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A GAME INTERPRETATION OF THE NEUMANN PROBLEM FOR FULLY
NONLINEAR PARABOLIC AND ELLIPTIC EQUATIONS
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Abstract. We provide a deterministic-control-based interpretation for a broad class of fully nonlinear
parabolic and elliptic PDEs with continuous Neumann boundary conditions in a smooth domain. We
construct families of two-person games depending on a small parameter ε which extend those proposed
by Kohn and Serfaty [21]. These new games treat a Neumann boundary condition by introducing some
specific rules near the boundary. We show that the value function converges, in the viscosity sense,
to the solution of the PDE as ε tends to zero. Moreover, our construction allows us to treat both the
oblique and the mixed type Dirichlet–Neumann boundary conditions.
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1. Introduction

In this paper, we propose a deterministic control interpretation, via “two-person repeated games”, for a broad
class of fully nonlinear equations of elliptic or parabolic type with a continuous Neumann boundary condition
in a smooth (not necessarily bounded) domain. In their seminal paper [21], Kohn and Serfaty focused on one
hand on the whole space case in the parabolic setting and on the other hand on the Dirichlet problem in the
elliptic framework. They construct a monotone and consistent difference approximation of the operator from
the dynamic programming principle associated to the game.

Our motivation here is to adapt their approach to the Neumann problem in both settings. Furthermore, once
this issue is solved, we will see how the oblique or the mixed type Dirichlet–Neumann boundary problem can
also be treated by this analysis. We consider equations in a domain Ω ⊂ RN having the form

−ut + f(t, x, u,Du,D2u) = 0 (1.1)

or

f(x, u,Du,D2u) + λu = 0, (1.2)
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where f is elliptic in the sense that f is monotone in its last variable, subject to the Neumann boundary
condition

∂u

∂n
= h. (1.3)

As in [21], the class of functions f considered is large, including those that are non-monotone in the u argument
and degenerate in theD2u argument. We make the same hypotheses on the continuity, growth, and u-dependence
of f imposed in [21]. They are recalled at the end of the section. In the stationary setting (1.2), we focus on the
Neumann problem, solving the equation in a domain Ω with (1.3) at ∂Ω. In the time-dependent setting (1.1),
we address the Cauchy problem, solving the equation with (1.3) at ∂Ω for t < T and u = g at terminal time
t = T . The PDEs and boundary conditions are always interpreted in the “viscosity sense” (Sect. 3 presents a
review of this notion).

Our games have two opposite players, Helen and Mark, who always make decisions rationally and determin-
istically. The rules depend on the form of the equation, but there is always a small parameter ε, which governs
the spatial step size and (in time-dependent problems) the time step. Helen’s goal is to optimize her worst-case
outcome. When f is independent of u, we shall characterize her value function uε by the dynamic programming
principle. If f depends also on u, the technicality of our arguments requires to introduce a level-set formulation
since the uniqueness of the viscosity solution is no longer guaranteed. The score Uε of Helen now depends on a
new parameter z ∈ R. In the parabolic setting, it is defined by an induction backward in time given by

∀z ∈ R, Uε(x, z, t) = max
p,Γ

min
Δx̂

Uε(x+Δx, z +Δz, t+Δt),

endowed with the final-time condition Uε(x, z, t) = g(x) − z. The max on p, Γ , the min on Δx̂ as well as the
definitions of Δx, Δz and Δt are given by some constraints depending on the rules of the game and some
powers of ε. This dynamic programming principle is similar to the one given in [21], Section 2.3. In that case,
our value functions uε of interest are defined through the 0-level set of Uε with respect to z as the maximal and
the minimal solutions of Uε(x, z, t) = 0. They satisfy two dynamic programming inequalities (for the details of
our games and the definition of Helen’s value function, see Sect. 2).

Roughly speaking, our main result states that

lim sup
ε→0

uε is a viscosity subsolution of the PDE, and

lim inf
ε→0

uε is a viscosity supersolution of the PDE.

For the general theory of viscosity solutions to fully nonlinear equations with Neumann (or oblique) boundary
condition the reader is referred to [3, 12, 19]. As for the Neumann boundary condition, its relaxation in the
viscosity sense was first proposed by Lions [22].

Our result is most interesting when the PDE has a comparison principle, i.e. when every subsolution must lie
below any supersolution. For such equations, we conclude that limuε exists and is the unique viscosity solution
of the PDE. In the case when f is continuous in all its variables, there are already a lot of comparison and
existence results for viscosity solutions of second order parabolic PDEs with general Neumann type boundary
conditions. We refer for this to [3, 5, 19, 22] and references therein. For homogeneous Neumann conditions,
Sato [27] has obtained such a comparison principle for certain parabolic PDEs.

We are interested here in giving a game interpretation for fully nonlinear parabolic and elliptic equations with
a Neumann condition. Applications of the Neumann condition to deterministic optimal control and differential
games theory in [22] rely much on a reflection process, the solution of the deterministic Skorokhod problem.
Its properties in differents situations are studied in many articles such as [13,24,28]. The case of the Neumann
problem for the motion by mean curvature was studied by Giga and Liu [17]. There, a billiard game was
introduced to extend the interpretation made by Kohn and Serfaty [20] via the game of Paul and Carol. It
was based on the natural idea that a homogeneous Neumann condition will be well-modeled by a reflection
on the boundary. Liu also applies this billiard dynamics to study some first order Hamilton–Jacobi equations
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with Neumann or oblique boundary conditions [25]. Nevertheless, in our case, if we want to give a billiard
interpretation with a bouncing rule which can send the particle far from the boundary, we can only manage to
solve the homogeneous case. This is not too surprising because the reflection across ∂Ω is precisely associated
to a homogeneous Neumann condition.

Another approach linked to the Neumann condition is to proceed by penalization on the dynamics. For
a bounded convex domain, Lions, Menaldi and Sznitman [23] construct a sequence of stochastic differential
equations with a term in the drift coefficients that strongly penalizes the process from leaving the domain.
Its solution converges towards a diffusion process which reflects across the boundary with respect to the nor-
mal vector. Barles and Lions [7] also treat the oblique case by precisely establishing the links between some
approximated processes and the elliptic operators associated to the original oblique stochastic dynamics.

Instead of a billiard, our approach here proceeds by a suitable penalization on the dynamics depending on
the Neumann boundary condition. It will be favorable to one player or the other according to its sign. We
modify the rules of the game only in a small neighborhood of the boundary. The particle driven by the players
can leave the domain but then it is projected within. This particular move, combined with a proper weight
associated to the Neumann boundary condition, gives the required penalization. Outside this region, the usual
rules are conserved. Therefore the previous analysis within Ω done by Kohn and Serfaty can be preserved. We
focus all along this article on the changes near the boundary and their consequences on the global convergence
theorem. In this context, the modification of the rules of the original game introduces many additional difficulties
intervening at the different steps of the proof. Most of all, they are due to the geometry of the domain or the
distance to the boundary. As a result, our games seem like a natural adaptation of the games proposed by Kohn
and Serfaty by permitting to solve an inhomogeneous Neumann condition h depending on x on the boundary.
We only require h to be continuous and uniformly bounded, the domain to be C2 and to satisfy some natural
geometric conditions in order to ensure the well-posedness of our games. Moreover our approach can easily be
extended both to the oblique and the mixed Neumann–Dirichlet boundary conditions in both parabolic and
elliptic settings. Our games can be compared to those proposed in [21] for the elliptic Dirichlet problem: if
the particle crosses the boundary, the game is immediately stopped and Helen receives a bonus b(xF ) where
b corresponds to the Dirichlet boundary condition and xF is the final position. Meanwhile, our games cannot
stop unexpectedly, no matter the boundary is crossed or not.

Our games, like the ones proposed by Kohn and Serfaty, are deterministic but closely related to a recently
developed stochastic representation due to Cheridito, Soner, Touzi and Victoir [11] (their work uses a backward
stochastic differential equation, BSDE, whose structure depends on the form of the equation).

Another interpretation is to look our games as a numerical scheme whose solution is an approximation of
a solution of a certain PDE. This aspect is classical and has already been exploited in several contexts. We
mention the work of Peres, Schramm, Sheffield and Wilson [26] who showed that the infinity Laplace equation
describes the continuum limit of the value function of a two-player, random-turn game called ε-step tug-of-war.
In a related work, Armstrong, Smart and Sommersille [2] obtained existence, uniqueness and stability results
for an infinity Laplace equation with mixed Dirichlet–Neumann boundary terms by comparing solutions of the
PDE to subsolutions and supersolutions of a certain finite difference scheme, by following a previous work of
Armstrong and Smart for the Dirichlet case [1].

This paper is organized as follows:
• Section 2 presents the two-person games that we associate with the PDEs (1.1) and (1.2), motivating and

stating our main results. The section starts with a simple case before adressing the general one. Understand-
ing our games is still easy, though the technicality of our proofs is increased. Since f depends on u, the game
determines a pair of value functions uε and vε. Section 2.2.1 gives a formal argument linking the principle
of dynamic programming to the PDE in the limit ε → 0 and giving the optimal strategies for Helen that
will be essential to obtain consistency at Section 4.

• Section 3 addresses the link between our game and the PDE with full rigor. The proofs of convergence
follow the background method of Barles and Souganidis [10], i.e. they use the stability, monotonicity and
consistency of the schemes provided by our games. Their theorem states that if a numerical scheme is
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monotone, stable, and consistent, then the associated “lower semi-relaxed limit” is a viscosity supersolution
and the associated “upper semi-relaxed limit” is a viscosity subsolution. The main result in Section 3 is a
specialization of their theorem in our framework: if vε and uε remain bounded as ε → 0 then the lower
relaxed semi-limit of vε is a viscosity supersolution and the upper relaxed semi-limit of uε is a viscosity
subsolution. We also have vε ≤ uε with no extra hypothesis in the parabolic setting, or if f is monotone in
u in the elliptic setting. If the PDE has a comparison principle (see [10]) then it follows that lim uε = lim vε

exists and is the unique viscosity solution of the PDE.
• The analysis in Section 3 shows that consistency and stability imply convergence. Sections 4 and 5 provide

the required consistency and stability results. The new difficulties due to the penalization corresponding
to the Neumann condition arise here. The main difficulty is to control the degeneration of the consistency
estimate obtained in [21] with respect to the penalization. Therefore we will mainly focus on the consistency
estimates whereas the needed changes for stability will be simply indicated.

• Section 6 describes the games associated on one hand to the oblique problem in the parabolic setting and
on the other hand to the mixed type Dirichlet–Neumann boundary conditions in the elliptic framework. By
combining the results associated to the game associated to the Neumann problem in Section 2 with the ideas
already presented in [21], we can obtain the results of convergence.

Notation. The term domain will be reserved for a nonempty, connected, and open subset of RN . If x, y ∈ RN ,
〈x, y〉 denotes the usual Euclidean inner product and ‖x‖ the Euclidean length of x. If A is a N × N matrix,
‖A‖ denotes the operator norm ‖A‖ = sup

‖x‖≤1

‖Ax‖. SN denotes the set of symmetric N ×N matrices and Eij

the (i, j)-th matrix unit, the matrix whose only nonzero element is equal to 1 and occupies the (i, j)-th position.
Let O be a domain in RN and Ckb (O) be the vector space of k-times continuously differentiable functions u:

O → R, such that all the partial derivatives of u up to order k are bounded on O. For a domain Ω, we define

Ckb (Ω) =
{
u ∈ L∞(Ω) : ∃O ⊃ Ω,O domain, ∃v ∈ Ckb (O) s.t. u = v|Ω

}
.

It is equipped with the norm ‖·‖Ck
b (Ω) given by ‖φ‖Ck

b (Ω) =
k∑
i=0

‖Diφ‖L∞(Ω).

If Ω is a smooth domain, say C2, the distance function to ∂Ω is denoted by d = d(·, ∂Ω), and we recall that,
for all x ∈ ∂Ω, the outward normal n(x) to ∂Ω at x is given by n(x) = −Dd(x).

Observe that, if ∂Ω is assumed to be bounded and at least of class C2, any x ∈ RN lying in a sufficiently
small neighborhood of the boundary admits a unique projection onto ∂Ω, denoted by

x̄ = proj∂Ω(x).

In particular, the vector x− x̄ is parallel to n(x̄). The projection onto Ω will be denoted by projΩ. When it is
well–defined, it can be decomposed as

projΩ(x) =

{
proj∂Ω(x), if x /∈ Ω,

x, if x ∈ Ω.

For each a > 0, we define Ω(a) = {x ∈ Ω : d(x) < a}. We recall the following classical geometric condition (see
e.g. [14]).

Definition 1.1 (Interior ball condition). The domain Ω satisfies the interior ball condition at x0 ∈ ∂Ω if there
exists an open ball B ⊂ Ω with x0 ∈ ∂B.

We close this introduction by listing our main hypotheses on the form of the PDE. First of all we precise
some hypotheses on the domain Ω. Throughout this article, Ω will denote a C2-domain. In the unbounded case,
we impose the following slightly stronger condition than the interior ball condition.
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Definition 1.2 (Uniform interior/exterior ball condition). The domain Ω satisfies the uniform interior ball
condition if there exists r > 0 such that for all x ∈ ∂Ω there exists an open ball B ⊂ Ω with x ∈ ∂B and
radius r. Moreover, the domain Ω satisfies the uniform exterior ball condition if RN\Ω satisfies the uniform
interior ball condition.

We observe that the uniform interior ball condition implies the interior ball condition and that both the
uniform interior and exterior ball conditions hold automatically for a C2-bounded domain.

The Neumann boundary condition h is assumed to be continuous and uniformly bounded on ∂Ω. Similarly,
in the parabolic framework, the final-time data g is supposed to be continuous and uniformly bounded on Ω.

The real-valued function f in (1.1) is defined on R × Ω × R × RN × SN . It is assumed throughout to be a
continuous function of all its variables, and also that

• f is monotone in Γ in the sense that

f(t, x, z, p, Γ1 + Γ2) ≤ f(t, x, z, p, Γ1) for Γ2 ≥ 0. (1.4)

In the time-dependent setting (1.1) we permit f to grow linearly in |z| (so solutions can grow exponentially,
but cannot blow up). However we require uniform control in x (so solutions remain bounded as ‖x‖ → ∞ with
t fixed). In fact we assume that

• f has at most linear growth in z near p = 0, Γ = 0, in the sense that for any K we have

|f(t, x, z, p, Γ )| ≤ CK(1 + |z|), (1.5)

for some constant CK ≥ 0, for all x ∈ Ω and t, z ∈ R, when ‖(p, Γ )‖ ≤ K.
• f is locally Lipschitz in p and Γ in the sense that for any K we have

|f(t, x, z, p, Γ )− f(t, x, z, p′, Γ ′)| ≤ CK(1 + |z|)‖(p, Γ )− (p′, Γ ′)‖, (1.6)

for some constant CK ≥ 0, for all x ∈ Ω and t, z ∈ R, when ‖(p, Γ )‖ + ‖(p′, Γ ′)‖ ≤ K.
• f has controlled growth with respect to p and Γ , in the sense that for some constants q, r ≥ 1, C > 0, we

have
|f(t, x, z, p, Γ )| ≤ C(1 + |z| + ‖p‖q + ‖Γ‖r), (1.7)

for all t, x, z, p and Γ .

In the stationary setting (1.2) our solutions will be uniformly bounded. To prove the existence of such solutions
we need the discounting to be sufficiently large. We also need analogues of (1.6)–(1.7) but they can be local in
z since z will ultimately be restricted to a compact set. In fact, we assume that

• There exists η > 0 such that for all K ≥ 0, there exists C∗
K > 0 satisfying

|f(x, z, p, Γ )| ≤ (λ− η)|z| + C∗
K , (1.8)

for all x ∈ Ω, z ∈ R, when ‖(p, Γ )‖ ≤ K; here λ is the coefficient of u in the equation (1.2).
• f is locally Lipschitz in p and Γ in the sense that for any K and L we have

|f(x, z, p, Γ )− f(x, z, p′, Γ ′)| ≤ CK,L‖(p, Γ )− (p′, Γ ′)‖, (1.9)

for some constant CK,L ≥ 0, for all x ∈ Ω, when ‖(p, Γ )‖ + ‖(p′, Γ ′)‖ ≤ K and |z| ≤ L.
• f has controlled growth with respect to p and Γ , in the sense that for some constants q, r ≥ 1 and for any
L we have

|f(x, z, p, Γ )| ≤ CL(1 + ‖p‖q + ‖Γ‖r), (1.10)

for some constant CL ≥ 0, for all x, p and Γ , and any |z| ≤ L.
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2. The games

This section present our games. We begin by dealing with the linear heat equation. Section 1.1 adresses the
time-dependent problem depending non linearly on u; our main rigorous result for the time-dependent setting
is stated here (Thm. 2.4). Section 1.2 discusses the stationary setting and states our main rigorous result for
that case (Thm. 2.7).

2.1. The linear heat equation

This section offers a deterministic two-persons game approach to the linear heat equation in one space
dimension. More precisely, let a < c and Ω =]a, c[. We consider the linear heat equation on Ω with continuous
final-time data g and Neumann boundary condition h given by⎧⎪⎪⎨⎪⎪⎩

ut + uxx = 0, for x ∈ Ω and t < T,
∂u

∂n
(x, t) = h(x), for x ∈ ∂Ω = {a, c} and t < T,

u(x, T ) = g(x), for x ∈ Ω and t = T.

(2.1)

Our goal is to capture, in the simplest possible setting, how a homogeneous Neumann condition can be retrieved
through a repeated deterministic game. The game discussed here shares many features with the ones we will
introduce in Sections 2.2–2.3, though it is not a special case. In particular, it allows to understand the way we
need to modify the rules of the pioneering games proposed by Kohn and Serfaty in [21] in order to model the
Neumann boundary condition.

There are two players, we call them Mark and Helen. A small parameter ε > 0 is fixed as are the final time T ,
“Helen’s payoff” (a continuous function g: [a, c] → R) and a “coupon profile” close to the boundary (a function
h: {a, c} → R). The state of the game is described by its “spatial position” x ∈ Ω and “Helen’s score” y ∈ R.
We suppose the game begins at time t0. Since time steps are increments of ε2, it is convenient to assume that
T − t0 = Kε2, for some K.

When the game begins, the position can have any value x0 ∈ Ω; Helen’s initial score is y0 = 0. The rules are
as follows: if, at time tj = t0 + jε2, the position is xj and Helen’s score is yj, then

• Helen chooses a real number pj .
• After seeing Helen’s choice, Mark chooses bj = ±1 which gives an intermediate position x̂j+1 = xj + Δx̂j

where
Δx̂j =

√
2εbj ∈ R.

This position x̂j+1 determines the next position xj+1 = xj +Δxj at time tj+1 by the rule

xj+1 = projΩ(x̂j+1) ∈ Ω,

and Helen’s score changes to

yj+1 = yj + pjΔx̂j − ‖xj+1 − x̂j+1‖h(xj +Δxj). (2.2)

• The clock moves forward to tj+1 = tj + ε2 and the process repeats, stopping when tK = T .
• At the final time tK = T a bonus g(xK) is added to Helen’s score, where xK is the final-time position.

Remark 2.1. To give a sense to (2.2) for all Δxj , the function h, which is defined only on {a, c}, can be
extended on ]a, c[ by any function Ω → R since ‖xj+1 − x̂j+1‖ is different from zero if and only if x̂j+1 /∈ Ω.
Moreover, by comparing the two moves Δx̂j and Δxj , it is clear that ‖xj+1 − x̂j+1‖ = ‖Δxj −Δx̂j‖.
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Helen’s goal is to maximize her final score, while Mark’s goal is to obstruct her. We are interested in Helen’s
“value function” uε(x0, t0), defined formally as her maximum worst-case final score starting from x0 at time t0.
It is determined by the dynamic programming principle

uε(x, tj) = max
p∈R

min
b=±1

[uε(x+Δx, tj+1) − pΔx̂+ ‖Δx̂−Δx‖h(x+Δx)], (2.3)

where Δx̂ =
√

2εb and Δx = projΩ(x+Δx̂) − x, associated with the final-time condition

uε(x, T ) = g(x).

Evidently, if t0 = T −Kε2 then

uε(x0, T0) = max
p0∈R

min
b0=±1

. . . max
pK−1∈R

min
bK−1=±1

⎧⎨⎩g(xK) +
K−1∑
j=0

−
√

2εbjpj + ‖Δx̂j −Δxj‖h(xj +Δxj)

⎫⎬⎭ , (2.4)

where Δx̂j =
√

2εbj and Δxj = projΩ(xj + Δx̂j) − xj . In calling this Helen’s value function, we are using an
established convention from the theory of discrete-time, two person games (see e.g. [15]).

By introducing the operator Lε defined by

Lε[x, φ] = max
p∈R

min
b=±1

[φ (x+Δx) − pΔx̂+ ‖Δx̂−Δx‖h(x+Δx)], (2.5)

where Δx̂ =
√

2εb and Δx = projΩ(x + Δx̂) − x, the dynamic programming principle (2.3) can be written in
the form

uε(x, t) = Lε[x, uε(·, t + ε2)]. (2.6)

We now formally argue that uε should converge as ε→ 0 to the solution of the linear heat equation (2.1). The
procedure for formal passage from the dynamic programming principle to the associated PDE is familiar: we
suppress the dependence of uε on ε and we assume u is smooth enough to use the Taylor expansion. The first
step leads to

u(x, t) ≈ Lε[x, u(·, t + ε2)]. (2.7)

For the second step we need to compute Lε for a C2-function φ. By the Taylor expansion

φ(x +Δx) = φ(x) + φx(x)Δx +
1
2
φxx(x)(Δx)2 +O(ε3)

= φ(x) + φx(x)Δx̂ + ‖Δx̂−Δx‖φx(x)n(x) +
1
2
φxx(x)(Δx)2 +O(ε3),

where x = proj∂Ω(x), Δx̂−Δx = ‖Δx̂−Δx‖n(x) with n defined on ∂Ω by n(x) = 1 if x = c and n(x) = −1 if
x = a. Substituting this expression in (2.5), we deduce that for all C2-function φ,

Lε[x, φ] = φ(x) + max
p∈R

min
b=±1

[
(φx − p)Δx̂+

1
2
φxx(Δx)2 + ‖Δx̂−Δx‖{h(x+Δx) − n(x)φx

}]
+ o(ε2). (2.8)

It remains to compute the max min. If d(x) >
√

2ε, we always have Δx = Δx̂ =
√

2εb, so that the boundary is
never crossed and we retrieve the usual situation detailed in [21], Section 2.1: Helen’s optimal choice is p = φx
and Lε[x, φ] = φ(x) + ε2φxx(x) + o(ε2). If d(x) <

√
2ε, we still have Δx̂ =

√
2bε but there is a change: if

the boundary is crossed, Δx = d(x) and ‖Δx̂ − Δx‖ =
√

2ε − d(x). Suppose that Helen has chosen p ∈ R.
Considering the min in (2.8), Mark only has two possibilities b ∈ {±1}. More precisely, suppose that x is close
to c so that x = c and n(x) = 1; the case when x is close to a is strictly parallel. If Mark chooses b = 1, the
associated value is

Vp,+ =
√

2(φx − p)ε+
1
2
φxxd

2(x) + (
√

2ε− d(x))(h(c) − φx),
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while if Mark chooses b = −1, the associated value is

Vp,− = −
√

2(φx − p)ε+ φxxε
2.

To determine his strategy, Mark compares Vp,− to Vp,+. He chooses b = −1 if Vp,− < Vp,+, i.e. if

√
2(φx − p)ε+

1
2
φxxd

2(x) + (
√

2ε− d(x))(h(c) − φx) > −
√

2(φx − p)ε+ φxxε
2,

that we can rearrange into

2
√

2(φx − p)ε > φxx

(
ε2 − d2(x)

2

)
− (

√
2ε− d(x)) [h(c) − φx].

This last inequality yields an explicit condition on the choice of p previously made by Helen

p < popt := φx +
1
2

(
1 − d(x)√

2ε

)
[h(c) − φx] +

1
2
√

2
φxx

(
1 − d2(x)

2ε2

)
ε. (2.9)

Meanwhile Mark chooses b = 1 if Vp,+ < Vp,−, which leads to the reverse inequality p > popt. The situation
when Vp,+ = Vp,− obviously corresponds to p = popt. We deduce that

Lε[x, φ] = max
[

max
p≤popt

Vp,−, Vpopt,−, max
p≥popt

Vp,+

]
.

Helen wants to optimize her choice of p. The functions Vp,+ and Vp,− are both affine on φx − p. The first one is
decreasing while the second is increasing with respect to p. As a result, we deduce that Helen’s optimal choice
is p = popt as defined in (2.9) and Lε[x, φ] = Vpopt,+ = Vpopt,−. We notice that Helen behaves optimally by
becoming indifferent to Mark’s choice; our games will not always conserve this feature, which was observed
in [21]. Finally, for all C2-function φ, we have

Lε[x, φ] = φ(x) +

⎧⎪⎨⎪⎩
ε√
2

(
1 − d(x)√

2ε

)
[h(x) − n(x)φx(x)] +

ε2

2
φxx(x)

(
1 +

d2(x)
2ε2

)
+ o(ε2), if d(x) ≤ √

2ε,

ε2φxx(x) + o(ε2), if d(x) ≥ √
2ε.

