution by a conjugate gradient algorithm.

9.2. An adjoint equation based equivalent formulation of problem (9.1)

Problem (9.1) is equivalent to:

Find ψ
n+1/2
h ∈ Vgh such that

〈
∂Jh
∂ϕ

(ψn+1/2
h ,pnh), θ

〉
= 0, ∀θ ∈ V0h, (9.2)

where, more generally,
〈
∂Jh

∂ϕ (ϕ,q), θ
〉

denotes the action of the partial derivative ∂Jh

∂ϕ (ϕ,q) on the test function

θ. Suppose that D2
h(ϕ) is obtained from ϕ via relations (6.7); proceeding as in, e.g., [34] one can easily show

that, for all (ϕ,p) ∈ Vgh × Qh:〈
∂Jh
∂ϕ

(ϕ,q), θ
〉

=
∫
Ω

[
∂λ11

∂x1

∂θ

∂x1
+
∂λ22

∂x2

∂θ

∂x2
+
∂λ12

∂x1

∂θ

∂x2
+
∂λ12

∂x2

∂θ

∂x1

]
dx, ∀θ ∈ V0h, (9.3)

where (λ11, λ12, λ22) is obtained from ϕ via the solution of the following (adjoint) system, for 1 ≤ i ≤ j ≤ 2:

λij ∈ V0h, (λij , θ)0h + C
∑
K∈Th

|K|
∫
K

∇λij · ∇θdx = (qij −D2
hij(ϕ), θ)0h, ∀θ ∈ V0h. (9.4)

Modifying the adjoint system (9.4), in order to handle (6.6) instead of (6.7) is straightforward. The solvers used
to compute the D2

hij(ϕ) (via (6.6) or (6.7)) still apply to the solution of the linear problems in (9.4).
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9.3. Conjugate gradient solution of problem (9.1)

Assume that D2
hij(ϕ) is obtained from ϕ via (6.7). Then, for the solution of problem (9.1), we can use a

conjugate gradient algorithm operating in the spaces V0h and Vgh equipped with the scalar product (v, w) →
(Δhv,Δhw)0h and the associated norm. Taking advantage of the results of Section 9.2, this algorithm reads as
follows:

Step 1.

ψ
n+1/2,0
h ∈ Vgh given (ψn+1/2,0

h = ψnh for example). (9.5)

Compute D2
hij(ψ

n+1/2,0
h ) via the solution of:

Find D2
hij(ψ

n+1/2,0
h ) ∈ V0h such that, for 1 ≤ i, j ≤ 2:

(D2
hij(ψ

n+1/2,0
h ), θ)0h + C

∑
K∈Th

|K|
∫
Ω

∇D2
hij(ψ

n+1/2,0
h ) · ∇θdx =

− 1
2

∫
Ω

[
∂ψ

n+1/2,0
h

∂xi

∂θ

∂xj
+
∂ψ

n+1/2,0
h

∂xj

∂θ

∂xi

]
dx, ∀θ ∈ V0h. (9.6)

and then (λn+1/2,0
11 , λ

n+1/2,0
12 , λ

n+1/2,0
22 ) ∈ (V0h)3 via the solution of the adjoint system:

Find λn+1/2,0
ij ∈ V0h, for 1 ≤ i ≤ j ≤ 2, such that:

(λn+1/2,0
ij , θ)0h + C

∑
K∈Th

|K|
∫
K

∇λn+1/2,0
ij · ∇θdx = (pnij −D2

hij(ψ
n+1/2,0
h ), θ)0h, ∀θ ∈ V0h. (9.7)

Step 2. Solve:
Find gn+1/2,0 ∈ V0h such that

(Δhg
n+1/2,0, Δhϕ)0h =

∫
Ω

[
∂λ

n+1/2,0
11

∂x1

∂ϕ

∂x1
+
∂λ

n+1/2,0
22

∂x2

∂ϕ

∂x2
+
∂λ

n+1/2,0
12

∂x1

∂ϕ

∂x2
+
∂λ

n+1/2,0
12

∂x2

∂ϕ

∂x1

]
dx, ∀ϕ ∈ V0h, (9.8)

and set
wn+1/2,0 = gn+1/2,0. (9.9)

Then, for k ≥ 0, assuming that ψn+1/2,k
h , gn+1/2,k and wn+1/2,k are known, the last two different from zero,

we compute ψn+1/2,k+1
h , gn+1/2,k+1 and, if necessary, wn+1/2,k+1 as follows.

Step 3. Compute D2
hij(w

n+1/2,k) via the solution of:
Find D2

hij(w
n+1/2,k) ∈ V0h such that, for 1 ≤ i, j ≤ 2:

(D2
hij(w

n+1/2,k), θ)0h + C
∑
K∈Th

|K|
∫
Ω

∇D2
hij(w

n+1/2,k) · ∇θdx =

− 1
2

∫
Ω

[
∂wn+1/2,k

∂xi

∂θ

∂xj
+
∂wn+1/2,k

∂xj

∂θ

∂xi

]
dx, ∀θ ∈ V0h, (9.10)
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and then (λ̄n+1/2,k
11 , λ̄

n+1/2,k
12 , λ̄

n+1/2,k
22 ) ∈ (V0h)3 via the solution of the adjoint system:

Find λ̄n+1/2,k
ij ∈ V0h, for 1 ≤ i ≤ j ≤ 2, such that:

(λ̄n+1/2,k
ij , θ)0h + C

∑
K∈Th

|K|
∫
K

∇λ̄n+1/2,k
ij · ∇θdx = −(D2

hij(w
n+1/2,k), θ)0h, ∀θ ∈ V0h. (9.11)

