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NASH EQUILIBRIUM PAYOFFS FOR STOCHASTIC DIFFERENTIAL GAMES
WITH REFLECTION

Qian Lin
1

Abstract. In this paper, we investigate Nash equilibrium payoffs for nonzero-sum stochastic differ-
ential games with reflection. We obtain an existence theorem and a characterization theorem of Nash
equilibrium payoffs for nonzero-sum stochastic differential games with nonlinear cost functionals defined
by doubly controlled reflected backward stochastic differential equations.
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1. Introduction

In this paper, we study Nash equilibrium payoffs for nonzero-sum stochastic differential games whose cost
functionals are defined by reflected backward stochastic differential equations (RBSDEs, for short). Fleming
and Souganidis [7] were the first in a rigorous way to study zero-sum stochastic differential games. Since the
pioneering work of Fleming and Souganidis [7], stochastic differential games have been investigated by many
authors. Recently, Buckdahn and Li [3] generalized the results of Fleming and Souganidis [7] by using a Girsanov
transformation argument and a backward stochastic differential equation (BSDE, for short) approach. The reader
interested in this topic can be referred to Buckdahn, Cardaliaguet and Quincampoix [1], Buckdahn and Li [3],
Fleming and Souganidis [7] and the references therein.

El Karoui, Kapoudjian, Pardoux, Peng and Quenez [5] introduced RBSDEs. By virtue of RBSDEs they
gave a probabilistic representation for the solution of an obstacle problem for a nonlinear parabolic partial
differential equation. This kind of RBSDEs also has many applications in finance, stochastic differential games
and stochastic optimal control problem. In [6], El Karoui, Pardoux and Quenez showed that the price of an
American option corresponds to the solution of a RBSDE. Buckdahn and Li [4] considered zero-sum stochastic
differential games with reflection. Wu and Yu [12] studied one kind of stochastic recursive optimal control
problem with the obstacle constraint for the cost functional defined by a RBSDE.

Buckdahn, Cardaliaguet and Rainer [2] studied Nash equilibrium payoffs for stochastic differential games.
Recently, Lin [9, 10] studied Nash equilibrium payoffs for stochastic differential games whose cost functionals
are defined by doubly controlled BSDEs. Lin [9, 10] generalizes the earlier result by Buckdahn, Cardaliaguet
and Rainer [2]. In [9,10], the admissible control processes can depend on events occurring before the beginning
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of the stochastic differential game, thus, the cost functionals are not necessarily deterministic. Moreover, the
cost functionals are defined with the help of BSDEs, and thus they are nonlinear. The objective of this pa-
per is to generalize the above results, i.e., investigate Nash equilibrium payoffs for nonzero-sum stochastic
differential games with reflection. However, different from the earlier results by Buckdahn, Cardaliaguet and
Rainer [2] and Lin [9, 10], we shall study Nash equilibrium payoffs for stochastic differential games with the
running cost functionals defined with the help of RBSDEs. For this, we first study the properties of the value
functions of stochastic differential games with reflection. In comparison with Buckdahn and Li [4], we shall study
nonzero-sum stochastic differential games of the type of strategy against strategy, while Buckdahn and Li [4]
considered the games of the type strategy against control. Combining the arguments in Buckdahn, Cardaliaguet
and Quincampoix [1] and Buckdahn and Li [4], we can get the results in Section 4. Then we investigate Nash
equilibrium payoffs for stochastic differential games with reflection. Our results generalizes the results in Lin [9]
to the obstacle constraint case. In Lin [9], the cost functionals of both players do not have any obstacle con-
straint, so our results in Section 5 are more general. The proof of our results is mainly based on the techniques
of mathematical analysis and the properties of BSDEs with reflection. The presence of the obstacle constraint
adds us the difficulty of estimates and a supplementary complexity.

