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Abstract. The partially observed optimal control problem is considered for forward-backward doubly
stochastic systems with controls entering into the diffusion and the observation. The maximum principle
is proven for the partially observable optimal control problems. A probabilistic approach is used, and
the adjoint processes are characterized as solutions of related forward-backward doubly stochastic
differential equations in finite-dimensional spaces. Then, our theoretical result is applied to study
a partially-observed linear-quadratic optimal control problem for a fully coupled forward-backward
doubly stochastic system.
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1. Introduction

It is well-known that the maximum principle, the necessary condition of the optimal controls, which is a
milestone-like result in the optimal control theory, was established for the deterministic control systems by
Pontryakin’s group [18] in the 1950’s and 1960’s. Since then, a lot of work has been done on the forward
stochastic control systems such as Bismut [6], Kushner [11], Peng [16] and Meng [14], etc. Maximum principles
of forward-backward stochastic systems have been studied extensively in the literature. We refer to [21, 25, 27]
and references therein. They only established some necessary maximum principles in the cases the control
domains are convex or the forward diffusion coefficients can not contain control variables.

In order to provide a probabilistic interpretation for the solutions of a class of semilinear stochastic partial
differential equations (SPDEs in short), Pardoux and Peng [15] introduced the following backward doubly
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stochastic differential equations (BDSDEs in short):

Y (t) = ξ +
∫ T

t

f(s, Y (s), Z(s))ds+
∫ T

t

g(s, Y (s), Z(s))
←−
dB(s)

−
∫ T

t

Z(s)
−→
dW (s), 0 ≤ t ≤ T. (1.1)

Note that the integral with respect to {B(t)} is a “backward Itô integral” and the integral with respect to
{W (t)} is a standard forward Itô integral. These two types of integrals are particular cases of the Itô−Skorohod
integral (for details see [15]). Due to their important significance to SPDEs, the researches for BDSDEs have
been in the ascendant (cf. Bally and Matoussi [3], Shi et al. [20], Zhang and Zhao [30, 31], Ren et al. [19], Hu
and Ren [9] and their references).

Peng and Shi [17] introduced a type of time-symmetric forward-backward stochastic differential equations,
i.e. so-called fully coupled forward-backward doubly stochastic differential equations (FBDSDEs in short):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(t) = x+
∫ t

0

f (s, y(s), Y (s), z(s), Z(s)) ds−
∫ t

0

z(s)
←−
dB(s)

+
∫ t

0

g (s, y(s), Y (s), z(s), Z(s))
−→
dW (s),

Y (t) = Φ (y(T )) +
∫ T

t

F (s, y(s), Y (s), z(s), Z(s)) ds+
∫ T

t

Z(s)
−→
dW (s)

+
∫ T

t

G (s, y(s), Y (s), z(s), Z(s))
←−
dB(s).

(1.2)

In FBDSDE (1.2), the forward equation is “forward” with respect to a standard stochastic integral
−→
dW (t), as

well as “backward” with respect to a backward stochastic integral
←−
dB(t); the coupled “backward equation”

is “forward” under the backward stochastic integral
←−
dB(t) and “backward” under the forward one. In other

words, both the forward equation and the backward one are types of BDSDE (1.1) with different directions of
stochastic integrals. So (1.2) provides a very general framework of fully coupled forward-backward stochastic
systems. Peng and Shi [17] proved the existence and uniqueness of solutions to FBDSDE (1.2) with arbitrarily
fixed time duration under some monotone assumptions. FBDSDE (1.2) can provide a probabilistic interpretation
for the solutions of a class of quasilinear SPDEs.

BDSDE and FBDSDEs can provide more extensive frameworks for stochastic Hamiltonian systems arising
in stochastic optimal control problems. Recently, Han et al. [7] investigated the necessary condition of op-
timal controls and obtained a stochastic maximum principle for backward doubly stochastic optimal control
systems. Almost simultaneously Bahlali and Gherbal [2] independently proved necessary and sufficient opti-
mality conditions for backward doubly stochastic control systems. Complete information maximum principles
of forward-backward doubly stochastic control systems of (1.2) have been studied in [28, 29]. They established
maximum principles in the case the control domain is convex or the diffusion coefficients can not contain a
control variable.

However, in the control problems above, the information of the control problems is assumed to be completely
observed. This is not reasonable in reality. Generally speaking, the controllers can only get partial information at
most cases. This motivates us to study the partially observed optimal doubly stochastic control problems. The
subject of stochastic maximum principles for partially-observed forward stochastic optimal control problems
has been discussed by many authors, such as Bensoussan [5], Haussmann [8], Baras et al. [4], Li and Tang [12],
Tang [23], etc. Li and Tang [12] obtained the maximum principle for the partially-observed forward stochastic
optimal control problem in which the control variable is allowed to enter the diffusion and the observation
coefficients. Moreover, the control domain is not necessarily convex. Tang [23] extended the result in [12] to the
case with correlated noises between the system and the observation. A general maximum principle was proven for
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the partially-observed optimal control and the relations among the adjoint processes were established. Adjoint
vector fields were introduced as the solutions to some backward stochastic partial differential equations (BSPDEs
in short) and their relations were established. Under suitable conditions, the adjoint processes were characterized
in terms of the adjoint vector fields, their differentials and Hessians, along the optimal state process. The optimal
control problems for partially-observed forward-backward stochastic systems have been studied extensively in
Shi and Wu [22], Wang and Wu [24] and Wu [26]. They established maximum principles in the case the control
domain is convex or the forward diffusion coefficients can not contain a control variable.

In this paper, we study the optimal control problems of partially-observed forward-backward doubly stochastic
systems whose control domains are convex, but with the control variables capable of entering into the diffusion
terms. We derive the maximum principle under some suitable conditions, which can be viewed as the counterpart
of the results in Zhang and Shi [29] with complete observation. The main difficulty which we encounter is the
partial observation. We use a pure probabilistic approach of Li and Tang [12]. Firstly, by Girsanov’s theorem we
reformulate our original partially-observed optimal control problem (2.1)–(2.5) to (2.1)–(2.3), (2.5) and (2.6),
which is quite similar to a completely observed one. The only difference lies in the admissible control sets. One
advantage of this approach is that it need neither the Zaka’s equation as adopted in Haussmann [8] nor the
theory of stochastic flows as adopted in Baras et al. [4]. So we get around the complicated stochastic calculus
in infinite-dimensional spaces. Secondly, we obtain some estimations of the variational observed process and
the difference between the perturbed observed process and the sum of the optimal and variational observed
processes. Then we give the variational inequality. Finally, by the classical duality technique we prove the
maximum principle.

