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WASSERSTEIN GRADIENT FLOWS FROM LARGE DEVIATIONS
OF MANY-PARTICLE LIMITS

Manh Hong Duong1, Vaios Laschos1 and Michiel Renger2

Abstract. We study the Fokker–Planck equation as the many-particle limit of a stochastic particle
system on one hand and as a Wasserstein gradient flow on the other. We write the path-space rate
functional, which characterises the large deviations from the expected trajectories, in such a way that
the free energy appears explicitly. Next we use this formulation via the contraction principle to prove
that the discrete time rate functional is asymptotically equivalent in the Gamma-convergence sense to
the functional derived from the Wasserstein gradient discretization scheme.
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1. Introduction

Since the seminal work of Jordan, Otto and Kinderlehrer [12], it has become clear that there are many more
partial differential equations that can be written as a gradient flow than previously known. Two important
insights have contributed to this: the generalisation of gradient flows to metric spaces and the specific choice of
the Wasserstein metric as the dissipation mechanism. The paper by Jordan, Kinderlehrer and Otto introduced a
gradient-flow structure by approximation in discrete time. More recent work have shown how these ideas can be
studied in continuous time [14], and how they can be generalised to any metric space [3]. This paper is mainly
concerned with the time-discrete scheme, which we shall first explain.

In the space L2(�d), a gradient flow is an evolution equation of the form

∂tρt = −gradL2F(ρt), (1.1)

for some functional F , where gradL2F(ρ) denotes its functional derivative. For a gradient flow it is natural to
use the following time-discrete variational scheme. If ρ0 is the solution at time t = 0, then the solution at time
τ > 0 is approximated by the minimiser of the functional

ρ �→ F(ρ) +
1
2τ

‖ρ − ρ0‖2
L2(�d).
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Indeed, the Euler–Lagrange equation is then ρτ−ρ0
τ = −gradL2F(ρτ ), which approximates (1.1) as τ → 0. In

the same manner, one can define a variational scheme by minimising the functional

ρ �→ F(ρ) +
1
2τ

W 2
2 (ρ, ρ0), (1.2)

where W2 is the Wasserstein metric. Convergence of this variational scheme was first proven in [12] with the
choice of F(ρ) := S(ρ) + E(ρ), where

E(ρ) =
∫
�d

Ψ(x)ρ(dx) and S(ρ) :=

{∫
�d ρ(x) log ρ(x) dx, for ρ(dx) = ρ(x) dx
∞, otherwise,

(1.3)

for some potential Ψ . In this case, the minimisers converge to the solution of the Fokker–Planck equation

∂tρt = Δρt + div(ρt∇Ψ). (1.4)

Later, in [14], this result was extended to more general F , but we will be concerned with the specific choice (1.3).
Physically, S can be interpreted as entropy, E as internal energy, and F as the corresponding Helmholtz free
energy (if the temperature effects are hidden in Ψ); hence it is not surprising that this free energy should decay
along solutions of (1.4). However, it is not intuitively clear why the dissipation of free energy must be described
by the Wasserstein metric.

As we will explain in Section 3, for systems in equilibrium, the stochastic fluctuations around the equilibrium
are characterised by a free energy similar to (1.3). Recent developments suggest a similar principle for systems
away from equilibrium [1, 2, 7, 13, 15]. To explain this, consider N independent random particles in �

d with
positions Xk(t), initially distributed by some ρ0 ∈ P(�d), where the probability distribution of each particle
evolves according to (1.4). Define the corresponding empirical process

LN : t �→ 1
N

N∑
k=1

δXk(t).

Then, as a consequence of the Law of Large Numbers, at each τ ≥ 0 the empirical measure LN(τ) converges
almost surely in the narrow topology as N → ∞ to the solution of the Fokker–Planck equation (1.4) with initial
condition ρ0 [8]. The rate of this convergence is characterised by a large deviation principle. Roughly speaking,
this means that there exists a unique Jτ : P(�d) × P(�d) → [0,∞] such that (see Sect. 3)

Prob (LN(τ) ≈ ρ |LN(0) ≈ ρ0) ∼ exp (−N Jτ (ρ|ρ0)) as N → ∞.

In [13], Proposition 3.2 and [15], Corollary 13, it was found that

Jτ (ρ|ρ0) = inf
{
H(γ|ρ0 pτ ) : γ ∈ Π(ρ0, ρ)

}
(1.5)

where H is the relative entropy (discussed in Sect. 3), pτ is the fundamental solution of the Fokker–Planck
equation (1.4) and Π(ρ0, ρ) is the set of all Borel measures in �d × �

d that have first and second marginal ρ0

and ρ respectively. In this paper, we characterise a class of potentials Ψ and initial data ρ0 for which (1.5) is
equal to

inf
ρ(·)∈CW2(ρ0,ρ)

{
1
4τ

∫ 1

0

‖∂tρt‖2
−1,ρt

dt +
τ

4

∫ 1

0

‖Δρt + div(ρt∇Ψ)‖2
−1,ρt

dt +
1
2
F(ρ1) − 1

2
F(ρ0)

}
. (1.6)

where the ‖ · ‖−1,ρ norm and the exact meaning of ∂tρt, Δρt and div(ρt∇Ψ) will be defined in the sequel. In the
main theorem, by using the above equality, we show that the Wasserstein scheme (1.2) has the same asymptotic
behavior with Jτ for τ → 0, in terms of Gamma-convergence (see [5] for an exposition of Gamma-convergence).
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Theorem 1.1. Let ρ0 = ρ0(x)dx ∈ P2(�) be absolutely continuous with respect to the Lebesgue measure
and with density ρ0(x) being bounded from below by a positive constant in every compact set. Assume that∫
�
|∇Ψ(x)|2 ρ0(dx) and the Fisher information I(ρ0) (introduced in Sect. 2) are finite, and that Ψ satisfies

either Assumption 4.1 or 4.4 (introduced in Sect. 4). Then we have

Jτ (· |ρ0) − W 2
2 (ρ0, · )

4τ

Γ−−−→
τ→0

1
2
F( · ) − 1

2
F(ρ0), in P2(�). (1.7)

Here P2(�) denotes the space of probability measures on � having finite second moment. Actually, we will prove
Mosco convergence of (1.7), i.e. in Theorem 5.1 we prove that the Gamma-convergence lower bound holds
for any sequence in P2(�), equipped with the narrow topology, and in Theorem 6.1 we prove the existence of
the recovery sequence in the Wasserstein topology. This is equivalent to having Gamma convergence in both
topologies.

In the Wasserstein topology, the Gamma-convergence (1.7) immediately implies:

τ Jτ (· |ρ0)
Γ−−−→

τ→0

1
4
W 2

2 (ρ0, · ) in P2(�). (1.8)

For a system of Brownian particles, i.e. Ψ ≡ 0, statement (1.8) can also be found in [13]. Together, the two
statements (1.7) and (1.8) make up an asymptotic development of the rate Jτ for small τ , i.e.

Jτ (ρ|ρ0) ≈ 1
2
F(ρ) − 1

2
F(ρ0) +

1
4τ

W 2
2 (ρ0, ρ).

Apart from the factor 1/2 and the constant F(ρ0), which do not affect the minimisers, this approximation
indeed corresponds to the functional defining the time-discrete variational scheme (1.2) from [12].

For Ψ = 0, the main statement (1.7) was proven in [1] in a subset of P2(�) consisting of measures that are
sufficiently close to a uniform distribution on a compact interval. In [15], it was proven that whenever (1.7) holds
for Ψ = 0, then it also holds for any Ψ ∈ C2

b (�d). Both papers make use of the specific form of the fundamental
solution of (1.4). In [7], (1.7) was shown for Gaussian measures on the real line. The novelty of the present paper
lies in the use of large deviations in the space of trajectories rather than conditional large deviations of the
form (1.5). The conditional large deviations are obtained by a contraction. This provides us with an alternative
formulation of the rate functional from which, formally, the Gamma lower bound follows immediately. Moreover,
this approach allows us to prove the Gamma convergence in a much more general context.

All theorems in this paper are valid in higher dimensions except for the existence of the recovery sequence.
There are a number of reasons why, at least by the approach of this paper, the argument fails in higher
dimensions. First of all, in the proof of Lemma 6.3 we use an explicit formula of optimal transport maps in
terms of cumulative distribution functions. Secondly, the proof of the same lemma in higher dimensions would
require regularity and global estimates of derivates of the transport map, which are still unknown today (see
for example [17], p. 141).

The required concepts of this paper are introduced in Section 2. In Section 3, we explain the concept of large
deviations in the case of an equilibrium system, introduce the dynamical particle system that we study more
precisely, and discuss the conditional large deviations for this system. The alternative form of the functional Jτ

is proven in Section 4 via the path-wise large deviation principles. Finally, in Section 5 we prove the Gamma-
convergence lower bound, and in Section 6 the existence of the recovery sequence.

2. Preliminaries

By the nature of this study, we need a combination of techniques from probability theory, mostly from the
theory of large deviations, and from functional analysis, mostly from the gradient flow calculus as set out in [3].
Let us introduce these concepts here.
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2.1. Topological measure spaces

Unless otherwise stated, the space of probability measures P(�d) will be endowed with the narrow topology,
defined by convergence against continuous bounded test functions:

ρt → ρ as t → 0 if and only if
∫
�d

φdρt →
∫
�d

φdρ for all φ ∈ Cb(�d).