Solve:
Find ḡn+1/2,k ∈ V0h such that

(Δhḡ
n+1/2,k, Δhϕ)0h =

∫
Ω

[
∂λ̄

n+1/2,k
11

∂x1

∂ϕ

∂x1
+
∂λ̄

n+1/2,k
22

∂x2

∂ϕ

∂x2
+
∂λ̄

n+1/2,k
12

∂x1

∂ϕ

∂x2
+
∂λ̄

n+1/2,k
12

∂x2

∂ϕ

∂x1

]
dx, ∀ϕ ∈ V0h, (9.12)

and compute the new iterate and residual as follows:

ρ
n+1/2
k =

∣∣∣∣Δhg
n+1/2,k

∣∣∣∣2
0h

(Δhḡn+1/2,k, Δhwn+1/2,k)0h
, (9.13)

ψ
n+1/2,k+1
h = ψ

n+1/2,k
h − ρ

n+1/2
k wn+1/2,k, (9.14)

gn+1/2,k+1 = gn+1/2,k − ρ
n+1/2
k ḡn+1/2,k. (9.15)

Step 4. Compute

δ
n+1/2
k =

∣∣∣∣Δhg
n+1/2,k+1

∣∣∣∣2
0h∣∣∣∣Δhgn+1/2,0

∣∣∣∣2
0h

. (9.16)

If δn+1/2
k < ε (meaning that the residual is small enough), take ψn+1/2

h = ψ
n+1/2,k+1
h ; otherwise, compute:

γ
n+1/2
k =

∣∣∣∣Δhg
n+1/2,k+1

∣∣∣∣2
0h∣∣∣∣Δhgn+1/2,k

∣∣∣∣2
0h

, (9.17)

and update the descent direction via

wn+1/2,k+1 = gn+1/2,k+1 + γ
n+1/2
k wn+1/2,k. (9.18)

Step 5. Do k + 1 → k and return to Step 3.

Remark 9.1. Modifying algorithm (9.5)–(9.18) in order to accommodate the construction of the discrete second
order derivatives associated with (6.6) is straightforward. Since the results of numerical experiments (not re-
ported in this article) have shown that the method based on (6.6) is no more accurate than the one based
on (6.7) we will focus on the latter, which has also the advantage of being less computer time consuming,
everything else being the same.

Remark 9.2. The choice of ε in the stopping criterion of algorithm (9.5)–(9.18) is a delicate issue which has
been briefly discussed in [30], Chapter 3 (see also the references therein). As expected other stopping criteria
are possible, a rather natural one being(

Δhg
n+1/2,k+1, Δhg

n+1/2,k+1
)
0h

max
{(
Δhgn+1/2,0, Δhgn+1/2,0

)
0h
,
(
Δhψ

n+1/2,k+1
h , Δhψ

n+1/2,k+1
h

)
0h

} < ε.
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Remark 9.3 (solution of the biharmonic problems). Concerning the solution of the discrete bi-harmonic
problems in (9.8) and (9.12), let us observe that both problems are of the following type:

Find rh ∈ V0h such that (Δhrh, Δhv)0h = Λh(v), ∀v ∈ V0h, (9.19)

the functional Λh(·) being linear over Vh. Let us denote −Δhrh by ωh. It follows then from (6.4) that prob-
lem (9.19) is equivalent to the following system of two coupled discrete Poisson−Dirichlet problems

ωh ∈ V0h,

∫
Ω

∇ωh · ∇vdx = Λh(v), ∀v ∈ V0h,

rh ∈ V0h,

∫
Ω

∇rh · ∇vdx = (ωh, v)0h, ∀v ∈ V0h.

(9.20)

Both problems are well-posed. Actually, the solution (by direct or iterative methods) of discrete Poisson
problems, such as (9.20) has motivated an important literature; some related references can be found in [30],
Chapter 5.

10. Numerical experiments

10.1. Generalities

In this section, we shall validate the methodology discussed in Sections 2 to 9. The validation will be achieved
via the solution of a variety of test problems associated with domains Ω of different shapes, including some with
curved boundaries. We will investigate, in particular, the mesh dependence of the computed solutions. The results
of our numerical experiments suggest that the methodology based on the regularization procedure associated
with relations (6.6) and (6.7) is the only one, so far, able to solve the Monge−Ampère problem (2.1) accurately
on domains of arbitrary convex shapes using piecewise linear continuous approximations on unstructured finite
element meshes.

The first test problems to be considered concern (not surprisingly) the case where Ω is the unit square (0, 1)2.
In order to study the mesh dependence of the computed solution, the three types of triangulations visualized
in Figure 2 have been used. The structured triangulations (resp., the un-structured one) have been built using
Modulef [3] (resp., Gmsh [28]). The uniform triangulation on the left of Figure 2 is called asymmetric despite
the fact that it has some (but not many) symmetry properties; this terminology has been used to distinguish
it from triangulations, like the one on the right of Figure 2, which have many symmetry properties. Recall
(see Remark 6.1) that on uniform asymmetric triangulations, the discrete second order derivatives provided by
relation (6.4) are exact for polynomial functions of degree ≤2.

10.2. First test problem

In this section, and below, we have denoted by ||·||0h the discrete variants of the L2-errors (obtained by
numerical integration). The first test problem that we consider is defined by

detD2ψ(x1, x2) = 1, ∀(x1, x2) ∈ Ω = (0, 1)2, ψ(x1, x2) =
5
2
x2

1 + 2x1x2 +
1
2
x2

2, ∀(x1, x2) ∈ Γ. (10.1)

This convex solution of the Monge−Ampère−Dirichlet problem (10.1) is the function ψ given by

ψ(x1, x2) =
5
2
x2

1 + 2x1x2 +
1
2
x2

2, ∀(x1, x2) ∈ Ω. (10.2)

Note that, following [11, 37] for instance, the convex solution is unique.
Its solution being a convex polynomial of degree 2, problem (10.1) looks rather simple. The condition number

of D2ψ (D2ψ =
(

5 2
2 1

)
here) is 3+2

√
2

3−2
√

2

 34, making ψ fairly anisotropic. In general, this implies a strong
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Figure 2. Typical triangulations of the unit square Ω = (0, 1)2. Left: structured (asymmetric)
mesh; middle: unstructured (isotropic) mesh; right: structured (symmetric) mesh.

mesh dependence of the approximate solution, particularly if one uses the non-smoothed discrete second order
derivatives associated with either (6.3) or (6.4).