To illustrate our theoretical results, we give an example for a partially-observed linear-quadratic (LQ in short)
fully-coupled forward-backward doubly stochastic optimal control problem. Moreover, we can prove that the
observable control variable is really optimal.

We emphasize that our problems should be distinguished from the optimal control problems with partial
information, where a subfiltration is given to represent the information available to the controller instead of
an observation process. For problems with partial information, there is a rich literature (cf. Baghery and
Øksendal [1], Huang et al. [10], Meng [13] and the references therein).

The rest of this paper is organized as follows. In Section 2, we state our partially observed optimal control
problems and the main assumptions. In Section 3, we obtain the partially observed doubly stochastic maximum
principle. Finally in Section 4, we discuss forward-backward doubly stochastic LQ optimal control problems to
show the applications of the theoretical results.

2. Preliminaries and problem formulation

Let (Ω,F , P ) be a completed probability space, {W (t)}t≥0, {B(t)}t≥0 and {X(t)}t≥0 be three mutually
independent standard Brownian motions, with values respectively in R

d, R
l and R

r, defined on (Ω,F , P ).
Let N denote the class of P -null sets of F . For each t ∈ [0, T ] , we define

FW
t

.= σ {W (r); 0 ≤ r ≤ t} ∨ N ,
FX

t
.= σ {X(r); 0 ≤ r ≤ t} ∨ N ,

FB
t,T

.= σ {B(r) −B(t); t ≤ r ≤ T } ∨ N ,

and
Ft

.= FW
t ∨ FB

t,T , ∀t ∈ [0, T ] .

Note that
{FW

t ; t ∈ [0, T ]
}

and
{FX

t ; t ∈ [0, T ]
}

are increasing filtrations and
{FB

t,T ; t ∈ [0, T ]
}

is an decreasing
filtration, and the collection {Ft; t ∈ [0, T ]} is neither increasing nor decreasing. E denotes the expectation
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on (Ω,F , P ). We introduce the following notations:

M2(0, T ; Rn) ={v(t), 0 ≤ t ≤ T : v(t) is an R
n-valued, Ft-measurable process

such that E

∫ T

0

|v(t)|2dt <∞},

M2
FX (0, T ; Rn) ={v(t), 0 ≤ t ≤ T : v(t) is an R

n-valued, FX
t -measurable process

such that E

∫ T

0

|v(t)|2dt <∞},

L2(Ω,FT , P ; Rn) ={ξ : ξ is an R
n-valued, FT -measurable random variable

such that E|ξ|2 <∞},
L2(Ω,FX

T , P ; Rn) ={ξ : ξ is an R
n-valued, FX

T -measurable random variable

such that E|ξ|2 <∞}.

For a convex subset U ⊂ R
k, let

Uad[0, T ] =

{
v(t) : [0, T ]×Ω → U |v(t) is FX

t -measurable, E

∫ T

0

|v(t)|2dt <∞
}
.

For any given admissible control v ∈ Uad, we consider the following forward-backward doubly stochastic control
system: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(t) = f (t, y(t), Y (t), z(t), Z(t), v(t)) dt− z(t)←−dB(t)

+g (t, y(t), Y (t), z(t), Z(t), v(t))
−→
dW (t),

dY (t) = −F (t, y(t), Y (t), z(t), Z(t), v(t)) dt+ Z(t)
−→
dW (t)

−G (t, y(t), Y (t), z(t), Z(t), v(t))
←−
dB(t),

y(0) = x, Y (T ) = Φ (y(T )) ,

(2.1)

where (y (·) , Y (·) , z (·) , Z (·) , v (·)) ∈ R
n × R

n × R
n×l × R

n×d × R
k, x ∈ R

n is a given constant, and T > 0,

F : [0, T ]× R
n × R

n × R
n×l × R

n×d × R
k → R

n,

f : [0, T ]× R
n × R

n × R
n×l × R

n×d × R
k → R

n,

G : [0, T ]× R
n × R

n × R
n×l × R

n×d × R
k → R

n×l,

g : [0, T ]× R
n × R

n × R
n×l × R

n×d × R
k → R

n×d,

Φ : R
n → R

n.

We assume that the state processes (y (·) , Y (·) , z (·) , Z (·)) cannot be observed directly, but the controllers can
observe a related noisy process X of the state processes which is described by

X(t) =
∫ t

0

h(s, yv(s), Y v(s), v(s))ds + W̃ (t), (2.2)

where W̃ (t) denotes a stochastic process depending on the control variable v(t), 0 ≤ t ≤ T , and

h : [0, T ]× R
n × R

n × R
k → R

r.
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Next we will give some notations:

ζ =

⎛⎜⎜⎜⎜⎝
y

Y

z

Z

⎞⎟⎟⎟⎟⎠ , A (t, ζ) =

⎛⎜⎜⎜⎜⎝
−F
f

−G
g

⎞⎟⎟⎟⎟⎠ (t, ζ) .

We use the usual inner product 〈·, ·〉 and Euclidean norm | · | in R
n, R

n×d and R
n×l. ∗ appearing in the

superscripts denotes the transpose of a matrix. All the equalities and inequalities mentioned in this paper are
in the sense of dt⊗ dP almost surely on [0, T ]×Ω. We assume that

(H1)

{
For each ζ ∈ R

n+n+n×l+n×d, A (·, ζ) is an Ft-measurable process defined on

[0, T ]with A (·, 0) ∈M2
(
0, T ; Rn+n+n×l+n×d

)
.

(H2) A (t, ζ) and Φ (y) satisfy Lipschitz conditions: there exists a constant k > 0, such that{∣∣A (t, ζ)−A (
t, ζ̄

)∣∣ ≤ k ∣∣ζ − ζ̄∣∣ , ∀ζ, ζ̄ ∈ R
n+n+n×l+n×d, ∀t ∈ [0, T ] ,

|Φ (y)− Φ (ȳ)| ≤ k |y − ȳ| , ∀y, ȳ ∈ R
n.

The following monotonic conditions introduced in [17], are main assumptions in this paper.

(H3)

⎧⎪⎪⎨⎪⎪⎩
〈
A (t, ζ)−A (

t, ζ̄
)
, ζ − ζ̄〉 ≤ −μ ∣∣ζ − ζ̄∣∣2 ,

∀ζ = (y, Y, z, Z)∗ , ζ̄ =
(
ȳ, Ȳ , z̄, Z̄

)∗ ∈ R
n × R

n × R
n×l × R

n×d, ∀t ∈ [0, T ] .

〈Φ (y)− Φ (ȳ) , y − ȳ〉 ≥ 0, ∀y, ȳ ∈ R
n,

or

(H3)′

⎧⎪⎪⎨⎪⎪⎩
〈
A (t, ζ) −A (

t, ζ̄
)
, ζ − ζ̄〉 ≥ μ ∣∣ζ − ζ̄∣∣2 ,

∀ζ = (y, Y, z, Z)∗ , ζ̄ =
(
ȳ, Ȳ , z̄, Z̄

)∗ ∈ R
n × R

n × R
n×l × R

n×d, ∀t ∈ [0, T ] .