We sometimes identify measures with densities when possible, which is typically the case if a measure has finite
entropy. The space P2(�d) =

{
ρ ∈ P(�d) :

∫ |x|2 ρ(dx) < ∞}
will be endowed with the topology generated by

the Wasserstein metric W2. The Wasserstein distance of two measures ρ0, ρ ∈ P2(�d) is defined via

W 2
2 (ρ0, ρ) = inf

γ∈Π(ρ0,ρ)

{∫
�d

∫
�d

|x − y|2dγ

}
.

We note that convergence in the Wasserstein topology is equivalent to narrow convergence together with con-
vergence of second moments [17], Theorem 7.12.

2.2. Continuous and absolutely continuous curves

We write C([0, 1],P(�d)) for the space of narrowly continuous curves [0, 1] → P(�d), and C(ρ0, ρ) for the
space of narrowly continuous curves [0, 1] → P(�d) starting in ρ0 and ending in ρ. Similarly, for Wasserstein-
continuous curves in P2(�d) we write CW2([0, 1],P2(�d)) and CW2(ρ0, ρ).

Furthermore, we use two different notions of absolutely continuous curves. The first notion is taken from [6],
Definition 4.1. Let D = C∞

c (�d) be the space of test functions with the corresponding topology (see [16],
Sect. 6.2), let D′ be its dual, consisting of the associated distributions, and let 〈 , 〉 be the dual pairing between
D′ and D. We will identify a measure ρ ∈ P(�d) with a distribution by setting 〈ρ, f〉 :=

∫
f dρ. Denote by

DK ⊂ D the subspace of all Schwartz functions with compact support K ⊂ �
d. Then a curve ρ(·) : [0, 1] → D′ is

said to be absolutely continuous in the distributional sense if for each compact set K ⊂ �
d there is a neighborhood

UK of 0 in DK and an absolutely continuous function GK : [0, 1] → � such that

|〈ρt2 , f〉 − 〈ρt1 , f〉| ≤ |GK(t2) − GK(t1)|,
for all 0 < t1, t2 < 1 and f ∈ UK . Note that if a curve ρ(·) : [0, 1] → D′ is absolutely continuous then the
derivative in the distributional sense ∂tρt = limτ→0

1
τ (ρt+τ − ρt) exists for almost all t ∈ [0, 1].

Secondly, we say a curve ρ(·) : [0, 1] → P2(�d) is absolutely continuous in the Wasserstein sense if there exists
a g ∈ L1(0, 1) such that

W2(ρt1 , ρt2) ≤
∫ t2

t1

g(t) dt

for all 0 < t1 ≤ t2 < 1 (see for example [3], Def. 1.1.1).
Sufficient conditions for absolute continuity in the Wasserstein sense are given by the following useful lemma:

Lemma 2.1 ([3], Theorem 8.3.1). Let ρ(·) : (0, τ) → P(�d) be a narrowly continuous curve and let v(·) be a
vector field such that the continuity equation holds:

∂tρt + div(ρt vt) = 0 in distributional sense. (2.1)

If

ρ0 ∈ P2(�d) and
∫ τ

0

‖vt‖2
L2(ρt)

dt < ∞ (2.2)

then ρt ∈ P2(�d) for all 0 < t < τ and ρ(·) is absolutely continuous in the Wasserstein sense.

Remark 2.2. We point out that the hypothesis in Lemma 2.1 requires a priori that the curve ρ(·) lies in
P2(�d), but the proof actually shows that the condition (2.2) implies the whole curve to be in P2(�d) (and it
is absolutely continuous in the Wasserstein sense).
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2.3. The tangent space

For an absolutely continuous curve in the Wasserstein sense ρ(·) there is a unique Borel field vt ∈ V (ρt) :=

{∇f : f ∈ D}L2(ρt)
such that the continuity equation (2.1) holds [3], Theorem 8.3.1. This motivates the iden-

tification of the tangent space3 of P2(�d) at ρ with all s ∈ D′ for which there exists a v ∈ V (ρ) such that

s + div(ρv) = 0 in distributional sense. (2.3)

The following inner product on the tangent space at ρ is the metric tensor corresponding to the Wasserstein
metric [14]

(s1, s2)−1,ρ :=
∫
�d

v1 · v2 dρ,

where v1 and v2 are associated with s1 and s2 through (2.3). The corresponding norm coincides with the dual
operator norm on D′

‖s‖2
−1,ρ := sup

f∈D

{
2〈s, f〉 −

∫
�d

|∇f |2dρ

}
. (2.4)

This norm is closely related to the Wasserstein metric through the Benamou–Brenier formula [4]

W2(ρ0, ρ1)2 = min
{∫ 1

0

‖∂tρt‖2
−1,ρt

dt : ρt|t=0 = ρ0 and ρt|t=1 = ρ1

}
. (2.5)

2.4. Relevant functionals

We sometimes write Δρ and div(ρ∇Ψ) for the functionals in D′ defined by

〈Δρ, f〉 :=
∫
�d

Δf dρ and 〈div(ρ∇Ψ), f〉 := −
∫
∇Ψ · ∇f dρ.

For ρ ∈ P2(�d), we define the Fisher information

I(ρ) :=

{∫
�d

|∇ρ(x)|2
ρ(x) dx if ρ(dx) = ρ(x) dx and

√
ρ ∈ H1(�d),

∞ otherwise,
(2.6)

where ∇ρ is the distributional derivative of ρ. By using (2.4), it is straightforward to see that ‖Δρ‖2
−1,ρ ≤ I(ρ),

where the inequality turns to equality when the right hand is finite. Similarly we have that ‖ div(ρ∇Ψ)‖2
−1,ρ ≤∫ |∇Ψ |2dρ. Here equality holds whenever

∫
�
|∇Ψ |2 dρ < ∞, which is certainly true if Ψ satisfies assumptions (4.1)

and ρ ∈ P2(�d).
Observe that in Theorem 1.1 we assume finiteness of I(ρ0) and

∫
�
|∇Ψ |2 dρ0. As a consequence of the HWI

inequality [18], Corollary 20.13, these conditions, together with Assumptions 4.1 and 4.4, imply that the free
energy S(ρ0) + E(ρ0) is also finite.

2.5. Chain rule

We conclude this section with a chain rule for the free energy (1.3) on absolutely continuous curves.

Lemma 2.3. Let Ψ ∈ C2(�d) be bounded from below and λ-convex for some λ ∈ � (see [17], Sect. 2.1.3).
Assume also that ρ(·) : (0, τ) → P2(�d) is an absolutely continuous curve in the Wasserstein sense, that satisfies
the conditions E(ρt),S(ρt) < ∞ ∀t ∈ [0, τ ] and∫ τ

0

(∫
�d

|∇Ψ(x)|2ρt(x) dx + I(ρt)
)

dt < ∞. (2.7)

3Here we like to point out that in [3] the tangent space is identified with the set of velocity fields V (ρ).
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Then t → F(ρt) is absolutely continuous and for a.e t ∈ [0, τ ] we have

d
dt

F(ρt) = − (Δρt + div(ρt∇Ψ), ∂tρt)−1,ρt
. (2.8)

Proof. This lemma is a direct consequence of [3], Theorem 10.3.18. All conditions of this theorem are easily
checked; the only non-trivial condition may be

∫ τ

0
|∂F|(ρt) |ρ̇t| dt < ∞, where |∂F|(ρt) is the metric slope and

|ρ̇t| is the metric derivative (see [3], Sects. 1.1 and 1.2). This is true, since by [3], Theorems 10.4.13 and 8.3.1
and (2.7): ∫ τ

0

|∂F|(ρt) |ρ̇t| dt ≤ 1
2

∫ τ

0

|∂F|2(ρt) dt +
1
2

∫ τ

0

|ρ̇t|2 dt

≤ 1
2

∫ τ

0

∫ ∣∣∣∇Ψ(x) + ∇ρt(x)
ρt(x)

∣∣∣2 ρt(x) dxdt +
1
2

∫ τ

0

‖∂tρt‖2
−1,ρt

dt

≤
∫ τ

0

∫
|∇Ψ(x)|2 ρt(x) dxdt +

∫ τ

0

I(ρt) dt +
1
2

∫ τ

0

‖∂tρt‖2
−1,ρt

dt < ∞. �

3. Particle system and conditional large deviations

In this section we first explain the concept of large deviations with a simple model particle system. Then, we
introduce the dynamic particle system that we study more precisely, and discuss the large deviation principle
for this system.

