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NOTE ON THE INTERNAL STABILIZATION OF STOCHASTIC PARABOLIC
EQUATIONS WITH LINEARLY MULTIPLICATIVE GAUSSIAN NOISE ∗
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Abstract. The parabolic equations driven by linearly multiplicative Gaussian noise are stabilizable in
probability by linear feedback controllers with support in a suitably chosen open subset of the domain.
This procedure extends to Navier−Stokes equations with multiplicative noise. The exact controllability
is also discussed.

Mathematics Subject Classification. 35Q30, 60H15, 35B40.

Received April 26, 2012. Revised November 3, 2012.
Published online July 4, 2013.

1. Introduction

Consider the stochastic nonlinear controlled parabolic equation

dX(t) −ΔX(t)dt+ a(t, ξ)X(t)dt+ b(t, ξ) · ∇ξX(t)dt

+f(X(t))dt = X(t)dW (t) + 1O0u(t)dt in (0,∞) ×O,
X = 0 on (0,∞) × ∂O, X(0) = x in O.

(1.1)

Here, O is a bounded and open domain of R
d, d ≥ 1, with smooth boundary ∂O and W (t) is a Wiener process

of the form

W (t) =
∞∑

k=1

μkek(ξ)βk(t), t ≥ 0, ξ ∈ O, (1.2)

where μk are real numbers, {ek} is an orthonormal basis in L2(O), {ek} ⊂ C2(O) and {βk}∞k=1 are independent
Brownian motions in a stochastic basis {Ω,F ,Ft,P}. Throughout this work, we assume that

∞∑
k=1

μ2
k|ek|2∞ <∞, (1.3)

where | · |∞ denotes the L∞(O)-norm.
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Romania. viorelbarbu<vbarbu41@gmail.com>

Article published by EDP Sciences c© EDP Sciences, SMAI 2013

http://dx.doi.org/10.1051/cocv/2012044
http://www.esaim-cocv.org
http://www.edpsciences.org


1056 V. BARBU

The function a : [0,∞) ×O → R, b : [0,∞) ×O → R
d and f : R → R are assumed to satisfy

a ∈ C([0,∞) ×O), b ∈ C1([0,∞) ×O) (1.4)

sup{|a(t)|∞ + |∇b(t)|∞; t ≥ 0} <∞ (1.5)

f ∈ Lip(R), f(0) = 0. (1.6)

Finally, O0 is an open subdomain of O with smooth boundary, 1O0 is its characteristic function and u = u(t, ξ)
is an adapted controller with respect to the natural filtration {Ft}.

The main problem we address here is the design of a feedback controller u = F (X) such that the corresponding
closed loop system (1.1) is asymptotically stable in probability, that is,

lim
t→∞ X(t) = 0 in L2(O), P-a.s.

The construction of this stabilizing feedback controller is given in Theorem 2.1 and this idea was already
used to stabilize the deterministic Navier−Stokes equation [4]. However, the extention to the stochastic case
is not immediate and less obvious; some sharper arguments involving the martingale convergence theorem are
necessary. It should be said, in this context, that a stronger property, the exact controllability of (1.1) in finite
time, is in general still an open problem. (See, however, [5, 9, 11, 14] for partial results). A similar result is
established (see Thm. 4.1) for the 2−D Navier–Stokes equations with multiplicative noise.

Notation
By L2(O) we denote the space of all Lebesgue square integrable functions on O with the norm | · |2 and the scalar
product 〈·, ·〉. The scalar product of L2(O0) is denoted by 〈·, ·〉0. If Y is a Banach space with the norm ‖ · ‖Y ,
we denote by Lp(0, T ;Y ), 1 ≤ p ≤ ∞, the space of all Bochner measurable functions u : (0, T ) → Y with
‖u‖Y ∈ Lp(0, T ). By C([0, T ];Y ), we denote the space of all continuous Y -valued functions on [0, T ]. We denote
also by Hk(O), k = 1, 2, the standard Sobolev space of functions on O, H1