〈Φ (y)− Φ (ȳ) , y − ȳ〉 ≤ 0, ∀y, ȳ ∈ R
n,

where μ is a positive constant.

We have the following two parallel existence and uniqueness theorems.

Proposition 2.1. For any given admissible control v (·), we assume (H1), (H2) and (H3) hold. Then FBDS-
DEs (2.1) has a unique solution (y(t), Y (t), z(t), Z(t)) ∈M2

(
0, T ; Rn+n+n×l+n×d

)
.

Proposition 2.2. For any given admissible control v (·), we assume (H1), (H2) and (H3)′ hold. Then FBDS-
DEs (2.1) has a unique solution (y(t), Y (t), z(t), Z(t)) ∈M2

(
0, T ; Rn+n+n×l+n×d

)
.

The proof of Proposition 2.1 can be seen in [17]. For reader’s convenience we give the main line of the proof
of Proposition 2.1 in Appendix. The proof of Proposition 2.2 is similar, we omit it.

We assume:

(H4)

⎧⎪⎨⎪⎩
(i) F, f, G, g, Φ are continuously differentiable with respect to (y, Y, z, Z, v) , y and Y, respectively;

(ii) the partial derivatives of F, f, G, g, Φ are bounded;

(iii) h is continuously differentiable in (y, Y, v), its derivatives and h are all uniformly bounded.

Lastly, we need the following extension of Itô’s formula (for more details see [15]).
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Proposition 2.3. Let α ∈ S2
(
[0, T ]; Rk

)
, β ∈ M2

(
[0, T ]; Rk

)
, γ ∈ M2

(
[0, T ]; Rk×l

)
, δ ∈ M2

(
[0, T ]; Rk×d

)
satisfy:

α(t) = α(0) +
∫ t

0

β(s)ds+
∫ t

0

γ(s)
←−
dB(s) +

∫ t

0

δ(s)
−→
dW (s), 0 ≤ t ≤ T.

Then

|α(t)|2 = |α(0)|2 + 2
∫ t

0

(α(s), β(s)) ds+ 2
∫ t

0

(
α(s), γ(s)

←−
dB(s)

)
+2

∫ t

0

(
α(s), δ(s)

−→
dW (s)

)
−
∫ t

0

|γ(s)|2 ds+
∫ t

0

|δ(s)|2 ds,

E |α(t)|2 = E |α(0)|2 + 2E

∫ t

0

(α(s), β(s)) ds− E

∫ t

0

|γ(s)|2 ds+ E

∫ t

0

|δ(s)|2 ds.

Here S2
(
[0, T ]; Rk

)
denotes the space of (classes of dP ⊗ dt a.e. equal) all Ft-progressively measurable

k-dimensional processes v with

E

(
sup

0≤t≤T
|v(t)|2

)
<∞.

Under the above hypotheses, for every v(·) ∈ Uad, the state equation (2.1) admits a unique solution (y, Y, z, Z) ∈
M2 (0, T ; Rn)×M2 (0, T ; Rn)×M2

(
0, T ; Rn×l

)×M2
(
0, T ; Rn×d

)
. (see Peng and Shi [17]).

Define dP v .= ρv(t)dP , where

ρv(t) .= exp
{∫ t

0

〈h(s, yv(s), Y v(s), v(s)),
−→
dX(s)〉 − 1

2

∫ t

0

|h(s, yv(s), Y v(s), v(s))|2ds
}
.

Obviously, ρv(t) ∈ R is the solution to the following stochastic differential equation (SDE in short):{
dρv(t) = ρv(t)〈h(t, yv(t), Y v(t), v(t)),

−→
dX(t)〉,

ρv(0) = 1.
(2.3)

Hence by Girsanov’s theorem and (H4), P v is a new probability measure and (W (·), W̃ (·), B(·)) is a R
l+d+r-

valued standard Brownian motion defined on the new probability space (Ω,F , P v). Note that the integrals with
respect to {X(t)} and {W̃ (t)} are standard forward Itô integrals.

We introduce the following cost functional:

J(v(·)) = E
v

{∫ T

0

l(t, yv(t), Y v(t), zv(t), Zv(t), v(t))dt + ψ(yv(T )) + γ(Y v(0))

}
, (2.4)

where E
v denotes the expectation with respect to the probability space (Ω,F , P v), and

l : [0, T ]× R
n × R

n × R
n×l × R

n×d × R
k → R,

ψ : R
n → R,

γ : R
n → R.

We also assume

(H5)

⎧⎪⎪⎨⎪⎪⎩
(i) l is continuously differentiable in (y, Y, z, Z, v), its partial derivatives are continuous in (y, Y, z, Z, v)
and bounded by c(1 + |y|+ |Y |+ |z|+ |Z|+ |v|);
(ii) the derivatives of ψ and γ with respect to y, Y are bounded by C (1 + |y|) and C (1 + |Y |) ,
respectively.
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Our partially-observed optimal control problem is to minimize the cost functional (2.4) over v(·) ∈ Uad subject
to (2.1) and (2.2), i.e., to find u(·) ∈ Uad satisfying

J(u(·)) = min
v(·)∈Uad

J(v(·)). (2.5)

Obviously, cost functional (2.4) can be rewritten as

J(v(·)) = E

{∫ T

0

ρv(t)l(t, yv(t), Y v(t), zv(t), Zv(t), v(t))dt + ρv(T )ψ(yv(T )) + γ(Y v(0))

}
. (2.6)

Then the original problem (2.5) is equivalent to minimizing (2.6) over v(·) ∈ Uad subject to (2.1) and (2.3).
Our main target is to find the necessary condition of the partially-observed optimal control u(·) in the form of
Pontryagin stochastic maximum principle.

3. Partially-observed stochastic maximum principle

For the convex admissible control set, the classical way to derive necessary optimality conditions is to use
the convex perturbation method. Let u(·) be an optimal control and (y(·), Y (·), z(·), Z(·)) be the corresponding
optimal trajectory. Let v(·) be such that u(·) + v(·) ∈ Uad. Since Uad is convex, then for any 0 ≤ ε ≤ 1,
uε(·) = u(·) + εv(·) is also in Uad. We denote the solution of (2.1) and (2.3) corresponding to the control uε(·)
by (yε(·), Y ε(·), zε(·), Zε(·)) and ρε(·).