Consider a system of N independent random particles in �
d (without dynamics), where the positions

X1, . . . ,XN are identically distributed with law ρ0. Then, as a consequence of the Law of Large Numbers,
the empirical measure LN = 1

N

∑N
k=1 δXk

converges almost surely to ρ0 in the narrow topology as N → ∞ ([8],
Thm. 11.4.1). Naturally, this also implies weak convergence:

lim
N→∞

Prob(LN ∈ C) = δρ0(C)

for all narrow continuity sets C ⊂ P(�d). A large deviation principle quantifies the exponential rate of conver-
gence to 0 (or 1). More precisely, we say the system satisfies a large deviation principle in P(�d) with (unique)
rate J : P(�d) → [0,∞] if J is lower semicontinuous, and for all sets U ⊂ P(�d) there holds (see, for example [9])

− inf
U◦

J ≤ lim inf
N→∞

1
N

log Prob(LN ∈ U◦) ≤ lim sup
N→∞

1
N

log Prob(LN ∈ U) ≤ − inf
U

J.

In addition, we say a rate functional is good if it has compact sub-level sets. By Sanov’s Theorem ([9],
Thm. 6.2.10), our model example indeed satisfies a large deviation principle, where the good rate functional J(ρ)
is the relative entropy

H(ρ|ρ0) :=

{∫
log( dρ

dρ0 ) dρ, if ρ � ρ0,

∞, otherwise.

In this example we see the (relative) entropy appearing naturally from a limit of a simple particle system.
Let us now consider our particle system with dynamics, and study its Sanov-type large deviations. To define

the system more precisely, let X1(t),X2(t), . . . be a sequence of independent random processes in �d. Assume
that the initial values are fixed deterministically by some X1(0) = x1,X2(0) = x2, . . . in such a way that4

LN(0) → ρ0 narrowly for some given ρ0 ∈ P(�d). (3.1)

4The reason behind this specific initial condition is that we want to somehow condition on LN = ρ, which is a measure-0 set.
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The evolution of the system is prescribed by the same transition probability for each particle Prob(Xk(t) ∈
dy|Xk(0) = x) = pt(dy|x). Naturally, for such probability there must hold pt(dy|x) → δx(dy) narrowly as
t → 0, and it should evolve according to (1.4). We thus define pt to be the fundamental solution of (1.4)5.

Again by the law of large numbers LN(τ) → ρτ almost surely in P(�d), where ρτ = ρ0 ∗ pτ , the solution
of (1.4) at time τ with initial condition ρ0. In addition, the empirical measure LN (τ) satisfies a large deviation
principle

Prob (LN(τ) ≈ ρ) ∼ exp (−NJτ (ρ|ρ0)) as N → ∞
with good rate functional (1.5). Observe that Jτ ( · |ρ0) ≥ 0 is minimised by ρ0 ∗ pτ .

4. Large deviations of trajectories

In this section we prove, under suitable assumptions for ρ0 and Ψ , the equivalence of the rate functionals (1.5)
and (1.6). The latter form will be used to prove the main Gamma convergence theorem. First, the large deviations
of the empirical process is derived. To this aim we will need to distinguish between two different types of
potentials Ψ . Next, we transform these large deviation principles back to the large deviations of the empirical
measure LN (τ) by a contraction principle, and finally show that the resulting rate functionals are the same for
both cases.

In the first case we consider potentials that satisfy the following

Assumption 4.1 (The subquadratic case). Let Ψ ∈ C2(�d) such that

1. Ψ is bounded from below,
2. there is a C0 > 0 such that |x||∇Ψ(x)| ≤ C0(1 + |x|2) for all x ∈ �d,
3. Ψ is λ-convex for some λ ∈ �,
4. there exists constants 0 ≤ C1 < 1

4 and C2, C3 ∈ �+ such that |ΔΨ(x)| ≤ C1|∇Ψ(x)|2 + C2Ψ(x) + C3.

Note that the second assumption indeed implies |Ψ(x)| ≤ C0(1 + |x|2). Under Assumption 4.1, combined with
initial condition (3.1), the empirical process {LN(t)}0≤t≤τ satisfies a large deviation principle in C([0, τ ],P(�d))
with good rate functional [6], Theorem 4.5

J̃τ (ρ(·)) =
1
4

∫ τ

0

‖∂tρt − Δρt − div(ρt∇Ψ)‖2
−1,ρt

dt, (4.1)

if the curve ρ(·) is absolutely continuous in the distributional sense; else we set J̃τ to ∞. It follows from a con-
traction principle [9], Theorem 4.2.1 and a change of variables t �→ t/τ that the conditional rate functional (1.5)
can also be written as

Jτ (ρ|ρ0) = inf
ρ(·)∈C(ρ0,ρ)

1
4τ

∫ 1

0

‖∂tρt − τ(Δρt + div(ρt∇Ψ))‖2
−1,ρt

dt. (4.2)

Remark 4.2. The first assumption guarantees that the functional E : P(�d) → (−∞,∞] is well defined. The
last two assumptions are not necessary to derive (4.1); however we will need them in the sequel.

Remark 4.3. In (4.2) we implicitly set 1
4τ

∫ 1

0 ‖∂tρt − τ(Δρt + div(ρt∇Ψ))‖2−1,ρt
dt = ∞ if the curve is not

absolutely continuous in distributional sense. Therefore, from now on, we shall only consider curves in C(ρ0, ρ)
or CW2(ρ0, ρ) that are absolutely continuous in distributional sense.

5Equivalently, we can define the dynamics of X1, . . . ,XN by the Itō stochastic equations

dXk(t) = −∇Ψ(Xk(t)) dt +
√

2 dWk(t), k = 1, · · · , N

where W1, . . . , WN are independent Wiener processes.
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In the second case we require a combination of assumptions on Ψ that were taken from [10,11]:

Assumption 4.4 (The superquadratic case). Let Ψ ∈ C4(�d) such that:

1. Ψ is λΨ -convex for some λΨ ∈ �;
2.

∫
�d Ψ(x)e−2Ψ(x) dx < ∞;

3. Ψ has superquadratic growth at infinity, i.e. lim|x|→∞
Ψ(x)
|x|2 = +∞;

4. There exists an ω ∈ C(�+ ∪ {0}) with ω(0) = 0 and an α ≥ 1 such that limx→∞
ω(x)
|x|α → 0, and for all

x,y ∈ �d

Ψ(y) − Ψ(x) ≤ ω(|y − x|)(1 + Ψ(x)),
|Ψ(y) − Ψ(x)|2 ≤ ω(|y − x|)(1 + |∇Ψ(x)|2 + Ψ(x));

5. 2ΔΨ ≤ A|∇Ψ |2 + B for some 0 < A < 1 and B > 0;
6. ζ := |∇Ψ |2 − 2ΔΨ has superquadratic growth at infinity, i.e. lim|x|→∞

ζ(x)
|x|2 = +∞;

7. ζ is λζ-convex for some λζ ∈ �.

Whenever Assumption 4.4 and initial condition (3.1) hold, then by ([10], Thm. 13.37) the process {LN(t)}0≤t≤τ

satisfies a large deviation principle in CW2([0, τ ],P2(�d)) with good rate functional (4.1).

Remark 4.5. Contrary to the subquadratic case, the latter is actually a large deviation principle on the set of
all continuous paths in P2(�d) with respect to the Wasserstein topology. Although we strongly believe that this
is also true for the subquadratic case, it is very difficult to prove due to the fact that the functional J̃τ does not
have Wasserstein-compact sub-level sets, and therefore it can not be a good rate functional in CW2([0, τ ],P2(�d))
when Ψ is subquadratic.

Again, by a contraction principle and a simple change of variables, it follows from (4.1) that (1.5) must be
equal to:

Jτ (ρ|ρ0) = inf
ρ(·)∈CW2(ρ0,ρ)

1
4τ

∫ 1

0

‖∂tρt − τ(Δρt + div(ρt∇Ψ))‖2
−1,ρt

dt.

Observe that in this case the infimum is taken over Wasserstein-continuous curves, while in the subquadratic
case (4.2) the infimum was over narrowly continuous curves. However, we will prove that under the extra
assumption that ρ0 ∈ P2(�d) and F(ρ0) is finite, even in the subquadratic case the infimum can be taken
over CW2(ρ0, ρ). Actually, we will prove something even stronger, that we will need in the sequel, namely the
following:

Proposition 4.6. Let Ψ ∈ C2(�d) satisfy Assumption 4.1. Let ρ0 ∈ P2(�d) with F(ρ0) < ∞ and assume
ρ(·) ∈ C(ρ0, ρ) with J̃τ (ρ(·)) finite. Then we have that ρt ∈ P2(�d) for every t ∈ [0, 1] and, furthermore, the
curve ρ(·) is absolutely continuous in the Wasserstein sense, and F(ρt) is absolutely continuous with respect
to t. Finally, there holds:

1
4τ

∫ 1

0

‖∂tρt − τ(Δρt + div(ρt∇Ψ))‖2
−1,ρt

dt

=
1
4τ

∫ 1

0

‖∂tρt‖2
−1,ρt

dt +
τ

4

∫ 1

0

‖Δρt + div(ρt∇Ψ)‖2
−1,ρt

dt +
1
2
F(ρ1) − 1

2
F(ρ0).

Before we prove this theorem we prove two auxiliary lemmas.

Lemma 4.7. Assume that

1. E(ρ0) < ∞
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2. Ψ ∈ C2(�d) satisfies Assumption 4.1,
3. ρ(·) ∈ C(ρ0, ρ),
4. J̃τ (ρ(·)) < ∞.