0 (O) = {y ∈ H1(O); y = 0 on ∂O}.
Given an Ft-adapted process u ∈ L2(0, T ;L2(Ω,L2(O))), an Ft-adapted process X : [0, T ] → L2(O) with

P-a.s. continuous sample paths is said to be a solution to (1.1) if it is in C([0, T ];L2(Ω;L2(O))) and

X(t, ξ) = x+
∫ t

0

(ΔX(s, ξ) − a(t, ξ)X(s, ξ) − b(s, ξ) · ∇ξX(s, ξ)

+ f(X(s, ξ)))ds+
∫ t

0

1O0u(s, ξ)ds+
∫ t

0

X(s, ξ)dW (s),

ξ ∈ O, t ∈ (0, T ), P-a.s.,

where the integral is considered in sense of Itô with respect to the Wiener process W (see [10]). We refer to [10],
Proposition 6.1, for the existence and uniqueness of such a solution. Moreover, by the Burkholder−Davis−Gundy
theorem, if follows also that X ∈ L2(Ω;L∞(0, T ;L2(O))).

2. The stabilization of equation (1.1)

We set O1 = O \ O0 and denote by A1 : D(A1) ⊂ L2(O1) → L2(O) defined by

A1y = −Δy, y ∈ D(A1) = H1
0 (O1) ∩H2(O1), (2.7)

or, equivalently,

〈A1y, z〉1 =
∫
O1

∇y · ∇z dξ, ∀y, z ∈ H1
0 (O1), (2.8)

where 〈·, ·〉1 is the duality on H1
0 (O1) ×H−1(O1) induced by L2(O1) as pivot space.
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Denote by λ∗1(O1) the first eigenvalue of the operator A1, that is,

λ∗1(O1) = inf
{∫

O1

|∇y|2dξ; y ∈ H1
0 (O1),

∫
O1

y2dξ = 1
}
. (2.9)

Consider in (1.1) the feedback controller
u = −ηX, η ∈ R

+, (2.10)

and the corresponding closed loop system

dX −ΔXdt+ aXdt+ b · ∇Xdt+ f(X)dt = Xdt− η1O0Xdt+XdW in (0,∞) ×O,
X(0) = x in O,
X = 0 on (0,∞) × ∂O.

(2.11)

Theorem 2.1 is the main result.

Theorem 2.1. Assume that

λ∗1(O1) − 1
2

∞∑
j=1

μ2
j |ej |2∞ − ‖f‖Lip − sup

{
−a(t, ξ) +

1
2

divξb(t, ξ); (t, ξ) ∈ R
+ ×O

}
> 0. (2.12)

Then, for each x ∈ L2(O) and for η sufficiently large (independent of x), the feedback controller (2.10) exponen-
tially stabilizes in probability equation (1.1). More precisely, there is a γ > 0 such that the solution X to (2.11)
satisfies

lim
t→∞ eγt|X(t)|22 = 0, P-a.s. (2.13)

eγt
E|X(t)|22 + E

∫ ∞

0

eγt|X(t)|22dt ≤ C|x|22. (2.14)

We recall that, by the classical Rayleigh–Faber–Krahn perimetric inequality in dimension d ≥ 1, we have

λ∗1(O1) ≥
(
ωd

|O1|
) 2

d

J d
2−1,1, (2.15)

where |O1| = Vol(O1), ωd = π
d
2 /
(
Γ
(

d
2 + 1

))
, and Jm,1 is the first positive zero of the Bessel function Im(r).

Hence, by Theorem 2.1, we conclude that, if |O1| is sufficiently small, then the feedback controller (2.10)
exponentially stabilizes the system. More precisely, we have

Corollary 2.2. Assume that

|O1| < ωdJ
d
2
d
2−1,1

⎛⎝1
2

∞∑
j=1

μ2
j |ej |2∞ + sup

R+×O

{
−a+

1
2

divξb

}
+ ‖f‖Lip

⎞⎠−
d
2

. (2.16)

Then, for each x ∈ L2(O) and η sufficiently large, the feedback controller (2.10) stabilizes system (1.1) in sense
of (2.13), (2.14).