For convenience, we introduce the notations

ϕ(t) = ϕ(t, y(t), Y (t), z(t), Z(t), u(t)),

ϕε(t) = ϕ(t, yε(t), Y ε(t), zε(t), Zε(t), u(t) + εv(t)),

where ϕ denotes one of F, f,G, g, l, and their partial derivatives.
We introduce the variational equations consisting of a FBDSDE and another forward SDE as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1(t) = [fy(t)y1(t) + fY (t)Y 1(t) + fz(t)z1(t) + fZ(t)Z1(t) + fv(t)v(t)]dt

+[gy(t)y1(t) + gY (t)Y 1(t) + gz(t)z1(t) + gZ(t)Z1(t) + gv(t)v(t)]
−→
dW (t)− z1(t)

←−
dB(t),

dY 1(t) = −[Fy(t)y1(t) + FY (t)Y 1(t) + Fz(t)z1(t) + FZ(t)Z1(t) + Fv(t)v(t)]dt

−[Gy(t)y1(t) +GY (t)Y 1(t) +Gz(t)z1(t) +GZ(t)Z1(t) +Gv(t)v(t)]
←−
dB(t) + Z1(t)

−→
dW (t),

y1(0) = 0, Y 1(T ) = Φy(y(T ))y1(T ),

(3.1)

and {
dρ1(t) = [ρ1(t)h∗(t) + ρ(t)(hy(t)y1(t))∗ + ρ(t)(hY (t)Y 1(t))∗ + ρ(t)(hv(t)v(t))∗]

−→
dX(t),

ρ1(0) = 0.
(3.2)

By (H4), it is easy to see that (3.1) and (3.2) admit unique measurable solutions (y1(t), Y 1(t), z1(t), Z1(t)) ∈
M2(0, T ; Rn)×M2(0, T ; Rn)×M2(0, T ; Rn×l)×M2(0, T ; Rn×d) and ρ1(t) ∈M2

FX (0, T ; R), respectively.
By Lemma 4 in [29] and Lemma 3.1 in [32], we can get the solutions depending on parameter to forward-

backward doubly stochastic control system.
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Lemma 3.1. Assume that (H1)−(H4) hold. Then we have

lim
ε→0

yε (t)− y (t)
ε

= y1 (t) ,

lim
ε→0

Y ε (t)− Y (t)
ε

= Y 1 (t) ,

lim
ε→0

zε (t)− z (t)
ε

= z1 (t) ,

lim
ε→0

Zε (t)− Z (t)
ε

= Z1 (t) ,

lim
ε→0

ρε (t)− ρ (t)
ε

= ρ1 (t) .

Since u(·) is an optimal control, then

ε−1[J(uε(·))− J(u(·)] ≥ 0. (3.3)

From this and Lemma 3.1, we have the following

Lemma 3.2. Let assumptions (H1)−(H4) hold. Then the following variational inequality holds:

E
u

∫ T

0

[
ρ−1(t)ρ1(t)l(t) + l∗y(t)y

1(t) + l∗Y (t)Y 1(t) + l∗z(t)z1(t) + l∗Z(t)Z1(t) + l∗v(t)v(t)
]
dt

+ E
u[ψ∗

y(y(T ))y1(T )] + E
u[γ∗Y (Y (0))Y 1(0)] + E

u[ρ−1(T )ρ1(T )ψ(y(T ))] ≥ 0. (3.4)

Proof. Let ε→ 0 in (3.3). From Lemma 3.1, we derive

ε−1

{
E

∫ T

0

[ρε(t)lε(t)− ρ(t)l(t)]dt
}
→ E

∫ T

0

[ρ1(t)l(t) + ρ(t)l∗y(t)y1(t) + ρ(t)l∗Y (t)Y 1(t)

+ ρ(t)l∗z(t)z1(t) + ρ(t)l∗Z(t)Z1(t) + ρ(t)l∗v(t)v(t)]dt.

Similarly, we have

ε−1
E[γ(Y ε(0))− γ(Y (0))]→ E[γ∗Y (Y (0))Y 1(0)],

ε−1
E[ρε(T )ψ(yε(T ))− ρ(T )ψ(y(T ))]→ E[ρ(T )ψ∗

y(y(T ))y1(T )] + E[ρ1(T )ψ(y(T ))].

Then, we have

E

∫ T

0

[ρ1(t)l(t) + ρ(t)l∗y(t)y1(t) + ρ(t)l∗Y (t)Y 1(t) + ρ(t)l∗z(t)z1(t) + ρ(t)l∗Z(t)Z1(t) + ρ(t)l∗v(t)v(t)]dt

+ E[γ∗Y (Y (0))Y 1(0)] + E[ρ(T )ψ∗
y(y(T ))y1(T )] + E[ρ1(T )ψ(y(T ))] ≥ 0.

Thus (3.4) follows. The proof of Lemma 3.2 is completed. �

Noticing the term ρ−1(t)ρ1(t) in the above variational inequality (3.4), we let Γ (t) = ρ−1(t)ρ1(t) and from
equations (2.2), (2.3) and (3.2), for the optimal control u(·), we have{

dΓ (t) = [hy(t, y, Y, u)y1(t) + hY (t, y, Y, u)Y 1(t) + hv(t, y, Y, u)v(t)]∗
−→
d W̃ (t),

Γ (0) = 0.
(3.5)
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To derive the maximum principle, we first introduce the adjoint equation corresponding to (3.5), which is an
auxiliary BSDE and whose solution is denoted by (P (·), Q(·)) ∈M2

FX (0, T ; R)×M2
FX (0, T ; Rn),{

−dP (t) = l(t)dt−Q(t)
−→
d W̃ (t),

P (T ) = ψ(y(T )).
(3.6)

Next, we introduce the adjoint equation corresponding to variational equation (3.4), which is a FBDSDE
and whose solution is denoted by (p(·), q(·), k(·),m(·)) ∈ M2(0, T ; Rn) × M2(0, T ; Rn) × M2(0, T ; Rn×l) ×
M2(0, T ; Rn×d),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp(t) = [F ∗
Y (t)p(t) − f∗

Y (t)q(t) +G∗
Y (t)k(t) − g∗Y (t)m(t)− h∗Y (t)Q(t)− lY (t)]dt

+[F ∗
Z(t)p(t)− f∗

Z(t)q(t) +G∗
Z(t)k(t)− g∗Z(t)m(t) − lZ(t)]

−→
dW (t)− k(t)←−dB(t),

dq(t) = [F ∗
y (t)p(t)− f∗

y (t)q(t) +G∗
y(t)k(t)− g∗y(t)m(t)− h∗y(t)Q(t)− ly(t)]dt

+[F ∗
z (t)p(t) − f∗

z (t)q(t) +G∗
z(t)k(t)− g∗z(t)m(t)− lz(t)]←−dB(t) +m(t)

−→
dW (t),

p(0) = −γY (Y (0)), q(T ) = −Φ∗
y(y(T ))p(T ) + ψy(y(T )).