Then ∫ τ

0

∫
�d

|∇Ψ(x)|2ρt(dx) dt < ∞. (4.3)

Proof. For simplicity we take τ = 1. We will prove the following statement: there exist 0 < δ ≤ 1 and α, β > 0
that depend only on Ψ such that

α sup
t∈[0,δ]

∫
�d

|Ψ | dρt + β

∫ δ

0

∫
�d

|∇Ψ |2 dρt dt ≤ 8J̃1(ρ(·)) + 4 | inf Ψ | + 2
∫
�d

Ψ dρ0 + 2δC3. (4.4)

Obviously (4.3) follows from (4.4) by repeating it 1/δ times.
By [6], Lemma 4.8, for any 0 ≤ s ≤ 1 we have

4J̃1(ρ(·)) ≥ 4J̃s(ρ(·)) = sup
f∈C2

c (�d)

∫
�d

f dρs −
∫
�d

f dρ0 −
∫ s

0

∫
�d

(
Δf −∇Ψ · ∇f +

1
2
|∇f |2

)
dρt dt. (4.5)

It is worth highlighting that in the above equality, the supremum is taken over C2
c (�d) functions instead of D.

The idea is to use two approximations of Ψ so that it can be chosen as a test function f in (4.5). The first
approximation is used to show that this inequality still holds if we take replace C2

c (�d) by

A :=
{
f ∈ C2(�d) : f,∇f, Δf,xf, |∇f | |x| are all bounded

}
.

Take an arbitrary f ∈ A. Define the bump function

ζ(x) :=

{
exp

(
1 − 1

1−|x|2
)

, |x| < 1,

0, |x| ≥ 1,

and set ζk(x) := ζ(x/k). Then surely ζkf ∈ C2
c (�d). It is easy to check that

|ζk(x)| ≤ 1, |∇ζk(x)| ≤ 1
k

and |Δζk(x)| ≤ 1
k2

·

By the Dominated Convergence Theorem, as k → ∞∫
�d

ζkf dρs →
∫
�d

f dρs,∫
�d

ζkf dρ0 →
∫
�d

f dρ0,∫ s

0

∫
�d

Δ(ζkf) dρt dt =
∫ s

0

∫
�d

(fΔζk + 2∇ζk · ∇f + ζkΔf) dρt dt →
∫ s

0

∫
�d

Δf dρt dt,∫ s

0

∫
�d

∇Ψ · ∇(ζkf) dρt dt =
∫ s

0

∫
�d

∇Ψ · (f∇ζk + ζk∇f) dρt dt →
∫ s

0

∫
�d

∇Ψ · ∇f dρt dt,∫ s

0

∫
�d

|∇(ζkf)|2 dρt dt =
∫ s

0

∫
�d

|f∇ζk + ζk∇f |2 dρt dt →
∫ s

0

∫
�d

|∇f |2 dρt dt,

where the absolute finiteness of the right-hand integrals is guaranteed by the properties of the set A. There-
fore (4.5) indeed becomes

4J̃1(ρ(·)) ≥ sup
f∈A

∫
�d

f dρs −
∫
�d

f dρ0 −
∫ s

0

∫
�d

(
Δf −∇Ψ · ∇f +

1
2
|∇f |2

)
dρt dt. (4.6)
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For the second approximation we take

η(x) := exp
(
1 −

√
1 + |x|2

)
,

and set ηk(x) := η(x/k). Then the following estimates hold

|ηk(x)| ≤ 1, |∇ηk(x)| ≤ 1
k
ηk(x) and |Δηk(x)| ≤ 1

k2
ηk(x). (4.7)

Since ηkΨ ∈ A by the subquadratic Assumption 4.1, we can substitute ηkΨ in (4.6):

4J̃1(ρ(·)) ≥
∫
�d

ηkΨ dρs −
∫
�d

ηkΨ dρ0 −
∫ s

0

∫
�d

Δ(ηkΨ) dρt dt +
∫ s

0

∫
�d

(
∇Ψ · ∇(ηkΨ) − 1

2
|∇(ηkΨ)|2

)
dρt dt.

(4.8)
for any k ∈ � and s ∈ [0, 1].

We now estimate each term in the right-hand side of (4.8). For the first two terms, we have∫
�d

ηkΨ dρs −
∫
�d

ηkΨ dρ0 ≥
∫
�d

ηk|Ψ | dρs − 2 | inf Ψ | −
∫
�d

ηkΨ dρ0. (4.9)

For the third term of (4.8), we find

−
∫ s

0

∫
�d

Δ(ηkΨ) dρt dt = −
∫ s

0

∫
�d

(ΨΔηk + 2∇ηk · ∇Ψ + ηkΔΨ) dρt dt

≥ −
∫ s

0

∫
�d

(|Δηk| |Ψ | + |∇ηk| (|∇Ψ |2 + 1) + ηk|ΔΨ |) dρt dt

(4.7)

≥ −
∫ s

0

∫
�d

(
1
k2

ηkΨ +
ηk

k
(|∇Ψ |2 + 1) + ηk|ΔΨ |

)
dρt dt

Ass.4.1(4)

≥ −
∫ s

0

∫
�d

(
1
k2

ηkΨ +
ηk

k
(|∇Ψ |2 + 1) + ηk

(
C1|∇Ψ |2 + C2|Ψ | + C3

))
dρt dt

≥ −s

(
1
k2

+ C2

)
sup

t∈[0,s]

∫
�d

ηk|Ψ | dρt −
(

1
k

+ C1

)∫ s

0

∫
�d

ηk|∇Ψ |2 dρt dt − s

k
− sC3.

(4.10)

Finally, for the last part of (4.8)∫ s

0

∫
�d

(
∇Ψ · ∇(ηkΨ) − 1

2
|∇(ηkΨ)|2

)
dρt dt

=
∫ s

0

∫
�d

(
−1

2
|∇ηk|2Ψ2 + (1 − ηk)∇ηk · Ψ∇Ψ + (1 − 1

2
ηk)ηk|∇Ψ |2

)
dρt dt

(4.7)

≥
∫ s

0

∫
�d

(
− 1

2k2
ηkΨ2 − 2ηk

∣∣1
k
Ψ
∣∣ ∣∣1

2
∇Ψ

∣∣+ 3
4
ηk|∇Ψ |2

)
dρt dt,

≥
∫ s

0

∫
�d

(
− 3

2k2
ηkΨ2 +

(
3
4
− 1

4

)
ηk|∇Ψ |2

)
dρt dt.

≥
∫ s

0

∫
�d

(
−3C0(1 + k2)

2k2
ηk|Ψ | + 1

2
ηk|∇Ψ |2

)
dρt dt

≥ −3sC0(1 + k2)
2k2

sup
t∈[0,s]

∫
�d

ηk|Ψ | dρt +
∫ s

0

∫
�d

(
1
2
ηk|∇Ψ |2

)
dρt dt, (4.11)
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where the fourth line follows from Young’s inequality, and in the fifth line we used subquadratic Assump-
tion 4.1(2). Substituting (4.9), (4.10) and (4.11) into (4.8) we get

∫
�d

ηk|Ψ | dρs +
∫ s

0

∫
�d

1
2
ηk|∇Ψ |2 dρt dt ≤ 4J̃1(ρ(·)) + 2 | inf Ψ | +

∫
�d

ηkΨ dρ0 +
s

k
+ sC3

+ s

(
1
k2

+ C2 +
3C0(1 + k2)

2k2

)
sup

t∈[0,s]

∫
�d

ηk|Ψ | dρt +
(

1
k

+ C1

)∫ s

0

∫
�d

ηk|∇Ψ |2 dρt dt.

If we first discard the first term on the left-hand side and maximise the equation over s ∈ [0, δ] for some
0 < δ ≤ 1, then discard the second term and maximise, the sum of the inequalities can be written as

(
1 − 2δ

(
1
k2

+ C2 +
3C0(1 + k2)

2k2

))
sup

t∈[0,δ]

∫
�d

ηk|Ψ | dρt +
(

1
2
− 2

k
− 2C1

)∫ δ

0

∫
�d

|∇Ψ |2 dρt dt

≤ 8J̃1(ρ(·)) + 4 | inf Ψ | + 2
∫
�d

ηkΨ dρ0 +
2δ

k
+ 2δC3.

For δ such that 1 > 2δ
(
C2 + 3C0

2

)
, we get 1 > 2δ

(
1
k2 + C2 + 3C0(1+k2)

2k2

)
for suffiently large k, and therefore

from Fatou’s Lemma

α sup
t∈[0,δ]

∫
�d

|Ψ | dρt + β

∫ δ

0

∫
�d

|∇Ψ |2 dρt dt ≤ 8J̃1(ρ(·)) + 4 | inf Ψ | + 2
∫
�d

Ψ dρ0 + 2δC3,

with α := 1 − 2δ(C2 + 3C0
2 ) > 0 and β := 1

2 − 2C1. The latter is positive by Assumption 4.1(4). �

The second auxiliary lemma is:

Lemma 4.8. Let ε > 0 and ρ(x) dx ∈ P(�d) be given. Let θ(x) :=
(

1
2π

) d
2 e

−|x|2
2 be the density of the

d-dimensional normal distribution. We define θε(x) := ε−dθ(x
ε ) and ρε := ρ∗θε. Then there exists a constant Cε

that depends only on ε such that I(ρε) < Cε.