(2.10)
Since u is supposed to be smooth, the Taylor expansion on t yields that u(·, t+ ε2) = u(·, t) + ut(·, t)ε2 + o(ε2)
and we formally derive the PDE by plugging (2.10) in (2.7). This gives

0 ≈ ε2ut +

⎧⎪⎨⎪⎩
ε√
2

(
1 − d(x)√

2ε

)
[h(x) − n(x)ux] +

ε2

2
uxx

(
1 +

d2(x)
2ε2

)
+ o(ε2), if d(x) ≤ √

2ε,

ε2uxx + o(ε2), if d(x) ≥ √
2ε.

(2.11)

If x ∈ Ω, for ε small enough, the second alternative in (2.11) is always valid so that we deduce from the ε2-order
terms in (2.11) that ut + uxx = 0. If x is on the boundary ∂Ω, then d(x) = 0, x = x and the first possibility
in (2.11) is always satisfied. We observe that the ε-order term is predominant since ε � ε2. By dividing by ε
and letting ε→ 0, we obtain h(x) − ux(x) · n(x) = 0.

Now we present a financial interpretation of this game. Helen plays the role of a hedger or an investor, while
Mark represents the market. The position x is a stock price which evolves in Ω as a function of time t, starting
at x0 at time t0 and the boundary ∂Ω plays the role of barriers which additionally determine a coupon when
the stock price crosses ∂Ω. The small parameter ε determines both the stock price increments Δx̂ ≤ √

2ε and
the time step ε2. Helen’s score keeps track of the profits and losses generated by her hedging activity.
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Helen’s situation is as follows: she holds an option that will pay her g(x(T )) at time T (g could be negative).
Her goal is to hedge this position by buying or selling the stock at each time increment. She can borrow and lend
money without paying or collecting any interest, and can take any (long or short) stock position she desires. At
each step, Helen chooses a real number pj (depending on xj and tj), then adjusts her portfolio so it contains
−pj units of stock (borrowing or lending to finance the transaction, so there is no change in her overall wealth).
Mark sees Helen’s choice. Taking it into account, he makes the stock go up or down (i.e. he chooses bj = ±1),
trying to degrade her outcome. The stock price changes from xj to xj+1 = projΩ(xj +Δx̂j), and Helen’s wealth
changes by −√

2εbjpj + ‖Δx̂j −Δxj‖h(xj +Δxj) (she has a profit if it is positive, a loss if it is negative). The
term ‖Δx̂j −Δxj‖h(xj + Δxj) is a coupon that will be produced only if the special event Δx̂j /∈ Ω happens.
The hedger must take into account the possibility of this new event. The hedging parameter pj is modified close
to the boundary but the hedger’s value function is still independent from the variations of the market. At the
final time Helen collects her option payoff g(xK). If Helen and Mark both behave optimally at each stage, then
we deduce by (2.4) that

uε(x0, t0) +
K−1∑
j=0

√
2εbjpj − ‖Δx̂j −Δxj‖h(xj +Δxj) = g(xK).

Helen’s decisions are in fact identical to those of an investor hedging an option with payoff g(x) and coupon
h(x) if the underlying asset crosses the barrier ∂Ω in a binomial-tree market with Δx̂ =

√
2ε at each timestep.

2.2. General parabolic equations

This section explains what to do when f depends on Du, D2u and also on u. We also permit dependence on
x and t, so we are now discussing a fully-nonlinear (degenerate) parabolic equation of the form⎧⎪⎨⎪⎩

∂tu− f(t, x, u,Du,D2u) = 0, for x ∈ Ω and t < T,

〈Du(x, t), n(x)〉 = h(x), for x ∈ ∂Ω and t < T,

u(x, T ) = g(x), for x ∈ Ω,

(2.12)

where Ω is a C2-domain satisfying both the uniform interior and exterior ball conditions and the boundary
condition h and the final-time data g are uniformly bounded, continuous, depending only on x.

There are two players, Helen and Mark; a small parameter ε is fixed. Since the PDE is to be solved in Ω,
Helen’s final-time bonus g is now a function of x ∈ Ω and Helen’s coupon profile h is a function of x ∈ ∂Ω. The
state of the game is described by its spatial position x ∈ Ω and Helen’s debt z ∈ R. Helen’s goal is to minimize
her final debt, while Mark’s is to obstruct her.

The rules of the game depend on three new parameters, α, β, γ > 0 whose presence represents no loss of
generality. Their role will be clear in a moment. The requirements

α < 1/3, (2.13)

and
α+ β < 1, 2α+ γ < 2, max(βq, βr) < 2, (2.14)

will be clear in the explanation of the game. However, the proof of convergence in Section 3 and consistency in
Section 4 needs more: there we will require

γ < 1 − α, β(q − 1) < α+ 1, γ(r − 1) < 2α, γr < 1 + α. (2.15)

These conditions do not restrict the class of PDEs we consider, since for any q and r there exist α, β and γ
with the desired properties.
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Using the language of our financial interpretation:

a) First we consider Uε(x, z, t), Helen’s optimal wealth at time T , if initially at time t the stock price is x and
her wealth is −z.

b) Then we define uε(x, t) or vε(x, t) as, roughly speaking, the initial debt Helen should have at time t to break
even at time T .

The proper definition of Uε(x, z, t) involves a game similar to that of Section 2.1. The rules are as follows: if at
time tj = t0 + jε2 the position is xj and Helen’s debt is zj , then

(1) Helen chooses a vector pj ∈ RN and a matrix Γj ∈ SN , restricted by

‖pj‖ ≤ ε−β, ‖Γj‖ ≤ ε−γ . (2.16)

(2) Taking Helen’s choice into account, Mark chooses the stock price xj+1 so as to degrade Helen’s outcome.
Mark chooses an intermediate point x̂j+1 = xj +Δx̂j ∈ RN such that

‖Δx̂j‖ ≤ ε1−α. (2.17)

This position x̂j+1 determines the new position xj+1 = xj +Δxj ∈ Ω at time tj+1 by the rule

xj+1 = projΩ(x̂j+1). (2.18)

(3) Helen’s debt changes to

zj+1 = zj + pj ·Δx̂j +
1
2
〈ΓjΔx̂j , Δx̂j〉 + ε2f(tj , xj , zj , pj, Γj) − ‖Δx̂j −Δxj‖h(xj +Δxj). (2.19)

(4) The clock steps forward to tj+1 = tj + ε2 and the process repeats, stopping when tK = T . At the final time
Helen receives g(xK) from the option.

This game is well-posed for all ε > 0 small enough. As mentioned in the introduction, the uniform exterior ball
condition holds automatically for a C2-bounded domain. In this case, by compactness of ∂Ω, there exists ε∗ > 0
such that projΩ is well-defined for all x ∈ RN such that d(x,Ω) ≤ ε∗. It can be noticed that an unbounded
C2-domain, even with bounded curvature, does not generally satisfy this condition. Since the domain Ω satisfies
the uniform exterior ball condition given by Definition 1.2 for a certain r, the projection is well-defined on the
tubular neighborhood {x ∈ RN\Ω : d(x) < r/2} of the boundary.

Remark 2.2. To give a sense to (2.19) for all Δxj , the function h which is defined only on the boundary can
be extended on Ω by any function Ω → R since ‖xj+1 − x̂j+1‖ is different from zero if and only if x̂j+1 /∈ Ω.
Moreover, by comparing Δx̂j and Δxj , one gets the relation

xj+1 = x̂j+1 +Δxj −Δx̂j .

If x̂j+1 ∈ Ω, then xj+1 = x̂j+1 and the rules of the usual game [21] are retrieved. Figure 1 presents the two
geometric situations for the choice for Mark: B(x, ε1−α) ⊂ Ω or not.

Helen’s goal is to maximize her worst-case score at time T , and Mark’s is to work against her. Her value
function is

Uε(x0, z0, t0) = max
Helen’s choices

[g(xK) − zK ]. (2.20)

It is characterized by the dynamic programming principle

Uε(x, z, tj) = max
p,Γ

min
Δx̂

Uε(x+Δx, z +Δz, tj+1) (2.21)
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Figure 1. Rules of the game, admissible moves near the boundary and inside the domain.

together with the final-time condition Uε(x, z, T ) = g(x) − z. Here Δx̂ is x̂j+1 − xj , Δx is determined by

Δx = xj+1 − xj = projΩ(xj +Δx̂j) − xj , (2.22)

and Δz = zj+1 − zj is given by (2.19), and the optimizations are constrained by (2.16) and (2.17). It is easy to
see that the max/min is achieved and is a continuous function of x and z at each discrete time (the proof is by
induction backward in time, like the argument sketched in [21]).

When f depends on z, the function z �→ Uε(x, z, t) can be nonmonotone, so we must distinguish between the
minimal and maximal debt with which Helen breaks even at time T . Thus, following [11], we define

uε(x0, t0) = sup{z0 : Uε(x0, z0, t0) ≥ 0} (2.23)

and
vε(x0, t0) = inf{z0 : Uε(x0, z0, t0) ≤ 0}, (2.24)

with the convention that the empty set has sup = −∞ and inf = ∞. Clearly vε ≤ uε, and uε(x, T ) = vε(x, T ) =
g(x). Since the definitions of uε and vε are implicit, these functions can not be characterized by a dynamic
programming principle. However we still have two “dynamic programming inequalities”.

Proposition 2.3. If uε(x, t) is finite then

uε(x, t) ≤ sup
p,Γ

inf
Δx̂

[
uε(x +Δx, t+ ε2)

−
(
p ·Δx̂+

1
2
〈ΓΔx̂,Δx̂〉 + ε2f(t, x, uε(x, t), p, Γ ) − ‖Δx̂−Δx‖h(x+Δx)

)]
. (2.25)

Similarly, if vε(x, t) is finite then

vε(x, t) ≥ sup
p,Γ

inf
Δx̂

[
vε(x+Δx, t+ ε2)

−
(
p ·Δx̂ +

1
2
〈ΓΔx̂,Δx̂〉 + ε2f(t, x, vε(x, t), p, Γ ) − ‖Δx̂−Δx‖h(x+Δx)

)]
. (2.26)

The sup and inf are constrained by (2.16) and (2.17) and Δx is determined by (2.22).
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Proof. The argument follows the same lines as the proof of the dynamic programming inequalities given in [21],
Proposition 2.1. �

To define viscosity subsolutions and supersolutions, we shall follow the Barles and Perthame procedure [8],
let us recall the upper and lower relaxed semi-limits defined for (t, x) ∈ [0, T ]×Ω as

ū(x, t) = lim sup
y→x,y∈Ω
tj→t
ε→0

uε(y, tj) and v(x, t) = lim inf
y→x,y∈Ω
tj→t
ε→0

vε(y, tj), (2.27)

where the discrete times are tj = T−jε2. We shall show, under suitable hypotheses, that v and u are respectively
viscosity super and subsolutions of (2.12). Before stating our rigorous result in Section 2.2.2, the next section
presents the heuristic derivation of the PDE (2.12) through the optimal strategies of Helen and Mark.

2.2.1. Heuristic derivation of the optimal player strategies

We now formally show that uε should converge as ε → 0 to the solution of (2.12). Roughly speaking, the
PDE (2.12) is the formal Hamilton–Jacobi–Bellman equation associated to the two-persons game presented
at the beginning of the present section. The procedure for formal derivation from the dynamic programming
principle to a corresponding PDE is classical: we assume uε and vε coincide and are smooth to use Taylor
expansion, suppress the dependence of uε and vε on ε and finally make ε → 0. That has already been done
for x far from the boundary in [21], Section 2.2 for f depending only on (Du,D2u). We now suppose that x is
close enough to the boundary so that x̂ can be nontrivial. By assuming uε = vε as announced and suppressing
the dependence of uε on ε, the two dynamic programming inequalities (2.25) and (2.26) give the dynamic
programming equality

u(x, t) ≈ sup
p,Γ

inf
Δx̂

[
u(x+Δx, t+ ε2)

−
(
p ·Δx̂+

1
2
〈ΓΔx̂,Δx̂〉 + ε2f(t, x, u(x, t), p, Γ ) − ‖Δx̂−Δx‖h(x+Δx)

)]
. (2.28)

Remembering that Δx̂ is small, if u is assumed to be smooth, we obtain

u(x+Δx, t+ ε2) + ‖Δx̂−Δx‖h(x +Δx)

≈ u(x, t) + ε2ut +Du ·Δx+
1
2
〈
D2uΔx,Δx

〉
+ ‖Δx̂−Δx‖h(x +Δx)

≈ u(x, t) + ε2ut +Du ·Δx̂+ ‖Δx̂−Δx‖ {h(x+Δx) −Du · n(x+Δx)} +
1
2
〈
D2uΔx,Δx

〉
,

since the outer normal can be expressed by n(x+Δx) = − Δx−Δx̂

‖Δx̂−Δx‖ if x̂ /∈ Ω. Substituting this computation

in (2.28), and rearranging the terms, we get

0 ≈ ε2ut + max
p,Γ

min
Δx̂

[(Du − p) ·Δx̂+ ‖Δx̂−Δx‖{h(x+Δx) −Du · n(x+Δx)}

+
1
2
〈
D2uΔx,Δx

〉− 1
2
〈ΓΔx̂,Δx̂〉 − ε2f (t, x, u, p, Γ )

]
. (2.29)

where u, Du, D2u are evaluated at (x, t). We have ignored the upper bounds in (2.16) since they allow p, Γ to
be arbitrarily large in the limit ε→ 0 (we shall of course be more careful in Sect. 4).

If the domain Ω does not satisfy the uniform interior ball condition, Ω can present an infinity number of
“neck pitchings” of neck size arbitrarily small. To avoid this situation, the uniform interior ball condition is
used to impose a strictly positive lower bound on these necks. If x is supposed to be extremely close to the
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Figure 2. Formal derivation for x near the boundary ∂Ω, notation: x̄ = proj∂Ω(x).

C2-boundary and ‖Δx̂‖ ≤ ε1−α, the boundary looks like a hyperplane orthogonal to the outer normal vector
n(x̄), where x̄ is the projection of x on the boundary ∂Ω (see Fig. 2). By Gram–Schmidt process, we can find
some vectors e2, . . . , eN such that (e1 = n(x̄), e2, . . . , eN) form an orthonormal basis of RN . In this basis, denote

p = p1n(x̄) + p̃ and Γ = (〈Γei, ej〉)1≤i,j≤N =

⎛⎜⎜⎜⎜⎝
Γ11 . . . (Γ1i)2≤i≤N . . .
...

(Γi1)2≤i≤N Γ̃
...

⎞⎟⎟⎟⎟⎠ , (2.30)

where p1 ∈ R, p̃ ∈ V ⊥ = span(e2, . . . , eN) and Γ̃ = (〈Γei, ej〉)2≤i,j≤N ∈ SN−1.
Let us focus on the Neumann penalization term in (2.29) denoted by

P (x) = ‖Δx̂−Δx‖m(Δx) with m(Δx) =

{
h(x+Δx) −Du(x) · n(x+Δx), if x̂ /∈ Ω,

m̃(Δx), if x̂ ∈ Ω,

where m(Δx) is extended for x̂ ∈ Ω by any function m̃(Δx) (see Rem. 2.2). This contribution is favorable to
Helen, P (x) > 0, if m(x) > 0, or to Mark, P (x) < 0, if m(x) < 0, and its size depends on the magnitude of
the vector Δx̂−Δx. Our formal derivation is local and essentially geometric, in the sense that our target is to
determine the optimal choices for Helen by considering all the moves Δx̂ that Mark can choose. By continuity
of h and smoothness of u, the function m(Δx) is close to

m = h(x̄) −Du(x) · n(x̄), if x̂ /∈ Ω. (2.31)

We shall assume here thatm(Δx), which serves to model the Neumann boundary condition, is locally constant on
the boundary and equal to m. This hypothesis corresponds in the game to assume that in a small neighborhood,
crossing the boundary is always favorable to one player. In order to focus only on the geometric aspects,
this approach seems formally appropriate since it freezes the dependence of p(x) on m(x) by eliminating the
difficulties linked to the local variations of m(x) like the change of sign. Hence, it is sufficient to examine

max
p,Γ

min
Δx̂

[
(Du− p) ·Δx̂+ ‖Δx̂−Δx‖m+

1
2
〈
D2uΔx,Δx

〉− 1
2
〈ΓΔx̂,Δx̂〉 − ε2f (t, x, u, p, Γ )

]
, (2.32)

where m is given by (2.31).
The formal proof will be performed in three steps.



1122 J.-P. DANIEL

Step 1. To determine the optimal choice for Helen of p, we consider the ε-order optimization problem M
obtained from (2.32) by neglecting the second ε-order terms

M = max
p

min
Δx̂

[(Du− p) ·Δx̂+ ‖Δx̂−Δx‖m]. (2.33)

By writing Δx̂ = (Δx̂)1n(x) + Δ̃x̂ with Δ̃x̂ ∈ V ⊥ and observing that ‖Δx̂ −Δx‖ depends only on (Δx̂)1, we
decompose the max min (2.33) into

M = max
p1,p̃

min
Δx̂

[
(D̃u− p̃) · Δ̃x̂+ ((Du)1 − p1)(Δx̂)1 + ‖Δx̂−Δx‖

]
= max

p1
min

|(Δx̂)1|≤ε1−α

[
((Du)1 − p1)(Δx̂)1 + ‖Δx̂−Δx‖m+ max

p̃
min

‖Δ̃x̂‖≤
√
ε2−2α−|(Δx̂)1|2

(D̃u − p̃) · Δ̃x̂
]
.

Noticing that the choices of p̃ and p1 are independent from each other, we can successively solve the optimization
problems. First of all, in order to choose p̃, let us determine

M̃ = max
p̃

min
‖Δ̃x̂‖≤

√
ε2−2α−|(Δx̂)1|2

(D̃u− p̃) · Δ̃x̂.

For the particular moves Δx̂ = ±ε1−αn(x), Δ̃x̂ = 0, the min above is always zero and Helen’s choice of
p̃ is indifferent. Moving these moves aside, Helen should take p̃ = projV ⊥ Du = D̃u, since otherwise Mark
can make this max min strictly negative and minimal by choosing Δ̃x̂ = −√ε2−2α − |(Δx̂)1|2 (Du−p)

V ⊥
‖Du−p‖ with

Δx̂ �= ±ε1−αn(x). Thus Helen chooses p̃ = D̃u, M̃ = 0 and M reduces to

M = max
p1

min
Δx̂

[((Du)1 − p1)(Δx̂)1 + ‖Δx̂−Δx‖m]. (2.34)

To determine the remaining coordinate p1 = p · n(x) of p, we now consider the optimization problem (2.34) by
restricting the possible choices made by Mark to the moves Δx̂ which belong to the subspace V = Rn(x̄). Since
‖Δx̂‖ ≤ ε1−α and Δx̂ ∈ V , we use the parametrization Δx̂ = λε1−αn(x̄), λ ∈ [−1, 1]. If x̂ ∈ Ω, the boundary
is not crossed and ‖Δx − Δx̂‖ = 0, while if x̂ /∈ Ω the boundary is crossed and ‖Δx − Δx̂‖ = λε1−α − d(x).
The intermediate point x̂ = x̄ ∈ ∂Ω separating the two regions corresponds to λ0 = d(x)

ε1−α and ‖Δx−Δx̂‖ = 0.
As a result, to compute the min in (2.34), we shall distinguish these two regions by decomposing the global
minimization problem into two minimization problems respectively on each region

M = max
sp

κ(sp) with κ(sp) = min(M1(sp),M2(sp)), (2.35)

where sp = (Du− p) · n(x̄) and

M1(sp) = min
λ0≤λ1≤1

M1(λ1) with M1(λ1) = (sp +m)ε1−αλ1 − d(x)m, (2.36)

M2(sp) = min
−1≤λ2≤λ0

M2(λ2) with M2(λ2) = spε
1−αλ2. (2.37)

For fixed p, the functions defining M1 and M2 are affine and can easily be minimized separately:

• If sp +m ≥ 0, M1(sp) is attained for λ1 = λ0 and M1(sp) = d(x)sp.
• If sp +m < 0, M1(sp) is attained for λ1 = 1 and M1(sp) = ε1−αsp + (ε1−α − d(x))m.
• If sp ≥ 0, M2(sp) is attained for λ2 = −1 and M2(sp) = −ε1−αsp.
• If sp < 0, M2(sp) is attained for λ2 = λ0 and M2(sp) = d(x)sp.
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Geometrically, λ ∈ {−1, 1, λ0} corresponds to three particular moves: Δx̂ = ±ε1−αn(x̄) and Δx̂ = d(x)n(x̄).
We are going to distinguish several cases to compute the max min according to the sign of sp and m. First of
all, let us assume that m is positive. We distinguish the following three cases:

(C1) If sp ≥ 0 then sp + m ≥ 0 and the optimal choices are (λ1, λ2) = (λ0,−1). It remains to minimize
between (2.36) and (2.37). Taking into account that d(x) ≤ ε1−α and sp ≥ 0, we get by the definition of
κ(sp) given by (2.35) that κ(sp) = min{d(x)sp,−ε1−αsp} = −ε1−αsp.

(C2) If −m ≤ sp < 0 then (λ1, λ2) = (λ0, λ0) and κ(sp) = M1(sp) = M2(sp) = d(x)sp.
(C3) If sp < −m < 0 then (λ1, λ2) = (1, λ0) and M1(sp) = ε1−αsp + (ε1−α − d(x))m and M2(sp) = d(x)sp.

By multiplying the inequality sp < −m < 0 by (ε1−α − d(x)), we get

κ(sp) = min{ε1−αsp + (ε1−α − d(x))m, d(x)sp} = d(x)sp.

By combining cases (C1)–(C3), we conclude that if m > 0,

κ(sp) =

⎧⎪⎨⎪⎩
ε1−αsp + (ε1−α − d(x))m, if sp ≤ −m,
d(x)sp, if −m ≤ sp ≤ 0,
−ε1−αsp, if sp ≥ 0.

The max of κ is zero and reached at the unique value sp = Du · n(x) − p1 = 0. Since p̃ = D̃u by the previous
analysis, we conclude in (2.30) that if m > 0, Helen’s optimal choice is p = Du.

Let us now suppose that m is negative. We now distinguish the following three cases:

(C4) If sp < 0 then sp +m < 0 and the optimal choices are (λ1, λ2) = (1, λ0). By the definition of κ(sp) given
by (2.35), we obtain

κ(sp) = min{ε1−αsp + (ε1−α − d(x))m, d(x)sp} = ε1−αsp + (ε1−α − d(x))m. (2.38)

(C5) If sp ≥ −m > 0 then (λ1, λ2) = (λ0,−1) and M1(sp) = d(x)sp and M2(sp) = −ε1−αsp. By the definition
of κ(sp) given by (2.35), we obtain κ(sp) = min

{
d(x)sp,−ε1−αsp

}
= −ε1−αsp.

(C6) If 0 < sp < −m, then (λ1, λ2) = (1,−1) and M1(sp) = ε1−αsp+(ε1−α−d(x))m and M2(sp) = −ε1−αsp.
By the definition of κ(sp) given by (2.35), we obtain

κ(sp) = min
{
ε1−αsp + (ε1−α − d(x))m,−ε1−αsp

}
.

The target for Helen is to maximize this minimum with respect to sp. Both functions intervening in the
minimum are affine: the first one is affine, strictly increasing and is equal to (ε1−α−d(x))m < 0 for sp = 0
and to d(x)m > 0 for sp = −m whereas the second function is linear and strictly decreasing and is equal
to mε1−α < 0 for sp = −m. As a result, there is a unique s∗ such that these two functions are equal and
this value precisely realizes the max of κ on [0,−m]. Thus, the best that Helen can hope corresponds to
ε1−αs∗ + (ε1−α − d(x))m = −ε1−αs∗. This gives

s∗ = (Du− p) · n(x̄) = −1
2

(
1 − d(x)

ε1−α
)
m.

We immediately check that s∗ ∈ [
0,−m

2

]
, which implies the condition s∗ + m ≤ 1

2m < 0. Thus,

max
sp∈[0,−m]

κ(sp) =
1
2
(ε1−α − d(x))m is greater than the minimum obtained in (2.38).

By combining cases (C4)–(C6), we conclude that if m ≤ 0,

κ(sp) =

{
ε1−αsp + (ε1−α − d(x))m, if sp < s∗,
−ε1−αsp, if sp ≥ s∗.

The max of κ is equal to κ(s∗) and reached for sp = Du · n(x) − p1 = s∗.
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Let us give an intermediate conclusion: if m > 0, Helen chooses p = Du whereas if m ≤ 0, she chooses

p = Du+
m

2

(
1 − d(x)

ε1−α

)
n(x̄). (2.39)

Step 2. We now take into account the second order terms in ε in the optimization problem. A further analysis
similar to Step 1 can be led. Since it is laborious, the details are spared to the reader. Only the heuristic optimal
strategies for Helen are provided.