We note that, in particular, condition (2.16) is satisfied if the Hausdorff distance dH(∂O, ∂O0) is sufficiently
small.
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Remark 2.3. One might suspect that system (1.1) is stabilizable and even exact null controllable in probability
by controllers u with support in an arbitrary open subset O0 ⊂ O, as is the case in the deterministic case (see,
e.g., [2, 3, 7]), but so far this is an open problem. (More will be said about this in Sect. 5 below).

Roughly speaking, Theorem 2.1 amounts to saying that the stochastic perturbation destabilizing effect in
system (1.1) can be compensated by a linear stabilizing feedback controller with support in a subdomain O0

satisfying (2.16).

An example. The stochastic equation

dX −Xξξdt+ (aX + bXξ)dt = μXdβ + V dt, 0 < ξ < 1,

X(t, 0) = X(t, 1) = 0, t ≥ 0,

where β is a Brownian motion and μ ∈ R, a ∈ C([0, T ] × R), b ∈ C1([0, 1] × R), is exponentially stabilizable in
probability by any feedback controller V = −η1[a1,a2]X , where η > 0 is sufficiently large and 0 < a1 < a2 < 1
are such that (see (2.12)) (

π

a2 − a1

)2

>
μ2

2
+ sup

(t,ξ)∈R+×(0,1)

{
−a(t, ξ) +

1
2
bξ(t, ξ)

}
.

3. Proof of Theorem 2.1

The main ingredient of the proof is the following lemma.

Lemma 3.1. For each ε > 0 there is η0 = η0(ε) such that∫
O
|∇y(ξ)|2dξ + η

∫
O0

y2(ξ)dξ ≥ (λ∗1(O1) − ε)|y|22, ∀y ∈ H1
0 (O), η ≥ η0. (3.17)

The proof is well known (see [1, 4]), but we outline it for the sake of completeness. Denote by νη
1 the first

eigenvalue of the self-adjoint operator

Aηy = Ay + η1O0y, ∀y ∈ D(Aη) = H1
0 (O) ∩H2(O),

where A = −Δ, D(A) = H1
0 (O) ∩H2(O) and η ∈ R

+.
We have by the Rayleigh formula

νη
1 = inf

{∫
O
|∇y|2dξ + η

∫
O0

|y|2dξ; |y|2 = 1
}

≤ λ∗1(O1) (3.18)

because any function y ∈ H1
0 (O1) can be extended by zero to H1

0 (O) across the smooth boundary ∂O1 = ∂O0.
Let ϕη

1 ∈ H1
0 (O) ∩H2(O) be such that

Aηϕη
1 = νη

1ϕ
η
1 , |ϕη

1 |2 = 1.

We have by (3.18) that ∫
O
|∇ϕη

1 |2dξ + η

∫
O0

|ϕη
1 |2dξ = νη

1 ≤ λ∗1(O), ∀η > 0.

Then, on a subsequence, again denoted η, we have for η → ∞, that νη
1 → ν∗ and

ϕη
1 → ϕ1 weakly in H1

0 (O), strongly in L2(O)∫
O0

|ϕη
1 |2dξ → 0.
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We have, therefore, ϕ1 ∈ H1
0 (O1), |ϕ1|L2(O0) = 0 andA1ϕ1 = ν∗ϕ1. Moreover, by (3.18) we see that ν∗ ≤ λ∗1(O1).

Since λ∗1(O1) is the first eigenvalue of A1, we have that ν∗ = λ∗1(O1) and so, by (3.18) we have

lim
η→∞ inf

{∫
O
|∇y|2dξ + η

∫
O0

y2dξ; |y|2 = 1
}

= λ∗1(O1).

This yields (3.17), as claimed.