Proof. We have

∇ρε(x) = (ρ ∗ ∇θε)(x) =
∫
�d

ρ(x − y)∇θε(y) dy = −ε−2

∫
�d

ρ(x − y)yθε(y) dy.

Furthermore

|∇ρε(x)|2 ≤ ε−4

∫
�d

ρ(x − y)|y|2θε(y) dy
∫
�d

ρ(x − y)θε(y) dy ≤ ε−4ρε(x)
∫
�d

ρ(x − y)|y|2θε(y) dy.

Now

I(ρε) =
∫
�d

|∇ρε(x)|2
ρε(x)

dx ≤ ε−4

∫
�d

∫
�d

ρ(x − y)|y|2θε(y) dy dx

= ε−4

∫
�d

∫
�d

ρ(x − y) dx |y|2θε(y) dy

≤ ε−4

∫
�d

|y|2θε(y) dy =: Cε. �

We are now ready to proceed with the
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Proof of Proposition 4.6. Let ρ(·) satisfy the assumptions (of Prop. 4.6). By Lemma 4.7 we have

∫ 1

0

∫
�d

|∇Ψ(x)|2ρt(dx) dt < ∞

and therefore

1
4τ

∫ 1

0

‖∂tρt − τΔρt‖2
−1,ρt

dt ≤ 1
2τ

∫ 1

0

‖∂tρt − τ(Δρt + div(ρt∇Ψ))‖2
−1,ρt

dt +
τ

2

∫ 1

0

∫
�d

|∇Ψ |2ρt(dx) dt < ∞.

Take a 0 < s ≤ 1. Since
1
4τ

∫ s

0

‖∂tρt − τΔρt‖2
−1,ρt

dt < ∞

we have that ‖∂tρt − τΔρt‖2
−1,ρt

< ∞ for almost every t. By ([10], Lem. D.34) there is a vt ∈ L2(ρt) such that

∂tρt − τΔρt = − div(vt ρt)

in distributional sense. Take the Gaussian θε(x) as in Lemma 4.8. Then we have

∂tρt,ε − τΔρt,ε = − div(vt,ε ρt,ε),

where

ρt,ε = ρt ∗ θε(x), vt,ε =
(vt ρt) ∗ θε(x)

ρt,ε
·

By ([3], Thm. 8.1.9) we have

1
4τ

∫ s

0

‖∂tρt,ε − τΔρt,ε‖2
−1,ρt

dt ≤ 1
4τ

∫ s

0

‖vt,ε‖2
L2(ρt,ε)

dt ≤ 1
4τ

∫ s

0

‖vt‖2
L2(ρt)

dt =

1
4τ

∫ s

0

‖∂tρt − τΔρt‖2
−1,ρt

dt. (4.12)

Furthermore by Lemma 4.8 we have that∫ s

0

‖Δρt,ε‖2
−1,ρt,ε

dt =
∫ s

0

I(ρt,ε) dt ≤ Cε, (4.13)

and therefore ∫ s

0

‖∂tρt,ε‖2
−1,ρt,ε

dt < ∞. (4.14)

From (4.13) and since ρ0 ∈ P2(�d), by using ([10], Lem. D.34) and Lemma 2.1 we get that the curve ρt,ε is
absolutely continuous in P2(�d). In addition, it is straightforward that S(ρt,ε) is finite for every 0 < t ≤ s.
From (4.13), (4.14) and by Lemma 2.3, S(ρt,ε) is absolutely continuous with respect to t. Hence we obtain

1
4τ

∫ s

0

‖∂tρt,ε − τΔρt,ε‖2
−1,ρt

dt

=
1
4τ

∫ s

0

‖∂tρt,ε‖2
−1,ρt

dt +
τ

4

∫ s

0

‖Δρt,ε‖2
−1,ρt

dt − 1
2

∫ s

0

(Δρt,ε, ∂tρt,ε)−1,ρt
dt

=
1
4τ

∫ s

0

‖∂tρt,ε‖2
−1,ρt

dt +
τ

4

∫ s

0

‖Δρt,ε‖2
−1,ρt

+
1
2
S(ρs,ε) − 1

2
S(ρ0,ε)·
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It follows from this and (4.12) that

1
4τ

∫ s

0

‖∂tρt,ε‖2
−1,ρt

dt +
τ

4

∫ s

0

‖Δρt,ε‖2
−1,ρt

dt +
1
2
S(ρs,ε) − 1

2
S(ρ0,ε) ≤ 1

4τ

∫ 1

0

‖∂tρt − τΔρt‖2
−1,ρt

dt.

Now letting ε go to zero and by the lower semicontinuity of the entropy and the Fisher information functionals
we get S(ρs) < ∞ and

∫ s

0 ‖Δρt‖2−1,ρt
dt < ∞. Therefore

∫ s

0

‖∂tρt‖2
−1,ρt

dt ≤ 2
(∫ s

0

‖∂tρt − τΔρt‖2
−1,ρt

dt + τ2

∫ s

0

‖Δρt‖2
−1,ρt

dt

)
< ∞.

and ∫ s

0

‖Δρt + div ρt∇Ψ‖2
−1,ρt

dt ≤ 2
(∫ s

0

‖Δρt‖2
−1,ρt

dt +
∫ s

0

∫
�d

|∇Ψ(x)|2ρt(x) dxdt

)
< ∞.

By Lemma 2.1, the curve ρt is in ACW2

(
[0, 1];P2(�d)

)
. Moreover, t �→ F(ρt) is absolutely continuous and (2.8)

holds. Hence we have

1
4τ

∫ 1

0

‖∂tρt − τ(Δρt + div(ρt∇Ψ))‖2
−1,ρt

dt

=
1
4τ

∫ 1

0

‖∂tρt‖2
−1,ρt

dt +
τ

4

∫ 1

0

‖Δρt + div(ρt∇Ψ))‖2
−1,ρt

dt +
1
2
F(ρ1) − 1

2
F(ρ0).

This finishes the proof of the proposition. �

Remark 4.9. For the superquadratic case, the above Proposition was proved by Feng and Nguyen in [11] by
using probabilistic tools. In addition, they obtain an estimate for the growth of F along the curves.

Now the following is a straightforward result:

Corollary 4.10. Let ρ0 ∈ P2(�d) with F(ρ0) < ∞. If Ψ ∈ C2(�d) satisfies either Assumption 4.1 or 4.4, then

Jτ (ρ|ρ0) = inf
ρ(·)∈CW2(ρ0,ρ)

1
4τ

∫ 1

0

‖∂tρt − τ(Δρt + div(ρt∇Ψ))‖2
−1,ρt

dt.

5. Lower bound

In this section we prove the lower bound of the Gamma convergence (1.7) in our main result, Theorem 1.1.

Theorem 5.1 (Lower bound). Under the assumptions of Theorem 1.1, we have for any ρ1 ∈ P2(�d) and all
sequences ρτ

1 ∈ P2(�d) narrowly converging to ρ1

lim inf
τ→0

(
Jτ (ρτ

1 |ρ0) − W 2
2 (ρ0, ρ

τ
1)

4τ

)
≥ 1

2
F(ρ1) − 1

2
F(ρ0). (5.1)

Proof. Take any sequence ρτ
1 ∈ P2(�d) narrowly converging to a ρ1 ∈ P2(�d). We only need to consider those

ρτ
1 for which Jτ (ρτ

1 |ρ0) < ∞. For each such ρτ
1 , by the definition of infimum there exists a curve ρτ

t ∈ C(ρ0, ρ
τ
1)

satisfying
1
4τ

∫ 1

0

∥∥∂tρ
τ
t − τ(Δρτ

t + div(ρτ
t ∇Ψ))

∥∥2

−1,ρτ
t
dt ≤ Jτ (ρτ

1 |ρ0) + τ < ∞.
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By Proposition 4.6 for the subquadratic case and [11], Lemma 2.6 for the superquadratic case, we have

Jτ (ρτ
1 |ρ0) + τ ≥ 1

4τ

∫ 1

0

∥∥∂tρ
τ
t − τ(Δρτ

t + div(ρτ
t ∇Ψ))

∥∥2

−1,ρτ
t
dt

=
1
4τ

(∫ 1

0

∥∥∂tρ
τ
t

∥∥2

−1,ρτ
t
dt + 2τ(F(ρτ

1) −F(ρ0)) + τ2

∫ 1

0

‖Δρτ
t + div(ρτ

t ∇Ψ)‖2
−1,ρτ

t
dt

)

=
1
2
(F(ρτ

1) −F(ρ0)) +
1
4τ

∫ 1

0

∥∥∂tρ
τ
t

∥∥2

−1,ρτ
t

dt +
τ

4

∫ 1

0

‖Δρτ
t + div(ρτ

t ∇Ψ)‖2
−1,ρτ

t
dt

≥ 1
2
(F(ρτ

1) −F(ρ0)) +
1
4τ

∫ 1

0

∥∥∂tρ
τ
t

∥∥2

−1,ρτ
t

dt

≥ 1
2
(F(ρτ

1) −F(ρ0)) +
1
4τ

W 2
2 (ρ0, ρ

τ
1).