• If m ≥ 0, Helen’s optimal choice is Γ = D2u and (2.29) reduces formally to ut − f(t, x, u,Du,D2u) = 0.
• If m < 0, we need to consider a new minimization problem restrained to the moves Δx̂ which belong to the

disk D = span(n(x̄), v) ∩ B(ε1−α) where v is an unit vector orthogonal to n(x̄). Helen will finally choose a
slight modification of (2.39) for p as

popt(x) = Du+
[
1
2

(
1 − d(x)

ε1−α

)
m− 1

4

(
ε1−α − d2(x)

ε1−α

)
(D2u)11

]
n(x̄), (2.40)

and

Γ11 =
1
2

(
1 +

d2(x)
ε2−2α

)
(D2u)11. (2.41)

It remains for Helen to choose Γ1v = 〈Γe1, v〉. After computations, we get that there are two equivalent
choices Γ1v = (D2u)1v and Γ1v = d(x)

ε1−α (D2u)1v. For sake of simplicity, we assume Helen chooses Γ1v =
(D2u)1v. It is worth noticing that this heuristic expansion holds if m is far from zero and we shall modify
our arguments very carefully in Section 4 when m is negative but small with respect to a certain power of
ε. Thus, if m < 0, Helen will choose

Γopt(x) = D2u+
[
1
2

(
−1 +

d2(x)
ε2−2α

)
(D2u)11

]
E11. (2.42)

Unlike the usual game [21], when Helen chooses p and Γ optimally, she does not become indifferent to Mark’s
choice of Δx̂. More precisely, it depends on the projection of Δx̂ with respect to n(x̄). Our games always
have this feature.

Step 3. Now let us go back to the original optimization problem (2.29). If m = 0, by letting ε → 0, we get
h(x) −Du(x) · n(x) = 0. Otherwise, (2.29) formally reduces to

0 ≈ ε2ut +

⎧⎨⎩
1
2
(ε1−α − d(x))m− ε2f(t, x, u, popt(x), Γopt(x)) + o(ε2), if d(x) ≤ ε1−α and m < 0,

−ε2f(t, x, u,Du,D2u), if d(x) ≥ ε1−α or m > 0,
(2.43)

with popt and Γopt respectively defined by (2.40) and (2.42). If x ∈ Ω, for ε small enough, the second relation
in (2.43) is always valid so that we deduce from the ε2-order terms in (2.43) that ut− f(t, x, u,Du,D2u) = 0. If
x ∈ ∂Ω, d(x) = 0 and we distinguish the cases m > 0 and m < 0. If m > 0, one more time the second relation
in (2.43) is always valid so that ut − f(t, x, u,Du,D2u) = 0. Otherwise, if m < 0, the first relation in (2.43) is
always satisfied. We observe that the ε-order term is predominant since ε1−α � ε2. By dividing by ε1−α and
letting ε → 0, we obtain m = 0 that leads to a contradiction since we assumed m < 0. Therefore, we have
formally shown that on the boundary h(x) −Du(x) · n(x) = 0 or ut − f(t, x, u,Du,D2u) = 0.

2.2.2. Main parabolic result

We shall show, under suitable hypotheses, that u and v are respectively viscosity sub and supersolutions. A
natural question is to compare u and v. This is a global question, which we can answer only if the PDE has
a comparison principle. Such a principle asserts that if u is a subsolution and v is a supersolution then u ≤ v.
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If the PDE has such a principle then it follows that u ≤ v. The opposite inequality is immediate from the
definitions, so it follows that u = v, and we get a viscosity solution of the PDE. It is in fact the unique viscosity
solution, since the comparison principle implies uniqueness.

Theorem 2.4. Consider the final-value problem (2.12) where f satisfies (1.4)–(1.7), g and h are continuous,
uniformly bounded, and Ω is a C2-domain satisfying both the uniform interior and exterior ball conditions.
Assume the parameters α, β, γ satisfy (2.13)–(2.15). Then u and v are uniformly bounded on Ω × [t∗, T ] for
any t∗ < T , and they are respectively a viscosity subsolution and a viscosity supersolution of (2.12). If the PDE
has a comparison principle (for uniformly bounded solutions), then it follows that uε and vε converge locally
uniformly to the unique viscosity solution of (2.12).

This theorem is an immediate consequence of Propositions 3.4 and 5.1.
In this theorem, we require the domain Ω to be C2. This assumption is crucial for the proof of Proposition 3.4

case (iii) corresponding to the convergence at the final time in the viscosity sense (see Rem. 3.5). It can also
be noticed that it is this part of Proposition 3.4 which allows to use a comparison principle for the parabolic
PDE. On the other hand, since the game already requires the uniform interior and exterior ball conditions, the
domain Ω is in fact at least C1,1. It remains an open question to overcome the analysis in this case.

As mentioned in [21], some sufficient conditions for the PDE to have a comparison result can be found in
Section 4.3 of [11]. In our framework, we can emphasise on the comparison principle obtained by Sato [27],
Theorem 2.1 for a fully nonlinear parabolic equation with a homogeneous condition. The reader is also referred
to the introduction for other references about comparison and existence results. Note that most comparison
results require f(t, x, z, p, Γ ) to be nondecreasing in z.

We close this section with the observation that if Uε(x, z, t) is a strictly decreasing function of z then
vε(x, t) = uε(x, t). A sufficient condition for this to hold is that f be nondecreasing in z:

Lemma 2.5. Suppose f is non-decreasing in z in the sense that

f(t, x, z1, p, Γ ) ≥ f(t, x, z0, p, Γ ) whenever z1 > z0.

Then Uε satisfies
Uε(x, z1, tj) ≤ Uε(x, z0, tj) − (z1 − z0) whenever z1 > z0,

at each discrete time tj = T − jε2. In particular, Uε is strictly decreasing in z and vε = uε.

Proof. The whole space case is provided in [21], Lemma 2.4. For our game, it suffices to add −‖Δx̂−Δx‖h(x+Δx)
in the expressions of Δz0 and Δz1 defined in the proof of [21], Lemma 2.4. The rest of the proof remains
unchanged. �

2.3. Nonlinear elliptic equations

This section explains how our game can be used to solve stationary problems with Neumann boundary con-
ditions. The framework is similar to the parabolic case, but one new issue arises: we must introduce discounting
as in [21], to be sure Helen’s value function is finite. Therefore we focus on{

f(x, u,Du,D2u) + λu = 0, in Ω,

〈Du, n〉 = h, on ∂Ω,
(2.44)

where Ω is a domain with C2-boundary and satisfies both the uniform interior and exterior ball condition
presented in the introduction. The constant λ (which plays the role of an interest rate) must be positive, and
large enough so that (1.8) holds. Notice that if f is independent of z then any λ will do.
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We now present the game. The main difference with Section 2.2 is the presence of discounting. The boundary
condition h is assumed to be a bounded continuous function on ∂Ω. Besides the parameters α, β, γ introduced
previously, in the stationary case we need two new parameters, m and M , and a C2

b (Ω)-function ψ such that

∂ψ

∂n
= ‖h‖∞ + 1 on ∂Ω. (2.45)

It suffices to construct ψ1 such that it is C2
b (Ω) and satisfies ∂ψ1

∂n = 1 on the boundary. Then we can define ψ
by ψ = (‖h‖∞ + 1)ψ1. The existence and construction of such a function ψ1 for a C2-domain Ω satisfying the
uniform interior ball condition is discussed at the end of this section.

From m and ψ we construct a function χ defined by

χ(x) = m+ ‖ψ‖L∞(Ω) + ψ(x). (2.46)

Both m and M are positive constants, which also yield that χ is positive. M serves to cap the score, and
the function χ determines what happens when the cap is reached. We shall in due course choose m such that
m+2‖ψ‖L∞ = M − 1 and require that M is sufficiently large. Like the choices of α, β, γ, the parameters M , m
and the function ψ are used to define the game but they do not influence the resulting PDE. As in Section 2.2,
we proceed in two steps:

• First we introduce Uε(x, z), the optimal worst-case present value of Helen’s wealth if the initial stock price
is x and her initial wealth is −z.

• Then we define uε(x) and vε(x) as the maximal and minimal initial debt Helen should have at time t to
break even upon exit.

The definition of Uε(x, z) for x ∈ Ω involves a game similar to that of the last section:

(1) Initially, at time t0 = 0, the stock price is x0 = x and Helen’s debt is z0 = z.
(2) Suppose, at time tj = jε2, the stock price is xj and Helen’s debt is zj with |zj | < M . Then Helen chooses

a vector pj ∈ RN and a matrix Γj ∈ SN , restricted in magnitude by (2.16). Knowing these choices, Mark
determines the next stock price xj+1 = xj + Δx so as to degrade Helen’s outcome. The increment Δx
allows to model the reflection exactly as in the previous subsections. Mark chooses an intermediate point
x̂j+1 = xj +Δx̂j ∈ RN such that

‖Δx̂j‖ ≤ ε1−α.

This position x̂j+1 determines the new position xj+1 = xj +Δxj at time tj+1 by

xj+1 = projΩ(x̂j+1).

Helen experiences a loss at time tj of

δj = pj ·Δx̂j +
1
2
〈ΓjΔx̂j , Δx̂j〉 + ε2f(xj , zj, pj , Γj) − ‖Δx̂j −Δxj‖h(xj +Δxj). (2.47)

As a consequence, her time tj+1 = tj + ε2 debt becomes

zj+1 = eλε
2
(zj + δj),

where the factor eλε
2

takes into account her interest payments.
(3) If zj+1 ≥ M , then the game terminates, and Helen pays a “termination-by-large-debt penalty” worth

eλε
2
(χ(xj) − δj) at time tj+1. Similarly, if zj+1 ≤ −M , then the game terminates, and Helen receives a

“termination-by-large-wealth bonus” worth eλε
2
(χ(xj) + δj) at time tj+1. If the game stops this way, we

call tj+1 the “ending index” tK .
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(4) If the game has not terminated then Helen and Mark repeat this procedure at time tj+1 = tj + ε2. If the
game never stops, the “ending index” tK is +∞.

Helen’s goal is a bit different from before, due to the presence of discounting: she seeks to maximize the minimum
present value of her future income, using the discount factor of e−jλε

2
for income received at time tj . If the

game ends by capping at time tK with zK ≥M , then the present value of her income is

Uε(x0, z0) = −z0 − δ0 − e−λε
2
δ1 − . . .− e−(K−1)λε2δK−1 − e−(K−1)λε2(χ(xK−1) − δK−1)

= e−(K−1)λε2(−zK−1 − χ(xK−1)).

Similarly, if the game ends by capping at time tK with zK ≤ −M , then the present value of her income is

Uε(x0, z0) = −z0 − δ0 − e−λε
2
δ1 − . . .− e−(K−1)λε2δK−1 + e−(K−1)λε2(χ(xK−1) + δK−1)

= e−(K−1)λε2(−zK−1 + χ(xK−1)).

If the game never ends (since zj and χ(xj) are uniformly bounded), we can take K = ∞ in the preceding
formula to see that the present value of her income is 0.

To get a dynamic programming characterization of Uε, we observe that if |z0| < M then

Uε(x0, z0) = sup
p,Γ

inf
Δx̂

⎧⎪⎨⎪⎩
e−λε

2
Uε(x1, z1), if |z1| < M,

−z0 − χ(x0), if z1 ≥M,

−z0 + χ(x0), if z1 ≤ −M.

Since the game is stationary (nothing distinguishes time 0), the associated dynamic programming principle is
that for |z| < M ,

Uε(x, z) = sup
p,Γ

inf
Δx̂

⎧⎪⎨⎪⎩
e−λε

2
Uε(x′, z′), if |z′| < M,

−z − χ(x), if z′ ≥M,

−z + χ(x), if z′ ≤ −M,

(2.48)

where x′ = projΩ(x+Δx̂) and z′ = eλε
2
(z + δ), with δ defined as in (2.47). Here p, Γ and Δx̂ are constrained

as usual by (2.16)–(2.17), and we write sup / inf rather than max /min since it is no longer clear that the
optima are achieved (since the right-hand side is now a discontinuous function of p, Γ and Δx̂). The preceding
discussion defines Uε only for |z| < M ; it is natural to extend the definition to all z by

Uε(x, z) =

{
−z − χ(x), for z ≥M,

−z + χ(x), for z ≤ −M,

which corresponds to play being “capped” immediately. Notice that when extended this way, Uε is strictly
negative for z ≥M and strictly positive for z ≤ −M .

The definitions of uε and vε are slightly different from those in Section 2.2:

uε(x0) = sup{z0 : Uε(x0, z0) > 0}, (2.49)
vε(x0) = inf{z0 : Uε(x0, z0) < 0}. (2.50)

The change from Section 2.2 is that the inequalities in (2.23)–(2.24) are strict.

Proposition 2.6. Let m1, M be two constants such that 0 < m1 < M . Then whenever x ∈ Ω and −m1 ≤
uε(x) < M we have

uε(x) ≤ sup
p,Γ

inf
Δx̂

[
e−λε

2
uε(x+Δx)

−
(
p ·Δx̂+

1
2
〈ΓΔx̂,Δx̂〉 + ε2f(x, uε(x), p, Γ ) − ‖Δx̂−Δx‖h(x+Δx)

)]
, (2.51)
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for ε small enough (depending on m1 and the parameters of the game but not on x). Similarly, if x ∈ Ω and
−M < vε(x) < m1 then for ε small enough

vε(x) ≥ sup
p,Γ

inf
Δx̂

[
e−λε

2
vε(x+Δx)

−
(
p ·Δx̂+

1
2
〈ΓΔx̂,Δx̂〉 + ε2f(x, vε(x), p, Γ ) − ‖Δx̂−Δx‖h(x+Δx)

)]
. (2.52)

As usual, the sup and inf are constrained by (2.16) and (2.17) and Δx is determined by (2.22).

Proof. The proof is left to the reader since it is a simple adaptation of the proof of [21], Proposition 2.5 by
taking into account χ and the penalization ‖Δx̂−Δx‖h(x+Δx). �

The PDE (2.44) is the formal Hamilton–Jacobi–Bellman equation associated with the dynamic programming
inequalities (2.51)–(2.52), by the usual Taylor expansion, if one accepts −M < vε ≈ uε < M . Rather than
giving that heuristic argument which is quite similar to the one proposed in the parabolic setting, we now state
our main result in the stationary setting, which follows from the results in Sections 4 and 5. It concerns the
upper and lower relaxed semi-limits, defined for any x ∈ Ω, by

u(x) = lim sup
y→x
ε→0

uε(y) and v(x) = lim inf
y→x
ε→0

vε(y), (2.53)

with the convention that y approaches x from Ω (since uε and vε are defined on Ω).

Theorem 2.7. Consider the stationary boundary value problem (2.44) where f satisfies (1.4) and (1.8)–(1.10),
g and h are continuous, uniformly bounded, and Ω is a C2-domain satisfying both the uniform interior and exte-
rior ball conditions. Assume the parameters of the game α, β, γ fulfill (2.13)–(2.15), ψ ∈ C2(Ω) satisfies (2.45),
χ ∈ C2(Ω) is defined by (2.46), M is sufficiently large and m = M − 1 − 2‖ψ‖L∞(Ω). Then uε and vε are
well-defined when ε is sufficiently small, and they satisfy |uε| ≤ χ and |vε| ≤ χ. Their relaxed semi-limits u and
v are respectively a viscosity subsolution and a viscosity supersolution of (2.44). If in addition we have v ≤ u
and the PDE has a comparison principle, then it follows that uε and vε converge locally uniformly in Ω to the
unique viscosity solution of (2.44).

This is an immediate consequence of Propositions 3.6 and 5.5. A sufficient condition for v ≤ ū is that f is
nondecreasing in z. As mentioned in [21], sufficient conditions for the PDE to have a comparison principle can
be found for example in Section 5 of [12], and (for more results) in [6]–[9].

Let us now go back to the existence and the construction of ψ1 ∈ C2
b (Ω) such that ∂ψ1

∂n = 1 on ∂Ω, that we
will need at various points of the paper. If Ω is of class C2 and satisfies the uniform interior ball condition of
Definition 1.2 for a certain r, d is C2 on Ω(3r/4) and an explicit suitable function is

ψ1(x) =

⎧⎨⎩exp
[
− d(x)

1− d(x)
r/2

]
, if d(x) < r/2,

0, if d(x) ≥ r/2.
(2.54)

It is clear that supp ψ1 ⊂ Ω(r/2), ψ1(Ω) ⊂ [0, 1] and ψ1 is C2 on Ω(r/2). Then, for all x such that d(x) = r
2 ,

Dψ1 and D2ψ1 are continuous at x. Thus ψ1 is C2 on Ω. It is easy to check that the two first derivatives of
ψ1 are also bounded and that ∂ψ1

∂n = 1 on the boundary. Hence, the function ψ1 defined by (2.54) has all the
desired properties.
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Remark 2.8. If Ω is a domain with C2,α–boundary where α > 0, the Schauder theory [18], Theorem 6.31
ensures the solution ψ of the elliptic problem⎧⎨⎩Δψ − ψ = 0, in Ω,

∂ψ

∂n
= ‖h‖L∞ + 1, on ∂Ω,

is C2,α(Ω). In addition, the estimate ‖ψ‖C2,α(Ω) ≤ CΩ(1 + ‖h‖L∞) holds for a certain constant CΩ depending
only on the domain.

3. Convergence

This section presents our main convergence results, linking the limiting behavior of vε and uε as ε → 0 to
the PDE. The argument uses the framework of [10] and is basically a special case of the theorem proved there.

Convergence is a local issue: in the time-dependent setting, Proposition 3.4 shows that in any region where the
lower and upper semi-relaxed limits v and ū are finite they are in fact viscosity super and subsolutions respec-
tively. The analogous statement for the stationary case is more subtle. In fact, we will need global hypotheses
on f at Section 5.2 to ensure that uε and vε are well-defined and satisfy the dynamic programming inequali-
ties (2.51)–(2.52). Thus, we cannot discuss about v or ū without global assumptions on f .

3.1. Viscosity solutions with Neumann condition

Our PDEs can be degenerate parabolic, degenerate elliptic, or even first order equations. Therefore, we cannot
expect a classical solution, and we cannot always impose boundary data in the classical sense. The theory of
viscosity solutions provides the proper framework for handling these issues. We review the basic definitions in
our setting for the reader’s convenience. We refer to [4], [12] and [16] for further details about the general theory.
Consider first the final-value problem (2.12) in Ω,⎧⎪⎨⎪⎩

−ut + f(t, x, u,Du,D2u) = 0, for x ∈ Ω and t < T,

〈Du(x, t), n(x)〉 = h(x), for x ∈ ∂Ω and t < T,

u(x, T ) = g(x), for x ∈ Ω.

where f(t, x, z, p, Γ ) is continuous in all its variables and satisfies the monotonicity condition (1.4) in its last
variable. We must be careful to impose the boundary condition in the viscosity sense.

Definition 3.1. A real-valued lower-semicontinuous function u(x, t) defined for x ∈ Ω and t∗ ≤ t ≤ T is a
viscosity supersolution of the final-value problem (2.12) if

(P1) for any (x0, t0) with x0 ∈ Ω and t∗ ≤ t0 < T and any smooth φ(x, t) such that u−φ has a local minimum
at (x0, t0), we have

∂tφ(x0, t0) − f(t0, x0, u(x0, t0), Dφ(x0, t0), D2φ(x0, t0)) ≤ 0,

(P2) for any (x0, t0) with x0 ∈ ∂Ω and t∗ ≤ t0 < T and any smooth φ(x, t) such that u−φ has a local minimum
at (x0, t0), we have

max{−(∂tφ(x0, t0)−f(t0, x0, u(x0, t0), Dφ(x0, t0), D2φ(x0, t0))), 〈Dφ(x0, t0), n(x0)〉 − h(x0)} ≥ 0,

(P3) u ≥ g at the final time t = T .
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Similarly, a real-valued upper-semicontinuous function u(x, t) defined for x ∈ Ω and t∗ ≤ t ≤ T is a viscosity
subsolution of the final-value problem (2.12) if

(P1) for any (x0, t0) with x0 ∈ Ω and t∗ ≤ t0 < T and any smooth φ(x, t) such that u−φ has a local maximum
at (x0, t0), we have

∂tφ(x0, t0) − f(t0, x0, u(x0, t0), Dφ(x0, t0), D2φ(x0, t0)) ≥ 0,

(P2) for any (x0, t0) with x0 ∈ ∂Ω and t∗ ≤ t0 < T and any smooth φ(x, t) such that u−φ has a local maximum
at (x0, t0), we have

min{−(∂tφ(x0, t0)−f(t0, x0, u(x0, t0), Dφ(x0, t0), D2φ(x0, t0))), 〈Dφ(x0, t0), n(x0)〉 − h(x0)} ≤ 0,

(P3) u ≤ g at the final time t = T .

A viscosity solution of (2.12) is a continuous function u that is both a viscosity subsolution and a viscosity
supersolution of (2.12).

In the stationary problem (2.44), the definitions are similar to the time-dependent setting.

Definition 3.2. A real-valued lower-semicontinuous function u(x) defined on Ω is a viscosity supersolution of
the stationary problem (2.44) if

(E1) for any x0 ∈ Ω and any smooth φ(x) such that u− φ has a local minimum at x0, we have

f(x0, u(x0), Dφ(x0), D2φ(x0)) + λu(x0) ≥ 0,

(E2) for any x0 ∈ ∂Ω and any smooth φ(x) such that u− φ has a local minimum on Ω at x0, we have

max{f(x0, u(x0), Dφ(x0), D2φ(x0)) + λu(x0), 〈Dφ(x0), n(x0)〉 − h(x0)} ≥ 0.

Similarly, a real-valued upper-semicontinuous function u(x) defined on Ω is a viscosity subsolution of the sta-
tionary problem (2.44) if

(E1) for any x0 ∈ Ω and any smooth φ(x) such that u− φ has a local maximum at x0, we have

f(x0, u(x0), Dφ(x0), D2φ(x0)) + λu(x0) ≤ 0,

(E2) for any x0 ∈ ∂Ω and any smooth φ(x) such that u− φ has a local maximum on Ω at x0, we have

min{f(x0, u(x0), Dφ(x0), D2φ(x0)) + λu(x0), 〈Dφ(x0), n(x0)〉 − h(x0)} ≤ 0.

A viscosity solution of (2.44) is a continuous function u that is both a viscosity subsolution and a viscosity
supersolution of (2.44).

In stating these definitions, we have assumed that the final-time data g and the boundary Neumann condition
h are continuous. In Definition 3.1, the pointwise inequality in part (P3) can be replaced by an apparently weaker
condition analogous to part (P2). The equivalence of such a definition with the one stated above is standard,
the argument uses barriers of the form φ(x, t) = ‖x−x0‖2/δ+(T − t)/μ+Kd(x) with δ and μ sufficiently small,
and is contained in our proof of Proposition 3.4 (iii). We shall be focusing on the lower and upper semi-relaxed
limits of vε and uε, defined by (2.27) in the time-dependent setting and (2.53) in the stationary case.

We now provide a key definition to deal with the Neumann boundary condition within viscosity solutions
framework which will be essential all along the article. We introduce some applications which give bounds on
the Neumann penalization term for a smooth function and x close to the boundary. This approach is well-suited
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to the viscosity solutions framework. More precisely, we define the applications mε and Mε, for all x ∈ Ω(ε1−α)
and φ ∈ C1(Ω), by

mx
ε [φ] := inf

x+Δx̂/∈Ω
Δx̂

{h(x+Δx) −Dφ(x) · n(x+Δx)} , (3.1)

Mx
ε [φ] := sup

x+Δx̂/∈Ω
Δx̂

{h(x+Δx) −Dφ(x) · n(x+Δx)} , (3.2)

where Δx̂ is constrained by (2.17) and determines Δx by (2.22). Notice that the functions m·
ε[φ] and M ·

ε[φ] are
bounded by ‖h‖L∞ + ‖Dφ‖L∞(Ω). Since h is supposed to be continuous, the following property clearly holds.

Lemma 3.3. Let x ∈ ∂Ω and φ ∈ C1(Ω). Suppose there exists a sequence (εk, xk)k∈N in R∗
+ × Ω convergent

to (0, x) such that for all k large enough, xk ∈ Ω(ε1−αk ). Then

lim
k→+∞

mxk
εk

[φ] = lim
k→+∞

Mxk
εk

[φ] = h(x) −Dφ(x) · n(x).

Similarly, let φ ∈ C1(Ω × [0, T ]). Suppose there exists a sequence (εk, xk, tk)k∈N in R∗
+ × Ω × [0, T ] convergent

to (0, x, t) such that for all k large enough, xk ∈ Ω(ε1−αk ). Then

lim
k→+∞

mxk
εk

[φ(·, tk)] = lim
k→+∞

Mxk
εk

[φ(·, tk)] = h(x) −Dφ(x, t) · n(x).

3.2. The parabolic case

We are ready to state our main convergence result in the time-dependent setting. At first sight, the proof
seems to use the monotonicity condition (1.4). The proof relies on the consistency of the numerical scheme,
Propositions 4.5, 4.10 and 4.16, which are proved in Section 4. Proposition 4.16 is necessary to deal with the
degeneration of the consistency estimates due to the Neumann boundary condition. So we also require that
f(t, x, z, p, Γ ) satisfy (1.6)–(1.7), and that the parameters α, β, γ satisfy (2.13)–(2.15).

Proposition 3.4. Suppose f and α, β, γ satisfy the hypotheses just listed. Assume furthermore that ū and v
are finite for all x near x0 and all t ≤ T near t0. Then:

i. If t0 < T and x0 ∈ Ω, then ū is a viscosity subsolution at x0 and v is a supersolution at x0 (i.e. each one
satisfies part (P1 ) of the relevant half of Definition 3.1 at x0).

ii. If t0 < T and x0 ∈ ∂Ω, then ū is a viscosity subsolution at x0 and v is a supersolution at x0 (i.e. each one
satisfies part (P2 ) of the relevant half of Definition 3.1 at x0).

iii. If t0 = T , then ū(x0, T ) = g(x0) and v(x0, T ) = g(x0) (in particular, each one satisfies part (P3 ) of the
relevant half of Definition 3.1 at x0).