In Figure 3, we have reported for the three types of meshes shown in Figure 2, the convergence results
for the errors ||ψh − ψ||0h and ||∇ψh −∇ψ||0h, as functions of the mesh size h, for both the non-regularized
(relations (6.3) or (6.4)) and regularized (relations (6.6) and (6.7), with C = 2) discrete second order derivatives;
both the Newton’s method and the Qmin algorithm have been used to solve the local nonlinear problems (see
Sects. 4.2 and 4.3). The lines with slope 1 and 2 in Figure 3 and following denote the lines corresponding to
O(h) and O(h2) convergence orders for graphical comparison. These results deserve several comments:

(i) When both algorithms relaxation/Newton and relaxation/Qmin converge, they lead essentially to the same
solution. However, relaxation/Qmin requires significantly fewer iterations to achieve convergence, and there
are situations where it converges while relaxation/Newton does not. Typically relaxation/Newton requires
twice as many iterations as relaxation/Qmin when using the numerical integration (6.3) (between 30 and
200 iterations, vs. between 40 and 5000 iterations when the mesh size varies). When using the numerical
integration with smoothing (6.4), the number of iterations typically decreases, but the difference remains the
same (between 30 and 100 iterations, vs. between 25 and 2500 iterations when the mesh size varies). There
are several meshes for which convergence can now be achieved also with relaxation/Newton when using (6.4)
instead of (6.3). Also, Qmin requires fewer iterations than the Newton algorithm. Moreover, it seems far
less sensitive to initialization than Newton’s. Actually, the (well-known) sensitivity to initialization of the
standard Newton’s method has forced us to take ω = 0.5 in some cases, slowing down significantly the
convergence of the relaxation method. On the contrary, the greater robustness of Qmin allowed us to work
with ω = 1.5, making the overall algorithm about 20% faster. On the basis of the superior performances
of relaxation/Qmin, this method has been retained for the solution of the test problems discussed in the
following sections.

(ii) To illustrate how the various iterative methods embedded in the relaxation algorithm perform, let us
assume that the stopping criterion for the relaxation iterations is the one mentioned above (that is,∣∣∣∣∣∣D2

h(ψ
n
h ) − pnh

∣∣∣∣∣∣
0h
< 10−4); if one takes a 10−5 tolerance to stop the conjugate gradient algorithm (9.5)–

(9.18) (resp., the Newton’s method or the Qmin algorithm), we observe the following behavior: the Newton’s
method (resp., Qmin) requires on the average 5−10 (resp., 2−5) iterations to converge, while the number
of conjugate gradient iterations varies between 9 and 25 and increases as h decreases (as does the number
of relaxation iterations).

(iii) The best convergence results as h→ 0, and the fastest convergence of the relaxation method, are obtained
by combining the uniform asymmetric triangulations (like the one on the left of Fig. 2) with the non-
regularized approximations of the second derivatives (given by relations (6.4)) and Qmin. As expected,
in this particular case, the (approximated) L2-norm of the approximation errors is quite small (of the
order of 10−7), since (cf. Remark 6.1) for this type of triangulations, the discrete second order derivatives
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Figure 3. First test problem. Convergence (log-log scale) of the errors ||ψh − ψ||0h,
||∇(ψh − ψ)||0h; first row: when using non-smoothed approximation of the second deriva-
tives (6.4). Second row: when using smoothed approximation of the second derivatives (6.7).
Left: structured asymmetric meshes; middle: unstructured meshes; right: structured symmetric
meshes. All results obtained with Qmin.

associated with (6.4) are exact for polynomial functions of degree ≤2, as is the convex solution (given
by (10.2)) of problem (10.1). Considering the various errors associated with, among others, the solvers
involved in our methodology and the mesh generator, we never expected results exact up to machine
precision. On the other hand, the uniform asymmetric meshes associated with the non-regularized discrete
second order derivatives defined by (6.4) lead to ||∇(ψh − ψ)||0h = O(h), which is generically optimal
when approximating the solution of second-order elliptic equations, using piecewise linear continuous finite
element approximations.

(iv) Unlike the uniform asymmetric triangulations, the other types of meshes lead to approximation results
ranging from poor (for the unstructured isotropic meshes) to terrible (for the structured symmetric meshes)
if one uses the non-regularized discrete second order derivatives defined by (6.4). We observe however
that for the unstructured isotropic meshes, although ||ψh − ψ||0h shows no tendency to converge to 0,
we have ||∇(ψh − ψ)||0h = O(h) for the range of values of h which has been considered. However, there
is no contradiction with the Poincaré inequality since, according to [45], we should expect, ultimately, a
reduction of the order of convergence for ||∇(ψh − ψ)||0h as h→ 0.

(v) For the three types of meshes the regularization of the discrete second order derivatives lead to approxi-
mation errors of optimal orders in the range of mesh sizes which has been considered.

10.3. Second test problem

Numerical results for test cases on the unit square Ω = (0, 1)2 introduced, e.g., in [20] are presented. Let
us consider the test problem defined by f(x1, x2) =

(
1 + (x2

1 + x2
2)

)
e(x

2
1+x

2
2), and g(x1, x2) = e

1
2 (x2

1+x
2
2), whose

exact solution is the radial function ψ(x1, x2) = e
1
2 (x2

1+x
2
2), (x1, x2) ∈ Ω. Figure 4 illustrates the solution ψh

obtained with various types of triangulations. The method for solving the algebraic problems (4.1) is the Qmin
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Figure 4. Second test problem (ψ(x1, x2) = e
1
2 (x2

1+x
2
2)). Graph of the numerical solution ψh.