In the last inequality above we have used the Benamou–Brenier formula (2.5) for the Wasserstein distance.
Finally, using ρτ

1 → ρ1 narrowly with the narrow lower semi-continuity of F , we find that

lim inf
τ→0

(
Jτ (ρτ

1 |ρ0) − W 2
2 (ρ0, ρ

τ
1)

4τ

)
≥ 1

2
F(ρ1) − 1

2
F(ρ0). �

6. Recovery sequence

In this section we prove the upper bound of the Gamma convergence (1.7). This will conclude the proof of
Theorem 1.1.

Theorem 6.1 (Recovery sequence). Under the assumptions of Theorem 1.1, for any ρ1 ∈ P2(�) there exists a
sequence ρτ

1 ∈ P2(�) converging to ρ1 in the Wasserstein metric such that

lim sup
τ→0

(
Jτ (ρτ

1 |ρ0) − W 2
2 (ρ0, ρ

τ
1)

4τ

)
≤ 1

2
S(ρ1) − 1

2
S(ρ0).

As mentioned in Section 1, our approach for the recovery sequence only works for d = 1. Hence throughout this
section, we will consider d = 1.

The existence of the recovery sequence is proven by making use of the following denseness argument, which
is also interesting in its own6:

Proposition 6.2. Let (X, d) be a metric space and let Q be a dense subset of X. If {Kn, n ∈ �} and K∞ are
functions from X to � such that:

(a) Kn(q) → K∞(q) for all q ∈ Q,
(b) for every x ∈ X there exists a sequence qn ∈ Q with qn → x and K∞(qn) → K∞(x),

then for every x ∈ X there exists a sequence rn ∈ Q, with rn → x such that Kn(rn) → K∞(x).

Proof. The proof is by a diagonal argument. Take any x ∈ X and take the corresponding sequence qn → x such
that K∞(qn) → K∞(x). By assumption, for any q ∈ Q and L > 0 there exists a nL,q such that for any n ≥ nL,q

there holds d(Kn(q), K∞(q)) < 1/L. Define

ln :=

⎧⎪⎨
⎪⎩

1, 1 ≤ n < n2,q2 ,

2, n2,q2 ≤ n < max{n2,q2 , n3,q3},
. . .

6A more or less similar idea can be found in ([5], Rem. 1.29); Proposition 6.2 is slightly stronger.
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Take the subsequence rn := qln . Observe that ln → ∞ as n → ∞ such that indeed qln → x, and:

d(Kn(qln), K∞(x)) ≤ d(Kn(qln), K∞(qln))︸ ︷︷ ︸
≤ 1

ln

+d(K∞(qln), K∞(x)) → 0. �

For a fixed ρ0 satisfying the assumptions of Theorem 1.1, we want to apply Proposition 6.2 to the situation
where

X = P2(�),

Q = Q(ρ0) =
{
ρ(x) dx ∈ P2(�) : ρ(x) is bounded from below by a positive constant in every compact set,

I(ρ),
∫
�

|Ψ ′(x)|2ρ(x) dx < ∞, and there exists a M > 0 such that ρ0(x) = ρ(x) for all |x| > M
}
,

Kn(ρ) = Jτn(ρ |ρ0) − W 2
2 (ρ0, ρ)
4τn

, for an arbitrary sequence τn converging to zero,

K∞(ρ) =
1
2
F(ρ) − 1

2
F(ρ0).

Assumption (a) of Proposition 6.2, i.e. pointwise convergence for every ρ1 ∈ Q(ρ0), can be proven as follows.
Take ρ1 ∈ Q(ρ0) and let ρt be the geodesic that connects ρ0 and ρ1. In the following Lemma 6.3, we will prove
that I(ρt) and

∫
�
|Ψ ′(x)|2ρt(x)dx are uniformly bounded, so that we have

∫ 1

0

‖∂tρt − τ(∂xxρt + ∂x(ρtΨ
′))‖2

−1,ρt
dt

≤ 3
∫ 1

0

‖∂tρt‖2
−1,ρt

dt + 3τ2

∫ 1

0

‖∂xxρt‖2
−1,ρt

dt + 3τ2

∫ 1

0

‖∂x(ρtΨ
′)‖2

−1,ρt
dt < ∞.

By Proposition 4.6 for the subquadratic case or [11], Lemma 2.6 for the superquadratic case, together with
Young’s inequality:

lim
τ→0

(
Jτ (ρ1|ρ0) − W 2

2 (ρ0, ρ1)
4τ

)
≤ lim

τ→0

[
τ

2

∫ 1

0

(∫
�

(
(ρ′t(x))2

ρt(x)
+ |Ψ ′(x)|2ρt(x)

)
dx

)
dt

+
1
2
F(ρ1) − 1

2
F(ρ0)

]
=

1
2
F(ρ1) − 1

2
F(ρ0).

The pointwise convergence then follows from this together with the lower bound (5.1).
To prove the uniform bounds:

Lemma 6.3. Let Ψ ∈ C2(�) with Ψ(x) > −A−B|x|2 for some positive constants (this includes both our cases).
Let ρ0 = ρ0(x)dx ∈ P2(�) be absolutely continuous with respect to the Lesbegue measure, where ρ0(x) is bounded
from below by a positive constant in every compact set. Let ρ1 ∈ Q(ρ0) and ρt be the geodesic that connects ρ0

and ρ1. Assume that E(ρ0), I(ρ0) and
∫
�
|Ψ ′(x)|2ρ0(x)dx are all finite. Then F(ρt), I(ρt) and

∫
�
|Ψ ′(x)|2ρt(x) dx

are uniformly bounded with respect to t.

Proof. Let T (x) be the optimal map that transports ρ0(dx) to ρ1(dx). The geodesic that connects ρ0 and ρ1 is
defined by

ρt(x) = ((1 − t)x + tT (x))ρ0(x).
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First we prove that I(ρt) is uniformly bounded with respect to t. In the real line, the map T (x) can be determined
via the cumulative distribution functions as follows ([17], Sect. 2.2). Let F (x) and G(x) be respectively the
cumulative distribution functions of ρ0(dx) and ρ1(dx), i.e.

F (x) =
∫ x

−∞
ρ0(x) dx; G(x) =

∫ x

−∞
ρ1(x) dx.

Then T = G−1 ◦ F . We have

F (M) +
∫ +∞

M

ρ0(x) dx = G(M) +
∫ +∞

M

ρ1(x) dx = 1. (6.1)

From (6.1) and by the assumption that ρ0(x) = ρ1(x) for all |x| > M we find that F (M) = G(M). Hence for
all x such that |x| > M we have

F (x) = F (M) +
∫ x

M

ρ0(x) dx = G(M) +
∫ x

M

ρ1(x) dx = G(x).

Consequently, for all x with |x| > M we have T (x) = (G−1◦F )(x) = x. Therefore T ′(x) = 1 for all |x| > M . Also
since the densities ρ0, ρ1 are absolutely continuous (by assumption) we get that F (x), G(x) are differentiable
everywhere with G′(x) = ρ1(x) > 0. We deduce that T (x) has a classical derivative everywhere and moreover
since G(T (x)) = F (x), by differentiating we get that T (x) satisfies the Monge–Ampère equation.

ρ0(x) = ρ1(T (x))T ′(x).

or equivalently (since ρ1(x) > 0),

T ′(x) =
ρ0(x)

ρ1(T (x))
· (6.2)

Because of (6.2) we have that T ′(x) is absolutely continuous and strictly positive. Therefore the derivative of
T ′ exists almost everywhere. Now for the derivative of T ′ we have

T ′′(x)
T ′(x)

= (log(T ′(x)))′

= (log(ρ0(x)) − log(ρ1(T (x)))′

=
ρ′0(x)
ρ0(x)

− ρ′1(T (x))T ′(x)
ρ1(T (x))

·

Set Tt(x) = tx + (1 − t)T (x). For 0 ≤ t ≤ 1 we have

ρt(x) = ρ1(Tt(x))T ′
t (x), (6.3)

Since ρ1(Tt(x)) and T ′
t(x) are both absolutely continuous so is ρt(x). Hence the derivative appeared in (2.6) for

I(ρt) is the classical derivative. Substituting (6.3) into (2.6) we get∫
�

(ρ′t(x))2

ρt(x)
dx =

∫
�

[(ρ1(Tt(x))T ′
t (x))′]2

ρ1(Tt(x))T ′
t (x)

dx

=
∫
�

[ρ′1(Tt(x))T ′
t (x)2 + ρ1(Tt(x))T ′′

t (x)]2

ρ1(Tt(x))T ′
t (x)

dx

≤ 2
∫
�

(ρ′1(Tt(x)))2(T ′
t (x))4

ρ1(Tt(x))T ′
t (x)

dx + 2
∫
�

(ρ1(Tt(x))T ′′
t (x))2

ρ1(Tt(x))T ′
t (x)

dx

= 2
∫
�

(ρ′1(Tt(x)))2

ρ1(Tt(x))
(T ′

t (x))3 dx + 2
∫
�

ρ1(Tt(x))
(T ′′

t (x))2

T ′
t(x)

dx (6.4)
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Note that in the inequality above we have used (a + b)2 ≤ 2(a2 + b2). To proceed we will estimate each term in
the right-hand side of (6.4) using the fact that |T ′(x)| is bounded and I(ρ0), I(ρ1) < ∞. For the first part we
have

∫
�

(ρ′1(Tt(x)))2

ρ1(Tt(x))
(T ′

t (x))3 dx =
∫
�

(ρ′1(Tt(x)))2

ρ1(Tt(x))
(T ′

t (x))(T ′
t (x))2 dx

≤ C2

∫
�

(ρ′1(Tt(x)))2

ρ1(Tt(x))
(T ′

t(x)) dx

= C2

∫
�

(ρ′1(x))2

ρ1(x)
dx

= C2I(ρ1). (6.5)

Let B be the ball of radius M centered at the origin. Since T ′′(x) = 0 for all |x| > M we can restrict our
calculation for the second part in the ball B.