In particular, if ū and v are finite for all x ∈ Ω and t∗ < t ≤ T , then they are respectively a viscosity subsolution
and a viscosity supersolution of (2.12) on this time interval.

Proof. When x0 ∈ Ω, since we can find in Ω a δ-neighborhood of x0, the proof follows from [21], Proposition 3.3.
Therefore we shall focus on the case when x0 ∈ ∂Ω. We give the proof for u. The argument for v is entirely
parallel, relying on Proposition 4.5. Consider a smooth function φ such that ū − φ has a local maximum at
(x0, t0). Adding a constant, we can assume u(x0, t0) = φ(x0, t0). Replacing φ by φ + ‖x − x0‖4 + |t − t0|2 if
necessary, we can assume that the local maximum is strict, i.e. that

ū(x, t) < φ(x, t) for 0 < ‖(x, t) − (x0, t0)‖ ≤ r, (3.3)

for some r > 0. By the definition of ū, there exist sequences εk, ỹk, t̃k = T − Ñkε
2
k such that

ỹk → x0, t̃k → t0, uεk(ỹk, t̃k) → ū(x0, t0).
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Let yk and tk = T −Nkε
2
k satisfying

(uεk − φ)(yk, tk) ≥ sup
‖(x,t)−(x0,t0)‖≤r

(uεk − φ)(x, t) − ε3k.

Notice that since uεk is defined only at discrete times, the sup is taken only over such times. Evidently,

(uεk − φ)(yk, tk) ≥ (uεk − φ)(ỹk, t̃k) − ε3k

and the right-hand side tends to 0 as k → +∞. It follows using (3.3) that

(yk, tk) → (y0, t0) and uεk(yk, tk) → ū(x0, t0),

as k → +∞. Setting ξk = uεk(yk, tk) − φ(yk, tk), we also have by construction that

ξk → 0 and uεk(x, t) ≤ φ(x, t) + ξk + ε3k whenever t = T − nkε
2
k and ‖(x, t) − (x0, t0)‖ ≤ r. (3.4)

Now we use the dynamic programming inequality (2.25) at (yk, tk), which can be written concisely as

uεk(yk, tk) ≤ sup
p,Γ

inf
Δx̂

{
uεk(yk +Δx, tk + ε2k) −Δz

}
,

with the convention

Δz = p ·Δx̂+
1
2
〈ΓΔx̂,Δx̂〉 + ε2kf(tk, yk, uεk(yk, tk), p, Γ ) − ‖Δx̂−Δx‖h(yk +Δx).

Using the definition of ξk, (3.4), and the fact that Δx is bounded by a positive power of ε, we conclude that

φ(yk, tk) + ξk ≤ sup
p,Γ

inf
Δx̂

{
φ(yk +Δx, tk + ε2k) + ξk + ε3k −Δz

}
, (3.5)

when k is sufficiently large. Dropping ξk from both sides of (3.5), we deduce, by introducing the operator Sε
defined by (4.1), that

φ(yk, tk) ≤ Sε[yk, tk, uεk(yk, tk), φ(·, tk + ε2k)] + o(ε2k). (3.6)

According to the consistency estimates provided by Proposition 4.10, we shall introduce four sets (Ai)1≤i≤4

respectively defined by

A1 :=
{
k ∈ N : d(yk) ≤ ε1−αk and Myk

εk
[φ(·, tk + ε2k)] ≥

4
3
‖D2φ(yk, tk + ε2k)‖ε1−αk

}
,

A2 :=
{
k ∈ N : ε1−αk − ερk ≤ d(yk) ≤ ε1−αk and Myk

εk
[φ(·, tk + ε2k)] ≤

4
3
‖D2φ(yk, tk + ε2k)‖ε1−αk

}
⋃{

k ∈ N : d(yk) ≥ ε1−αk

}
,

A3 :=
{
k ∈ N : d(yk) ≤ ε1−αk − ερk and − ε1−α−κk ≤Myk

εk
[φ(·, tk + ε2k)] ≤

4
3
‖D2φ(yk, tk + ε2k)‖ε1−αk

}
,

A4 :=
{
k ∈ N : d(yk) ≤ ε1−αk − ερk and Myk

εk
[φ(·, tk + ε2k)] ≤ −ε1−α−κk

}
,

where ρ and κ are defined in Section 4.1.2 by (4.23) and (4.24) and satisfy 0 < κ < 1 − α < ρ < 1. Since
∪1≤i≤4Ai = N, at least one set among A1, A2, A3 and A4 is necessarily unbounded. We shall consider these
four cases.
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• If A1 is unbounded, up to a subsequence, we may assume that A1 = N. Taking the limit k → +∞, we deduce
that lim inf

k→+∞
Myk
εk

[φ(·, tk + ε2k)] ≥ 0. Since Myk
εk

[φ(·, tk + ε2k)] → h(x0) − Dφ(x0, t0) · n(x0) by Lemma 3.3, it

follows in the limit k → ∞ that
Dφ(x0, t0) · n(x0) − h(x0) ≤ 0. (3.7)

We can notice this result also holds through (3.6). We can apply the second alternative given by (4.60) in
Proposition 4.16 to evaluate the right-hand side of (3.6). This gives

φ(yk, tk) − φ(yk, tk + ε2k) ≤ 3ε1−αk Myk
εk

[φ(·, tk + ε2k)] + Cε2k(1 + |uεk(yk, tk)|) + o(ε2k),

where C depends only on ‖h‖L∞ and ‖Dφ(·, tk + ε2k)‖C1
b (Ω∩B(yk,ε

1−α
k )). Since for k large enough,

‖Dφ(·, tk + ε2k)‖C1
b (Ω∩B(yk,ε

1−α
k )) ≤ sup

|t−t0|≤r
‖Dφ(·, t)‖C1

b
(Ω∩B(x0,r))

,

we can suppose that C depends only on ‖h‖L∞ and this sup, which is finite (since φ is smooth) and independent
of k. Then by smoothness of φ and by dividing by ε1−αk we obtain

−ε1+αk

(
∂tφ(yk, tk) − C(1 + |uεk(yk, tk)|)

)
+ o(ε1+αk ) ≤ 3Myk

εk
[φ(·, tk + ε2k)].

The sequences (uεk(yk, tk))k∈N and (∂tφ(yk, tk))k∈N are respectively bounded by definition of u(x0, t0) and
smoothness of φ. By passing to the limit on k, lim inf

k→+∞
Myk
εk

[φ(·, tk + ε2k)] ≥ 0. By Lemma 3.3, we know that

Myk
εk

[φ(·, tk + ε2k)] → h(x0) −Dφ(x0, t0) · n(x0) and (3.7) is retrieved.
• If A2 is unbounded, up to a subsequence, we may assume that A2 = N. We can apply Proposition 4.10 case (ii)

to evaluate the right-hand side of (3.6). This gives

φ(yk, tk) ≤ φ(yk, tk + ε2k) − ε2kf(tk, yk, uεk(yk, tk), Dφ(yk, tk + ε2k), D
2φ(yk, tk + ε2k)) + o(ε2k).

By smoothness of φ and Lipschitz continuity of f with respect to p and Γ , we obtain

φ(yk, tk) − φ(yk, tk + ε2k) ≤ −ε2kf(tk, yk, uεk(yk, tk), Dφ(yk, tk), D2φ(yk, tk)) + o(ε2k).

It follows in the limit k → ∞ that

∂tφ(x0, t0) − f(t0, x0, ū(x0, t0), Dφ(x0, t0), D2φ(x0, t0)) ≥ 0. (3.8)

• If A3 is unbounded, up to a subsequence, we may assume that A3 = N. By passing to the limit on k, we have
that Myk,tk+ε2k

εk [φ] tends to zero when εk tends to zero. Since Myk
εk

[φ(·, tk + ε2k)] → h(x0) −Dφ(x0, t0) · n(x0)
by Lemma 3.3, it follows in the limit k → ∞ that Dφ(x0, t0) · n(x0) − h(x0) = 0.

• If A4 is unbounded, up to a subsequence, we may assume that A4 = N. Hence, taking the limit k → +∞, we
have

lim sup
k→+∞

Myk
εk

[φ(·, tk + ε2k)] ≤ 0. (3.9)

Moreover, by applying the fourth alternative given by (4.60) in Proposition 4.16 to evaluate the right-hand
side of (3.6), we obtain

φ(yk, tk) ≤ φ(yk, tk + ε2k) +
1
4
ερkM

yk
εk

[φ(·, tk + ε2k)] + Cε2k(1 + |uεk(yk, tk)|) + o(ε2k),

where C depends only on ‖h‖L∞ and sup
|t−t0|≤r

‖Dφ(·, t)‖C1
b (Ω∩B(x0,r))

by the same arguments used above for

A1. Then by smoothness of φ and by dividing by ερk we get

−ε2−ρk

(
∂tφ(yk, tk) − C(1 + |uεk(yk, tk)|)

)
+ o(ε2−ρk ) ≤ 1

4
Myk
εk

[φ(·, tk + ε2k)].
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The sequences (uεk(yk, tk))k∈N and (∂tφ(yk, tk))k∈N are respectively bounded by definition of u(x0, t0) and
smoothness of φ. By passing to the limit as k → +∞, we have

lim inf
k→+∞

Myk
εk

[φ(·, tk + ε2k)] ≥ 0.

By comparing this inequality with (3.9) and using Lemma 3.3, we deduce that

Dφ(x0, t0) · n(x0) − h(x0) = 0.

Moreover, we can also apply Lemma 4.9 since ε1−αk � ε1−α−κk . By the same manipulations as those done for
the set A2, the inequality (3.8) holds also true.

Thus ū is a viscosity subsolution at (x0, t0).
We turn now to case (iii), i.e. the case t0 = T . If x0 ∈ Ω, the analysis led in [21], Proposition 3.3 gives the

result. It remains to study u on the boundary. We want to show that u(·, T ) = g is also satisfied on ∂Ω. By
the definition of u given by (2.27) and considering a particular sequence (εk, xk, tk = T )k∈N which converges
to (0, x0, T ), it is clear that u(·, T ) ≥ g on ∂Ω (using the continuity of g and the fact that each uε has final
value g). If this sequence realizes the sup, we have in fact the equality. The preceding argument can still be used
provided tk < T for all sufficiently large k. Thus, considering the different possibilities according to tk < T or
tk = T and also on xk ∈ Ω or xk ∈ ∂Ω, we know that for any smooth φ such that ū− φ has a local maximum
at (x0, T ),

either ū(x0, T ) = g(x0) or else
max

(
∂tφ(x0, T )− f(t0, x0, ū(x0, T ), Dφ(x0, T ), D2φ(x0, T )), h(x0) −Dφ(x0, T ) · n(x0)

) ≥ 0. (3.10)

Moreover this statement applies not only at the given point x0, but also at any point nearby.
Now consider the functions

ψ(x, t) = ū(x, t) − ‖x− x0‖2

η
− T − t

μ
+Kd(x)

and

φ(x, t) =
‖x− x0‖2

η
+
T − t

μ
−Kd(x), (3.11)

where the parameters η, μ are small and positive and K = ‖h‖L∞ + 1. Suppose u is uniformly bounded on the
closed half-ball {‖(x, t)− (x0, T )‖ ≤ r, t ≤ T } and let ψ attain its maximum on this half-ball at (xη,μ, tη,μ). We
assume r is small enough such that d is C2 on this half-ball so that φ can be taken as a test function. We clearly
have

ū(xη,μ, tη,μ) +Kd(xη,μ) ≥ ψ(xη,μ, tη,μ) ≥ ψ(x0, T ) = u(x0, T ). (3.12)

By plugging the expression of ψ(xη,μ, tη,μ) in the right-hand side of inequality (3.12), we obtain

0 ≤ ‖xη,μ − x0‖2

η
+
T − tη,μ

μ
≤ ū(xη,μ, tη,μ) − u(x0, T ) +Kd(xη,μ). (3.13)

Since u is bounded on the half-ball and xη,μ belongs to the half ball for all η and μ, the right-hand side of (3.13)
is bounded independently of η, μ, which yields

(xη,μ, tη,μ) → (x0, T ) as η, μ→ 0. (3.14)

By using the upper semicontinuity of u and taking the limit (3.14) in (3.12), we get

u(xη,μ, tη,μ) → u(x0, T ) as η, μ→ 0. (3.15)



A GAME INTERPRETATION OF THE NEUMANN PROBLEM 1135

By combining (3.14) and (3.15), we finally obtain by (3.13) that

‖xη,μ − x0‖2

η
+
T − tη,μ

μ
→ 0 as η, μ→ 0. (3.16)

If tη,μ < T and xη,μ ∈ Ω then part (i) of Proposition 3.4 applied to φ defined by (3.11) assures us that

− 1
μ
− f(tη,μ, xη,μ, u(xη,μ, tη,μ), 2

xη,μ − x0

η
−KDd(xη,μ),

2
η
I −KD2d(xη,μ)) ≥ 0. (3.17)

Since f is continuous, for any η > 0 there exists μ > 0 such that (3.17) cannot happen. Restricting our attention
to such choices of η and μ, it remains to examine two situations: on one hand tη,μ < T and xη,μ ∈ ∂Ω and on
the other hand tη,μ = T . Arguing by contradiction, let us assume that tη,μ < T and xη,μ ∈ ∂Ω. By the Taylor
expansion on the distance function close to x0, we have

d(x) = d(x0) +Dd(x0) · (x− x0) +O(‖x − x0‖2).

By using that x0 and xη,μ are on the boundary ∂Ω, d(x0) = d(xη,μ) = 0 and Dd(x0) = −n(x0), this relation
reduces to

n(x0) · (xη,μ − x0) = O(‖xη,μ − x0‖2). (3.18)

By combining (3.16) and (3.18), we compute

Dφ(xη,μ, tη,μ) · n(x0) =
2
η
(xη,μ − x0) · n(x0) −KDd(xη,μ) · n(x0)

= O

(‖xη,μ − x0‖2

η

)
+Kn(xη,μ) · n(x0) → K, as η, μ→ 0.

By smoothness of φ and continuity of n on ∂Ω, we deduce that Dφ(xη,μ, T ) · n(xη,μ) → ‖h‖L∞ + 1 > h(xη,μ)
which denies the second alternative proposed at (3.10). As a result, the only remaining possibility for (3.10) is
u(xη,μ, T ) = g(xη,μ). By continuity of g, it follows in the limit η, μ→ 0 that u(x0, T ) = g(x0), as asserted. �

Remark 3.5. In the proof of the convergence at the final-time in Theorem 3.4, we needed in a essential way
that the domain was assumed to be at least C2. More precisely, in this case, since the distance function d is C2

in a neighborhood of the boundary, it allows us to take φ given by (3.11) as a test function.

3.3. The elliptic case

We turn now to the stationary setting discussed in Section 2.3. As in the time-dependent setting, our conver-
gence result depends on the fundamental consistency result Proposition 4.18. So we require that the parameters
α, β, γ satisfy (2.13)–(2.15), and that f(x, z, p, Γ ) satisfy not only the monotonicity condition (1.4) but also
the Lipschitz continuity and growth conditions (1.9)–(1.10). To prove that Uε is well defined, we require that
the interest rate λ be large enough, condition (1.8), and that h be uniformly bounded. Finally, concerning the
parameters m and M and the function ψ associated to the termination of the game, we assume that ψ ∈ C2(Ω)
fulfills ∂ψ

∂n = ‖h‖L∞ + 1 on ∂Ω, m = M − 1 − 2‖ψ‖L∞(Ω), χ = m+ ‖ψ‖L∞(Ω) + ψ and M is sufficiently large.
These hypotheses ensure us the availability of the dynamic programming inequalities stated in Proposition 2.6.

Proposition 3.6. Suppose f , g, λ and α, β, γ, m, M , ψ satisfy the hypotheses just listed (from which it follows
that v and u are bounded away from ±M for all x ∈ Ω). Then u is a viscosity subsolution and v is a viscosity
supersolution of (2.44) in Ω. More specifically:

• if x0 ∈ Ω then each of u and v satisfies part (E1) of relevant half of Definition 3.2 at x0, and
• if x0 ∈ ∂Ω then each of u and v satisfies part (E2) of relevant half of Definition 3.2 at x0.
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Proof. When x0 ∈ Ω, the proof is similar to that of Theorem 3.4. Therefore we shall focus on the case when
x0 ∈ ∂Ω. We give the proof for ū, the arguments for v being similar and even easier due to fewer cases to
distinguish. Consider a smooth function φ such that u − φ has local maximum on Ω at x0 ∈ ∂Ω. We may
assume that 〈Dφ(x0), n(x0)〉 > h(x0) since otherwise the assertion is trivial. Adjusting φ if necessary, we can
assume that u(x0) = φ(x0) and that the local maximum is strict, i.e.

u(x) < φ(x) for x ∈ Ω ∩ {0 < ‖x− x0‖ ≤ r}, (3.19)

for some r > 0. By the definition of u given by (2.53), there exist sequences εk > 0 and ỹk ∈ Ω such that

ỹk → x0, uεk(ỹk) → u(x0).

We may choose yk ∈ Ω such that (uεk − φ)(yk) ≥ sup
Ω∩{‖x−x0‖≤r}

(uεk − φ)(x) − ε3k. Evidently

(uεk − φ)(yk) ≥ (uεk − φ)(ỹk) − ε3k

and the right-hand side tends to 0 as k → ∞. It follows using (3.19) that yk → x0 and uεk(yk) → ū(x0) as
k → ∞. Setting ξk = (uεk − φ)(yk), we also have by construction that

ξk → 0 and uεk(x) ≤ φ(x) + ξk − ε3k whenever x ∈ Ω with ‖x− x0‖ ≤ r. (3.20)

We now use the dynamic programming inequality (2.52) at yk, which can be written concisely as

uεk(yk) ≤ sup
p,Γ

inf
Δx̂

{
e−λε

2
kuεk(yk +Δx) − δk

}
,

with the convention

δk = p ·Δx̂+
1
2
〈ΓΔx̂,Δx̂〉 + ε2kf(x, uεk(x), p, Γ ) − ‖Δx̂−Δx‖h(x +Δx).

By the rule (2.18) of the game, for every move Δx̂ decided by Mark, the point yk+Δx belongs to Ω. Combining
this observation with (3.20) and the definition of ξk we conclude that

φ(yk) + ξk ≤ sup
p,Γ

inf
Δx̂

{
e−λε

2
k
[
φ(yk +Δx) + ξk − ε3k

]− δk

}
.

We may replace e−λε
2
k by 1 − λε2k and e−λε

2
kξk by ξk while making an error which is only o(ε2) using the fact

that ξk → 0. Dropping ξk from both sides, we conclude that

φ(yk) ≤ sup
p,Γ

inf
Δx̂

(
e−λε

2
kφ(yk +Δx) − δk

)
+ o(ε2k).

We can evaluate the right-hand side using Proposition 4.18 case (ii) for k large enough. We introduce ρ and κ
defined in Section 4.1.2 by (4.23) and (4.24) and satisfying in particular 0 < κ < 1 − α < ρ < 1. If we may
assume, up to a subsequence, that for all k large enough, on one hand d(yk) ≥ ε1−αk or on the other hand
ε1−αk − ερk ≤ d(yk) ≤ ε1−αk and Myk

εk
[φ] ≤ 4

3‖D2φ(yk)‖ε1−αk , we can apply Proposition 4.18 case (ii) to evaluate
the right-hand side

0 ≤ −ε2kf(yk, uεk(yk), Dφ(yk), D2φ(yk)) − ε2kλu
εk(yk) + o(ε2k).

By taking the limit k → +∞, we get the required inequality in the viscosity sense. Otherwise, recall that
〈Dφ(x0), n(x0)〉 > h(x0). By Lemma 3.3, we have

Myk
εk

[φ] → h(x0) − 〈Dφ(x0), n(x0)〉 < 0, (3.21)
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and the condition
Myk
εk

[φ] ≤ −ε1−α−κk (3.22)

is satisfied for all k sufficiently large. Therefore, up to a subsequence, it remains to consider a sequence (yk, εk)k∈N

satisfying both d(yk) ≤ ε1−αk −ερk and (3.22). The last part of Proposition 4.19 can be applied and we get by (4.71)
that there exists a constant C depending only on M , ‖Dφ‖C1

b (Ω)∩B(yk,ε
1−α
k ) and ‖h‖L∞ such that

0 ≤ 1
4
ερkM

yk
εk

[φ] + Cε2k − λε2kφ(yk) + o(ε2k),

recalling that
(
ε1−αk − d(yk)

) ≥ ερk and Myk
εk

[φ] < 0. By dividing by ερk, it follows that

−ε2−ρk (C − λφ(yk)) + o(ε2−ρk ) ≤ 1
4
Myk
εk

[φ].

The sequence (φ(yk))k∈N is bounded by smoothness of φ. Since ‖Dφ‖C1
b
(Ω)∩B(yk,ε

1−α
k

) ≤ ‖Dφ‖C1
b (Ω)∩B(x0,r)

holds for k large enough, we can assume that C is independent of k depending only on ‖Dφ‖C1
b (Ω)∩B(x0,r)

, M
and ‖h‖L∞. Taking the limit as k → +∞, we deduce that

lim inf
k→∞

Myk
εk

[φ] ≥ 0,

which is a contradiction with (3.21). Thus u is a viscosity subsolution at x0. �

4. Consistency

A numerical scheme is said to be consistent if every smooth solution of the PDE satisfies it modulo an
error that tends to zero with the step size. It is the idea of the argument used in [21]. In our case, we must
understand how the Neumann condition interferes with the estimates proposed in [21], Section 4. The essence
of our formal argument in Section 2.2.1 was that the Neumann condition term is predominant compared to the
PDE term at the boundary and produces a degeneracy in the consistency estimate. The present section clarifies
the connection between our formal argument and the consistency of the game, by discussing consistency in
more conventional terms. The main point is presented in Propositions 4.5 and 4.10. In order to explain very
precisely how the consistency estimate of [21], Section 4 degenerates, we establish the consistency of our game
as a numerical scheme by focusing on different cases according to the values of the quantities mx

ε [φ] and Mx
ε [φ]

defined by (3.1)–(3.2) and the distance d(x) to the boundary ∂Ω.

4.1. The parabolic case

Consider the game discussed in Section 2.2 for solving −ut + f(t, x, u,Du,D2u) = 0 in Ω with final-time
data u(x, T ) = g(x) for x ∈ Ω and boundary condition ∂u

∂n (x, t) = h(x) for x ∈ ∂Ω, t ∈ (0, T ). The dynamic
programming principles (2.25)–(2.26) can be written as

uε(x, t) ≤ Sε
[
x, t, uε(x, t), uε(·, t+ ε2)

]
,

vε(x, t) ≥ Sε
[
x, t, vε(x, t), vε(·, t+ ε2)

]
,

where Sε [x, t, z, φ] is defined for any x ∈ Ω, z ∈ R and t ≤ T and any continuous function φ: Ω → R by

Sε [x, t, z, φ] = max
p,Γ

min
Δx̂

[φ (x+Δx)

−
(
p ·Δx̂+

1
2
〈ΓΔx̂,Δx̂〉 + ε2f (t, x, z, p, Γ ) − ‖Δx̂−Δx‖h(x +Δx)

)]
, (4.1)
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subject to the usual constraints ‖p‖ ≤ ε−β, ‖Γ‖ ≤ ε−γ , ‖Δx̂‖ ≤ ε1−α and Δx = projΩ(x + Δx̂) − x. The
operator Sε clearly satisfies the three following properties:

• For all φ ∈ C(Ω), S0 [x, t, z, φ] = φ(x).
• Sε is monotone, i.e. if φ1 ≤ φ2, then Sε [x, t, z, φ1] ≤ Sε [x, t, z, φ2].
• For all φ ∈ C(Ω) and c ∈ R,

Sε [x, t, z, c+ φ] = c+ Sε [x, t, z, φ] . (4.2)

Fixing x, t, z and a smooth function φ, a Taylor expansion shows that for any ‖Δx‖ ≤ ε1−α,

φ(x +Δx) = φ(x) +Dφ(x) ·Δx+
1
2
〈D2φ(x)Δx,Δx〉 +O(ε3−3α).

Since α < 1/3 by hypothesis, ε3−3α = o(ε2). By rearranging the terms, we compute

φ (x+Δx) −
(
p ·Δx̂+

1
2
〈ΓΔx̂,Δx̂〉 + ε2f (t, x, z, p, Γ )− ‖Δx̂−Δx‖h(x+Δx)

)
= φ(x) + (Dφ(x) − p) ·Δx̂+ ‖Δx̂−Δx‖ [h(x+Δx) −Dφ(x) · n(x+Δx)]

+
1
2
〈
D2φ(x)Δx,Δx

〉 − 1
2
〈ΓΔx̂,Δx̂〉 − ε2f(t, x, z, p, Γ ) + o(ε2),

since the outward normal can be expressed by n(x+Δx) = − Δx−Δx̂

‖Δx̂−Δx‖ if x+Δx̂ /∈ Ω and the move Δx can

be decomposed as Δx = Δx̂+ (Δx−Δx̂). Thus, we shall examine

Sε [x, t, z, φ] − φ(x) = max
p,Γ

min
Δx̂

[
(Dφ(x) − p) ·Δx̂+

1
2
〈
D2φ(x)Δx,Δx

〉
+‖Δx̂−Δx‖{h(x+Δx) −Dφ(x) · n(x+Δx)} − 1

2
〈ΓΔx̂,Δx̂〉 − ε2f(t, x, z, p, Γ )

]
+ o(ε2). (4.3)

4.1.1. Preliminary geometric lemmas

This subsection is devoted to some geometric properties of the game that will be useful to show consistency in
Section 4.1.2. We start by some estimates, involving the geometric conditions on the domain, about the moves
Δx̂ decided by Mark.