(3.7)

Under (H1)–(H4), by the result on forward-backward doubly stochastic differential equations (see Peng and
Shi [17]), we can show that equation (3.7) admits a unique solution (p(t), q(t), k(t), m(t)) ∈ M2 (0, T ; Rn) ×
M2 (0, T ; Rn)×M2

(
0, T ; Rn×l

)×M2
(
0, T ; Rn×d

)
.

We define the Hamiltonian function H : [0, T ]×R
n×R

n×R
n×l×R

n×d×R
k×R

n×R
n×R

n×l×R
n×d×R

r → R

as follows:

H(t, y, Y, z, Z, v, p, q, k,m,Q) = 〈q(t), f(t, y, Y, z, Z, v)〉 − 〈p(t), F (t, y, Y, z, Z, v)〉+ 〈m(t), g(t, y, Y, z, Z, v)〉
− 〈k(t), G(t, y, Y, z, Z, v)〉+ 〈Q(t), h(t, y, Y, v)〉+ l(t, y, Y, z, Z, v). (3.8)

Denote H(t) ≡ H(t, y(t), Y (t), z(t), Z(t), v(t), p(t), q(t), k(t),m(t), Q(t)) and its derivatives, then adjoint equa-
tions (3.7) can be rewritten as the following stochastic Hamiltonian system’s type FBDSDE and whose solution
is denoted by (p(·), q(·), k(·),m(·)),⎧⎪⎪⎨⎪⎪⎩

dp(t) = −HY (t)dt−HZ(t)
−→
dW (t)− k(t)←−dB(t),

dq(t) = −Hy(t)dt−Hz(t)
←−
dB(t) +m(t)

−→
dW (t),

p(0) = −γY (Y (0)), q(T ) = −Φy(y(T ))p(T ) + ψy(y(T )).

(3.9)

Starting from the variational inequality (3.4), we can now state the main result of this paper.

Theorem 3.1 (Partially-observed stochastic maximum principle). Suppose (H1)–(H4) hold. Let u(·) be an
optimal control for our partially-observed optimal control problem (2.5), (y(·), Y (·), z(·), Z(·)) be the opti-
mal trajectory and ρ(·) be the corresponding solution of (2.3). Let (P (·), Q(·)) be the solution of (3.6) and
(p(·), q(·), k(·),m(·)) be the solution of adjoint equation (3.7). Then the following maximum principle

E
u[〈Hv(t, y(t), Y (t), z(t), Z(t), u(t), p(t), q(t), k(t),m(t), Q(t)), v − u(t)〉|FX

t ] ≥ 0,
∀v ∈ U, a.e. t ∈ [0, T ], a.s. (3.10)

holds, where the Hamiltonian function H is defined by (3.8).



PARTIALLY OBSERVED OPTIMAL CONTROLS OF FORWARD-BACKWARD DOUBLY STOCHASTIC SYSTEMS 837

Proof. Applying Itô’s formula to 〈y1(t), q(t)〉 + 〈Y 1(t), p(t)〉 + 〈Γ (t), P (t)〉. By the variational equa-
tions (3.1), (3.2), variational inequality (3.4), auxiliary BSDE (3.6) and adjoint equation (3.7), we obtain

E
u

∫ T

0

[
Γ (t)l(t) + l∗y(t)y

1(t) + l∗Y (t)Y 1(t) + l∗z(t)z
1(t) + l∗Z(t)Z1(t) + l∗v(t)v(t)

]
dt

+E
u[ψ∗

y(y(T ))y1(T )] + E
u[γ∗Y (Y (0))Y 1(0)] + E

u[ρ−1(T )ρ1(T )ψ(y(T ))]

= E
u

∫ T

0

〈f∗
v (t)q(t)− F ∗

v (t)p(t) + g∗v(t)k(t) −G∗
v(t)m(t) + h∗v(t)Q(t) + lv(t), v(t)〉dt

= E
u

∫ T

0

〈Hv(t, y(t), Y (t), z(t), Z(t), u(t), p(t), q(t), k(t),m(t), Q(t)), v(t)〉dt ≥ 0.

Because v(t) satisfies u(t) + v(t) ∈ U , we have

E
u

∫ T

0

〈Hv(t, y(t), Y (t), z(t), Z(t), u(t), p(t), q(t), k(t),m(t), Q(t)), v − u(t)〉dt ≥ 0, ∀v ∈ U.

This implies that

E
u〈Hv(t, y(t), Y (t), z(t), Z(t), u(t), p(t), q(t), k(t),m(t), Q(t)), v − u(t)〉 ≥ 0, ∀v ∈ U.

Now, let v ∈ U be a deterministic element and F be an arbitrary element of the σ-algebra FX
t . And set

w(t) = v1F + u(t)1Ω−F .

It is obvious that w is an admissible control.
Applying the above inequality with w, we get

E
u[1F 〈Hv(t, y(t), Y (t), z(t), Z(t), u(t), p(t), q(t), k(t),m(t), Q(t)), v − u(t)〉] ≥ 0,

∀F ∈ FX
t ,

which implies that

E
u[〈Hv(t, y(t), Y (t), z(t), Z(t), u(t), p(t), q(t), k(t),m(t), Q(t)), v − u(t)〉|FX

t ] ≥ 0,

∀v ∈ U, a.e. t ∈ [0, T ], a.s.

The proof of Theorem 3.1 is completed. �

4. Applications in LQ control problems

In this section, we give an example to show applications of the main results in this paper. We desire to apply
our maximal principle to forward-backward doubly stochastic LQ control problems. For notational simplification,
we assume d = l = 1 and U = R. Let us consider the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dyv(t) = [A1(t)yv(t)− bY v(t) +A2(t)zv(t) +B1(t)v(t)]dt − zv(t)
←−
dB(t)

+[A3(t)yv(t) + B2(t)v(t)]
−→
dW (t),

dY v(t) = −[ayv(t) +A1(t)Y v(t) + A3(t)Zv(t) +B3(t)v(t)]dt + Zv(t)
−→
dW (t)

−[A2(t)Y v(t) +B4(t)v(t)]
←−
dB(t),

yv(0) = x, Y v(T ) = cyv(T ),

(4.1)
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and observation

dX(t) = F (t)dt+
−→
d W̃ (t), t ∈ [0, T ], X(0) = 0. (4.2)

The cost functional is

J(v(·)) =
1
2

E
v

[∫ T

0

M(t)v2(t)dt+RT (yv(T ))2 + S0(Y v(0))2
]
, (4.3)

where constants a > 0, b > 0, c > 0, M(t) > 0, RT ≥ 0 and S0 ≥ 0. Functions Ai(·), i = 1, 2, 3, and
Bi(·), i = 1, 2, 3, 4, are bounded and deterministic, M−1(·) is also bounded. W (·), B(·), X(·) are three mutually
independent standard Brownian motions on (Ω,F , P ).