∫
�

ρ1(Tt(x))
(T ′′

t (x))2

T ′
t(x)

dx =
∫

B

ρ1(Tt(x))
(T ′′

t (x))2

T ′
t(x)

dx

=
∫

B

ρ1(Tt(x))
((1 − t)T ′′(x))2

T ′
t(x)

dx

=
∫

B

ρ1(Tt(x))T ′
t (x)

(
T ′(x)(1 − t)

T ′
t(x)

)2 (
T ′′(x)
T ′(x)

)2

dx

=
∫

B

ρ1(Tt(x))T ′
t (x)

(
T ′(x)(1 − t)

t + (1 − t)T ′(x)

)2 (
ρ′0(x)
ρ0(x)

− ρ′1(T (x))T ′(x)
ρ1(T (x))

)2

dx

≤ 2
∫

B

ρ1(Tt(x))T ′
t (x)

(
ρ′0(x)
ρ0(x)

)2

dx

+ 2
∫

B

ρ1(Tt(x))T ′
t (x)

(
ρ′1(T (x))T ′(x)

ρ1(T (x))

)2

dx

= 2
∫

B

ρ1(Tt(x))T ′
t (x)

ρ0(x)

(
(ρ′0(x))2

ρ0(x)

)
dx

+ 2
∫

B

ρ1(Tt(x))T ′
t (x)T ′(x)

ρ1(T (x))

(
(ρ′1(T (x)))2

ρ1(T (x))
T ′(x)

)
dx

≤ C

(∫
B

(ρ′0(x))2

ρ0(x)
dx +

∫
B

(ρ′1(T (x)))2

ρ1(T (x))
T ′(x) dx

)
≤ C(I(ρ0) + I(ρ1)). (6.6)

From (6.4), (6.5) and (6.6) we find that

I(ρt) =
∫
�

(ρ′t(x))2

ρt(x)
dx ≤ C(I(ρ0) + I(ρ1)).

Next we are going to prove the boundedness of the functional
∫
�
|Ψ ′(x)|2ρt(x)dx.
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Since T (x) = x for |x| > M we have ρt(x) = ρ1(x) for |x| > M . Hence∫
�

|Ψ ′(x)|2ρt(x) dx =
∫

B

|Ψ ′(x)|2ρt(x) dx +
∫
|x|>M

|Ψ ′(x)|2ρt(x) dx

=
∫

B

|Ψ ′(x)|2ρt(x) dx +
∫
|x|>M

|Ψ ′(x)|2ρ1(x) dx

≤ C

∫
B

ρt(x) dx +
∫
|x|>M

|Ψ ′(x)|2ρ1(x) dx

≤ C +
∫

|Ψ ′(x)|2ρ1(x) dx < ∞.

Now we repeat the same argument for E(ρt). Finally by [18], Corollary 20.13 we get that S(ρ0),S(ρ1) are finite
and the result for S(ρt) comes from the fact that S is geodesically convex. �

Finally we prove that for ρ0 satisfying the assumptions in the main Theorem 1.1, the set Q(ρ0) is dense in
P2(�), thus satisfying assumption (b) of Proposition 6.2. The idea behind the lemma is a simple modification of
a cut and glue argument (see Fig. 1). For a given measure ρ1 ∈ P2(�), we construct a measure that is in some
sense nice and close to ρ1 in a compact set, and equal to ρ0 outside of it. To do so, we first find an interval such
that the contribution of both measures ρ0, ρ1 to the functionals S and E is small outside that interval. We cut
out the part of ρ0 that lies outside the interval, mollify it to ensure both positivity and smoothness, and then
add a quadratic decay to get finiteness of the Fisher information functional7. For ρ0 we just keep the tails and
add a quadratic decay. The approximating probability measure is then produced by a linear combination of the
above constructed measures.

Lemma 6.4. Assume that ρ0 ∈ P2(�) such that the density is bounded from below by a positive constant in
every compact set, and F(ρ0),

∫ |Ψ ′|2 dρ0 and I(ρ0) are all finite. Let Ψ ∈ C2(�) satisfy either Assumption 4.1
or 4.4. Then for any ρ1 ∈ P2(�) there exists a sequence ρτ in Q(ρ0) such that ρτ → ρ1 in the Wasserstein
topology, and F(ρτ ) → F(ρ1).

Proof. Take a ρ1 ∈ P2(�) with F(ρ1) < ∞ (otherwise the construction is trivial). First observe that, because∫
x2ρ1(dx),

∫
x2ρ0(dx) and S(ρ0),S(ρ1) are all finite,

∫ |ρ1 log ρ1|,
∫ |ρ0 log ρ0| are also finite [12], equation (15).

Secondly,
∫ |Ψ | dρ1 and

∫ |Ψ | dρ0 are also finite since Ψ is bounded from below in both Assumptions 4.1 and 4.4.
Therefore, for any τ > 0 there exist Lebesgue points M−

τ < −1 and M+
τ > 1 of ρ1 such that (to ease notation

we assume that −M−
τ = M+

τ =: Mτ )

ρ0(−Mτ ), ρ1(−Mτ ) < min
{

τ

|Ψ(−Mτ )| ,
τ

M2
τ

}
and ρ0(Mτ ), ρ1(Mτ ) < min

{
τ

|Ψ(Mτ )| ,
τ

M2
τ

}
(6.7a)∫

|x|>Mτ

(
ρ0 + |ρ0 log ρ0| + x2ρ0 + |Ψ |ρ0

)
< τ, (6.7b)∫

|x|>Mτ

(
ρ1 + |ρ1 log ρ1| + x2ρ1 + |Ψ |ρ1

)
< τ. (6.7c)

Define a new density by cutting the tails of ρ1, and mollifying it by the Gaussian θt from Lemma 4.8:

μτ := (ρ1 �[−Mτ ,Mτ ]) ∗ θtτ ,

7It is easy to check that a linear decay, which would have been a simpler choice, is not enough to keep the Fisher information
functional finite.
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where tτ is chosen sufficiently small such that∫ Mτ

−Mτ

|μτ − ρ1| < τ, (6.8a)

∫ Mτ

−Mτ

|Ψμτ − Ψρ1| < τ and
∫ Mτ

−Mτ

|x2μτ − x2ρ1| < τ, (6.8b)∣∣∣∣
∫ Mτ

−Mτ

(
μτ log μτ − ρ1 log ρ1

)∣∣∣∣ < τ, (6.8c)

μτ (−Mτ ) < min
{

τ
|Ψ(−Mτ )| ,

τ
M2

τ

}
and μτ (Mτ ) < min

{
τ

|Ψ(Mτ)| ,
τ

M2
τ

}
, (6.8d)

μτ (x) > 0 whenever |x| ≤ Mτ . (6.8e)

Observe that property (6.8d) is feasible, because −Mτ and Mτ are Lebesgue points of ρ1 and

μτ (Mτ ) ≤ (ρ1 ∗ θtτ )(Mτ ) and μτ (−Mτ ) ≤ (ρ1 ∗ θtτ )(−Mτ ).

In order to construct a suitable approximating sequence for ρ1, small intervals around −Mτ and Mτ are needed
where bounds of the type (6.7a) and (6.8d) still hold. Indeed, because of (6.8d) and the continuity of Ψ , there
exists 0 < aτ < 1 such that for all x ∈ [−Mτ − aτ ,−Mτ + aτ ]:

ρ0(x) < τ, and ρ0(−Mτ ) < min
{

τ

|Ψ(x)| ,
τ

x2

}
, (6.9a)

μτ (x) < τ, and μτ (−Mτ ) < min
{

τ

|Ψ(x)| ,
τ

x2

}
, (6.9b)

and for all x ∈ [Mτ − aτ , Mτ + aτ ]:

ρ0(x) < τ, and ρ0(Mτ ) < min
{

τ

|Ψ(x)| ,
τ

x2

}
, (6.9c)

μτ (x) < τ, and μτ (Mτ ) < min
{

τ

|Ψ(x)| ,
τ

x2

}
. (6.9d)

Note that by assumption Mτ > 1, so that the two intervals can not overlap.
Now, using these intervals, replace the tails of μτ , which were introduced by the mollification, by quadratically

decaying tails (see Fig. 1)

ντ (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μτ (x), |x| ≤ Mτ ,(
x−Mτ−aτ

aτ

)2

μτ (Mτ ), Mτ < x < Mτ + aτ ,(
x+Mτ+aτ

aτ

)2

μτ (−Mτ ), −Mτ − aτ < x < −Mτ ,

0, |x| ≥ Mτ + aτ .