The paper is organized as follows. In Section 2, we introduce some notations and present some preliminary
results concerning reflected backward stochastic differential equations, which we will need in what follows. In
Section 3, we introduce nonzero-sum stochastic differential games with reflection and obtain the associated dy-
namic programming principle. In Section 4 we give a probabilistic interpretation of systems of Isaacs equations
with obstacle. In Section 5, we obtain the main results of this paper, i.e., an existence theorem and a charac-
terization theorem of Nash equilibrium payoffs for nonzero-sum stochastic differential games with reflection. In
Section 6, we give the Proof of Theorem 4.2.

2. Preliminaries

The objective of this Section is to recall some results about RBSDEs, which are useful in what follows. Let
B = {Bt, 0 ≤ t ≤ T } be a d–dimensional standard Brownian motion defined on a probability space (Ω,F , P).
The filtration F = {Ft, 0 ≤ t ≤ T } is generated by B and augmented by all P-null sets, i.e.,

Ft = σ
{

Br, 0 ≤ r ≤ t
}
∨ NP,

where NP is the set of all P-null sets. Let us introduce some spaces:

L2(Ω,FT , P; Rn) =
{

ξ | ξ : Ω → R
n is an FT -measurable random variable such that E[|ξ|2] < +∞

}
,

S2(0, T ; R) =
{

ϕ | ϕ : Ω × [0, T ] → R is a predictable process such that E[ sup
0≤t≤T

|ϕt|2] < +∞
}

,

H2(0, T ; Rd) =
{

ϕ | ϕ : Ω × [0, T ] → R
d is a predictable process such that E

∫ T

0

|ϕt|2dt < +∞
}

.

We consider the following one barrier reflected BSDE with data (f, ξ, S):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Yt = ξ +
∫ T

t

f(s, Ys, Zs)ds + KT − Kt −
∫ T

t

ZsdBs,

Yt ≥ St, t ∈ [0, T ],

K0 = 0,

∫ T

0

(Yr − Sr)dKr = 0,

(2.1)
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where {Kt} is an adapted, continuous and increasing process, f : Ω × [0, T ] × R × R
d → R and we make the

following assumptions:

(H2.1) f(·, 0, 0) ∈ H2(0, T ; R),
(H2.2) There exists some constant L > 0 such that for all y, y′ ∈ R and z, z′ ∈ R

d,

|f(t, y, z) − f(t, y′, z′)| ≤ L(|y − y′| + |z − z′|),
(H2.3) {St}t∈[0,T ] is a continuous process such that {St}0≤t≤T ∈ S2(0, T ; R).

The following the existence and uniqueness theorem for solutions of equation (2.1) was established in [5].

Lemma 2.1. Under the assumptions (H2.1)–(H2.3), if ξ ∈ L2(Ω,FT , P; R) and ST ≤ ξ, then equation (2.1)
has a unique solution (Y, Z, K).

We refer to [5, 12] for the following two estimates.

Lemma 2.2. Let the assumptions (H2.1)–(H2.3) hold and let (Y, Z, K) be the solution of the reflected
BSDE (2.1) with data (ξ, g, S). Then there exists a positive constant C such that

E[ sup
t≤s≤T

Y 2
s +

∫ T

t

|Zs|2 + |KT − Kt|2
∣∣∣Ft] ≤ CE[ξ2 +

( ∫ T

t

g(s, 0, 0)ds
)2

+ sup
t≤s≤T

S2
s

∣∣∣Ft].

Lemma 2.3. We suppose that (ξ, g, S) and (ξ′, g′, S′) satisfy the assumptions (H2.1)–(H2.3). Let (Y, Z, K)
and (Y ′, Z ′, K ′) be the solutions of the reflected BSDEs (2.1) with data (ξ, g, S) and (ξ′, g′, S′), respectively.
We let

Δξ = ξ − ξ′, Δg = g − g′, ΔS = S − S′,

ΔY = Y − Y ′, ΔZ = Z − Z ′, ΔK = K − K ′.