Lemma 4.1. Suppose that Ω is a C2-domain satisfying the uniform exterior ball condition for a certain r > 0.
Then, for all 0 < ε < r

1
1−α and for all Δx̂ constrained by (2.17), determining Δx by (2.22), we have

‖Δx̂−Δx‖ ≤ ε1−α − d(x) and ‖Δx‖ ≤ 2ε1−α − d(x). (4.4)

Proof. Let us prove the first inequality, the second following immediately by the triangle inequality. If the point
x̂ = x + Δx̂ belongs to Ω, Δx = Δx̂ and the result is obvious. Supposing now x̂ does not belong to Ω, the
set S = [x, x̂] ∩ ∂Ω is not empty and we can consider a point x∂ ∈ S. By the rule of the game, we have
‖x− x̂‖ = ‖Δx̂‖ ≤ ε1−α. Since x∂ ∈ ∂Ω by construction, it is clear that ‖x− x∂‖ ≥ d(x). We deduce that

‖x∂ − x̂‖ = ‖x− x̂‖ − ‖x∂ − x‖ ≤ ε1−α − d(x).

By the uniform exterior ball condition, the orthogonal projection on Ω is well-defined on Ω(ε1−α) ⊂ Ω(r). By
property of the orthogonal projection and since x̂ /∈ Ω, we can write

‖Δx̂−Δx‖ = inf
y∈Ω

‖y − x̂‖ = inf
y∈∂Ω

‖y − x̂‖ ≤ ‖x∂ − x̂‖,

which gives directly the first estimate in (4.4). �
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The following lemma uses the crucial geometric fact that Ω satisfies the interior ball condition introduced in
Definition 1.2 for which there is no neck pitching for ε sufficiently small.

Lemma 4.2. Let σ > 1 − α and B > 0. Suppose that Ω is a domain with C2-boundary ∂Ω and satisfies the
uniform interior ball condition. Then, for all possible moves ‖Δx̂‖ ≤ ε1−α such that ‖Δx̂ + ε1−αn(x̄)‖ ≤ Bεσ

the intermediate point x̂ belongs to Ω for all ε sufficiently small. Moreover, for all possible moves ‖Δx̂‖ ≤ ε1−α

such that ‖Δx̂− ε1−αn(x̄)‖ ≤ Bεσ and Δx determined by (2.22), we have

‖Δx̂−Δx‖ ≥ ε1−α − d(x) −Bεσ +O(ε2−2α). (4.5)

Furthermore, if in addition we assume d(x) ≥ ε1−α− εη with 1−α < η < σ, the intermediate point x̂ is outside
Ω for all ε sufficiently small.

Proof. For the first assertion, since Ω satisfies the uniform interior ball condition (there is no neck pitching for
ε sufficiently small), we observe that the set ∂Ω ∩B(x, 2ε1−α) is below a paraboloid P1 of opening A and above
a paraboloid P2 of opening −A touching ∂Ω at x̄. By the Taylor expansion, if Tx̄∂Ω denotes the tangent space
to ∂Ω at x̄, we get that for all y ∈ ∂Ω ∩B(x, 2ε1−α),

|(y − x̄) · n(x̄)| = d(y, Tx̄∂Ω) ≤ 1
2
A(2ε1−α)2,

Since (x+Δx̂ − x̄) · n(x̄) ≤ −ε1−α − d(x) +Bεσ, we deduce that for all ε sufficiently small,

(x +Δx̂− x̄) · n(x̄) < inf
y∈∂Ω∩B(x,2ε1−α)

(y − x̄) · n(x̄),

which yields that x+Δx̂ belongs to Ω.
For the second claim, we denote by (κi(x))1≤i≤N−1 the principal curvatures at x on ∂Ω and by (e1, . . . , eN )

an orthonormal frame centered in x̄ with first vector e1 = n(x̄). Since Ω is a C2-domain, (e2, . . . , eN) form a
basis of the tangent space Tx̄∂Ω. We compute

ε1−α −Bεσ ≤ Δx̂ · n(x̄) = (Δx̂ − ε1−αn(x̄)) · n(x̄) + ε1−α.

Thus x̂ is contained in the half-space H1 determined by (y − x̄) · e1 ≥ ε1−α − d(x) − Bεσ and d(x̂, Tx∂Ω) ≥
ε1−α − d(x)−Bεσ. Moreover, we deduce from (4.4) and the triangle inequality that for each move Δx̂ we have
x +Δx ∈ B(x̄, 2ε1−α). Assume x1 = p(x2, . . . , xN ) is a local C2-parametrization of ∂Ω around x. By a Taylor
argument and by continuity of the principal curvatures on ∂Ω, it follows that, for ε > 0 small enough,

d(x+Δx, Tx̄∂Ω) ≤ 1
2
C1(2ε1−α)2 = 2C1ε

2−2α, (4.6)

where C1 := 2 max {|κi(x)| : 1 ≤ i ≤ N − 1}. By the triangle inequality, we deduce that

‖x+Δx− x̂‖ ≥ ‖projTx̄∂Ω(x+Δx) − x̂‖ − ‖x+Δx− projTx̄∂Ω(x+Δx)‖
≥ d(x̂, Tx∂Ω) − d(x+Δx, Tx∂Ω)
≥ ε1−α − d(x) −Bεσ − 2C1ε

2−2α.

In particular, if d(x) ≥ ε1−α − εη with 1 − α < η < σ the right-hand side is strictly positive for ε sufficiently
small and x̂ /∈ Ω. �

The next lemmas gather some estimates which will be useful to establish our consistency estimates.

Lemma 4.3. Under the hypothesis of Lemma 4.2, for all moves Δx̂ constrained by (2.17), determining Δx
by (2.22), we have

−1
2
(ε1−α − d(x)) ≤ −1

2

(
1 − d(x)

ε1−α

)
(Δx̂) · n(x̄) + ‖Δx̂−Δx‖ ≤ 3

2
(ε1−α − d(x)). (4.7)
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Proof. The left-hand side of (4.7) can be written in the form

−1
2

(
1 − d(x)

ε1−α

)
(Δx̂) · n(x̄) + ‖Δx̂−Δx‖ = (ε1−α − d(x))

[
−1

2
(Δx̂) · n(x̄)

ε1−α
+

‖Δx̂−Δx‖
ε1−α − d(x)

]
,

which directly gives the desired estimates by using (2.17) and the first inequality given by (4.4). �

Lemma 4.4. Let A ∈ MN (R), k ∈ Cb(∂Ω) extended by some function k : Ω → R, and x ∈ Ω. Suppose in
addition that

(3ε1−α − d(x))‖A‖ ≤ inf
x+Δx̂/∈Ω

Δx̂

k(x+Δx), (4.8)

with Δx̂ constrained by (2.17) and Δx determined by (2.22). Then

min
Δx̂

{〈AΔx,Δx〉 − 〈AΔx̂,Δx̂〉 + ‖Δx̂−Δx‖k(x+Δx)} = 0, (4.9)

where Δx̂ is constrained by (2.17) and determines Δx by (2.22).

Proof. If x̂ = x+Δx̂ ∈ Ω, the function is equal to zero. We now consider the moves for which x̂ /∈ Ω. Then

〈AΔx,Δx〉 − 〈AΔx̂,Δx̂〉 = 〈A(Δx̂ −Δx), Δx̂ −Δx〉 + 2 〈AΔx̂,Δx̂−Δx〉 . (4.10)

By the Cauchy–Schwarz inequality, we obtain

| 〈AΔx,Δx〉 − 〈AΔx̂,Δx̂〉 | ≤ ‖A‖‖Δx̂−Δx‖ (‖Δx̂−Δx‖ + 2‖Δx̂‖) . (4.11)

By using (4.4) and ‖Δx̂‖ ≤ ε1−α, we get

| 〈AΔx,Δx〉 − 〈AΔx̂,Δx̂〉 | ≤ ‖A‖‖Δx̂−Δx‖ (3ε1−α − d(x)
)
. (4.12)

Thus

〈AΔx,Δx〉 − 〈AΔx̂,Δx̂〉 + ‖Δx̂−Δx‖k(x+Δx) ≥ ‖Δx̂−Δx‖
⎧⎨⎩ inf
x+Δx̂/∈Ω

Δx̂

k(x+Δx) − ‖A‖(3ε1−α − d(x))

⎫⎬⎭ .

The right-hand side of this last inequality is strictly positive by the assumption (4.8). �

4.1.2. Consistency estimates

In this subsection we state our consistency estimates. They explain precisely the conditions under which the
usual estimate proposed in [21] holds for x near the boundary and φ ∈ C2(Ω). If it does not hold, there is a
degeneration of the estimates respecting the final discussion of formal derivation of the PDE at Section 2.2.1.
For fixed x ∈ Ω(ε1−α), these estimates take into account the size and the sign of the boundary condition in the
small ball B(x, ε1−α) and the distance d(x) to the boundary.

In the heuristic derivation presented in Section 2.2.1, we assumed that Δx̂ �→ h(x+Δx)−Dφ(x) ·n(x+Δx),
with Δx determined by (2.22), was locally constant in a δ-neighborhood of the boundary near x. In the general
case, this hypothesis must be relaxed. To do this, we observe that, for all Δx̂ constrained by (2.17) satisfying
x+Δx̂ /∈ Ω and determining Δx by (2.22),

mx
ε [φ] ≤ h(x +Δx) −Dφ(x) · n(x+Δx) ≤Mx

ε [φ],

where mx
ε [φ] and Mx

ε [φ] are defined by (3.1)–(3.2). Therefore we are going to specify some strategies for Helen
which are associated to the two extreme situations mx

ε [φ] and Mx
ε [φ] by following the optimal choices (2.40)
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and (2.42) obtained in the formal derivation at Section 2.2.1. More precisely, for all x ∈ Ω(ε1−α), we define the
strategies pmopt(x), pMopt(x) and Γopt(x) in an orthonormal basis B = (e1 = n(x̄), e2, . . . , eN) respectively by

pmopt(x) = Dφ(x) +
[
1
2

(
1 − d(x)

ε1−α

)
mx
ε [φ] − ε1−α

4

(
1 − d2(x)

ε2−2α

)
(D2φ(x))11

]
n(x̄), (4.13)

pMopt(x) = Dφ(x) +
[
1
2

(
1 − d(x)

ε1−α

)
Mx
ε [φ] − ε1−α

4

(
1 − d2(x)

ε2−2α

)
(D2φ(x))11

]
n(x̄), (4.14)

and

Γopt(x) = D2φ(x) +
[
1
2

(
−1 +

d2(x)
ε2−2α

)
(D2φ(x))11

]
E11, (4.15)

where E11 denotes the unit-matrix (1, 1) in the basis B. These strategies depend on the local behavior of φ (size
and amplitude) around the boundary and on the geometry of the boundary itself.

Since there is a degeneration of the usual estimates, there is no hope for one simple estimate. We are
going to separate the study in two steps: Proposition 4.5 provides the estimates for the lower bound and
Proposition 4.10 deals with the upper bound. Moreover, Section 4.2 is devoted to the technical proof of the
upper bound distinguishing several cases according to the size of Mx

ε [φ] and d(x).

Proposition 4.5. Let f satisfy (1.4) and (1.6)–(1.7) and assume α, β, γ satisfy (2.13)–(2.15). Let pmopt and
Γopt be respectively defined in the orthonormal basis (e1 = n(x̄), e2, . . . , eN ) by (4.13) and (4.15). For any x, t,
z and any smooth function φ defined near x, Sε[x, t, z, φ] being defined by (4.1), we distinguish two cases:

i. Big bonus: if d(x) ≥ ε1−α or mx
ε [φ] > 1

2 (3ε1−α − d(x))‖D2φ(x)‖, then

Sε[x, t, z, φ] − φ(x) ≥ −ε2f(t, x, z,Dφ(x), D2φ(x)).

ii. Penalty or small bonus: if d(x) ≤ ε1−α and mx
ε [φ] ≤ 1

2 (3ε1−α − d(x))‖D2φ(x)‖, then

Sε[x, t, z, φ] − φ(x) ≥ 1
2
(ε1−α − d(x))

(
smx

ε [φ] − 4‖D2φ(x)‖ε1−α)− ε2f(t, x, z, pmopt(x), Γopt(x)),

where s = −1 if mx
ε [φ] ≥ 0 and s = 3 if mx

ε [φ] < 0.

Proof. If d(x) ≥ ε1−α, the usual estimate [21], Lemma 4.1 holds. We now focus on the case d(x) ≤ ε1−α. By
the definition of mx

ε [φ] given by (3.1) and the positivity of ‖Δx̂−Δx‖, for all ‖Δx̂‖ ≤ ε1−α, we have

‖Δx̂−Δx‖ {h(x+Δx) −Dφ(x) · n(x+Δx)} ≥ ‖Δx̂−Δx‖mx
ε [φ]. (4.16)

Therefore it is sufficient to find a lower bound for

max
p,Γ

min
Δx̂

[
(Dφ(x) − p) ·Δx̂+mx

ε [φ]‖Δx̂ −Δx‖ +
1
2
〈D2φ(x)Δx,Δx〉 − 1

2
〈ΓΔx̂,Δx̂〉 − ε2f(t, x, z, p, Γ )

]
.

where p, Γ and Δx̂ are constrained by (2.16)–(2.17) and Δx determined by (2.22). In other words, by taking
advantage of the monotonicity of the operator Sε with (4.16), we shall look for a lower bound for an approximated
operator bounding Sε from below and very close to it when ε→ 0.

Then, we also observe that for every choice p and Γ ,

Sε[x, t, z, φ] − φ(x) ≥ −ε2f (t, x, z, p, Γ )

+ min
Δx̂

[
(Dφ(x) − p) ·Δx̂+

1
2
〈
D2φ(x)Δx,Δx

〉 − 1
2
〈ΓΔx̂,Δx̂〉 + ‖Δx̂−Δx‖mx

ε [φ]
]
.
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We now distinguish two particular strategies for Helen. For part (i), we consider the particular choice p = Dφ(x),
Γ = D2φ(x) and obtain

Sε[x, t, z, φ] − φ(x) ≥ −ε2f (t, x, z,Dφ(x), D2φ(x)
)

+ min
Δx̂

[
1
2
(
〈
D2φ(x)Δx,Δx

〉 − 1
2
〈
D2φ(x)Δx̂,Δx̂

〉
+ ‖Δx̂−Δx‖mx

ε [φ]
]

≥ −ε2f (t, x, z,Dφ(x), D2φ(x)
)
,

by applying Lemma 4.4 with A = 1
2D

2φ(x). For part (ii), we consider the choice p = pmopt(x), Γ = Γopt(x) and
find

Sε[x, t, z, φ] − φ(x) ≥ −ε2f(t, x, z, pmopt(x), Γopt(x)) + lx[φ],

with lx[φ] defined by

lx[φ] = min
Δx̂

[
(Dφ(x) − pmopt) · (Δx̂) +

1
2
〈
D2φ(x)Δx,Δx

〉 − 1
2
〈Γopt(x)Δx̂,Δx̂〉 + ‖Δx̂−Δx‖mx

ε [φ]
]
. (4.17)

It now remains to give a lower bound for lx[φ]. By plugging the expression (4.13) of pmopt(x) in (4.17), we have

lx[φ] = min
Δx̂

[(
−ε

1−α − d(x)
2ε1−α

(Δx̂)1 + ‖Δx̂−Δx‖
)
mx
ε [φ]

+
1
2
〈
D2φ(x)Δx,Δx

〉 − 1
2
〈Γopt(x)Δx̂,Δx̂〉 +

1
4

(
ε1−α − d2(x)

ε1−α

)
(D2φ(x))11(Δx̂)1

]
.

It is clear that lx[φ] ≥ lx1 [φ] + lx2 [φ] with lx1 [φ] and lx2 [φ] respectively defined by

lx1 [φ] := min
Δx̂

[(
−ε

1−α − d(x)
2ε1−α

(Δx̂)1 + ‖Δx̂−Δx‖
)
mx
ε [φ]

]
, (4.18)

and

lx2 [φ] :=
1
2

min
Δx̂

[〈
D2φ(x)Δx,Δx

〉 − 〈Γopt(x)Δx̂,Δx̂〉 +
ε1−α

2

(
1 − d2(x)

ε2−2α

)
(D2φ(x))11(Δx̂)1

]
. (4.19)

By using Lemmas 4.6 and 4.8 stated below, giving lower bounds respectively for lx1 [φ] and lx2 [φ], one obtains

lx[φ] ≥ s

2
(ε1−α − d(x))mx

ε [φ] − 2‖D2φ(x)‖ε1−α (ε1−α − d(x)
)

=
1
2
(ε1−α − d(x))

(
smx

ε [φ] − 4‖D2φ(x)‖ε1−α) ,
which gives the desired estimate. �

The three following lemmas provide the required estimates for lx1 [φ] and lx2 [φ].

Lemma 4.6. For any x ∈ Ω(ε1−α) and any function φ defined at x, lx1 [φ] being defined by (4.18), we have
s

2
(ε1−α − d(x))mx

ε [φ] ≤ lx1 [φ] ≤ 0,

with s = −1 if mx
ε [φ] is positive and s = 3 if mx

ε [φ] is nonpositive.

Proof. By considering Δx̂ = 0, lx1 [φ] is negative. To find a lower bound on lx1 [φ], if mx
ε [φ] is negative, we may

write [
−ε

1−α − d(x)
2ε1−α

(Δx̂)1 + ‖Δx̂−Δx‖
]
mx
ε [φ] ≥ 3

2
(ε1−α − d(x))mx

ε [φ],

the last inequality being provided by the right-hand side inequality given in Lemma 4.3 since by hypothesis
mx
ε [φ] is negative. If mx

ε [φ] is nonnegative, the result follows from applying the left-hand side inequality given
in Lemma 4.3. �
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Lemma 4.7. Let x ∈ Ω(ε1−α) and φ ∈ C2(Ω). For all Δx̂ constrained by (2.17), we have∣∣∣∣12 〈D2φ(x)Δx,Δx〉 − 1
2
〈D2φ(x)Δx̂,Δx̂〉

∣∣∣∣ ≤ 1
2
‖D2φ(x)‖ (3ε1−α − d(x)

) ‖Δx̂−Δx‖, (4.20)

and ∣∣∣∣12〈D2φ(x)Δx,Δx〉 − 1
2
〈Γopt(x)Δx̂,Δx̂〉

∣∣∣∣ ≤ 1
4
‖D2φ(x)‖ (ε1−α − d(x)

) (
7ε1−α − d(x)

)
, (4.21)

where Γopt(x) is the optimal choice defined by (4.15) in an orthonormal basis B = (e1 = n(x̄), . . . , eN ).

Proof. The first inequality is an immediate consequence of (4.11). For the second inequality, all the coordinates
〈(D2φ(x)−Γopt(x))ei, ej〉 in the basis B are equal to zero, except for i = j = 1. By using the vector decomposition
given by (4.10), we have

1
2
〈D2φ(x)Δx,Δx〉 − 1

2
〈Γopt(x)Δx̂,Δx̂〉 =

1
2
(D2φ(x) − Γopt(x))11|(Δx̂)1|2

+
1
2
‖Δx̂−Δx‖2〈(D2φ(x)n(x +Δx), n(x +Δx)〉 − ‖Δx̂−Δx‖〈D2φ(x)n(x +Δx), Δx̂〉.

Since (D2φ(x) − Γopt(x))11 =
1
2

(
1 − d2(x)

ε2−2α

)
(D2φ(x))11 by (4.15), one obtains∣∣∣∣12〈D2φ(x)Δx,Δx〉 − 1

2
〈Γopt(x)Δx̂,Δx̂〉

∣∣∣∣
≤ ‖D2φ(x)‖

{
1
4

(
1 − d2(x)

ε2−2α

)
|(Δx̂)1|2 +

1
2
‖Δx̂−Δx‖2 + ‖Δx̂−Δx‖‖Δx̂‖

}
.

The estimate (4.21) now follows from (2.17) and (4.4). �
Lemma 4.8. For any x ∈ Ω(ε1−α) and any function φ defined at x, lx2 [φ] being defined by (4.19), we have

−2‖D2φ(x)‖ε1−α (ε1−α − d(x)
) ≤ lx2 [φ] ≤ 0.

Proof. By considering Δx̂ = 0, l2 is negative. To obtain a lower bound on l2, Lemma 4.7, along with the
observation ‖Δx̂‖ ≤ ε1−α, gives

1
2

∣∣∣〈D2φ(x)Δx,Δx〉− 〈Γopt(x)Δx̂,Δx̂〉 +
1
2

(
ε1−α − d2(x))

ε1−α

)
(D2φ(x))11(Δx̂)1

∣∣∣
≤ 1

4
‖D2φ(x)‖(ε1−α − d(x))

(
7ε1−α − d(x)

)
+

1
4
‖D2φ(x)‖

(
ε1−α − d2(x)

ε1−α

)
ε1−α

≤ 2‖D2φ(x)‖(ε1−α − d(x))ε1−α, (4.22)

which is precisely the proposed estimate. �

We shall now provide the consistency estimates about the upper bound of (4.3). Before stating our main
estimate in Proposition 4.10, we can give a simple case for which the usual estimate holds.

Lemma 4.9. Let f satisfy (1.4) and (1.6)–(1.7) and assume α, β, γ satisfy (2.13)–(2.15). For any x, t, z
and any smooth function φ defined near x, Sε[x, t, z, φ] being defined by (4.1), if d(x) ≤ ε1−α and Mx

ε [φ] ≤
− 1

2‖D2φ(x)‖ (3ε1−α − d(x)
)
, then we have

Sε[x, t, z, φ] − φ(x) ≤ −ε2f(t, x, z,Dφ(x), D2φ(x)) + o(ε2).

Moreover, the implicit constant in the error term is uniform as x, t and z range over a compact subset of
Ω × R × R.
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In the rest of the section, we now accurately focus on the case d(x) ≤ ε1−α. The goal is to obtain precise
estimates on (4.3) in the following three cases: Mx

ε [φ] very negative, Mx
ε [φ] very positive and Mx

ε [φ] close to
zero, the bounds between the cases depending on some powers of ε. We have formally shown in Section 2.2.1
that the first case is favorable to Mark since Helen can undergo a big penalty if Mark chooses to cross the
boundary. On the contrary, the second case is preferable to Helen because she can receive a big coupon if the
boundary is crossed. In the last case, the boundary is transparent (think of Mx

ε [φ] = 0) and the penalization
due to the boundary is to be considered only through second order terms. In order to establish accurate upper
bounds on (4.3), we successively introduce two additional parameters ρ, κ > 0 such that

1 − α < ρ < min
(

1 − γ(r − 1)
2

, 2 − 2α− γ

)
, (4.23)

and
γ + ρ− (1 − α) < κ < 1 − α. (4.24)

These coefficients are well-defined by virtue of (2.13) and (2.15).

Proposition 4.10. Let f satisfy (1.4) and (1.6)–(1.7) and assume α, β, γ, ρ, κ satisfy (2.13)–(2.15)
and (4.23)–(4.24). Let pMopt and Γopt be respectively defined in the orthonormal basis (e1 = n(x̄), e2, . . . , eN )
by (4.14) and (4.15). For any x, t, z and any smooth function φ defined near x, Sε[x, t, z, φ] being defined
by (4.1), we distinguish four cases:

i. Big bonus: if d(x) ≤ ε1−α and Mx
ε [φ] > 4

3‖D2φ(x)‖ε1−α, then

Sε[x, t, z, φ] − φ(x) ≤ 3(ε1−α − d(x))Mx
ε [φ] − ε2f(t, x, z, pMopt(x), Γopt(x)) + o(ε2).

ii. Far from the boundary with a small bonus: if ε1−α − ερ ≤ d(x) ≤ ε1−α and Mx
ε [φ] ≤ 4

3‖D2φ(x)‖ε1−α, or
if d(x) ≥ ε1−α, then

Sε[x, t, z, φ] − φ(x) ≤ −ε2f(t, x, z,Dφ(x), D2φ(x)) + o(ε2).

iii. Close to the boundary with a small bonus/penalty: if d(x) ≤ ε1−α − ερ and −ε1−α−κ ≤ Mx
ε [φ] ≤

4
3‖D2φ(x)‖ε1−α, then

Sε[x, t, z, φ] − φ(x) ≤ −ε2f(t, x, z,Dφ(x), D2φ(x) + C1I) + o(ε2),

with C1 = 20
3 ‖D2φ(x)‖

(
1 − d(x)

ε1−α

)
.

iv. Close to the boundary with a big penalty: if d(x) ≤ ε1−α − ερ and Mx
ε [φ] ≤ −ε1−α−κ, then

Sε[x, t, z, φ] − φ(x) ≤ 1
4
(ε1−α − d(x))Mx

ε [φ] − ε2 min
p∈B(pM

opt(x),r)
f(t, x, z, p, Γopt(x)) + o(ε2), (4.25)

with r defined by r = 3
(
1 − d(x)

ε1−α

)
|Mx

ε [φ]|.
Moreover, the implicit constants in the error term is uniform as x, t and z range over a compact subset of
Ω × R × R.