On the other hand, the approximation sequence for ρ1 requires the same tails as ρ0; these tails are captured by
(see Fig. 1)

ντ
0 (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, |x| ≤ Mτ − aτ ,(
x−Mτ+aτ

aτ

)2

ρ0(Mτ ), Mτ − aτ < x < Mτ ,(
x−aτ+Mτ

aτ

)2

ρ0(−Mτ ), −Mτ < x < −Mτ + aτ ,

ρ0(x), |x| ≥ Mτ .
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ντ

μτ

−Mτ Mτ

(a) Cut the tails, add quadratic decay.

ρ0

ντ
0

−Mτ Mτ

(b) Crop the tails, add quadratic decay.

Figure 1. The construction of ντ and ντ
0 .

Finally, the approximating sequence is defined as a normalised sum of ν and ν0:

ρτ (x) := ατ ντ (x) + ντ
0 (x),

where ‖ · ‖1 abbreviates the L1(�) norm, and ατ := 1−‖ντ
0 ‖1

‖ντ‖1
.

Now we check that the sequence ρτ indeed lies in Q(ρ0). By construction, ρτ has the same tails as ρ0, and it is
bounded from below a positive constant on compact sets. Moreover, it is straight-forward that

∫
x2 dντ

0 ,
∫

x2 ντ ,∫ |Ψ ′|2 dντ
0 ,

∫ |Ψ ′|2 dντ and, I(ντ
0 ) are all finite; I(ντ ) is finite by Lemma 4.8. Then the functionals

∫
x2 dρτ ,∫ |Ψ ′|2 dρτ are also finite. To check that the Fisher information remains finite:

I(ρτ ) =
∫
�

(
ατ ντ ′ + ντ

0
′)2

ατ ντ + ντ
0

dx

≤ 2
∫
�

(
ατ ντ ′)2

ατ ντ + ντ
0

dx + 2
∫
�

(
ντ
0
′)2

ατ ντ + ντ
0

dx

≤ 2
∫
�

(
ατ ντ ′)2
ατ ντ

dx + 2
∫
�

(
ντ
0
′)2

ντ
0

dx

= 2ατI(ντ ) + 2I(ντ
0 ) < ∞,

so that indeed ρτ ∈ Q(ρ0).
Next, the convergence properties of the sequence ρτ are checked. First we show that ρτ → ρ1 in L1(�). Since

‖ντ
0 ‖1 → 0 and ‖ντ‖1 → 1, the normalisation constant also converges: ατ → 1. Therefore,∫

�

|ρτ − ρ1| =
∫
�

|ατντ + ντ
0 − ρ1|

≤
∫ Mτ

−Mτ

|ατμτ − μτ | +
∫ Mτ

−Mτ

|μτ − ρ1| +
∫
|x|>Mτ

ατντ +
∫
|x|>Mτ

ρ1 +
∫
�

ντ
0

≤
∫ Mτ

−Mτ

|ατμτ − μτ | +
∫ Mτ

−Mτ

|μτ − ρ1| + ατμτ (−Mτ)
∫ −Mτ

−Mτ−aτ

(
x+Mτ+aτ

aτ

)2

+ ατμτ (Mτ )
∫ Mτ +aτ

Mτ

(
x−Mτ−aτ

aτ

)2

+
∫
|x|>Mτ

ρ1 + ‖ντ
0 ‖1

≤ |ατ − 1|
∫ Mτ

−Mτ

μτ +
∫ Mτ

−Mτ

|μτ − ρ1| + ατaτ μτ (−Mτ) + ατaτ μτ (Mτ ) +
∫
|x|>Mτ

ρ1 + ‖ντ
0 ‖1

≤ |ατ − 1| + τ + ατμτ (−Mτ ) + ατμτ (Mτ ) + τ + ‖ντ
0 ‖1 −−−→

τ→0
0,

(6.10)

where the last line follows from aτ < 1 together with (6.8a) and (6.7c).
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Secondly, we check the convergence of the second moments
∫
�
x2ρτ → ∫

�
x2ρ1. Observe that there is a uniform

bound on ∫ Mτ

−Mτ

x2μτ ≤
∫ Mτ

−Mτ

∣∣x2μτ − x2ρ1

∣∣+ ∫ Mτ

−Mτ

x2ρ1

(6.8b)
< τ +

∫
�

x2ρ1 ≤ 1 +
∫
�

x2ρ1 (6.11)

for τ ≤ 1. Moreover, for the right-side quadratic tail of ντ :∫ Mτ +aτ

Mτ

x2ντ =
∫ Mτ+aτ

Mτ

x2

(
x − Mτ − aτ

aτ

)2

μτ (Mτ ) dx ≤
∫ Mτ +aτ

Mτ

x2 μτ (Mτ ) dx
(6.9d)
< τ aτ ≤ τ, (6.12)

and similarly for the other quadratically decaying parts of ντ and ντ
0 . Therefore∫

�

|x2ρτ − x2ρ1| ≤
∫
�

|ατx2ντ − x2ντ | +
∫
�

|x2ντ − x2ρ1| +
∫
�

x2ντ
0

≤ |ατ − 1|
∫ Mτ

−Mτ

x2μτ + |ατ − 1|
∫
|x|>Mτ

x2ντ +
∫ Mτ

−Mτ

|x2μτ − x2ρ1| +
∫
|x|>Mτ

x2ντ

+
∫
|x|>Mτ

x2ρ1 +
∫ Mτ

−Mτ

x2ντ
0 +

∫
|x|>Mτ

x2ρ0

≤ |ατ − 1|
(

1 +
∫
�

x2ρ1 + 2τ

)
+ 7τ → 0

as τ → 0, where the last line follows from (6.11), (6.12), (6.7b), (6.7c) and (6.8b). Since the sequence ρτ

converges strongly in L1(�) to ρ1 by (6.10), it also converges narrowly. Together with the convergence of the
second moments, this implies convergence in the Wasserstein distance [17], Theorem 7.12, which was to be
shown.

Thirdly, we need to check that E(ρτ ) → E(ρ1); this is proven in the same way as the convergence of the
second moments above, where x2 is replaced by the potential Ψ(x).

Finally, we prove the convergence of the entropies S(ρτ ) → S(ρ1). Because of

|S(ρτ ) − S(ρ1)| ≤ |S(ντ ) − S(ρ1)| + |S(ρτ ) − S(ντ )|, (6.13)

it suffices to show that both differences on the right-hand side vanish. For the first difference:

S(ντ ) =
∫ Mτ

−Mτ

(
ντ log ντ − ρ1 log ρ1

)
+
∫ Mτ

−Mτ

ρ1 log ρ1 +
∫

Mτ <|x|<Mτ+aτ

ντ log ντ → S(ρ1).

Here, the first term vanishes by (6.8c), and the third term, containing the quadratically decaying tails, vanishes
because μτ (−Mτ ) and μτ (Mτ ) vanish. For the second difference in (6.13):

|S(ρτ ) − S(ντ )| ≤
∫ Mτ−aτ

−Mτ+aτ

|ατμτ log ατμτ − μτ log μτ |︸ ︷︷ ︸
(I)

+
∫

Mτ−aτ≤|x|≤Mτ+aτ

|ρτ log ρτ − ντ log ντ |︸ ︷︷ ︸
(II)

+
∫
|x|>Mτ+aτ

|ρ0 log ρ0|︸ ︷︷ ︸
(III)

.
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It will now be shown that each of the three parts convergence to 0 as τ → 0. For the first part, because of (6.8c),

(I) =
∫ Mτ−aτ

−Mτ +aτ

|ατμτ log (ατμτ ) − μτ log μτ |

≤ |ατ − 1|
∫ Mτ−aτ

−Mτ+aτ

|μτ log μτ | + ατ log ατ

∫ Mτ−aτ

−Mτ +aτ

|μτ | → 0.

For the second part, observe that by assumptions (6.9a), (6.9b), (6.9c), (6.9b), there holds for Mτ − aτ ≤ |x| ≤
Mτ :

ντ
0 (x) ≤ ρ0(Mτ ) < τ, ντ (x) = μτ (x) < τ,

and for Mτ ≤ |x| ≤ Mτ + aτ :

ντ
0 (x) = ρ0(x) < τ, ντ (x) ≤ μτ (Mτ ) < τ.

Therefore, since aτ < 1:

(II) ≤
∫

Mτ−aτ≤|x|≤Mτ+aτ

(|ρτ log ρτ | + |ντ log ντ |)

=
∫

Mτ−aτ≤|x|≤Mτ+aτ

|(ατντ + ντ
0 ) log(ατντ + ντ

0 )| +
∫

Mτ−aτ≤|x|≤Mτ+aτ

|ντ log ντ | → 0.

Finally, part (III) converges to 0 by assumption (6.7b). �
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