Then there exists a constant C such that

E

[
sup

t≤s≤T
|ΔYs|2 +

∫ T

t

|ΔZs|2ds + |ΔKT − ΔKt|2
∣∣∣Ft

]

≤ CE

⎡
⎣|Δξ|2 +

(∫ T

t

|Δg(s, Ys, Zs)|ds

)2 ∣∣∣Ft

⎤
⎦+ C

(
E

[
sup

t≤s≤T
|ΔSs|2

∣∣∣Ft

])1/2

Ψ
1/2
t,T ,

where

Ψt,T = E

⎡
⎣|ξ|2 +

(∫ T

t

|g(s, 0, 0)|ds

)2

+ sup
t≤s≤T

|Ss|2 + |ξ′|2 +

(∫ T

t

|g′(s, 0, 0)|ds

)2

+ sup
t≤s≤T

|S′
s|2
∣∣∣Ft

⎤
⎦ .

We also need the following lemma. For its proof, the interested reader can refer to [5, 8] for more details.

Lemma 2.4. Let us denote by (Y 1, Z1, K1) and (Y 2, Z2, K2) the solutions of BSDEs with data (f1, ξ1, S1)
and (f2, ξ2, S2), respectively. If ξ1, ξ2 ∈ L2(Ω,FT , P; R), S1 and S2 satisfy (H2.3), and f1 and f2 satisfy the
assumptions (H2.1) and (H2.2), and the following holds

(i) ξ1 ≤ ξ2, P − a.s.,
(ii) f1(t, y2

t , z2
t ) ≤ f2(t, y2

t , z2
t ), dtdP − a.e.,

(iii) S1 ≤ S2, P − a.s.
Then, we have Y 1

t ≤ Y 2
t , a.s., for all t ∈ [0, T ]. Moreover, if

(iv) f1(t, y, z) ≤ f2(t, y, z), (t, y, z) ∈ [0, T ]× R × R
d, dtdP − a.e.,

(v) S1 = S2, P − a.s.
Then, K1

t ≥ K2
t , P − a.s., for all t ∈ [0, T ], and {K1

t − K2
t }t∈[0,T ] is a increasing process.
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3. Nonzero-sum stochastic differential games with reflection

and associated dynamic programming principle

In what follows, we assume that U and V are two compact metric spaces. The space U is considered as
the control state space of the first player, and V as that of the second one. We denote the associated sets of
admissible controls by U and V , respectively. The set U is formed by all U -valued F-progressively measurable
processes, and V is the set of all V -valued F-progressively measurable processes.

For given admissible controls u(·) ∈ U and v(·) ∈ V , let us consider the following control system: for t ∈ [0, T ],

{
dXt,x;u,v

s = b(s, Xt,x;u,v
s , us, vs)ds + σ(s, Xt,x;u,v

s , us, vs)dBs, s ∈ [t, T ],
Xt,x;u,v

t = x ∈ R
n,

(3.1)

where
b : [0, T ]× R

n × U × V → R
n, σ : [0, T ]× R

n × U × V → R
n×d.

We make the following assumptions:

(H3.1) For all x ∈ R
n, b(·, x, ·, ·) and σ(·, x, ·, ·) are continuous in (t, u, v).

(H3.2) There exists a positive constant L such that, for all t ∈ [0, T ], x, x′ ∈ R
n, u ∈ U, v ∈ V ,

|b(t, x, u, v) − b(t, x′, u, v)| + |σ(t, x, u, v) − σ(t, x′, u, v)| ≤ L|x − x′|.

Under the above assumptions, for any u(·) ∈ U and v(·) ∈ V , the control system (3.1) has a unique strong
solution {Xt,x;u,v

s , 0 ≤ t ≤ s ≤ T }, and we also have the following standard estimates for solutions.

Lemma 3.1. For all p ≥ 2, there exists a positive constant Cp such that, for all t ∈ [0, T ], x, x′ ∈ R
n, u(·) ∈ U

and v(·) ∈ V,

E

[
sup

t≤s≤T
|Xt,x;u,v

s |p
∣∣∣Ft

]
≤ Cp(1 + |x|p), P − a.s.,

E

[
sup

t≤s≤T
|Xt,x;u,v

s − Xt,x′;u,v
s |p

∣∣∣Ft

]
≤ Cp|x − x′|p, P − a.s.,

where the constant Cp only depends on p, the Lipschitz constant and the linear growth of b and σ.