Before proving these estimates, it is worth drawing a parallel with the formal derivation done at Section 2.2.1.
The lower bound proposed by Proposition 4.5 case (i) corresponds to the formal analysis when m > 0. The upper
bound proposed by Proposition 4.10 case (iv) is associated to the formal analysis when m < 0. Furthermore,
we can observe in the proof that the factor 1/4 in (4.25) could be replaced by any number in [1/4, 1/2), the
bound 1/2 corresponding to the heuristic derivation given by (2.43).
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4.2. Proof of Lemma 4.9 and Proposition 4.10

For sake of notational simplicity, we write λmin(A) for the smallest eigenvalue of the symmetric matrix A and
we omit the x-dependence of pMopt(x) and Γopt(x). Moreover, by the definition of Mx

ε [φ] given by (3.2) and the
positivity of ‖Δx̂−Δx‖, for all ‖Δx̂‖ ≤ ε1−α, we have

‖Δx̂−Δx‖ {h(x+Δx) −Dφ(x) · n(x+Δx)} ≤ ‖Δx̂−Δx‖Mx
ε [φ]. (4.26)

Therefore it is sufficient to find an upper bound for

max
p,Γ

min
Δx̂

[
(Dφ(x) − p) ·Δx̂+Mx

ε [φ]‖Δx̂−Δx‖ +
1
2
〈D2φ(x)Δx,Δx〉 − 1

2
〈ΓΔx̂,Δx̂〉 − ε2f(t, x, z, p, Γ )

]
.

In other words, by taking advantage of the monotonicity of the operator Sε with (4.26), we shall look for an
upper bound for an approximated operator bounding Sε above and very close to it as ε→ 0.

4.2.1. Proof of Lemma 4.9

We introduce

Ax(p, Γ,Δx̂) := (Dφ(x)−p)·Δx̂+‖Δx̂−Δx‖Mx
ε [φ]+

1
2
〈D2φ(x)Δx,Δx〉−1

2
〈ΓΔx̂,Δx̂〉−ε2f(t, x, z, p, Γ ), (4.27)

where Δx = projΩ(x+Δx̂) − x. We give the following useful decomposition:

1
2
〈D2φ(x)Δx,Δx〉− 1

2
〈ΓΔx̂,Δx̂〉 =

1
2
〈D2φ(x)Δx,Δx〉− 1

2
〈D2φ(x)Δx̂,Δx̂〉+ 1

2
〈(D2φ(x)−Γ )Δx̂,Δx̂〉, (4.28)

which will be used repeatedly in this section. We clearly have by (4.20) that

‖Δx̂−Δx‖Mx
ε [φ] +

1
2
〈D2φ(x)Δx,Δx〉 − 1

2
〈D2φ(x)Δx̂,Δx̂〉

≤ ‖Δx̂−Δx‖
(
Mx
ε [φ] +

1
2
‖D2φ(x)‖

(
3ε1−α − d(x)

))
≤ 0.

From the previous inequality and (4.28) we deduce that for all p, Γ,Δx̂ constrained by (2.16)–(2.17),

Ax(p, Γ,Δx̂) ≤ (Dφ(x) − p) ·Δx̂ +
1
2
〈(D2φ(x) − Γ )Δx̂,Δx̂〉 − ε2f(t, x, z, p, Γ ).

By monotonicity of the operator Sε and by using [21], Lemma 4.1 to estimate the max min, we get the desired
inequality.

4.2.2. Proof of Proposition 4.10 case (i)

We define the function Ax
b of Δx̂ associated to the particular choice p = pMopt and Γ = Γopt by

Ax
b (Δx̂) = (Dφ(x) − pMopt) ·Δx̂+ ‖Δx̂−Δx‖Mx

ε [φ] +
1
2
〈D2φ(x)Δx,Δx〉 − 1

2
〈ΓoptΔx̂,Δx̂〉, (4.29)

where Δx = projΩ(x+Δx̂) − x. Thus, the operator Sε can be written in the form

Sε[x, t, z, φ] − φ(x) = max
p,Γ

min
Δx̂

[
Ax
b (Δx̂) + (pMopt − p) ·Δx̂+

1
2
〈(Γopt − Γ )Δx̂,Δx̂〉 − ε2f(t, x, z, p, Γ )

]
. (4.30)

To compute an upper bound of (4.30), we now introduce two preliminary lemmas.
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Lemma 4.11. Assume that Mx
ε [φ] ≥ 0. Then Ax

b defined by (4.29) is Δx̂-bounded by

0 ≤ sup
Δx̂

Ax
b (Δx̂) ≤ 1

2
(ε1−α − d(x))

(
3Mx

ε [φ] + 4‖D2φ(x)‖ε1−α) , (4.31)

where Δx̂ is constrained by (2.17).

Proof. This estimate follows exactly the same lines as for Lemmas 4.6–4.8. The sup is clearly positive by
considering Δx̂ = 0. Then, by plugging the expression of pMopt in Ab(Δx̂), we have

Ax
b (Δx̂) =

{
− ε1−α − d(x)

2ε1−α
(Δx̂)1 + ‖Δx̂−Δx‖

}
Mx
ε [φ]

+
1
4

(
ε1−α − d2(x)

ε1−α
)
(D2φ(x))11(Δx̂)1 +

1
2
〈D2φ(x)Δx,Δx〉 − 1

2
〈ΓoptΔx̂,Δx̂〉.

Since Mx
ε [φ] ≥ 0, the estimates (4.7) and (4.22) give the desired estimate. �

Lemma 4.12. Let f satisfy (1.4) and (1.6)–(1.7) and assume α, β, γ satisfy (2.13)–(2.15). Let (pε)0<ε≤1 and
(Γε)0<ε≤1 be two sequences bounded respectively in RN and SN . Then for any x, t and z, we have

max
‖p‖≤ε−β

‖Γ‖≤ε−γ

min
‖Δx̂‖≤ε1−α

[
(pε − p) ·Δx̂+

1
2
〈(Γε − Γ )Δx̂,Δx̂〉 − ε2f (t, x, z, p, Γ )

]
= −ε2f(t, x, z, pε, Γε) + o(ε2).

Moreover, the implicit constant in the error term is uniform as x, t, and z range over a compact subset of
Ω × R × R.

Proof. It is a direct adaptation of [21], Lemma 4.1 by distinguishing three cases according to the size of ‖pε−p‖
and λmin(Γε − Γ ). �

We can now provide an upper bound on (4.30). By Lemma 4.11, Ab is upper bounded independently of all
possible moves Δx̂. It follows from (4.30) that

Sε[x, t, z, φ] − φ(x) ≤ sup
Δx̂

Ax
b (Δx̂) + max

p,Γ
min
Δx̂

[
(pMopt − p) ·Δx̂− 1

2
〈ΓoptΔx̂,Δx̂〉 − ε2f (t, x, z, p, Γ )

]
.

The consistency Lemma 4.12 provides an estimate of the max min and one obtains

Sε[x, t, z, φ] − φ(x) ≤ sup
Δx̂

Ax
b (Δx̂) − ε2f(t, x, z, pMopt, Γopt) + o(ε2).

By plugging the upper bound in (4.31) of Ax
b in the previous inequality, we obtained the desired result.

4.2.3. Proof of Proposition 4.10 case (ii)

It is sufficient to show that for any ‖p‖ ≤ ε−β and ‖Γ‖ ≤ ε−γ , there exists ‖Δx̂‖ ≤ ε1−α, determining Δx
by (2.22), such that

(Dφ(x) − p) ·Δx̂+Mx
ε [φ]‖Δx̂−Δx‖ +

1
2
〈D2φ(x)Δx,Δx〉 − 1

2
〈ΓΔx̂,Δx̂〉

− ε2f(t, x, z, p, Γ ) ≤ −ε2f(t, x, z,Dφ(x), D2φ(x)) + o(ε2), (4.32)

with an error estimate o(ε2) that is independent of p and Γ and locally uniform in x, t, z. In view of the
conditions (2.15) and (4.23), we can pick μ > 0 and δ > 0 such that

μ+ γ < 1 − α and μ+ γr < 1 + α, (4.33)
δ < min(2α, ρ− (1 − α)). (4.34)
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Now we consider separately the following three cases:

(1) ‖Dφ(x) − p‖ ≤ εμ and λmin(D2φ(x) − Γ ) ≥ −εδ,
(2) ‖Dφ(x) − p‖ ≤ εμ and λmin(D2φ(x) − Γ ) ≤ −εδ,
(3) ‖Dφ(x) − p‖ ≥ εμ.

For case 1, we choose Δx̂ = 0. By a reasoning similar to case 1 in the proof of [21], Lemma 4.1, we obtained the
inequality given by (4.32).

For cases 2 and 3, in order to use the decomposition (4.28), we now give a preliminary inequality. By the
inequality (4.20) in Lemma 4.7, we have∣∣∣∣12 〈D2φ(x)Δx,Δx〉 − 1

2
〈D2φ(x)Δx̂,Δx̂〉

∣∣∣∣ ≤ 3
2
‖D2φ(x)‖‖Δx̂ −Δx‖ε1−α,

which yields with the assumption Mx
ε [φ] ≤ 4

3‖D2φ(x)‖ε1−α that

Mx
ε [φ]‖Δx̂−Δx‖ +

1
2
〈D2φ(x)Δx,Δx〉 − 1

2
〈D2φ(x)Δx̂,Δx̂〉 ≤ 17

6
‖D2φ(x)‖ε1−α‖Δx̂−Δx‖. (4.35)

By combining the geometric estimate (4.4) with the assumption d(x) ≥ ε1−α − ερ, we get that the left-hand
side of (4.35) is upper bounded by 17

6 ‖D2φ(x)‖ε1−α+ρ. By using the decomposition (4.28), we deduce that it is
sufficient to show that there exists ‖Δx̂‖ ≤ ε1−α such that

(Dφ(x) − p) ·Δx̂+
1
2
〈(D2φ(x) − Γ )Δx̂,Δx̂〉 +

17
6
‖D2φ(x)‖ε1−α+ρ − ε2f(t, x, z, p, Γ )

≤ −ε2f(t, x, z,Dφ(x), D2φ(x)).

For case 2, we chooseΔx̂ to be an eigenvector for the minimum eigenvalue λ = λmin(D2φ(x)−Γ ) of norm ε1−α.
Notice that since f is monotone in its last input, we have f(t, x, z, p, Γ ) ≥ f(t, x, z,D2φ(x)−λI). Choosing Δx̂
as announced, and changing the sign if necessary to make (Dφ(x) − p) ·Δx̂ ≤ 0, we deduce that

(Dφ(x) − p) ·Δx̂+
1
2
〈(D2φ(x) − Γ )Δx̂,Δx̂〉 +

17
6
‖D2φ(x)‖ε1−α+ρ − ε2f(t, x, z, p, Γ )

≤ 1
2
ε2−2αλ+

17
6
‖D2φ(x)‖ε1−α+ρ − ε2f(t, x, z, p,D2φ(x) − λI).

If −1 ≤ λ ≤ −εδ then ε2−2αλ ≤ −ε2−2α+δ and f(t, x, z, p,D2φ(x) − λI) is bounded. Since ε1−α+ρ � ε2−2α+δ

by (4.34), for such λ we have

1
2
ε2−2αλ+

17
6
‖D2φ(x)‖ε1−α+ρ − ε2f(t, x, z, p,D2φ(x) − λI) ≤ −1

4
ε2−2α+δ +O(ε2).

In this case, we are done by (4.34), since the right-hand side is ≤ ε2f(t, x, z,Dφ(x), D2φ(x)) when ε is sufficiently
small.

To complete case 2, suppose λ ≤ −1. Then using the growth hypothesis (1.7) and recalling that p is near
Dφ(x) we have

1
2
ε2−2αλ− ε2f(t, x, z, p,D2φ(x) − λI) ≤ −1

2
ε2−2α|λ| + Cε2(1 + |λ|r).

Now notice that |λ| ≤ C(1+‖Γ‖) ≤ Cε−γ . Since γ(r−1) < 2α we have ε2−2α|λ| � ε2|λ|r. Therefore we deduce
by (4.34) that

−1
2
ε2−2α|λ| + Cε2|λ|r +

17
6
‖D2φ(x)‖ε1−α+ρ ≤ −1

4
ε2−2α ≤ −ε2f(t, x, z,Dφ(x), D2φ(x)),

when ε is sufficiently small. Case 2 is now complete.
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Finally, to treat case 3, we take Δx̂ parallel to Dφ(x) − p with norm ε1−α, and with the sign chosen such
that

(Dφ(x) − p) ·Δx̂ = −ε1−α‖Dφ(x) − p‖ ≤ −ε1−α+μ.

By observing that
17
6
‖D2φ(x)‖ε1−α+ρ � ε1−α‖Dφ(x) − p‖, this case follows exactly the sames lines as [21],

Lemma 4.1.

4.2.4. Proof of Proposition 4.10 case (iii)

This proof is quite similar to case (ii). Since this estimate will not be needed in the rest of the paper, we
just indicate that we need to distinguish three cases according to the respective sizes of ‖Dφ(x) − p‖ and
λmin(D2φ(x) − Γ ) with respect to εμ and −C1 − εα, where μ is defined by (4.33).

4.2.5. Proof of Proposition 4.10 case (iv)

This case corresponds to the heuristic derivation presented at Section 2.2.1 when m < 0. Recalling that pMopt

and Γopt are defined by (4.14)–(4.15), our task is to show that for any ‖p‖ ≤ ε−β and ‖Γ‖ ≤ ε−γ , there exists
‖Δx̂‖ ≤ ε1−α, determining Δx by (2.22), such that

(Dφ(x) − p) ·Δx̂+ ‖Δx̂−Δx‖Mx
ε [φ] +

1
2
〈D2φ(x)Δx,Δx〉 − 1

2
〈ΓΔx̂,Δx̂〉

− ε2f (t, x, z, p, Γ ) ≤ 1
4
(ε1−α − d(x))Mx

ε [φ] − ε2 min
p∈B(pM

opt,r)
f(t, x, z, p, Γopt) + o(ε2), (4.36)

with an error estimate o(ε2) that is independent of p and Γ and locally uniform in x, t, z. We can notice in (4.36)
that the function Mx

ε [φ] is ε, x-bounded by ‖h‖L∞ + ‖Dφ‖L∞ . Moreover, by Lemma 4.7 we have

1
2
〈D2φ(x)Δx,Δx〉 − 1

2
〈ΓoptΔx̂,Δx̂〉 ≤ 7

4
‖D2φ(x)‖(ε1−α − d(x))ε1−α. (4.37)

Thus, it is sufficient to examine, for any ‖p‖ ≤ ε−β and ‖Γ‖ ≤ ε−γ ,

min
Δx̂

[
(Dφ(x) − p) ·Δx̂+ ‖Δx̂−Δx‖Mx

ε [φ] +
1
2
〈(Γopt − Γ )Δx̂,Δx̂〉 − ε2f(t, x, z, p, Γ )

]
. (4.38)

We consider separately the following three cases:

a. ‖pMopt − p‖ ≤ 3
(
1 − d(x)

ε1−α

)
|Mx

ε [φ]|, and λmin(Γopt − Γ ) ≥ −εα,

b. ‖pMopt − p‖ ≤ 3
(
1 − d(x)

ε1−α

)
|Mx

ε [φ]|, and λmin(Γopt − Γ ) ≤ −εα,

c. ‖pMopt − p‖ ≥ 3
(
1 − d(x)

ε1−α

)
|Mx

ε [φ]|.
For case (a), we choose Δx̂ = ±ε1−αn(x̄) with the sign chosen such that

(p− pMopt) ·Δx̂ ≤ 0.

Since λmin(Γopt − Γ ) ≥ −εα we have Γopt − Γ + εαI ≥ 0 and thus Γ ≤ Γopt + εαI. Using the monotonicity of f
with respect to its last entry, this gives f(t, x, z, p, Γ ) ≥ f(t, x, z, p, Γopt + εαI). Since f is locally Lipschitz, we
conclude that

f(t, x, z, p, Γ ) ≥ f(t, x, z, p, Γopt) +O(εα) ≥ min
p∈B(pM

opt,r)
f(t, x, z, p, Γopt) +O(εα). (4.39)

The constant in the error term is independent of p and Γ , since we are assuming in case (a) that ‖p− pMopt‖ ≤
3(‖h‖L∞ + ‖Dφ‖L∞). Moreover we directly compute

(Dφ(x) − pMopt) ·Δx̂+ ‖Δx̂−Δx‖Mx
ε [φ] =

1
2
(ε1−α − d(x))Mx

ε [φ]. (4.40)
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Since ε1−α − d(x) ≥ ερ and Mx
ε [φ] < 0, we have

1
2
(ε1−α − d(x))Mx

ε [φ] ≤ 1
2
ερMx

ε [φ] ≤ −1
2
ε1−α−κ+ρ. (4.41)

By noticing that ε2−2α−γ � ε1−α−κ+ρ using (4.24), we deduce from (4.41) that∣∣∣1
2
〈(Γopt − Γ )Δx̂,Δx̂〉

∣∣∣ ≤ 1
2
(‖D2φ(x)‖ + ε−γ)ε2−2α ≤ 3

4
ε2−2α−γ � (ε1−α − d(x))Mx

ε [φ]. (4.42)

Therefore, by combining (4.37), (4.40) and (4.42), the choice Δx̂ = ±ε1−αn(x̄) in the left-hand side of (4.36)
yields

(Dφ(x) − p) ·Δx̂+ ‖Δx̂−Δx‖Mx
ε [φ] +

1
2
〈D2φ(x)Δx,Δx〉 − 1

2
〈ΓΔx̂,Δx̂〉 − ε2f (t, x, z, p, Γ )

≤ 1
2
(ε1−α − d(x))

(
Mx
ε [φ] +

7
2
‖D2φ(x)‖ε1−α)+

3
4
ε2−2α−γ − ε2 min

p∈B(pM
opt,r)

f(t, x, z, p, Γopt) + o(ε2)

≤ 1
4
(ε1−α − d(x))Mx

ε [φ] − ε2 min
p∈B(pM

opt,r)
f(t, x, z, p, Γopt) + o(ε2),

as desired.
For case (b), in view of the condition (4.23), we can pick σ > 1 − α such that

ρ < σ < 1 − γ(r − 1)
2

. (4.43)

Let vλ be a unit eigenvector for the minimum eigenvalue λ = λmin(Γopt − Γ ). We choose Δx̂ of the form

Δx̂ = ± [(
ε1−α − εσ

)
n(x̄) + sgn(〈n(x̄), vλ〉)εσvλ] = ± [

a1n(x̄) + bvλ
]
, (4.44)

where a1 =
(
ε1−α − εσ

)
, b = sgn(〈n(x̄), vλ〉)εσ and sgn denotes the sign function with the convention that

sgn(0) = 1. The sign ± will be chosen later. This move fulfills the following estimate.

Lemma 4.13. The move Δx̂ defined by (4.44) is authorized by the game and satisfies

(Dφ(x) − pMopt) ·Δx̂+ ‖Δx̂−Δx‖Mx
ε [φ] ≤ ε1−α − d(x)

2
(Mx

ε [φ] + ‖D2φ(x)‖ε1−α) − 4εσMx
ε [φ], (4.45)

independently of the choice on ± in (4.44).

Proof. To authorize this move, it suffices to check that ‖Δx̂‖ ≤ ε1−α. After some calculations, one obtains

‖Δx̂‖2 = ε2−2α − 2ε1−α+σ(1 − εσ−1+α)
(

1 − 1
2
|〈n(x̄), vλ〉|

)
≤ ε2−2α.

For the second part, we distinguish successively the two cases ±. By (4.44), we directly compute

Δx̂ · n(x̄) = ± [(
ε1−α − εσ

)
+ |〈n(x̄), vλ〉|εσ] = ± [

ε1−α − (
1 − |〈n(x̄), vλ〉|) εσ]. (4.46)

If Δx̂ · n(x̄) ≤ 0, this move corresponds to the sign − in (4.44) by (4.46) and we observe that x̂ ∈ Ω by
Lemma 4.2. As a result, by introducing the explicit expressions of pMopt and (Δx̂)1 respectively given by (4.14)
and (4.46), we get

(Dφ(x) − pMopt) ·Δx̂+ ‖Δx̂−Δx‖Mx
ε [φ] = (Dφ(x) − pMopt)1(Δx̂)1

= −
(
−1

2
(1 − d(x)

ε1−α
)Mx

ε [φ] +
1
4
(ε1−α − d2(x)

ε1−α
)(D2φ(x))11

)(
ε1−α − (1 − |〈n(x̄), vλ〉|)εσ) . (4.47)
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Since 0 ≤ ε1−α − (1 − |〈n(x̄), vλ〉|)εσ ≤ ε1−α, we observe that∣∣∣∣14(ε1−α − d2(x)
ε1−α

)(D2φ(x))11
(
ε1−α − (1 − |〈n(x̄), vλ〉|)εσ)∣∣∣∣ ≤ 1

4
‖D2φ(x)‖(ε2−2α − d2(x))

≤ 1
2
‖D2φ(x)‖(ε1−α − d(x))ε1−α.

By plugging this inequality in (4.47) and rearranging the terms, we obtain

(Dφ(x) − pMopt) ·Δx̂+‖Δx̂−Δx‖Mx
ε [φ]

≤ (ε1−α − d(x))
{

1
2
(
1 − (1 − |〈n(x̄), vλ〉|)εσ−1+α

)
Mx
ε [φ] +

1
2
‖D2φ(x)‖ε1−α

}
≤ 1

2
(ε1−α − d(x))(Mx

ε [φ] + ‖D2φ(x)‖ε1−α) − 1
2
εσMx

ε [φ].

Otherwise, if Δx̂ · n(x̄) ≥ 0, this move corresponds to the sign + in (4.44) by (4.46). We have

‖Δx̂− ε1−αn(x̄)‖ = ‖−εσn(x̄) + sgn(〈n(x̄), vλ〉)εσvλ‖ =
√

2εσ
√

1 − |〈n(x̄), vλ〉| ≤ √
2εσ.

By using Lemma 4.2, we deduce from the previous inequality that, for ε small enough, the intermediate point
x̂ = x+Δx̂ is outside Ω and

ε1−α − d(x) −
√

2εσ − 2C1ε
2−2α ≤ ‖Δx̂−Δx‖, (4.48)

where C1 is a certain constant depending on the principal curvatures of ∂Ω in a neighborhood of x. By repeating
the computations above, we find

(Dφ(x) − pMopt)1(Δx̂)1 ≤ 1
2
(ε1−α − d(x))

{−(1 − (1 − |〈n(x̄), vλ〉|)εσ−1+α)Mx
ε [φ] + ‖D2φ(x)‖ε1−α}

≤ 1
2
(ε1−α − d(x))(−Mx

ε [φ] + ‖D2φ(x)‖ε1−α).

Recalling that Mx
ε [φ] < 0, by combining (4.48) with the previous estimate, we are led to

(Dφ(x) − pMopt) ·Δx̂+ ‖Δx̂−Δx‖Mx
ε [φ]

≤ 1
2
(ε1−α − d(x))(−Mx

ε [φ] + ‖D2φ(x)‖ε1−α) +
(
ε1−α − d(x) −

√
2εσ − 2C1ε

2−2α
)
Mx
ε [φ]

≤ 1
2
(ε1−α − d(x))(Mx

ε [φ] + ‖D2φ(x)‖ε1−α) − εσMx
ε [φ](

√
2 + 2C1ε

2−2α−σ).

Putting together the two cases, the proof of the inequality given by (4.45) is complete. �

Now we turn back to the analysis of case (b). Note that since f is monotone in its last input

f(t, x, z, p, Γ ) ≥ f(t, x, z, p, Γopt − λI).

The direct evaluation of the second order terms in Δx̂ of (4.38) gives

〈(Γopt − Γ )Δx̂,Δx̂〉 = a2
1〈(Γopt − Γ )n(x̄), n(x̄)〉 + 2a1b〈(Γopt − Γ )vλ, n(x̄)〉 + b2〈(Γopt − Γ )vλ, vλ〉

≤ a2
1(‖Γopt‖ + ‖Γ‖) + 2a1bλ〈vλ, n(x̄)〉 + b2λ.