Left: structured asymmetric mesh (h 
 0.0707); middle: unstructured mesh (h 
 0.0509); right:
structured symmetric mesh (h = 0.05).

algorithm. The CG algorithm for the solution of the biharmonic problem is stopped when δk < 10−5, and the
tolerance for the Qmin algorithm is 10−5 on successive iterates. The relaxation parameter is ω = 1.0.

Remark 10.1. The stopping criterion for the iterative solution method can be any one of the following three:
(i)

∣∣∣∣∣∣D2
h(ψ

n
h ) − pnh

∣∣∣∣∣∣
0h
< 10−4; (ii)

∣∣∣∣ψn+1 − ψn
∣∣∣∣

0h
< 10−9; or (iii) a maximum of 100 relaxation iterations.

Numerical results have shown similar convergence behaviors for all types of stopping criterion, and therefore (i)
is used in the whole article (when there is an exact solution). Note that, when using the stopping criterion (ii),
numerical results show that the residual

∣∣∣∣∣∣D2
h(ψ

n
h ) − pnh

∣∣∣∣∣∣
0h

varies like h2 approximately, which agrees with
the results in [19, 21].

In Figure 5, we have visualized the order of the approximation errors verified by ψh, and its first order
derivatives, when they converge to their continuous counterparts, as h converge to zero. One observe that
the relaxation algorithm converges faster for the structured asymmetric meshes than for the other types of
triangulations. Moreover, the approximations are more accurate since they do not require the use of smoothing
techniques. Typically, the CG algorithm converges in 7−10 iterations, while the Qmin algorithm takes 3−5
iterations. The number of relaxation iterations (with ω = 1) is typically less than 20 for all types of triangulation
considered and all h considered when using (6.4), and less than 40 when using (6.7). Conclusions are similar to
those of the first test problem.

Remark 10.2. The value of the “smoothing parameter” C in (6.7) has been set to C = 2. However this choice is
not critical. Indeed, numerical results results show that the optimal convergence order for the error ||ψh − ψ||0h
is recovered for any value of C > 0, using all kind of meshes. However, since the accuracy of the computed
solutions deteriorates (slowly) as C increases, we have systematically used C = 2 in the sequel, since it seems
to provide a quasi-optimal compromise between regularization (stability) and accuracy.

10.4. Third test problem

Let us consider the test problem, defined, for R ≥
√

2, by f(x1, x2) = R2

(R2−(x2
1+x

2
2))2 , and g(x1, x2) =

−
√
R2 − (x2

1 + x2
2), whose exact solution is the convex function ψ(x1, x2) = −

√
R2 − (x2

1 + x2
2), (x1, x2) ∈ Ω.

When R >
√

2, the exact solution satisfies ψ ∈ C∞ (
Ω

)
, while ψ ∈W 1,p(Ω), p ∈ [1, 4), when R =

√
2. Therefore

it is interesting to see the performance of the algorithm and the quality of the approximation when R tends to√
2 from above. In order to highlight this effect, we consider two values of R, namely R = 2 (in that case, ψ is

smooth), and R =
√

2 + 0.1, which is close to the threshold value of
√

2.
Figure 6 shows the graph of ψh for R = 2. Figure 7 illustrates the computational costs and convergence

errors for the three types of triangulations. The numerical experiments show consistent second order accuracy
of the solution if one smoothes the discrete second order derivatives when employing unstructured isotropic
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Figure 5. Second test problem. Convergence (log-log scale) of the errors ||ψh − ψ||0h,
||∇ψh −∇ψ||0h; first row: when using non-smoothed approximation of the second derivatives;
second row: when using smoothed approximation of the second derivatives. Left: structured
asymmetric meshes; middle: unstructured meshes; right: structured symmetric meshes. Stop-
ping criterion

∣∣∣∣∣∣D2
h(ψ

n
h) − pnh

∣∣∣∣∣∣
0h
< 10−4.

Xd3d 8.3.2c (21 May 2008)

xy

z

-1.56

-1.71

-1.85

-2.00

-1.41 Xd3d 8.3.2c (21 May 2008)

xy

z

-1.56

-1.71

-1.85

-2.01

-1.41 Xd3d 8.3.2c (21 May 2008)

xy

z

-1.41

-1.56

-1.71

-1.86

-2.00

Figure 6. Third test problem (ψ(x1, x2) = −
√
R2 − (x2

1 + x2
2), R = 2). Graph of the numerical

solution ψh. Left: structured asymmetric mesh (h 
 0.0707); middle: unstructured mesh (h 

0.0509); right: structured symmetric mesh (h = 0.05).

and structured symmetric meshes; they also show that the performances of the method are not altered by the
closeness of R to

√
2 (however non-convergence has been observed if R =

√
2 + 0.01).

For comparison, Figure 8 shows the graph of ψh for R =
√

2+0.1. Figure 9 illustrates the convergence errors
for the three types of triangulations. The numerical experiments still show second order accurate approximation
of the solution (with the help of smooth approximations of the second derivatives), showing that the performance
of the method is not altered by the lack of regularity of the solution. The number of relaxation iterations increases
as R gets closer to

√
2.