For given admissible controls u(·) ∈ U and v(·) ∈ V , let us consider the following doubly controlled RBSDEs:
for j = 1, 2, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

jY t,x;u,v
s = Φj(X

t,x;u,v
T ) +

∫ T

s

fj(r, Xt,x;u,v
r , jY t,x;u,v

r , jZt,x;u,v
r , ur, vr)dr

+ jKt,x;u,v
T − jKt,x;u,v

s −
∫ T

s

jZt,x;u,v
r dBr, s ∈ [t, T ],

jY t,x;u,v
s ≥ hj(s, Xt,x;u,v

s ), s ∈ [t, T ],

jKt,x;u,v
t = 0,

∫ T

t

(jY t,x;u,v
r − hj(r, Xt,x;u,v

r ))d jKt,x;u,v
r = 0,

(3.2)

where Xt,x;u,v is introduced in equation (3.1) and

Φj = Φj(x) : R
n → R, hj = hj(t, x) : [0, T ]× R

n → R,

fj = fj(t, x, y, z, u, v) : [0, T ]× R
n × R × R

d × U × V → R.
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We make the following assumptions:

(H3.3) There exists a positive constant L such that, for all t ∈ [0, T ], x, x′ ∈ R
n, y, y′ ∈ R, z, z′ ∈ R

d, u ∈ U
and v ∈ V , Φj(x) ≥ hj(T, x) and

|fj(t, x, y, z, u, v) − fj(t, x′, y′, z′, u, v)| + |Φj(x) − Φj(x′)| + |hj(t, x) − hj(t, x′)|
≤ L(|x − x′| + |y − y′| + |z − z′|).

(H3.4) For all (x, y, z) ∈ R
n×R×R

d, fj(·, x, y, z, ·, ·) is continuous in (t, u, v), and there exist positive constants
C and α ≥ 1

2 such that, for all t, s ∈ [0, T ], x ∈ R
n,

|hj(t, x) − hj(s, x)| ≤ C|t − s|α.

Under the assumption (H3.3), from [5] we know that equation (3.2) admits a unique solution. For given control
processes u(·) ∈ U and v(·) ∈ V , let us introduce now the associated cost functional for player j, j = 1, 2,

Jj(t, x; u, v) := jY t,x;u,v
s

∣∣
s=t

, (t, x) ∈ [0, T ]× R
n.

From Buckdahn and Li [4] we have the following estimates for solutions.

Proposition 3.2. Under the assumption (H3.1)–(H3.3), there exists a positive constant C such that, for all
t ∈ [0, T ], u(·) ∈ U and v(·) ∈ V, x, x′ ∈ R

n,

|jY t,x;u,v
t | ≤ C(1 + |x|), P − a.s.,

|jY t,x;u,v
t − jY t,x′;u,v

t | ≤ C|x − x′|, P − a.s.

We now recall the definition of admissible controls and NAD strategies, which was introduced in [9].

Definition 3.3. The space Ut,T (resp., Vt,T ) of admissible controls for 1th player (resp., 2nd) on the interval
[t, T ] is defined as the space of all processes {ur}r∈[t,T ] (resp., {vr}r∈[t,T ]), which are F-progressively measurable
and take values in U (resp., V ).

Definition 3.4. A nonanticipative strategy with delay (NAD strategy) for 1th player is a measurable mapping
α : Vt,T → Ut,T , which satisfies the following properties:

1) α is a nonanticipative strategy, i.e., for every F-stopping time τ : Ω → [t, T ], and for v1, v2 ∈ Vt,T with
v1 = v2 on [[t, τ ]], it holds α(v1) = α(v2) on [[t, τ ]]. (Recall that [[t, τ ]] = {(s, ω) ∈ [t, T ]×Ω, t ≤ s ≤ τ(ω)}).