Proof of Theorem 2.1 (continued). By applying Itô’s formula in (2.11) to the function ϕ(t, x) = 1
2 eγt|x|22, we

obtain that
1
2

d(eγt|X(t)|22) +
∫
O

eγt|∇X(t, ξ)|2dξ

+
∫
O

eγt(a(t, ξ) − γ

2
− 1

2
divξb(t, ξ)X2(t, ξ) + f(X(t, ξ))X(t, ξ))dξ

=
1
2

∫
O

eγt
∞∑

k=1

|(Xek)(t, ξ)|2dξ − η

∫
O0

eγt|X(t, ξ)|2dξ

+
∫
O

eγt
∞∑

k=1

(Xek)(t, ξ)X(t, ξ)dβk(t), P-a.s., t ≥ 0.

�

Equivalently,
1
2

eγt|X(t)|22 +
∫ t

0

K(s)ds =
1
2
|x|22 +M(t), t ≥ 0, P-a.s., (3.19)

where
K(t) =

∫
O

eγt(|∇X(t, ξ)|2 + (a(t, ξ) − γ

2
− 1

2
divξb(t, ξ))|X(t, ξ)|2

+f(X(t, ξ))X(t, ξ) − 1
2

∞∑
k=1

X2(t, ξ)e2
k(ξ))dξ + η

∫
O0

eγt|X(t, ξ)|2dξ,
(3.20)

M(t) =
∫ t

0

∫
O

∞∑
k=1

eγsX2(s, ξ)ek(s, ξ)dβk(s), t ≥ 0. (3.21)

By Lemma 3.1 and by (2.12), we see that, for η ≥ η0 sufficiently large and 0 < γ ≤ γ0 sufficiently small, we
have

K(t) ≥ ε0

∫
O

eγt|X(t, ξ)|2dξ, ∀t > 0, P-a.s., (3.22)

where ε0 > 0. Taking expectation into (3.19), we obtain that

1
2

eγt
E|X(t)|22 + ε0

∫ t

0

eγs
E|X(s)|22ds ≤

1
2
|x|22, ∀t ≥ 0. (3.23)

Since t → ∫ t

0
K(s) is an a.s. nondecreasing stochastic process, eγt|X(t)|22 is a nonnegative semi-martingale and

t→ M(t) is a continuous local martingale, we infer by Theorem 7 [13], page 139, that there exist P-a.s.

lim
t→∞(eγt|X(t)|22) <∞, K(∞) <∞,

which, by virtue of (3.19), imply (2.13), (2.14), as claimed.

Remark 3.2. By the proof, it is clear that Theorem 2.1 extends to more general nonlinear functions f =
f(t, ξ, x), as well as to smooth functions μk = μk(t, ξ). Also, the Lipschitz condition (1.6) can be weakened to f
continuous, monotonically increasing and with polynomial growth. Moreover,Δ can be replaced by any strongly
elliptic linear operator in O. The details are omitted.



1060 V. BARBU

4. Stabilization of Navier–Stokes equations
with multiplicative noise

We consider here the stochastic Navier–Stokes equation

dX(t) − νΔX(t)dt+ (a(t) · ∇)X(t)dt + (X(t) · ∇)b(t)dt+ (X(t) · ∇)X(t)dt

= X(t)dW (t) + ∇p(t)dt+ 1O0u(t)dt in (0,∞) ×O,
∇ ·X(t) = 0 in (0,∞) ×O,
X(t) = 0 on (0,∞) × ∂O, X(0) = x in O,

(4.24)

where ν > 0, a, b ∈ (C1((0,∞)×O))2, ∇· a = ∇ · b = 0, a ·n = b ·n = 0 on ∂O. Here O is a bounded and open
domain of R

2 and O0 is an open subset of O. The boundaries ∂O and ∂O0 are assumed to be smooth. We set

H = {y ∈ (L2(O))2; ∇ · y = 0, y · n = 0 on ∂O},

where n is the normal to ∂O. We denote by 〈·, ·〉H the scalar product of H and by | · |H the norm. The Wiener
process W (t) is of the form (1.2), where {ek} ⊂ (C2(O))2 is an orthonormal basis in H , and μk ∈ R. As in the
previous case, the main objective here is the design of a stabilizable feedback controller u for equation (2.10).