LEAST-SQUARES METHOD FOR THE ELLIPTIC MONGE−AMPÈRE EQUATION 799
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Figure 7. Third test problem (ψ(x1, x2) = −
√
R2 − (x2

1 + x2
2), R = 2). Convergence (log-log

scale) of the errors ||ψh − ψ||0h, ||∇ψh −∇ψ||0h; first row: when using non-smoothed approxi-
mation of the second derivatives; second row: when using smoothed approximation of the second
derivatives. Left: structured asymmetric meshes; middle: unstructured meshes; right: structured
symmetric meshes. Stopping criterion
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Figure 8. Third test problem (ψ(x1, x2) = −
√
R2 − (x2

1 + x2
2), R = 0.1 +

√
2). Graph of the

numerical solution ψh. Left: structured asymmetric mesh (h 
 0.0707); middle: unstructured
mesh (h 
 0.0509); right: structured symmetric mesh (h = 0.05).

10.5. Fourth test problem

The fourth test problem is defined by f(x1, x2) = 1√
x2
1+x

2
2

, and g(x1, x2) =

(
2
√
x2
1+x

2
2

)3/2

3 ; its exact convex

solution is given by ψ(x1, x2) =

(
2
√
x2
1+x

2
2

)3/2

3 , (x1, x2) ∈ Ω. Figure 10 illustrates the solution ψh. Convergence
results are given in Figure 11 for the various types of triangulations. Conclusions are similar as in the previous
cases, and the importance of the smoothing procedure for the approximation of the second derivatives is again
highlighted. The number of relaxation iterations (with ω = 1) is typically less than 20 for all h considered when
using (6.4), and less than 40 when using (6.7).
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Figure 9. Third test problem (ψ(x1, x2) = −
√
R2 − (x2

1 + x2
2), R = 0.1 +

√
2). Convergence

(log-log scale) of the errors ||ψh − ψ||0h, ||∇ψh −∇ψ||0h; first row: when using non-smoothed
approximation of the second derivatives. second row: when using smoothed approximation of
the second derivatives. Left: structured asymmetric meshes; middle: unstructured meshes; right:
structured symmetric meshes. Stopping criterion
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Figure 10. Fourth test problem (ψ(x1, x2) =

(
2
√
x2
1+x

2
2

)3/2

3 ). Graph of the numerical solu-
tion ψh. Left: structured asymmetric mesh (h 
 0.0707); middle: unstructured mesh (h 

0.0509); right: structured symmetric mesh (h = 0.05).

Remark 10.3. The fourth test problem is particularly interesting in the sense that the exact solution
ψ ∈ H2(Ω) (in fact ψ ∈ W 2,p(Ω) for 1 ≤ p < 4) but ψ /∈ C2

(
Ω

)
. However, our methodology (which has

been constructed to capture solutions with the H2-regularity) provides optimal order error estimates (without
regularization if one uses the uniform asymmetric mesh in Figure 2 (left), and with regularization for the other
meshes).
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Figure 11. Fourth test problem (ψ(x1, x2) =

(
2
√
x2
1+x

2
2

)3/2

3 ). Convergence (log-log scale) of the
errors ||ψh − ψ||0h, ||∇ψh −∇ψ||0h; first row: when using non-smoothed approximation of the
second derivatives; second row: when using smoothed approximation of the second derivatives.
Left: structured asymmetric meshes; middle: unstructured meshes; right: structured symmetric
meshes. Stopping criterion

∣∣∣∣∣∣D2
h(ψ

n
h ) − pnh

∣∣∣∣∣∣ < 10−4.

10.6. Fifth test problem

The last test problem on the unit square is defined, as in the introduction, by f(x1, x2) = 1, and g(x1, x2) =
0. In that case, the Monge−Ampère equation does not have solutions belonging to H2(Ω) (it has however
viscosity solutions), despite the smoothness of the data. The problem stems from the non-strict convexity of Ω
(see [11, 20, 37] for details). Therefore, the solution obtained can only be compared with computational results
from the literature, e.g., in [17, 21, 25, 43]. We use the Qmin algorithm in the following discussion, smoothed
approximations of the second derivatives (6.7), and ω = 1. The stopping criterion is

∣∣∣∣ψnh − ψn+1
h

∣∣∣∣
0h
< 10−7.

Figure 12 illustrates the solution of the Monge−Ampère equation obtained with all types of triangulations.
Figure 13 illustrates the determinant of its computed Hessian. Figure 14 shows a cut of the solution (correspond-
ing respectively to the solutions in Fig. 12) for x2 = 1/2 and x1 = x2 respectively for several mesh sizes. The
solution, in particular the solution magnitude, appropriately matches the solution presented in [19–21, 25, 32].
Table 1 shows the values of the residual and the number of iterations for various values of the mesh size h and
types of triangulations. A close inspection of the numerical results shows that the curvature of the graph of
ψh is slightly negative close to the corners of Ω, implying that the Monge−Ampère equation is violated here
(indeed the curvature is given by detD2ψ/(1 + |∇ψ|2)2). The equation is also violated along the boundary (as
emphasized in [32], p. 176); however, the Monge−Ampère equation detD2ψ = 1 is verified with a very high
precision sufficiently far away from Γ . For more information on the solutions of detD2ψ = 1, see [37], Chapter 4
and references therein.

Remark 10.4. An inspection of Figure 14 shows that the minimum values of the discrete solutions converge
to a limit very close to −0.18, for the three types of meshes which have been considered. There is a remarkable
agreement between these results and the ones reported in [21, 25]. The agreement with [21] is not surprising
since the numerical results presented there, and in this paragraph, were obtained using the same least-squares
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Figure 12. Fifth test problem (f = 1, g = 0). Graph of the numerical solution ψh. Left:
structured asymmetric mesh (h 
 0.0353, after 140 iterations). Middle: unstructured mesh
(h 
 0.0225, after 105 iterations). Right: structured symmetric mesh (h = 0.025, after 146
iterations).