With our choice for Δx̂, we have a1b〈vλ, n(x̄)〉 ≥ 0. Hence, since λ ≤ 0 in case (b), it follows that

〈(Γopt − Γ )Δx̂,Δx̂〉 ≤ a2
1(‖Γopt‖ + ‖Γ‖) + b2λ ≤ ε2−2α(‖D2φ(x)‖ + ε−γ) + ε2σλ.
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Choosing Δx̂ as announced, using (4.37) and (4.45) and changing the sign ± in (4.44) if necessary to make
(popt − p) ·Δx̂ ≤ 0,

(Dφ(x) − p) ·Δx̂+ ‖Δx̂−Δx‖Mx
ε [φ] +

1
2
〈D2φ(x)Δx,Δx〉 − 1

2
〈ΓΔx̂,Δx̂〉 − ε2f (t, x, z, p, Γ )

≤ 1
2
(ε1−α − d(x))

(
Mx
ε [φ] +

9
2
‖D2φ(x)‖ε1−α

)
+

1
2
ε2−2α(‖D2φ(x)‖ + ε−γ) − 4εσMx

ε [φ]

+
1
2
εσλ− ε2f(t, x, z, p, Γopt − λI). (4.49)

Since d(x) ≤ ε1−α − ερ in case (iv), we deduce from the assumption (4.43) that

ε1−α − d(x) ≥ ερ � εσ. (4.50)

Since Mx
ε [φ] ≤ −ε1−α−κ and ε2−2α−γ � ε1−α−κ+ρ using (4.24), we conclude by (4.50) that

1
2
(ε1−α − d(x))

(
Mx
ε [φ] +

9
2
‖D2φ(x)‖ε1−α

)
+

1
2
ε2−2α(‖D2φ(x)‖ + ε−γ) − 4εσMx

ε [φ]

≤ 1
4
(ε1−α − d(x))Mx

ε [φ]. (4.51)

It remains to control the terms in (4.49) depending on λ. If −1 ≤ λ ≤ −εα, then ε2σλ ≤ −ε2σ+α and
f(t, x, z, p, Γopt − λI) is bounded. So for such λ we have

1
2
ε2σλ− ε2f(t, x, z, p, Γopt − λI) ≤ −1

2
ε2σ+α +O(ε2). (4.52)

In this case, the right-hand side is ≤ −ε2 min
p∈B(pM

opt,r)
f(t, x, z, p, Γopt) when ε is sufficiently small since ε2σ+α � ε2

by (4.43).
To complete case (b), suppose λ ≤ −1. Then using the growth hypothesis (1.7) and recalling that p is near

popt we have
1
2
ε2σλ− ε2f(t, x, z, p,D2φ(x) − λI) ≤ −1

2
ε2σ|λ| + Cε2(1 + |λ|r). (4.53)

Now notice that |λ| ≤ C(1+‖Γ‖) ≤ Cε−γ . Since γ(r−1) < 2−2σ by (4.43), we have ε2σ|λ| � ε2|λ|r. Therefore

−1
2
ε2σ|λ| + Cε2|λ|r ≤ −1

4
ε2σ ≤ −ε2 min

p∈B(pM
opt,r)

f(t, x, z, p, Γopt),

for ε small enough. Case (b) is now complete.
Finally in case (c), we take Δx̂ to be parallel to pMopt −p with norm ε1−α, and with the sign chosen such that

(pMopt − p) ·Δx̂ = −ε1−α‖pMopt − p‖ ≤ −3(ε1−α − d(x))|Mx
ε [φ]| ≤ −3ε1−α−κ+ρ. (4.54)

Estimating the other terms on the left-hand side of (4.36), some manipulations analogous to those made in
Lemma 4.11 led us to∣∣(Dφ(x) − pMopt) ·Δx̂+ ‖Δx̂−Δx‖Mx

ε [φ]
∣∣ ≤ 1

2
(ε1−α − d(x))

(
3|Mx

ε [φ]| + 4‖D2φ(x)‖ε1−α) .
From (4.54), we deduce that

(Dφ(x) − p) ·Δx̂+ ‖Δx̂−Δx‖Mx
ε [φ] ≤ −1

2
ε1−α‖pMopt − p‖ + 2‖D2φ(x)‖ε2−2α.
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Estimating the other terms

|〈(Γopt(x) − Γ )Δx̂,Δx̂〉| ≤ (C + ‖Γ‖)‖Δx̂‖2 ≤ Cε−γ+2−2α, (4.55)

and
ε2|f(t, x, z, p, Γ )| ≤ Cε2(1 + ‖p‖q + ‖Γ‖r) ≤ C(ε2 + ε2‖p‖q + ε2−γr). (4.56)

Thus

(Dφ(x) − p) ·Δx̂+ ‖Δx̂−Δx‖Mx
ε [φ] +

1
2
〈D2φ(x)Δx,Δx〉 − 1

2
〈ΓΔx̂,Δx̂〉 − ε2f (t, x, z, p, Γ )

≤ −1
2
ε1−α‖pMopt − p‖ + Cε2‖p‖q +O(ε2−2α + ε−γ+2−2α + ε2−γr).

Since ε1−α‖pMopt − p‖ ≥ 2ε1−α−κ+ρ by using (4.54), we obtain that

ε−γ+2−2α + ε2−γr � ε1−α‖pMopt − p‖, (4.57)

noticing that min(−γ+2−2α, 2−γr) > 1−α−κ+ρ by using (2.15) and (4.24). Thus, by combining (4.55)–(4.57),
we conclude that

(Dφ(x) − p) ·Δx̂+ ‖Δx̂−Δx‖Mx
ε [φ] +

1
2
〈D2φ(x)Δx,Δx〉 − 1

2
〈ΓΔx̂,Δx̂〉 − ε2f (t, x, z, p, Γ )

≤ − 1
2
√

2
ε1−α‖pMopt − p‖ + Cε2‖p‖q.

If ‖p‖ ≤ 2‖pMopt‖, then ε2‖p‖q � ε1−α−κ+ρ. If ‖p‖ ≥ 2‖pMopt‖, we infer from the condition on β in (2.15) that
ε1−α‖pMopt − p‖ ∼ ε1−α‖p‖ � ε2‖p‖q. In either case the term ε1−α‖pMopt − p‖ dominates and we get

(pMopt − p) ·Δx̂+
1
2
〈(ΓMopt − Γ )Δx̂,Δx̂〉 − ε2f(t, x, z, p, Γ ) ≤ −1

4
ε1−α‖pMopt − p‖ ≤ 3

4
(ε1−α − d(x))Mx

ε [φ].

The right-hand side of this inequality is certainly ≤ 1
4
(ε1−α − d(x))Mx

ε [φ]− ε2 min
p∈B(pM

opt,r)
f(t, x, z, p, Γopt) when

ε is small. Case (c) is now complete which finishes the proof of Proposition 4.10.

4.3. Application to stability

To prove stability in Section 5, we will need some global variants of Propositions 4.5 and 4.10. It is at this
point that the uniformity of the constants in (1.6)–(1.7) in x and t, and the growth condition (1.7) intervene.
We must also take care of the Neumann boundary condition. Unlike the Dirichlet problem solved in [21], it is
no longer appropriate to consider constant functions as test functions. For this reason, we are going to consider
a C2

b (Ω)-function ψ such that
∂ψ

∂n
= ‖h‖L∞ + 1 on ∂Ω. (4.58)

It is worth noticing that ψ has exactly the same properties as the function introduced in Section 2.3 for the
game associated to the elliptic PDE with Neumann boundary condition. If we take ψ = (‖h‖L∞ + 1)ψ1 where

ψ1 ∈ C2
b (Ω) such that

∂ψ1

∂n
= 1 on ∂Ω, it is clear that ‖ψ‖C2

b (Ω) = ‖ψ1‖C2
b (Ω)(1 + ‖h‖L∞).

The next lemma is the crucial point to obtain stability in both parabolic and elliptic settings.

Lemma 4.14. If ψ ∈ C2
b (Ω) satisfies (4.58), then there exists ε0 > 0 such that for all ε < ε0 and for all

x ∈ Ω(ε1−α),

−‖h‖L∞ − ‖Dψ‖L∞(Ω) ≤Mx
ε [ψ] ≤ −1

2
and

1
2
≤ mx

ε [−ψ] ≤ ‖h‖L∞ + ‖Dψ‖L∞(Ω). (4.59)
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Proof. We shall demonstrate the bounds on Mx
ε [ψ] in (4.59); the proof for mx

ε [−ψ] is entirely parallel. The
left-hand side inequality is clear by the Cauchy–Schwarz inequality. Let us consider 0 < ε < ε0, where

ε0 =
(
4‖D2ψ‖L∞(Ω) + 2

)− 1
1−α

. By the geometric relation (4.4), we observe that every move Δx associated
to the move Δx̂ decided by Mark satisfies

‖Δx‖ ≤ 2ε1−α ≤ 1
2‖D2ψ‖L∞(Ω) + 1

·

By the Cauchy–Schwarz inequality and using that ψ ∈ C2
b (Ω), we have

h(x+Δx) −Dψ(x) · n(x+Δx) ≤ ‖h‖L∞ −Dψ(x+Δx) · n(x+Δx) + (Dψ(x +Δx) −Dψ(x)) · n(x+Δx)

≤ −1 + ‖D2ψ‖L∞(Ω)‖Δx‖ ≤ −1
2
·

Then, by passing to the sup, we get the desired result. �
Lemma 4.15. Let φ ∈ C2

b (Ω). Assume that pmopt p
M
opt and Γopt are the strategies, associated to φ, respectively

defined by (4.13), (4.14) and (4.15). Then, for all x ∈ Ω(ε1−α), we have

max
(‖pmopt(x)‖, ‖pMopt(x)‖) ≤ 1

2

(
‖h‖L∞ + 3‖Dφ‖C1

b (Ω)

)
and ‖Γopt(x)‖ ≤ 3

2
‖D2φ‖L∞(Ω).

Proof. The proof being exactly the same for pmopt, it is sufficient to show the result for pMopt. By the triangle
inequality and (4.14), we have

‖pMopt(x) −Dφ(x)‖ ≤ 1
2

(
1 − d(x)

ε1−α

)(
|Mx

ε [φ]| + 1
2
ε1−α

(
1 +

d(x)
ε1−α

)
‖D2φ(x)‖

)
≤ 1

2
(|Mx

ε [φ]| + ε1−α‖D2φ(x)‖) .
Since Mx

ε [φ] is ε, x-bounded by ‖h‖L∞ + ‖Dφ‖L∞(Ω), we deduce the desired inequality on ‖pMopt(x)‖. Similarly,
the estimate on ‖Γopt(x)‖ stems directly from (4.15) and the triangle inequality. �

In preparation for stability, we need to compute the action of Sε on ψ. According to Lemma 4.14, only some
cases proposed in Proposition 4.10 must be considered. The next proposition gives the required estimates for
Sε concerning these cases.

Proposition 4.16. Let f satisfy (1.4) and (1.6)–(1.7) and assume α, β, γ, ρ, κ fulfill (2.13)–(2.15) and (4.23)–
(4.24). Then for any x, t, z and any C2

b (Ω)-function φ defined near x, Sε[x, t, z, φ] being defined by (4.1), we
have

Sε[x, t, z, φ] − φ(x)

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cε2(1 + |z|), if d(x) ≥ ε1−α,
3ε1−αMx

ε [φ] + Cε2(1 + |z|), if d(x) ≤ ε1−α and Mx
ε [φ] ≥ 4

3‖D2φ(x)‖ε1−α,
Cε2(1 + |z|), if ε1−α − ερ ≤ d(x) ≤ ε1−α and Mx

ε [φ] ≤ 4
3‖D2φ(x)‖ε1−α,

1
4ε
ρMx

ε [φ] + Cε2(1 + |z|), if d(x) ≤ ε1−α − ερ and Mx
ε [φ] ≤ −ε1−α−κ,

(4.60)

with a constant C that depends on ‖Dφ‖C1
b (Ω) + ‖h‖L∞ but is independent of x, t and z.

Moreover, if d(x) ≥ ε1−α, or if d(x) ≤ ε1−α and mx
ε [φ] > 1

2 (3ε1−α − d(x))‖D2φ(x)‖, then

−Cε2(1 + |z|) ≤ Sε[x, t, z, φ] − φ(x), (4.61)

with a constant C that depends on ‖Dφ‖C1
b (Ω) but is independent of x, t and z.
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Proof. The arguments in the different cases are the same as those given in the proof of Proposition 4.10 but we
must pay attention to the uniformity of the constant. For the second part, since f grows linearly by (1.5) and
‖(Dφ(x), D2φ(x))‖ ≤ ‖Dφ‖C1

b (Ω), we have

|f(t, x, z,Dφ(x), D2φ(x))| ≤ C(1 + |z|), (4.62)

with a constant C that depends on ‖Dφ‖C1
b (Ω) but is independent of x, t and z. The lower bound

Sε[x, t, z, φ] − φ(x) ≥ −ε2f(x, t, z,Dφ(x), D2φ(x)) ≥ −Cε2(1 + |z|)

is a consequence of Proposition 4.5 and (4.62).
Similarly, since we know by Lemma 4.15 that max(‖pmopt(x)‖, ‖pMopt(x)‖)+‖Γopt(x)‖ is uniformly bounded by

1
2‖h‖L∞ + 3‖Dφ‖C1

b (Ω), we get that

max(|f(t, x, z, pmopt(x), Γopt(x))|, |f(t, x, z, pMopt(x), Γopt(x))|) ≤ C(1 + |z|), (4.63)

with a constant C that depends on ‖Dφ‖C1
b (Ω) and ‖h‖L∞ but is independent of x, t and z.

We shall prove the estimate for the fourth alternative of (4.60) by examining the proof of Proposition 4.10
case (iv), the proofs for the other alternatives being quite similar. Since f is locally Lipschitz by (1.6),

min
p∈B(pM

opt,r)
f(t, x, z, p, Γopt) ≥ f(t, x, z, pMopt(x), Γopt(x)) − C(1 + |z|)

(
1 − d(x)

ε1−α

)(
‖h‖L∞ + ‖Dφ‖L∞(Ω)

)
,

where C depends only on ‖Dφ‖C1
b (Ω) and ‖h‖L∞ by the estimates on pMopt and Γopt given by Lemma 4.15. By

using (4.63), we deduce that there exists a constant C depending only on ‖Dφ‖C1
b
(Ω) and ‖h‖L∞ such that

min
p∈B(pM

opt,r)
f(t, x, z, p, Γopt) ≥ −C(1 + |z|). (4.64)

In case (a), by combining (4.64) and the locally Lipschitz character (1.6) of f on Γ , the estimate (4.39) gets
replaced by

f(t, x, z, p, Γ ) ≥ −C(1 + |z|)(1 + εα),

whence by (4.63) there exists a constant C depending on ‖Dφ‖C1
b (Ω) + ‖h‖L∞ such that

−ε2f(t, x, z, p, Γ ) ≤ C(1 + |z|)ε2.

In case (b), since the domain satisfies both the uniform interior and exterior ball conditions, we notice that the
constant C1 corresponding to the curvature of the boundary (see Lem. 4.2) is x-bounded. This implies that the
first order estimate (4.45) is valid independently of x for ε sufficiently small. Thus, the estimate (4.51) is valid
uniformly in x. Besides, the estimate (4.52) gets replaced by

1
2
ε2σλ− ε2f(t, x, z, p, Γopt(x) − λI) ≤ −1

2
ε2σ+α + Cε2(1 + |z|)‖p‖‖Γopt(x) − λI‖,

where C depends on ‖Dφ‖C1
b (Ω) + ‖h‖L∞. We obtain an estimate of the desired form by dropping the first term

and observing that λ is bounded. In second half of case (b) and in case (c) we used the growth estimate (1.7);
since z enters linearly on the right-hand side of (1.7), the previous calculation still applies but we get an
additional term of the form C|z|ε2 in (4.53) and (4.56). �

The following corollary provides the key estimate for stability in the parabolic setting.
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Corollary 4.17. Let f satisfy (1.4) and (1.6)–(1.7) and assume α, β, γ fulfill (2.13)–(2.15). Then, for any x,
t, z and ψ ∈ C2

b (Ω) satisfying (4.58), we have

Sε[x, t, z, ψ] − ψ(x) ≤ C(1 + |z|)ε2 and Sε[x, t, z,−ψ] − (−ψ)(x) ≥ −C(1 + |z|)ε2, (4.65)

with a constant C that is independent of x, t, z but depends on ‖Dψ‖C1
b
(Ω) and ‖h‖L∞.

Proof. We shall prove the first estimate, the second follows exactly the same lines. By applying Lemma 4.14, we
have that Mx

ε [ψ] ≤ − 1
2 for all x ∈ Ω(ε1−α). We introduce ρ fulfilling (4.23). By putting together the estimates

obtained from (4.61) and the third alternative in (4.60), we get that there exists a constant C depending only
on ‖Dψ‖C1

b (Ω) and ‖h‖L∞ such that

Sε[x, t, z, ψ] − ψ(x) ≤
{
Cε2(1 + |z|), if d(x) ≥ ε1−α − ερ,
1
4ε
ρMx

ε [ψ] + Cε2(1 + |z|), if d(x) ≤ ε1−α − ερ.

Noticing that Mx
ε [ψ] is negative, we get the proposed result. �

4.4. The elliptic case

For the game corresponding to the stationary equation, we consider the operator Qε defined for any x ∈ Ω,
z ∈ R, and any continuous function φ: Ω → R, by

Qε[x, z, φ] = sup
p,Γ

inf
Δx̂

[
e−λε

2
φ(x +Δx)

−
(
p ·Δx̂+

1
2
〈ΓΔx̂,Δx̂〉 + ε2f(x, z, p, Γ )− ‖Δx̂−Δx‖h(x+Δx)

)]
, (4.66)

with the usual conventions that p, Γ and Δx̂ are constrained by (2.16) and (2.17) and that Δx is determined
by (2.22). We can easily check that the operator Qε is still monotone but its action on shifted functions by a
constant is described by the following way: for all function φ ∈ C(Ω) and c ∈ R,

Qε [x, z, c+ φ] = e−λε
2
c+Qε [x, z, φ] . (4.67)

The dynamic programming inequalities (2.51)–(2.52) can be concisely written as

uε(x) ≤ Qε[x, uε(x), uε] and vε(x) ≥ Qε[x, vε(x), vε].

In the elliptic setting, we can formally derive the PDE by following the same lines as for the parabolic frame-
work. We keep the optimal strategies pmopt, pMopt and Γopt for Helen, defined by (4.13), (4.14) and (4.15) in an
orthonormal basis B = (e1 = n(x̄), e2, . . . , eN). The next proposition is the elliptic analogue of Propositions 4.5
and 4.10. It establishes the consistency estimates for Qε defined by (4.66).

Proposition 4.18. Let f satisfy (1.4) and (1.9)–(1.10) and assume α, β, γ, ρ and κ fulfill (2.13)−(2.15)
and (4.23)–(4.24). Let pmopt, pMopt and Γopt be respectively defined in the orthonormal basis B = (e1 = n(x̄),
e2, . . . , eN) by (4.13)–(4.15). For any x, z and any smooth function φ defined near x, we distinguish two cases
for the lower bound estimate:

i. Big bonus: if d(x) ≥ ε1−α or mx
ε [φ] > 1

2 (3ε1−α − d(x))‖D2φ(x)‖, then

−ε2(f(x, z,Dφ(x), D2φ(x)) + λφ(x)) ≤ Qε[x, z, φ] − φ(x). (4.68)
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ii. Penalty or small bonus: if d(x) ≤ ε1−α and mx
ε [φ] ≤ 1

2 (3ε1−α − d(x))‖D2φ(x)‖, then

1
2
(ε1−α − d(x))

(
smx

ε [φ] − 4‖D2φ(x)‖ε1−α)− ε2(f(x, z, pmopt(x), Γopt(x)) + λφ(x)) ≤ Qε[x, z, φ] − φ(x),

where s = −1 if mx
ε [φ] ≥ 0 and s = 3 if mx

ε [φ] < 0.

For the upper bound estimate, we distinguish four cases:

i. Big bonus: if d(x) ≤ ε1−α and Mx
ε [φ] > 4

3‖D2φ(x)‖ε1−α, then

Qε[x, z, φ] − φ(x) ≤ 3(ε1−α − d(x))Mx
ε [φ] − ε2

(
f(x, z, pMopt(x), Γopt(x)) + λφ(x)

)
+ o(ε2).

ii. Far from the boundary with a small bonus: if ε1−α − ερ ≤ d(x) ≤ ε1−α and Mx
ε [φ] ≤ 4

3‖D2φ(x)‖ε1−α, or
if d(x) ≥ ε1−α, then

Qε[x, z, φ] − φ(x) ≤ −ε2 (f(x, z,Dφ(x), D2φ(x)) + λφ(x)
)

+ o(ε2). (4.69)

iii. Close to the boundary with a small bonus/penalty: if d(x) ≤ ε1−α − ερ and −ε1−α−κ ≤ Mx
ε [φ] ≤

4
3‖D2φ(x)‖ε1−α, then

Qε[x, z, φ] − φ(x) ≤ −ε2 (f(x, z,Dφ(x), D2φ(x) + C1I) + λφ(x)
)

+ o(ε2),

with C1 = 20
3 ‖D2φ(x)‖

(
1 − d(x)

ε1−α

)
.

iv. Close to the boundary with a big bonus: if d(x) ≤ ε1−α − ερ and Mx
ε [φ] ≤ −ε1−α−κ, then

Qε[x, z, φ] − φ(x) ≤ 1
4
(ε1−α − d(x))Mx

ε [φ] − ε2

(
min

p∈B(pM
opt(x),r)

f(x, z, p, Γopt(x)) + λφ(x)

)
+ o(ε2), (4.70)

with r defined by r = 3
(
1 − d(x)

ε1−α

)
|Mx

ε [φ]|.
Moreover the implicit constants in the error term are uniform as x and z range over a compact subset of Ω×R.

Proof. The arguments are entirely parallel to the proofs of Propositions 4.5 and 4.10. �

For stability we will need a variant of the preceding lemma. This is where we use the hypothesis (1.8) on the
z-dependence of f .

Lemma 4.19. Let f satisfy (1.4) and (1.8)–(1.10) and assume as always that α, β, γ, ρ and κ satisfy (2.13)–
(2.15) and (4.23)–(4.24). Let ψ ∈ C2

b (Ω) satisfy (2.45). Fix M and m two positive constants such that m +
2‖ψ‖L∞(Ω) ≤ M . Then, there exists C∗ = C∗(‖Dψ‖C1

b (Ω), ‖h‖L∞) such that for any |z| ≤ M and any x ∈ Ω,
we have

Qε [x, z,m+ ψ] − (m+ ψ(x)) ≤ ε2 (1 + (λ − η)|z| + C∗) − λε2 (m+ ψ(x)) ,

and
Qε [x, z,−m− ψ] − (−m− ψ(x)) ≥ −ε2 (1 + (λ− η)|z| + C∗) − λε2 (−m− ψ(x)) ,

for all sufficiently small ε (the smallness condition on ε depends on M , but not on x).
Moreover, if φ ∈ C2

b (Ω), then there exists C = C(M, ‖Dφ‖C1
b (Ω), ‖h‖L∞) such that for any |z| ≤M and any

x ∈ Ω such that d(x) ≤ ε1−α − ερ and Mx
ε [φ] ≤ −ε1−α−κ,

Qε[x, z, φ] − φ(x) ≤ 1
4
(
ε1−α − d(x)

)
Mx
ε [φ] + Cε2 − λε2φ(x), (4.71)

for all sufficiently small ε (the smallness condition on ε depends on M , but not on x).
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Proof. We shall prove the first inequality, the proof of the second being entirely parallel. The assumption
|z| ≤ M ensures that the constants in (1.9) and (1.10) are uniform. Then the implicit constants in the error
terms of (4.69) and (4.70) are x,z-uniform for ε small enough, and the smallness condition depends only on M .
Since m+ 2‖ψ‖L∞(Ω) ≤M we can use the dynamic programming inequalities (2.51)–(2.52). First of all, by the
action of Qε on constant functions provided by (4.67), we have

Qε[x, z,m+ ψ] − (m+ ψ(x)) = (e−λε
2 − 1)m+Qε[x, z, ψ] − ψ(x),

and noticing that e−λε
2
m = (1−λε2)m+O(ε4m), it is sufficient to get the estimate corresponding to m = 0. By

Lemma 4.14, we observe that every x ∈ Ω(ε1−α) satisfies Mx
ε [ψ] ≤ − 1

2 . We now need to distinguish two cases
according to the distance to the boundary by introducing ρ fulfilling (4.23). If x ∈ Ω such that d(x) ≥ ε1−α−ερ,
since ‖(Dψ(x), D2ψ(x))‖ ≤ K1 = ‖Dψ‖C1

b (Ω), we deduce by assumption (1.8) on f that there exists C∗
K1

such
that for all x we have

|f(x, z,Dψ(x), D2ψ(x))| ≤ (λ− η)|z| + C∗
K1
,

which gives by (4.69) that for all x ∈ Ω such that d(x) ≥ ε1−α,

Qε[x, z, ψ] − ψ(x) ≤ ε2
(
(λ− η)|z| + C∗

K1

)− λε2ψ(x) + o(ε2). (4.72)

If x ∈ Ω such that d(x) ≤ ε1−α − ερ, we obtain by the estimates of Lemma 4.15 that, for all p ∈ B
(
pMopt(x), r

)
with r = 3

(
1 − d(x)

ε1−α

)
|Mx

ε [ψ]|,

‖(p, Γopt(x))‖ ≤ ‖pMopt(x)‖L∞ + r + ‖Γopt(x)‖L∞ ≤ K2 =
7
2
‖h‖L∞ + 6‖Dψ‖C1

b (Ω),

since Mx
ε [ψ] is ε, x-bounded by ‖h‖L∞ + ‖Dψ‖L∞. The assumption (1.8) on f yields that there exists C∗

K2
such

that, ∣∣∣∣∣ min
p∈B(pM

opt(x),r)
f(x, z, p, Γopt(x))

∣∣∣∣∣ ≤ (λ− η)|z| + C∗
K2
, (4.73)

By using this inequality in (4.70) and recalling that Mx
ε [ψ] ≤ − 1

2 , we conclude that, for all x ∈ Ω such that
d(x) ≤ ε1−α − ερ,

Qε[x, z, ψ] − ψ(x) ≤ ε2
(
(λ− η)|z| + C∗

K2

)− λε2ψ(x) + o(ε2). (4.74)

By comparing (4.72) and (4.74) we get the desired result by taking C∗ = max(C∗
K1
, C∗

K2
).