We use the standard notations

V = {y ∈ H ∩ (H1
0 (O))2; ∇ · y = 0 in O},

A = −νΠΔ, D(A) = (H2(O))2 ∩ V,

and rewrite (4.24) as

dX +AXdt+Π((a(t) · ∇)X + (X · ∇)b(t)dt) = Π(XdW ),

X(0) = x,
(4.24)′

where Π is the Leray projector on H . Consider the Stokes operator A1 on O1 = O \ O0, that is,

〈A1y, ϕ〉 = ν

2∑
i=1

∫
O1

∇yi · ∇ϕidξ, ∀ϕ ∈ V1,

where V1 = {y ∈ (H1
0 (O1))2; ∇ · y = 0 in O1}. Denote again by λ∗1(O1) the first eigenvalue of A1, that is,

λ∗1(O1) = inf

{
ν

2∑
i=1

∫
O
|∇ϕi|2dξ, ϕ = {ϕ1, ϕ2} ∈ V1,

∫
O1

|ϕ|2dξ = 1

}
. (4.25)

Also, in this case, we have (see Lem. 1 in [4]), for η ≥ η0(ε) and ε > 0,

〈Ay, y〉H + η 〈Π(1O0y), y〉H ≥ (λ∗1(O1) − ε)|y|2H , ∀y ∈ V. (4.26)

We consider in system (4.24) the linear feedback controller

u = −ηX, η > 0. (4.27)

We set

γ∗(t) = sup
{∫

O
|yiDibjyjdξ|; |y|H = 1

}
<∞,
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where b = {b1, b2}. We have

Theorem 4.1. Assume that

λ∗1(O1) >
1
2

∞∑
j=1

μ2
j |ej |2∞ + sup

t∈R+
γ∗(t). (4.28)

Then, for each x ∈ H and η sufficiently large and independent of x, the solution X to the closed loop
system (4.24) with the feedback controller (4.27) satisfies

E[eγt|X(t)|2H ] +
∫ ∞

0

eγt
E|X(t)|2Hdt < C|x|2H , (4.29)

lim
t→∞ eγt|X(t)|2H = 0, P-a.s., (4.30)

for some γ > 0.

The proof is essentially the same as that of Theorem 2.1, and so it will be sketched only. Taking into account that

〈(X · ∇)X,X〉H + 〈(a(t) · ∇)X,X〉H = 0, t > 0, P-a.s.,

we obtain by (4.24), (4.27), via Itô’s formula, that

1
2

eγt|X(t)|2H +
∫ t

0

eγs

(
〈AX(s), X(s)〉H + 〈X(s) · ∇b(s), X(s)〉H

−γ
2
|X(s)|22 −

1
2

∞∑
j=1

|X(s)ej|2H + η 〈1O0X(s), X(s)〉H
)

ds

=
1
2
|x|2H +

∫ t

0

eγs
∞∑

j=1

〈X(s)ej, X(s)〉H dβj(s), t ≥ 0.

(4.31)

Then, by virtue of (4.26) and (4.28), we have, by (4.31), that
1
2

eγt|X(t)|2H + I(t) =
1
2
|x|2H +M∗(t), t ≥ 0, P-a.s.,

where the first left hand side term is a nonnegative semi-martingale, I(t) is a nondecreasing process, which
satisfies

E[I(t)] ≥ ε0

∫ t

0

eγs
E|X(s)|2Hds, ∀t ≥ 0,

for η sufficiently large, and M∗(t) =
∫ t

0 eγs

∞∑
j=1

〈X(s)ej, X(s)〉H dβj(s) is a continuous local martingale. As

in the previous case, this implies via Theorem 7 [13] that lim
t→∞ eγt|X(t)|2H exists P-a.s. and, therefore, (4.29)

and (4.30) hold.