0

0.2

0.4

0.6

0.8

1

DET MALS2D

0

0.143

0.286

0.429

0.572

0.714

0.857

1

DET MALS2D

0

0.143

0.286

0.429

0.571

0.714

0.857

1

DET MALS2D

Figure 13. Fifth test problem (f = 1, g = 0). Contours of the determinant of the discrete
Hessian D2

h(ψ)h. Left: structured asymmetric mesh (h 
 0.0353, after 140 iterations). Middle:
unstructured mesh (h 
 0.0225, after 105 iterations). Right: structured symmetric mesh (h =
0.025, after 146 iterations).

Table 1. Fifth test problem (f = 1, g = 0). Convergence results and computational costs
when the stopping criterion is

∣∣∣∣ψnh − ψn+1
h

∣∣∣∣
0h
< 10−7 (ω = 1).

Structured asymmetric mesh Unstructured isotropic mesh Structured symmetric mesh

h
∣∣∣∣∣∣D2(ψn

h ) − pn
h

∣∣∣∣∣∣
0h

# iter. h
∣∣∣∣∣∣D2(ψn

h ) − pn
h

∣∣∣∣∣∣
0h

# iter. h
∣∣∣∣∣∣D2(ψn

h ) − pn
h

∣∣∣∣∣∣
0h

# iter.

0.07071 0.10003E-04 43 0.05091 0.52768E-05 48 0.05000 0.10559E-04 48

0.03535 0.78018E-04 140 0.02249 0.42235E-04 105 0.02500 0.64290E-04 146

0.02357 0.19351E-03 337 0.01023 0.22740E-03 203 0.01666 0.15442E-03 261

0.01767 0.29037E-03 763 0.00692 0.47883E-03 259 0.01250 0.28545E-03 377

0.00883 0.80873E-03 2000 0.00554 0.67947E-03 268 0.00833 0.11296E-02 884

formulation and mixed finite element approximation (the difference being in the algorithms used to solve the
approximate problems). The agreement with [25] is more “interesting” and significant. The numerical results
reported in [25] have been obtained using a mixed finite element implementation of the so-called vanishing mo-
ment method, relying on spaces of continuous piecewise quadratic functions and on a biharmonic regularization
of the Monge−Ampère equation (see [25] for details). Actually, it has been shown in [24, 25] that when the
regularization parameter converges to zero, the solutions produced by the vanishing moment method converge
to a viscosity solution. This good matching between the solutions in [25] and the ones in this article, concerning
the fifth test problem (a problem without classical solutions) suggests that our least-squares approach has,
possibly, some viscosity method features.
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Figure 14. Fifth test problem (f = 1, g = 0). Cut of the graph of the numerical solution ψh
along the lines x2 = 1/2 (top row) and x1 = x2 (bottom row). Left: structured asymmetric
mesh (h 
 0.0353, 0.0176, 0.0088). Middle: unstructured mesh (h 
 0.0225, 0.0102, 0.0055).
Right: structured symmetric mesh (h = 0.05, 0.0166, 0.0083).

10.7. Summary and comments

Numerical experiments on the unit square have illustrated the properties of the proposed method. The Qmin

algorithm [48] proves to be much more efficient than a more classical Newton method. Not surprisingly, low
order finite elements are not accurate for the approximation of the second derivatives and therefore require an
additional regularization à la Tychonoff. With this regularization procedure, optimal convergence orders are
obtained on all types of triangulations considered. As the method without regularization fails on some types of
triangulations (due to a poor approximation of the second order derivatives), this shows a remarkable robustness
improvement with the method proposed in this work. Furthermore, the method has been able to capture (in a
least-squares sense) solutions when no classical solution exists. Based on these comments, we will present in the
following numerical experiments for domains different from the unit square, typically with curved boundaries,
to further emphasize the efficiency of the proposed methodology.

10.8. A test problem on the unit disk

The results presented in the above sections have shown that, if coupled with an appropriate regularization
procedure, the piecewise linear approximation methods discussed in [21], have the ability to compute accurate
approximate solutions for arbitrary types of triangulations, including pathological ones. These results agree with
the results obtained in the literature, as in, e.g., [20,21,25]. In this section, we show that the proposed method
based on mixed finite elements applies also to domains with curved boundaries. Note that, in the case of curved
boundaries, the use of mixed piecewise linear finite elements provides a substantial simplification compared to
using high order finite elements (as in [24, 42] for instance), or finite differences [26, 27, 43].

We consider the unit disk S1, with isotropic triangulations built with Gmsh [28]. Figure 15 visualizes the
solution for f = 1 and g = 0 on S1. The exact convex solution is ψ(x1, x2) = 1/2

[
(x2

1 + x2
2) − 1

]
, which is

clearly in C∞ (
S1

)
. Figure 16 illustrates the convergence results when using the smoothed approximation of the

derivatives (6.7); ||ψh − ψ||0h exhibits second order accuracy.
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Figure 15. Test problem on the unit disk S1. Graph of the numerical solution ψh (for f = 1
and g = 0) on the unit disk S1 (h 
 0.04392, 19 relaxation iterations with ω = 1).

h ||ψh − ψ||0h ||∇(ψh − ψ)||0h # iter.

0.04392 0.35182E-01 0.21176E+00 19
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Figure 16. Test problem on the unit disk S1. Left and middle: convergence of the approx-
imation errors ||ψh − ψ||0h and ||∇ψh −∇ψ||0h on S1. Right column: number of relaxation
iterations necessary to achieve convergence (stopping criterion

∣∣∣∣∣∣D2
h(ψ

n
h) − pnh

∣∣∣∣∣∣
0h

< 10−4,
ω = 1). The algebraic solver is Qmin and the second order derivatives are approximated using
the smoothing procedure (6.6). Left: numerical values; right: plot of the errors (log-log scale).