For any given v(·), it is easy to show that the monotonic condition (H3) holds. Then FBDSDE (4.1) admits
a unique solution (y(·), Y (·), z(·), Z(·)). By (3.8), the Hamiltonian function is given by

H(t, y, Y, z, Z, v, p, q, k,m) = q(t)[A1(t)yv(t)− bY v(t) +A2(t)zv(t) +B1(t)v(t)]

− p(t)[ayv(t) +A1(t)Y v(t) +A3(t)Zv(t) +B3(t)v(t)]

− k(t) [A2(t)Y v(t) +B4(t)v(t)] +m(t) [A3(t)yv(t) +B2(t)v(t)]

+Q(t)F (t) +
1
2
M(t)v2(t).

(4.4)

According to Theorem 3.1, if u(·) is optimal, then

u(t) = −M−1(t)(B1(t)Eu
[
q(t)|FX

t

]−B3(t)Eu
[
p(t)|FX

t

]
+B2(t)Eu

[
m(t)|FX

t

]−B4(t)Eu[k(t)|FX
t ]). (4.5)

where (p(·), q(·), k(·),m(·)) is the solution of the following FBDSDE:⎧⎪⎪⎨⎪⎪⎩
dp(t) = [bq(t) +A1(t)p(t) +A2(t)k(t)]dt+A3(t)p(t)

−→
dW (t)− k(t)←−dB(t),

dq(t) = − [A1(t)q(t)− ap(t) +A3(t)m(t)] dt−A2(t)q(t)
←−
dB(t)−m(t)

−→
dW (t),

p(0) = −R0Y
u(0), q(T ) = −cp(T ) + ST y

u(T ).

(4.6)

Similarly, it is easy to verify that the monotonic condition (H3) holds, then FBDSDE (4.6) admits a unique
solution (p(·), q(·), k(·),m(·)).

Moreover, we can prove that the admissible control (4.5) which satisfying the necessary condition of optimality
is really optimal. For any admissible control v(·), we have

J(v(·)) − J(u(·)) =
1
2

E
u

{∫ T

0

[
M(t)(v(t) − u(t))2 + 2M(t)u(t)(v(t)− u(t))

]
dt

+ ST (yv(T )− yu(T ))2 + 2ST y
u(T )(yv(T )− yu(T )) +R0(Y v(0)− Y u(0))2 + 2R0Y

u(0)(Y v(0)− Y u(0))

}
.

Applying Itô’s formula to (yv(t)− yu(t))q(t) + (Y v(t)− Y u(t))p(t), noting that (4.1), (4.6), we have

E
u{ST y

v(T )(yv(T )− yu(T )) +R0Y
v(0)(Y v(0)− Y u(0))} =

E
u

∫ T

0

[(B1(t)q(t)−B3(t)p(t) +B2(t)h(t) −B4(t)k(t))(v(t) − u(t))]dt.
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As M(t) > 0, ∀t ∈ [0, T ], ST ≥ 0, R0 ≥ 0, noting that (p(·), q(·), k(·),m(·)) are not observable, we have

J(v(·)) − J(u(·)) ≥ E
u

{∫ T

0

[M(t)u(t)(v(t) − u(t))]dt+ ST y
u(T )(yv(T )− yu(T ))

+R0Y
u(0)(Y v(0)− Y u(0))

}

= E
u

∫ T

0

[(M(t)u(t) +B1(t)q(t)−B3(t)p(t) +B2(t)m(t)−B4(t)k(t))(v(t) − u(t))]dt

= E
u

∫ T

0

[(−M(t)M−1(t)(B1(t)Eu[q(t)|FX
t ]−B3(t)Eu[p(t)|FX

t ] +B2(t)Eu[m(t)|FX
t ]

−B4(t)Eu[k(t)|FX
t ]) +B1(t)q(t) −B3(t)p(t) +B2(t)m(t)−B4(t)k(t))(v(t) − u(t))]dt

= 0.

So (4.5) is an optimal control.

Remark 4.1. Both the forward equation and the backward one in forward-backward doubly stochastic sys-
tem (4.1) are types of BDSDE (1.1) with different directions of stochastic integrals. So (4.1) includes backward
doubly stochastic LQ control problems and provides a very general framework of fully coupled forward-backward
stochastic systems.

Appendix: The proof of Proposition 2.1

In order to prove the existence and uniqueness result for (2.1) under (H1)−(H3), we need the following
lemmas. They involve a priori estimates of solutions of the following family of FBDSDEs parametrized by
α ∈ [0, 1]. ⎧⎪⎪⎨⎪⎪⎩

dy(t) = [fα (t, ζ(t)) + f0 (t)] dt+ [gα (t, ζ(t)) + g0 (t)]
−→
dW (t)− z(t)←−dB(t),

dY (t) = [Fα (t, ζ(t)) + F0 (t)] dt+ [Gα (t, ζ(t)) +G0 (t)]
←−
dB(t) + Z(t)

−→
dW (t),

y(0) = x, Y (T ) = Φα (y(T )) + ϕ,

(A.1)

where ζ = (y, Y, z, Z) and for any given α ∈ R,

fα (t, y, Y, z, Z) = αf (t, y, Y, z, Z)− (1− α) Y,

gα (t, y, Y, z, Z) = αg (t, y, Y, z, Z)− (1− α)Z,

Fα (t, y, Y, z, Z) = αF (t, y, Y, z, Z)− (1− α) y,

Gα (t, y, Y, z, Z) = αG (t, y, Y, z, Z)− (1− α) z,

Φα (y) = αΦ (y) + (1− α) y.

Observe that when α = 0, (A.1) is written in the following simple form⎧⎪⎪⎨⎪⎪⎩
dy(t) = (−Y (t) + f0 (t)) dt+ (−Z(t) + g0 (t))

−→
dW (t)− z(t)←−dB(t),

dY (t) = (−y(t) + F0 (t)) dt+ (−z(t) +G0 (t))
←−
dB(t) + Z(t)

−→
dW (t),

y(0) = x, Y (T ) = y(T ) + ϕ.

(A.2)

We have the following lemma.
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Lemma A.1. For any x ∈ R
n, (F0, f0, G0, g0) ∈ M2

(
0, T ; Rn+n+n×l+n×d

)
, ϕ ∈ L2(Ω,FT ; R

n), (A.2) has a
unique solution (y, Y, z, Z) in M2

(
0, T ; Rn+n+n×l+n×d

)
.