To prove the third inequality, it is sufficient to replace the assumption (1.8) by (1.10) in the previous estimates.
For instance, instead of (4.73), there exists a constant C depending only on M , ‖h‖L∞, and ‖Dφ‖C1

b (Ω) such

that

∣∣∣∣∣ min
p∈B(pM

opt(x),r)
f(x, z, p, Γopt(x))

∣∣∣∣∣ ≤ C. The rest of the proof remains unchanged. �

5. Stability

In the time-dependent setting, we showed in Section 3.2 that if vε and uε remain bounded as ε → 0 then v
is a supersolution and ū is a subsolution. The argument was local, using mainly the consistency of the game as
a numerical scheme. It remains to prove that vε and uε are indeed bounded; this is achieved in Section 5.1.

For the stationary setting, we must do more. Even the existence of Uε(x, z) remains to be proved. We also
need to show that the associated functions uε and vε are bounded, away from M , so that we can apply the
dynamic programming inequalities at each x ∈ Ω. These goals will be achieved in Section 5.2, provided the
parametersM and m satisfy (i) m = M−1−2‖ψ‖L∞ and (ii) M is sufficiently large. We also show in Section 5.2
that if f is a nondecreasing function on z then Uε is strictly decreasing on z. As a consequence, this result
implies that v ≤ ū, allowing us to conclude that v = ū is the unique viscosity solution if the boundary value
problem has a comparison principle.
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5.1. The parabolic case

To obtain stability, we are going to consider one more time a C2
b (Ω)-function ψ such that ∂ψ

∂n = ‖h‖L∞ + 1
in order to take care of the Neumann boundary condition.

Proposition 5.1. Assume the hypotheses of Propositions 4.5 and 4.10 hold, and suppose furthermore that the
final-time data are uniformly bounded:

|g(x)| ≤ B for all x ∈ Ω.

Then there exists a constant s = s(‖ψ‖C2
b (Ω)), independent of ε, such that

−(B + ‖ψ‖L∞(Ω))s
T−t − ψ(x) ≤ vε(x, t) ≤ uε(x, t) ≤ (B + ‖ψ‖L∞(Ω))s

T−t + ψ(x) for all x ∈ Ω,

for every t < T .

Proof. We shall demonstrate the lower bound on vε; the proof of the upper bound on uε is entirely parallel. The
argument proceeds backward in time tk = T − kε2. At k = 0, we have a uniform bound vε(x, T ) = g(x) ≥ −B
by hypothesis, and we may assume without loss of generality that B ≥ 1. Since ψ is bounded on Ω, we can
suppose that

vε(x, T ) = g(x) ≥ −B0 − ψ(x),

where B0 = B + ‖ψ‖L∞(Ω). Now suppose that for fixed k ≥ 0 we already know a bound vε(·, tk) ≥ −Bk − ψ.
By the dynamic programming inequality (2.25), we have

vε(x, tk − ε2) ≥ Sε
[
x, t, vε(x, tk − ε2), vε(., tk)

]
.

Since Sε is monotone in its last argument, we have

vε(x, tk − ε2) ≥ Sε
[
x, t, vε(x, tk − ε2),−Bk − ψ

]
.

By applying successively (4.2) and Corollary 4.17, we deduce that

Sε
[
x, t, vε(x, tk − ε2),−Bk − ψ

]
= −Bk + Sε

[
x, t, vε(x, tk − ε2),−ψ]

≥ −Bk − ψ(x) − C(1 + |vε(x, tk − ε2)|)ε2,
where C depends only on ‖Dψ‖C1

b (Ω). Arguing by induction and by using the same manipulations than those

in [21], Proposition 5.1, we deduce that vε(x, T − kε2) ≥ B̃k − ψ(x) for all k with

B̃k = B0

(
1 + C(1 + ‖ψ‖L∞(Ω))ε

2

1 − Cε2

)k
.

Since k = (T − t)/ε2 and recalling that B0 = B + ‖ψ‖L∞(Ω), we have shown that

vε(x, t) ≥ −(B + ‖ψ‖L∞(Ω))s
T−t
ε − ψ(x) with sε =

(
1 + C(1 + ‖ψ‖L∞(Ω))ε

2

1 − Cε2

)1/ε2

.

Since sε has a finite limit as ε→ 0 we obtain a bound on vε of the desired form. �

Remark 5.2. By following the construction of the elliptic game presented in Section 2.3, we can take ψ =
(‖h‖L∞+1)ψ1 where ψ1 is defined by (2.54). In that case, ‖Dψ‖C1

b (Ω) = ‖Dψ1‖C1
b (Ω)(1+‖h‖L∞). This expression

can be compared for a C2,α-domain to the estimate given by Remark 2.8 provided by the Schauder theory for
which ‖Dψ1‖C1

b (Ω) plays the role of the constant CΩ depending only on the domain.
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5.2. The elliptic case

We shall assume throughout this section that the parameters M and m controlling the termination of the
game are related by m = M −1−2‖ψ‖L∞(Ω); in addition, we need to assume M is sufficiently large. Our plan is
to show, using a fixed point argument, the existence of a function Uε(x, z) (defined for all x ∈ Ω and |z| < M)
satisfying (2.48) and also

−z − χ(x) ≤ Uε(x, z) ≤ −z + χ(x). (5.1)

This implies that Uε(x, z) < 0 when z > χ(x), and Uε(x, z) > 0 when z < −χ(x). Recalling the definitions of
uε and vε, it follows from (2.49)–(2.50) that

|vε(x)| ≤ χ(x), |uε(x)| ≤ χ(x), (5.2)

for all x ∈ Ω. It is convenient to work with V ε(x, z) = Uε(x, z) + z rather than Uε, since this turns (5.1)
into |V ε(x, z)| ≤ χ(x), whose right-hand side is not constant. The dynamic programming principle (2.48)
for Uε is equivalent (after a bit of manipulation) to the statement that V ε is a fixed point of the mapping
φ(·, ·) �→ Rε[·, ·, φ] where the operator Rε is defined for any L∞-function φ defined on Ω × (−M,M) by

Rε[x, z, φ] = sup
p,Γ

inf
Δx̂

⎧⎪⎨⎪⎩
e−λε

2
φ(x′, z′) − δ, if |z′| < M,

−χ(x), if z′ ≥M,

χ(x), if z′ ≤ −M.

(5.3)

where x′ = x+Δx and z′ = eλε
2
(z+ δ), with δ defined as in (2.47). Here p, Γ and Δx̂ are constrained as usual

by (2.16)–(2.17).
We shall identify V ε as the unique fixed point of the mapping φ(·, ·) �→ Rε[·, ·, φ] in Fχ defined by

Fχ =
{
φ ∈ L∞ (

Ω × (−M,M)
)

: ∀(x, z) ∈ Ω × (−M,M), |φ(x, z)| ≤ χ(x)
}
. (5.4)

Lemma 5.3. Let f satisfy (1.4) and (1.8)–(1.10) and assume as always that α, β, γ fulfill (2.13)–(2.15) and
that Ω is a C2-domain satisfying both the uniform interior and exterior ball conditions. Then, there exists
M0 > 0 such that for all two positive constants m and M > M0 satisfying m + 2‖ψ‖L∞(Ω) = M − 1, for any
|z| ≤M and any x ∈ Ω, we have

Qε[x, z, χ] ≤ χ(x) and Qε[x, z,−χ] ≥ −χ(x).

Proof. We are going to establish the upper estimate for χ. By Lemma 4.19, we deduce that

Qε[x, z, χ] − χ(x) ≤ ε2
(
1 + (λ− η)|z| + C∗

)
− λε2(m+ ‖ψ‖L∞(Ω) + ψ(x)).

Since m+ 2‖ψ‖L∞(Ω) = M − 1 and |z| ≤M , we obtain by rearranging the terms that

Qε[x, z, χ] − χ(x) ≤ ε2
(
1 + λ(1 + 2‖ψ‖L∞(Ω)) + C∗ − ηM

)
.

We can choose M large enough such that the right-hand side is negative. It suffices to take

M > M0 :=
1
η

(
1 + λ(1 + 2‖ψ‖L∞(Ω)) + C∗

)
.

The case for Qε[x, z,−χ] ≥ −χ(x) is analogous. �

Proposition 5.4. Assume the hypotheses of Lemma 5.3 hold. Suppose further that m = M − 1 − 2‖ψ‖L∞(Ω).
Then for all sufficiently small ε, the map φ(·, ·) �→ Rε[·, ·, φ] is a contraction in the L∞-norm, which preserves
Fχ. In particular, it has a unique fixed point, which has L∞-norm at most m+ 2‖ψ‖L∞(Ω).
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Proof. By the arguments already used in [21], Proposition 5.2, the map is a contraction for any ε (this part of
the proof works for any M). More precisely, if φi, i = 1, 2 are two L∞-functions defined on Ω × (−M,M) to R,
then ‖Rε[·, ·, φ1] −Rε[·, ·, φ2]‖L∞ ≤ e−λε

2‖φ1 − φ2‖L∞ .
Now we prove that if M is large enough and m+ 2‖ψ‖L∞(Ω) = M − 1, the map preserves the ball Fχ defined

by (5.4). Since Rε[x, z, φ] is monotone in its last argument, it suffices to show that

Rε[x, z, χ] ≤ χ(x) and Rε[x, z,−χ] ≥ −χ(x). (5.5)

For the first inequality of (5.5), let p and Γ be fixed, and consider

inf
Δx̂

⎧⎪⎨⎪⎩
e−λε

2
χ(x′) − δ, if |z′| < M,

−χ(x), if z′ ≥M,

χ(x), if z′ ≤ −M.

(5.6)

If a minimizing sequence uses the second or third alternative then the inf is less than χ(x). In the remaining
case, when all minimizing sequences use the first alternative, we apply Lemma 5.3 to see that (5.6) is bounded
above by χ(x). It follows that for all x ∈ Ω and z ∈ (−M,M), Rε[x, z, χ] ≤ χ(x), as asserted.

For the second inequality of (5.5), the argument is strictly parallel by considering the function −χ. We have
shown that the map φ(·, ·) �→ Rε[·, ·, φ] preserves the ball Fχ. Since it is also a contraction, the map has a unique
fixed point. �

This result justifies the discussion of the stationary case given in Section 2, by showing that the value
functions uε and vε are well-defined, and bounded independently of ε, and they satisfy the dynamic programming
inequalities:

Proposition 5.5. Suppose f satisfies (1.4) and (1.8)–(1.10), the C2-domain Ω fulfills both the uniform interior
and exterior ball conditions, and the boundary condition h is continuous, uniformly bounded. Assume the param-
eters of the game α, β, γ fulfill (2.13)–(2.15), ψ ∈ C2

b (Ω) satisfy (2.45), M large enough, m = M−1−2‖ψ‖L∞(Ω),
and χ ∈ C2

b (Ω) is defined by (2.46). Let V ε be the solution of (5.3) obtained by Proposition 5.4 and let
Uε(x, z) = V ε(x, z) − z. Then the associated functions uε, vε defined by (2.49)–(2.50) satisfy |uε| ≤ χ and
|vε| ≤ χ for all sufficiently small ε, and they satisfy the dynamic programming inequalities (2.51) and (2.52) at
all points x ∈ Ω.

Proof. The bounds on uε and vε were demonstrated in (5.2). The bounds assure that the dynamic programming
inequalities hold for all x ∈ Ω, as a consequence of Proposition 2.6. �

We close this section with the stationary analogue of Lemma 2.5.

Lemma 5.6. Under the hypotheses of Proposition 5.3, suppose in addition that

f(x, z1, p, Γ ) ≥ f(x, z0, p, Γ ) whenever z1 > z0.

Then Uε satisfies Uε(x, z1) ≤ Uε(x, z0) − (z1 − z0) whenever z1 > z0. In particular, Uε is strictly decreasing in
z and vε = uε.

Proof. The Dirichlet case is provided in [21], Lemma 5.4. For our game, it suffices to add −‖Δx̂−Δx‖h(x+Δx)
in the expression of δ0 and δ1 defined in the proof of [21], Lemma 5.4. Then the arguments can be repeated on
the operator Rε defined by (5.3), noticing that the function χ is independent of z. �
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6. Some natural generalizations

In the precedent sections, we solved the Neumann boundary problem in both parabolic and elliptic settings.
In the present section, we are going to explain without full proof how the previous work can be used to solve on
one hand the mixed Dirichlet–Neumann boundary conditions in the elliptic framework and on the other hand
the oblique problem in the parabolic setting. For the definitions of the viscosity solutions on these frameworks
which are the natural extensions of those presented in Section 3.1, the interested reader is referred to [4] or [12].

6.1. Elliptic PDE with mixed Dirichlet–Neumann boundary conditions

We extend the games of Section 2.3 devoted to the single Neumann problem to the mixed Dirichlet–Neumann
boundary-value problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩

f(x, u,Du,D2u) + λu = 0, in Ω,

u = g, on ΥD,

∂u

∂n
= h, on ΥN ,

(6.1)

where Ω � RN is a domain, ΥD∪ΥN = ∂Ω is a partition of ∂Ω with ΥD nonempty and closed and ΥN is assumed
to be C2. Then, Ω is assumed to satisfy the uniform exterior ball condition and, in a neighborhood of ΥN , the
uniform interior ball condition explained in Definition 1.2. Using similar arguments than those considered at
the end of Section 2.3, we build a C2

b (Ω)-function ψ such that

∂ψ

∂n
= ‖h‖L∞ + 1 on ΥN . (6.2)

From m and ψ, we construct a function χ defined by

χ(x) = m+ ‖ψ‖L∞ + ψ(x). (6.3)

As in Section 2.3, we introduce Uε(x, z), the optimal worst-case present value of Helen’s wealth if the initial
stock is x and her initial wealth is −z. The definition of Uε(x, z) for x ∈ Ω ∪ ΥN involves here a game similar
to that of Section 2.3. The rules are as follows:

(1) Initially, at time t0 = 0, the stock price is x0 = x and Helen’s debt is z0 = z.
(2) Suppose, at time tj = jε2, the stock price is xj and Helen’s debt is zj with |zj| < M . Then Helen

chooses pj ∈ RN and Γj ∈ SN , restricted in magnitude by (2.16). Knowing these choices, Mark determines
the next stock price xj+1 = xj + Δx so as to degrade Helen’s outcome. Mark chooses an intermediate
point x̂j+1 = xj + Δx̂j ∈ RN such that ‖Δx̂j‖ ≤ ε1−α. This position x̂j+1 determines the new position
xj+1 = xj +Δxj by

xj+1 = projΩ(x̂j+1) ∈ Ω.

Helen experiences a loss at time tj of

δj = pj ·Δx̂j +
1
2
〈ΓjΔx̂j , Δx̂j〉 + ε2f(xj , zj, pj , Γj) − ‖Δx̂j −Δxj‖h(xj +Δxj). (6.4)

As a consequence, her time tj+1 = tj + ε2 debt becomes zj+1 = eλε
2
(zj + δj).

(3) If zj+1 ≥ M , then the game terminates, and Helen pays a “termination-by-large-debt penalty” worth
eλε

2
(χ(xj) − δj) at time tj+1. Similarly, if zj+1 ≤ −M , then the game terminates, and Helen receives a

“termination-by-large-wealth bonus” worth eλε
2
(χ(xj)+ δj) at time tj+1. If the game ends this way, we call

tj+1 the “ending index” tK .
(4) If |zj+1| < M and xj+1 ∈ ΥD, then the game terminates, and Helen gets an “exit payoff” worth g(xj+1) at

time tj+1. If the game ends this way, we call tj+1 the “exit index” tE .



1162 J.-P. DANIEL

(5) If the game has not terminated then Helen and Mark repeat this procedure at time tj+1 = tj + ε2. If the
game never stops, the “ending index” tK is +∞.

All the possibilities, apart the end by exit, had already been investigated at Section 2.3. If the game ends by
exit at time tE , then the present value of her income is

Uε(x0, z0) = −z0 − δ0 − e−λε
2
δ1 − . . .− e−λ(E−1)ε2δE−1 + e−λEε

2
g(xE)

= e−λEε
2
(g(xE) − zE).

Since the game is stationary, the associated dynamic programming principle is that for |z| < M ,

Uε(x, z) = sup
p,Γ

min
Δx̂

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e−λε

2
Uε(x′, z′), if x′ ∈ Ω ∪ ΓN and |z′| < M,

e−λε
2
(g(x′) − z′), if x′ ∈ ΓD and |z′| < M,

−z − χ(x), if z′ ≥M,

−z + χ(x), if z′ ≤ −M,

(6.5)

where x′ = projΩ(x+Δx̂) and z′ = eλε
2
(z + δ), with δ defined by (6.4). Here p, Γ and Δx̂ are constrained as

usual by (2.16)–(2.17).
The definitions (2.49)–(2.50) of uε and vε on Ω ∪ ΓN are conserved. The corresponding semi-relaxed limits

are defined for any x ∈ Ω by

u(x) = lim sup
y→x
ε→0

uε(y) and v(x) = lim inf
y→x
ε→0

vε(y),

with the convention that y approaches x fromΩ∪ΓN (since uε and vε are only defined onΩ∪ΓN ). Proposition 2.6
still holds without any modification for mixed-type Dirichlet–Neumann boundary conditions. Moreover, the
definition of viscosity subsolutions and supersolutions is clear by relaxing the PDE condition on ΥD with the
Dirichlet condition in the same way that has been done in [21], Section 3.

Following the same steps as our proof for the Neumann problem (the main modification consists in the proof
of convergence on ΥD but has already been done in [21]), the following theorem is now immediate.

Theorem 6.1. Consider the stationary boundary value problem (6.1) where f satisfies (1.4) and (1.8)–(1.10),
g and h are continuous, uniformly bounded and Ω is a C2-domain satisfying the uniform exterior ball condition
and the uniform interior ball condition in a neighborhood of ΥN . Assume the parameters of the game α, β,
γ fulfill (2.13)–(2.15), ψ ∈ C2

b (Ω) satisfies (6.2), χ ∈ C2(Ω) is defined by (6.3), M is sufficiently large, and
m = M − 1 − 2‖ψ‖L∞(Ω). Then uε and vε are well-defined when ε is sufficiently small, and they satisfy
|uε| ≤ χ and |vε| ≤ χ. Their relaxed semi-limits u and v are respectively a viscosity subsolution and a viscosity
supersolution of (6.1). If in addition we have v ≤ u and the PDE has a comparison principle, then it follows
that uε and vε converge locally uniformly in Ω to the unique viscosity solution of (6.1).

6.2. Parabolic PDE with an oblique boundary condition

The target of this section is to construct a game which could interpret the PDE with an oblique condition h
and final-time data g given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tu− f(t, x, u,Du,D2u) = 0, for x ∈ Ω and t < T,

∂u

∂ς
(x, t) = h(x), for x ∈ ∂Ω and t < T,

u(x, T ) = g(x), for x ∈ Ω,

(6.6)
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where ς defines a smooth vector field, say C2, on ∂Ω pointing outward such that

〈ς(x), n(x)〉 ≥ θ > 0 for all x ∈ ∂Ω. (6.7)

As usual, the domain Ω is supposed to be at least of boundary C2 and to satisfy both the uniform and the
exterior ball conditions.

First of all, following Lions [22], Section 5, P.L. Lions and A.S. Sznitman [24], we introduce some smooth
functions aij(x) = aji(x), say C2

b (R
N ), such that

∃θ > 0, ∀x ∈ RN , (aij(x)) ≥ θIN , (6.8)

∀x ∈ ∂Ω,
N∑
j=1

aij(x)ςj(x) = ni(x) for 1 ≤ i ≤ N.

Clearly if we had ς = n, we would just take aij(x) = δij . Next, the matrices induce a metric dς on RN defined
by

dς(x, y) = inf

⎧⎪⎨⎪⎩
∫ 1

0

⎡⎣ ∑
1≤i,j≤N

aij(ξ(t))ξ̇i(t)ξ̇j(t)

⎤⎦1/2

dt : ξ ∈ C1([0, 1],RN), ξ(0) = y, ξ(1) = x

⎫⎪⎬⎪⎭ . (6.9)

Then it is well known that for ‖x− y‖ small, there exists a unique minimizer in (6.9). The interested reader is
referred to [22] for additional properties about dς . For this specific metric, we can now define for any x lying on
a small δ-neighborhood of the boundary a unique projection according the vector field ς along the boundary by

x̄ς = projς
Ω

(x) ∈ ∂Ω, (6.10)

which corresponds to the unique minimum of dς(x, y) for y lying on the boundary. Finally, Bς(x, r) denotes the
ball of center x and radius r induced by the metric dς .

We can now explain the rules of the game corresponding to the oblique problem (6.6). Let the parameters α,
β, γ satisfy (2.13)–(2.15). When the game begins, the position can have any value x0 ∈ Ω; Helen’s initial score
is y0 = 0. The rules are as follows: if at time tj = t0 + jε2 Helen’s debt is zj and the stock price is xj , then

(1) Helen chooses a vector pj ∈ RN and a matrix Γj ∈ SN , restricted in magnitude by (2.16).
(2) Taking Helen’s choice into account, Mark chooses the stock price xj+1 = xj +Δxj so as to degrade Helen’s

outcome. Mark is going to choose an intermediate point x̂j+1 = xj +Δx̂j ∈ RN such that

x̂j+1 ∈ Bς(xj , ε1−α), (6.11)

which determines the new position xj+1 = xj +Δxj ∈ Ω by the rule

xj+1 = projς
Ω

(x̂j+1),

where projς
Ω̄

is the projection defined by (6.10).
(3) Helen’s debt is changed to

zj+1 = zj + pj ·Δx̂j +
1
2
〈ΓjΔx̂j , Δx̂j〉 + ε2f(tj , xj , zj , pj, Γj) − dς(x̂j+1, xj+1)h(xj +Δxj).

(4) The clock steps forward to tj+1 = tj + ε2 and the process repeats, stopping when tK = T . At the final time
Helen receives g(xK) from the option.
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Rather than repeating the arguments already used, we are going to explain the modifications to carry out the
analysis. First of all, by the boundedness of the aij and (6.8), the distance dς defined by (6.9) is equivalent to
the euclidean distance. Since Ω satisfies the uniform exterior ball condition, there exists, for a certain rς > 0, a
tubular neighborhood {x ∈ RN\Ω : d(x) < rς} of the boundary on which projς

Ω̄
is well-defined. This guarantees

the well-posedness of this game for all ε > 0 small enough. Then, if dς or the euclidean distance is used to
compute Dφ and D2φ for a smooth function φ, we will get the same results. Therefore, we can introduce the
oblique analogues mx

ς,ε[φ] and Mx
ς,ε[φ] of (3.1)–(3.2) by

mx
ς,ε[φ] := inf

x+Δx̂/∈Ω
Δx̂

{h(x+Δx) −Dφ(x) · ς(x+Δx)} , (6.12)

Mx
ς,ε[φ] := sup

x+Δx̂/∈Ω
Δx̂

{h(x+Δx) −Dφ(x) · ς(x+Δx)} , (6.13)

where Δx̂ is constrained by (6.11) and Δx is determined by Δx = projς
Ω̄

(x + Δx̂) − x. Thus, the particular
choices pmς

opt, p
Mς

opt and Γ ςopt will be now respectively defined in the orthonormal basis Bς = (e1 = ς(x̄ς), e2, . . . , eN )
by

pmς

opt(x) = Dφ(x) +
[
1
2

(
1 − dς(x)

ε1−α

)
mx
ς,ε[φ] − ε1−α

4

(
1 − d2

ς (x)
ε2−2α

)
(D2φ(x))11

]
ς(x̄ς),

pMς

opt(x) = Dφ(x) +
[
1
2

(
1 − dς(x)

ε1−α

)
Mx
ς,ε[φ] − ε1−α

4

(
1 − d2

ς (x)
ε2−2α

)
(D2φ(x))11

]
ς(x̄ς),

and

Γ ςopt(x) = D2φ(x) +
[
1
2

(
−1 +

d2
ς (x)
ε2−2α

)
(D2φ(x))11

]
E11,

where mx
ς,ε[φ] and Mx

ς,ε[φ] are defined by (6.12)–(6.13), and E11 denotes the unit-matrix (1, 1) in the basis Bς .
The definitions of uε, vε and their relaxed semi-limits u and v, given by (2.23)–(2.24) and (2.27), are conserved.
The only change on the dynamic programming inequalities (2.25)–(2.26) concerning uε and vε is to replace
‖Δx̂−Δx‖ by dς(x+Δx̂, x+Δx), and to constrain Δx̂ by (6.11). For stability, we need to consider a C2

b (Ω)-
function ψ such that

∂ψ

∂ς
(x) = ‖h‖L∞ + 1 on ∂Ω.

It is still allowed by the uniform interior ball condition applied to the C2-domain Ω. By using exactly the same
ingredients already used for the Neumann problem and adapting the geometric estimates given by Section 4.1.1
in the oblique framework, we obtain the following theorem.

Theorem 6.2. Consider the final-value problem (6.6) where f satisfies (1.4)–(1.7), g and h are continuous,
uniformly bounded, Ω is a C2-domain satisfying both the uniform interior and exterior ball conditions, and ς
is a continuous vector field on ∂Ω and satisfy (6.7). Assume the parameters α, β, γ fulfill (2.13)–(2.15). Then
u and v are uniformly bounded on Ω × [t∗, T ] for any t∗ < T , and they are respectively a viscosity subsolution
and a viscosity supersolution of (6.6). If the PDE has a comparison principle (for uniformly bounded solutions),
then it follows that uε and vε converge locally uniformly to the unique viscosity solution of (6.6).
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