10.9. A test problem on an ellipse

We consider the elliptical domain Ea,b =
{
(x1, x2) ∈ R

2, x2
1/a

2 + x2
2/b

2 < 1
}
, with corresponding isotropic

triangulations built with Gmsh [28]. In particular, let us work with the elliptical domain E1,2, and f = 1/4, and
g = 0. In this case, the exact solution to (2.1) is given by ψ(x1, x2) = 1

2 (x2
1 + x2

2/4− 1). Figure 15 visualizes the
solution ψh, while Figure 18 illustrates the convergence results when using the smoothed approximation of the
derivatives (6.7); ||ψh − ψ||0h exhibits again second order accuracy.

Remark 10.5. Note that, for both the unit disk and the elliptical domain, convergence properties are lost
when using non-smoothed approximations of the second derivatives (6.4).

10.10. A test problem on the half-disk

Finally let us consider now the half-disk domain S1,− := S1∩{y < 0}, and return to the example presented in
Section 10.2, namely f(x1, x2) = 1 and g(x1, x2) = 5

2x
2
1 + 2x1x2 + 1

2x
2
2. Figure 19 visualizes the contours of the
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Figure 17. Test problem on the elliptical domain E1,2. Graph of the numerical solution ψh
(for f = 1/4 and g = 0) on E1,2 (h 
 0.04249, 72 relaxation iterations with ω = 1).

h ||ψh − ψ||0h ||∇(ψh − ψ)||0h # iter.

0.04249 0.31593E-01 0.18896E+00 72
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Figure 18. Test problem on the elliptical domain E1,2. Left and middle columns: convergence of
the approximation errors ||ψh − ψ||0h and ||∇ψh −∇ψ||0h. Right column: number of relaxation
iterations necessary to achieve convergence (stopping criterion

∣∣∣∣∣∣D2
h(ψ

n
h) − pnh

∣∣∣∣∣∣
0h

< 10−4,
ω = 1). The algebraic solver is the Qmin algorithm and the second derivatives are approximated
using the smoothing procedure (6.7). Left: numerical values; right: plot of the errors (log-log
scale).
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Figure 19. Test problem on the half-disk. Contours of the numerical solution ψh on S1,− (for
f(x1, x2) = 1 and g(x1, x2) = 5
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1 + 2x1x2 + 1
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2) (h 
 0.04519, 140 relaxation iterations with

ω = 1).
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h ||ψh − ψ||0h ||∇(ψh − ψ)||0h # iter.

0.04519 0.95925E-02 0.37198E+00 140

0.02226 0.26230E-02 0.17649E+00 224

0.01009 0.72159E-03 0.84842E-01 281
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Figure 20. Test problem on the half-disk. Left and middle columns: convergence of the approx-
imation errors ||ψh − ψ||0h and ||∇ψh −∇ψ||0h. Right column: number of relaxation iterations
necessary to achieve convergence (stopping criterion

∣∣∣∣∣∣D2
h(ψ

n
h) − pnh

∣∣∣∣∣∣
0h
< 10−4, ω = 1). The

algebraic solver is the Qmin algorithm and the second derivatives are approximated using the
smoothing procedure (6.7). Left: numerical values; right: plot of the errors (log-log scale).
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Figure 21. Non-smooth example on non strictly convex domains. Contours of the determinant
of the discrete Hessian D2

h(ψh) (f = 1 and g = 0). Left: triangular domain ΩT (h 
 0.0457,
500 relaxation iterations with ω = 1). Right: half disk S1,− (h 
 0.0284, 500 relaxation iterations
with ω = 1).

solution on S1,−, while Figure 20 illustrates the convergence results when using the smoothed approximation
of the derivatives (6.7); ||ψh − ψ||0h exhibits the expected second order accuracy. The non-strict convexity of
the domain increases significantly the number of relaxation iterations, compared to the two previous test cases.
Note that, when using the numerical integration method described in (6.4), convergence is not guaranteed. On
the other hand, if one uses the smooth variant (6.4) (6.7), the number of iterations decreases.

10.11. Further numerical results

Finally let us focus on some non-smooth cases with f = 1 and g = 0, and consider the triangular domain ΩT
defined by ΩT =

{
(x1, x2) ∈ R

2 : x1, x2 > 0, 4x1 + 3x2 < 12
}
, and the half-disk S1,−.

Figure 21 visualizes the approximation of the determinant of the Hessian D2
h(ψ

n
h ) for these situations, and

shows a loss of convexity of the solution in the neighborhood of the corners (and of the parts of the boundary
that are not strictly convex) that is similar to the effects observed on the unit square.

10.12. Non-smooth test problems involving the Dirac measure

To conclude these numerical experiments, we are going to consider two non-smooth cases which are in principle
beyond the scope of our approach since for both cases, the solution of the associated problem (2.1) is the function
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Figure 22. Non-smooth test problem with regularization. Left: graph of the numerical solution
ψh on the unit square (h 
 0.0509, ε = 10−6); middle: graph of the numerical solution ψh on
the unit disk (h 
 0.0103, ε = 10−3); right: convergence of ψh toward the exact solution
ψ(x1, x2) =

√
x2

1 + x2
2 when the mesh size h tends to zero on the unit square and the unit disk.