Proof. The proof of uniqueness is similar to the one of Proposition 2.1 below. We only need to find a solution
for (A.2). We consider the following linear backward doubly stochastic differential equations

Ȳ (t) = ϕ−
∫ T

t

[
Ȳ (s) + F0 (s)− f0 (s)

]
ds−

∫ T

t

[
2Z̄(s)− g0 (s)

]−→
dW (s)−

∫ T

t

G0 (s)
←−
dB(s). (A.3)

By the result of [15], the above equation has a unique solution
(
Ȳ , Z̄

)
. Then we can solve the following SDE

y(t) = x+
∫ t

0

[−y(s)− Ȳ (s) + f0 (s)
]
ds+

∫ t

0

[−Z̄(s) + g0 (s)
]−→

dW (s)−
∫ t

0

z̄(s)
←−
dB(s). (A.4)

Due to the result in [15], the above equation has a unique solution (y, z̄). And setting Y = y + Ȳ , Z = Z̄, and
z = z̄, we easily see that (y, Y, z, Z) is a solution to (A.2). Thus the existence is proven. �

The following a priori lemma is a key step in the proof of the method of continuation. It shows that, if for
a fixed α = α0 ∈ [0, 1], (A.1) can be solved, then it can also be solved for α ∈ [α0, α0 + δ0], for some positive
constant δ0 independent of α0.

Lemma A.2. Under assumptions (H1)–(H3), there exists a positive constant δ0 such that if, a priori, for some
α0 ∈ [0, 1), and for each x ∈ R

n, ϕ ∈ L2 (Ω,FT ; Rn), (F0, f0, G0, g0) ∈ M2
(
0, T ; Rn+n+n×l+n×d

)
, (A.1)

has a unique solution, then for each α ∈ [α0, α0 + δ0], and x ∈ R
n, ϕ ∈ L2 (Ω,FT ; Rn), (F0, f0, G0, g0) ∈

M2
(
0, T ; Rn+n+n×l+n×d

)
, (A.1) also has a unique solution in M2

(
0, T ; Rn+n+n×l+n×d

)
.

Proof. Since for any x ∈ R
n, (F0, f0, G0, g0) ∈ M2

(
0, T ; Rn+n+n×l+n×d

)
, ϕ ∈ L2 (Ω,FT ; Rn), there exists a

unique solution to (A.1) for α = α0, thus for each ζ̄ =
(
ȳ, Ȳ , z̄, Z̄

) ∈ M2
(
0, T ; R

n+n+n×l+n×d
)
, there exists a

unique quadruple ζ = (y, Y, z, Z) ∈M2
(
0, T ; Rn+n+n×l+n×d

)
satisfying the following equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(t) =
[
fα0 (t, ζ(t)) + δ

(
f
(
t, ζ̄(t)

)
+ ȳ(t)

)
+ f0 (t)

]
dt− z(t)←−dB(t)

+
[
gα0 (t, ζ(t)) + δ

(
g
(
t, ζ̄(t)

)
+ z̄(t)

)
+ g0 (t)

]−→
dW (t),

dY (t) =
[
Fα0 (t, ζ(t)) + δ

(
F
(
t, ζ̄(t)

)
+ ȳ(t)

)
+ F0 (t)

]
dt+ Z(t)

−→
dW (t)

+
[
Gα0 (t, ζ(t)) + δ

(
G
(
t, ζ̄(t)

)
+ z̄(t)

)
+G0 (t)

]←−
dB(t),

y(0) = x, Y (T ) = Φα0 (y(T )) + δ (Φ (ȳ(T ))− ȳ(T )) + ϕ,

where δ is a positive number independent of α0 and less than 1. We will prove that the mapping defined by

ζ = Iα0+δ(ζ̄) : M2
(
0, T ; Rn+n+n×l+n×d

)→M2
(
0, T ; Rn+n+n×l+n×d

)
is contractive for a small enough δ. Let ζ̄′ =

(
ȳ′, Ȳ ′, z̄′, Z̄ ′) ∈M2

(
0, T ; Rn+n+n×l+n×d

)
and ζ′ = (y′, Y ′, z′, Z ′) =

Iα0+δ

(
ζ̄′
)
, and

̂̄ζ = ζ̄ − ζ̄′ =
(̂̄y, ̂̄Y , ̂̄z, ̂̄Z) =

(
ȳ − ȳ′, Ȳ − Ȳ ′, z̄ − z̄′, Z̄ − Z̄ ′) ,

ζ̂ = ζ − ζ′ =
(
ŷ, Ŷ , ẑ, Ẑ

)
= (y − y′, Y − Y ′, z − z′, Z − Z ′) .
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Applying Itô’s formula to 〈ŷ, Ŷ 〉 on [0, T ] and by virtue of (H2) and (H3), we have, since Eŷ0 = 0,

E
〈
ŷ(T ), α0 (Φ (y(T ))− Φ (y(T )′)) + (1− α0) ŷ(T ) + δ

(
Φ (ȳ(T ))− Φ (ȳ(T )′)− ̂̄y(T )

)〉
≤ E

∫ T

0

[
(α0 − μα0 − 1)

∣∣∣ζ̂(t)∣∣∣2 +
δ (k + 1)

2

∣∣∣ζ̂(t)∣∣∣2 +
δ (k + 1)

2

∣∣∣̂̄ζ(t)∣∣∣2] dt.

Then by virtue of (H3), we can derive that[
θ − δ (k + 1)

2

]
E

∫ T

0

∣∣∣ζ̂(t)∣∣∣2 dt ≤ δ (k + 1)
2

E

∫ T

0

∣∣∣̂̄ζ(t)∣∣∣2 dt+ δ (k + 1) E |ŷ(T )| ∣∣̂̄y(T )
∣∣ ,

where θ = min (1, μ). Applying Itô’s formula to |ŷ|2 on [0, T ] and by virtue of (H2), by a standard method of
estimation, we can derive that there exists a constant c ≥ 1 which depends only on k, such that

E |ŷ(T )|2 ≤ cE
∫ T

0

∣∣∣ζ̂(t)∣∣∣2 dt+ δcE

∫ T

0

∣∣∣̂̄ζ(t)∣∣∣2 dt.

We now choose δ0 = 2θ
(4c+1)(c+1)(k+1) . Then for any δ ∈ [0, δ0],

E

∫ T

0

∣∣∣ζ̂(t)∣∣∣2 dt ≤ 1
4c

(
E

∫ T

0

∣∣∣̂̄ζ(t)∣∣∣2 dt+ E
∣∣̂̄y(T )

∣∣2) .

Since δ0 ≤ 1
4c

, we have for any δ ∈ [0, δ0],

E |ŷ(T )|2 ≤ 1
2

(
E

∫ T

0

∣∣∣̂̄ζ(t)∣∣∣2 dt+ E
∣∣̂̄y(T )

∣∣2) .