5. Final remarks

In order to make clear the novelty of the above results and the principal difficulties related to the internal
stabilization of equations (1.1) and (4.24), we note that, via the substitution y = eW (t)X , equation (1.1) reduces
to a parabolic equation of the form

∂y

∂t
−Δy + ã(t)y + b̃(t) · ∇y +

1
2

∞∑
i=1

μ2
ke2

ky = 1O0u, P-a.s.,

y = 0 on (0,∞) × ∂O,
(5.32)

with random coefficients ã, b̃.
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If ã and b̃ are independent functions of t, then (5.32) can be stabilized by a controller u =
∑N

j=1 uj(t)ψj ,
where ψj are linear combinations of eigenfunctions of the dual operator y → −Δy + ãy − div(by) (see [7] or [3]
for the case of Navier–Stokes equations).

For deterministic equations with smooth time dependent coefficients, a similar result was recently proved
in [6] (for the Navier–Stokes equations), but it cannot be applied, however, to the random equation (5.32) since
it does not provide an adapted stabilizable controller u = u(t). (The reason is that the argument in [6] relies on
exact P-a.s. controllability of (5.32) via an adapted controller u which so far is still an open problem).

By the new procedure we use here, we circumvert this basic difficulty by constructing an explicit feedback
adapted controller and avoiding so the exact controllability of the stochastic equation with multiplicative noise
which is equivalent to an open problem: observability inequality for the dual stochastic equation.

On these lines, we briefly present below a partial result on exact controllability of the linear Stokes equa-
tion (4.24), that is,

dX−νΔXdt+ (a·∇)X dt+ (X ·∇)b dt = X dW + ∇p dt+ 1O0u dt

X = 0 on (0,∞) × ∂O, X(0) = x in O, (5.33)

which can be obtained by such a rescaling argument in the special case, where

W (t) =
M∑

j=1

μj(t)βj(t), (5.34)

where μj are adapted processes which are in L∞((0, T )×Ω). By the transformationX = exp
(∫ t

0

∑M
j=1 μjdβj

)
y,

we reduce equation (5.33) via Itô’s formula to

∂y

∂t
− νΔy + (a(t) · ∇)y + (y · ∇)b(t) + μ̃(t)y = 1O0v in (0, T ) ×O,

y(0) = x in O,
∇ · y = 0, y = 0 on (0, T ) × ∂O.

(5.35)

Here, v(t) = exp
(
− ∫ t

0

∑M
j=1 μjdβj

)
u, μ̃ = 1

2

∑M
j=1 μ

2
j .

We set z(t) = exp(
∫ t

0 μ̃(s)ds)y(t). Then, (5.35) reduces to

∂

∂t
z − νΔz + (a(t) · ∇)z + (z · ∇)b(t) = 1O0 exp

⎛⎝∫ t

0

μ̃(s)ds−
∫ t

0

M∑
j=1

μj(s)dβj(s)

⎞⎠ u = 1O0v(t),

z(0) = x in O,
∇ · z = 0, z = 0 on (0, T )× ∂O.

(5.36)

On the other hand, we know (see [14]) that (5.36) is exactly null controllable, that is, there is a controller
v ∈ L2(0, T ) × O such that z(T ) ≡ 0. This means that (5.35) is exactly null controllable by the adapted
(progressively measurable) controller

u(t, ξ) = exp

⎛⎝−
∫ t

0

M∑
j=1

μjdβj +
∫ t

0

μ̃ ds

⎞⎠ v(t, ξ).

We have proved, therefore,

Theorem 5.1. There is an adapted controller u such that the solution X to (5.33) satisfies X(T, ξ) ≡
0, P-a.s., ξ ∈ O.
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Remark 5.2. A similar result can be obtained via the above argument on the parabolic equation (1.1) in the
special case where the Gaussian process W is of the form (5.34) with {Ft}-adapted coefficients μj . Such a result
was obtained in [9] by a more intricate argument involving the Carleman inequality for the stochastic backward
equation. It should be said, however, that the results of [9] refer to a controller 1O01Eu, where E is a measurable
set of (0, T ).
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