ψ defined by ψ(x) = |x| (=
√
x2

1 + x2
2), a (convex) function which does not have the H2(Ω)-regularity if (0, 0)

belongs to Ω, and which verifies Mψ = πδ(0,0), M being the Monge−Ampère measure (see, e.g., [37], Chap. 1
for the definition and properties of M) and δ(0,0) the Dirac measure at (0, 0). The first test problem that we
consider is: find ψ : Ω → R such that

detD2ψ(x1, x2) = 0 in Ω, ψ(x1, x2) =
√
x2

1 + x2
2 on ∂Ω, (10.3)

with Ω = (0, 1)2. The unique convex solution of the Monge−Ampère problem (10.3) is the function x → |x|.
Our methodology being suited for strictly positive right-hand sides f only, we approximate problem (10.3) by

detD2ψ(x1, x2) = ε in Ω, ψ(x1, x2) =
√
x2

1 + x2
2 on ∂Ω, (10.4)

where ε > 0 a (small) positive number. The boundary data does not have the H3/2(Γ )-regularity (as required
-in principle- by our least-squares approach), but only the Hs(Γ )-regularity with s < 3/2. However, the dis-
crete version of our least-squares/relaxation methodology handles problem (10.4) fairly easily. Figure 22 (left)
illustrates the solution ψh obtained with an unstructured isotropic mesh. The method for solving the algebraic
problems (4.1) is the Qmin algorithm. The CG algorithm for the solution of the biharmonic problem is stopped
when δk < 10−5, and the tolerance for the Qmin algorithm is 10−5 on successive iterates. The relaxation parame-
ter is ω = 1.0. The stopping criterion is

∣∣∣∣∣∣D2
h(ψ

n
h ) − pnh

∣∣∣∣∣∣
0h
< 10−4. We observed that the solution obtained by

our least-squares/relaxation method is essentially independent of the value of ε, for ε in the range 10−1−10−9.
Next, we consider a related test problem on the unit open disk Ω = S1, namely: find ψ : Ω → R such that

detD2ψ(x1, x2) = πδ(0,0) in Ω, ψ(x1, x2) = 1 on ∂Ω, (10.5)

The unique convex (generalized) solution of problem (10.5) is, again, the function ψ defined by ψ(x) = |x|.
From a numerical point of view, the Dirac measure in (10.5) has to be regularized to make it compatible with
our methodology. Thus, we consider the following regularized approximation of problem (10.5): find ψ : Ω → R

such that

detD2ψ(x1, x2) =
ε2

(ε2 + x2
1 + x2

2)2
in Ω, ψ(x1, x2) = 1 on ∂Ω, (10.6)

with ε > 0. This type of regularization is reminiscent of the one used for instance in [9].
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Remark 10.6. The rationale behind the regularized problem (10.6) is the fact that an explicit calculation
shows that the relation −Δ ln(1/

√
x2

1 + x2
2) = 2πδ(0) (in the sense of distributions) can be approximated by

−Δ ln(1/
√
ε2 + x2

1 + x2
2) = 2ε2

(ε2+x2
1+x2

2)
2 . The fact that the regularized right-hand side in (10.6) is strictly positive

facilitates also the applicability of our methodology.

Figure 22 (middle) illustrates the solution ψh obtained with an unstructured isotropic mesh, showing the abil-
ity of the least-squares approach in handling the regularized version of the Monge−Ampère equation. Figure 22
(right) illustrates the convergence of the approximation ψh to the exact solution ψ, measured as the L2(Ω)-norm
of the difference ψh − ψ. Good convergence properties are obtained by taking ε = 10−6 in (10.4) and ε = h
in (10.6), h being the mesh size.

11. Conclusions and perspectives

A numerical method for the approximation of the Dirichlet problem for the real elliptic Monge−Ampère
equation for arbitrary domains in two dimensions has been presented.

This least-squares method allows to obtain approximations of the convex solution that satisfy exactly the
boundary condition, while satisfying the equation in a weak sense. The relaxation algorithm allows to decouple
the differential operators from the nonlinearities. It includes a novel (with respect to [21]) algorithm for the
solution of local nonlinear eigenvalue problems.

Mixed piecewise linear finite elements, together with a Tychonoff regularization, allow to find approximations
of the solution of the Monge−Ampère equation in arbitrary domains and with arbitrary types of triangulations.
In particular, our methodology can handle quite easily and accurately (convex) domains with curved boundaries.

Perspectives include the extension of this methodology to other fully nonlinear elliptic equations in two and
three dimensions of space in arbitrary domains [7, 26].
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[22] E.J. Dean, R. Glowinski and T.W. Pan, Operator-splitting methods and applications to the direct numerical simulation of
particulate flow and to the solution of the elliptic Monge−Ampère equation. in Control and Boundary Analysis, edited by
J.P. Zolésio J. Cagnol, CRC Boca Raton, FLA (2005) 1–27.

[23] E.J. Dean, R. Glowinski and D. Trevas, An approximate factorization/least squares solution method for a mixed finite element
approximation of the Cahn-Hilliard equation. Jpn J. Ind. Appl. Math. 13 (1996) 495–517.

[24] X. Feng and M. Neilan, Mixed finite element methods for the fully nonlinear Monge−Ampère equation based on the vanishing
moment method. SIAM J. Numer. Anal. 47 (2009) 1226–1250.

[25] X. Feng and M. Neilan, Vanishing moment method and moment solutions of second order fully nonlinear partial differential
equations. J. Sci. Comput. 38 (2009) 74–98.

[26] B.D. Froese and A.M. Oberman, Convergent finite difference solvers for viscosity solutions of the elliptic Monge−Ampère
equation in dimensions two and higher. SIAM J. Numer. Anal. 49 (2011) 1692–1715.

[27] B.D. Froese and A.M. Oberman, Fast finite difference solvers for singular solutions of the elliptic Monge−Ampère equation.
J. Comput. Phys. 230 (2011) 818–834.

[28] C. Geuzaine and J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing
facilities. Int. J. Numer. Meth. Eng. 79 (2009) 1309–1331.

[29] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001).

[30] R. Glowinski, Finite Element Methods For Incompressible Viscous Flow, Handbook of Numerical Analysis, edited by P.G.
Ciarlet, J.L. Lions. Elsevier, Amsterdam IX (2003) 3–1176.

[31] R. Glowinski, Numerical Methods for Nonlinear Variational Problems. 2nd edition, Springer-Verlag, New York, NY (2008).

[32] R. Glowinski, Numerical methods for fully nonlinear elliptic equations. in Invited Lectures, 6th Int. Congress on Industrial
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