It follows that, for each fixed δ ∈ [0, δ0], the mapping Iα0+δ is contractive in the following sense

E

∫ T

0

∣∣∣ζ̂(t)∣∣∣2 dt+ E |ŷ(T )|2 ≤ 3
4

(
E

∫ T

0

∣∣∣̂̄ζ(t)∣∣∣2 dt+ E
∣∣̂̄y(T )

∣∣2) .
Thus this mapping has a unique fixed point ζ = (y, Y, z, Z) in M2

(
0, T ; Rn+n+n×l+n×d

)
, which is the solution

of (A.1) for α = α0 + δ, as δ ∈ [0, δ0]. The proof is complete. �

Now we can give the proof of Proposition 2.1 – the existence and uniqueness theorem of (2.1).

Proof. (Uniqueness) Let ζ = (y, Y, z, Z) and ζ′ = (y′, Y ′, z′, Z ′) be two solutions of (2.1). We use the same
notations as in Lemma A.2. Applying Itô’s formula to 〈ŷ, Ŷ 〉 on [0, T ], we have

E〈ŷ(T ), Φ̂(y(T ))〉 = E

∫ T

0

〈A(t, ζ(t)) −A(t, ζ′(t)), ζ̂(t)〉dt.

By virtue of (H3), it follows that

μE

∫ T

0

〈A(t, ζ(t)) −A(t, ζ′(t)), ζ̂(t)〉dt ≤ 0.

Thus ζ ≡ ζ′. The uniqueness is proven.
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(Existence). By Lemma A.1, for any x ∈ R
n, (F0, f0, G0, g0) ∈ M2

(
0, T ; Rn+n+n×l+n×d

)
, ϕ ∈

L2 (Ω,FT ; Rn), (A.1) has a unique solution in M2
(
0, T ; Rn+n+n×l+n×d

)
as α = 0.

It follows from Lemma A.2 that there exists a positive constant δ0 = δ0 (k, μ) such that for any δ ∈ [0, δ0] and
x ∈ R

n, ϕ ∈ L2 (Ω,FT ; Rn), (F0, f0, G0, g0) ∈M2
(
0, T ; Rn+n+n×l+n×d

)
, (A.1) has a unique solution for α = δ.

Since δ0 depends only on (k, μ), we can repeat this process for N times with 1 ≤ Nδ0 < 1 + δ0. In particular,
for α = 1 with (F0, f0, G0, g0) ≡ 0 and ϕ ≡ 0, (A.1) has a unique solution in M2

(
0, T ; Rn+n+n×l+n×d

)
. The

proof is complete. �

Acknowledgements. The authors are grateful to the anonymous referees for their helpful comments and suggestions.

References

[1] F. Baghery and B. Øksendal, A maximum principle for stochastic control with partial information. Stoch. Anal. Appl. 25
(2007) 705–717.

[2] S. Bahlali and B. Gherbal, Optimality conditions of controlled backward doubly stochastic differential equations. Random
Oper. Stoch. Equ. 18 (2010) 247–265.

[3] A. Bally and A. Matoussi, Weak solutions of stochastic PDEs and backward doubly stochastic differential equations. J. Theoret.
Probab. 14 (2001) 125–164.

[4] J.S. Baras, R.J. Elliott and M. Kohlmann, The partially-observed stochastic minimum principle. SIAM J. Control Optim. 27
(1989) 1279–1292.

[5] A. Bensoussan, Maximum principle and dynamic programming approaches of the optimal control of partially observed diffu-
sions. Stochastics 9 (1983) 169–222.

[6] J.M. Bismut, An introductory approach to duality in optimal stochastic control. SIAM J. Control Optim. 20 (1978) 62–78.

[7] Y. Han, S. Peng and Z. Wu, Maximum principle for backward doubly stochastic control systems with applications. SIAM J.
Control Optim. 48 (2010) 4224–4241.

[8] U.G. Haussmann, The maximum principle for optimal control of diffusions with partial information. SIAM J. Control Optim.
25 (1987) 341–361.

[9] L. Hu and Y. Ren, Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic
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J. Comput. Appl. Math. 223 (2009) 901–907.

[20] Y. Shi, Y. Gu and K. Liu, Comparison theorems of backward doubly stochastic differential equations and applications. Stoch.
Anal. Appl. 23 (2005) 97–110.

[21] J. Shi and Z. Wu, The maximum principle for fully coupled forward backward stochastic control system. Acta Automat. Sinica
32 (2006) 161–169.

[22] J. Shi and Z. Wu, Maximum principle for partially-observed optimal control of fully-coupled forward-backward stochastic
systems. J. Optim. Theory Appl. 145 (2010) 543–578.

[23] S. Tang, The maximum principle for partially observed optimal control of stochastic differential equations. SIAM J. Control
Optim. 36 (1998) 1596–1617.

[24] G. Wang and Z. Wu, The maximum principle for stochastic recursive optimal control problems under partial information.
IEEE Trans. Autom. Control 54 (2009) 1230–1242.



PARTIALLY OBSERVED OPTIMAL CONTROLS OF FORWARD-BACKWARD DOUBLY STOCHASTIC SYSTEMS 843

[25] Z. Wu, Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems. Syst. Sci. Math.
Sci. 11 (1998) 249–259.

[26] Z. Wu, A maximum principle for partially observed optimal control of forward-backward stochastic control systems. Sci. China
Ser. F 53 (2010) 2205–2214.

[27] W. Xu, Stochastic maximum principle for optimal control problem of forward and backward system. J. Aust. Math. Soc. 37
(1995) 172–185.

[28] L. Zhang and Y. Shi, Maximum principle for forward-backward doubly stochastic control systems and applications. ESAIM:
COCV 17 (2011) 1174–1197.

[29] L. Zhang and Y. Shi, Optimal Control of Stochastic Partial Differential Equations (2010) arXiv:1009.6061v2.

[30] Q. Zhang and H. Zhao, Pathwise stationary solutions of stochastic partial differential equations and backward doubly stochastic
differential equations on infinite horizon. J. Funct. Anal. 252 (2007) 171–219.

[31] Q. Zhang and H. Zhao, Stationary solutions of SPDEs and infinite horizon BDSDEs under non-Lipschitz coefficients. J. Differ.
Equations 248 (2010) 953–991.

[32] Q. Zhu, T. Wang and Y. Shi, Maximum principle for partially observed optimal control of backward doubly stochastic systems,
in Proc. of the 30th Chinese Control Conference (2011) 1383–1388.


	Introduction
	Preliminaries and problem formulation
	Partially-observed stochastic maximum principle
	Applications in LQ control problems
	Appendix: The proof of Proposition 2.1
	References