2) α is a strategy with delay, i.e., for all v ∈ Vt,T , there exists an increasing sequence of stopping times
{Sn(v)}n≥1 with

i) t = S0(v) ≤ S1(v) ≤ . . . ≤ Sn(v) ≤ . . . ≤ T ,
ii)

⋃
n≥1{Sn(v) = T } = Ω, P-a.s.,

such that, for all n ≥ 1 and v, v′ ∈ Vt,T , Γ ∈ Ft, it holds: if v = v′ on [[t, Sn−1(v)]]
⋂

([t, T ]× Γ ), then
iii) Sl(v) = Sl(v′), on Γ, 1 ≤ l ≤ n,
iv) α(v) = α(v′), on [[t, Sn(v)]]

⋂
([t, T ] × Γ ).

We denote the set of all NAD strategies for 1th player for games over the time interval [t, T ] by At,T . The
set of all NAD strategies β : Ut,T → Vt,T for 2nd player for games over the time interval [t, T ] is defined in a
symmetrical way and we denote it by Bt,T .

NAD strategy allows us to put stochastic differential games under normal form. The following lemma was
established in [9].
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Lemma 3.5. If (α, β) ∈ At,T ×Bt,T , then there exists a unique couple of admissible control (u, v) ∈ Ut,T ×Vt,T

such that

α(v) = u, β(u) = v.

If (α, β) ∈ At,T ×Bt,T , then from Lemma 3.5 we have a unique couple (u, v) ∈ Ut,T ×Vt,T such that (α(v), β(u)) =
(u, v). Then let us put Jj(t, x; α, β) = Jj(t, x; u, v). Therefore, let us define: for all (t, x) ∈ [0, T ]× R

n,

Wj(t, x) := esssup
α∈At,T

essinf
β∈Bt,T

Jj(t, x; α, β),

and

Uj(t, x) := essinf
β∈Bt,T

esssup
α∈At,T

Jj(t, x; α, β).

Under the assumptions (H3.1)–(H3.3) we see that Wj(t, x) and Uj(t, x) are random variables. But using the
arguments in [1, 10], we have the following proposition.

Proposition 3.6. Under the assumptions (H3.1)–(H3.3), for all (t, x) ∈ [0, T ]×R
n, the value functions Wj(t, x)

and Uj(t, x) are deterministic functions.

Let us now recall the definition of stochastic backward semigroups, which was first introduced by Peng [11]
to study stochastic optimal control problem. For a given initial condition (t, x) ∈ [0, T ] × R

n, 0 ≤ δ ≤ T −
t, for admissible control processes u(·) ∈ Ut,t+δ and v(·) ∈ Vt,t+δ, and a real-valued random variable η ∈
L2(Ω,Ft+δ, P; R) such that η ≥ hj(t + δ, Xt,x;u,v

t+δ ), we define

jGt,x;u,v
t,t+δ [η] := jY

t,x;u,v

t ,

where (jY
t,x;u,v

, jZ
t,x;u,v

, jK
t,x;u,v

) is the unique solution of the following reflected BSDE over the time interval
[t, t + δ]: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jY
t,x;u,v

s = η +
∫ t+δ

s

fj(r, Xt,x;u,v
r , jY

t,x;u,v

r , jZ
t,x;u,v

r , ur, vr)dr

+ jK
t,x;u,v

t+δ − jK
t,x;u,v

s −
∫ t+δ

s

jZ
t,x;u,v

r dBr, s ∈ [t, t + δ],

jY
t,x;u,v

s ≥ hj(s, Xt,x;u,v
s ), s ∈ [t, t + δ],

jK
t,x;u,v

t = 0,

∫ t+δ

t

(jY
t,x;u,v

r − hj(r, Xt,x;u,v
r ))djK

t,x;u,v

r = 0,

and Xt,x;u,v is the unique solution of equation (3.1).
For (t, x) ∈ [0, T ]× R

n, (u, v) ∈ Ut,T × Vt,T , 0 ≤ δ ≤ T − t, j = 1, 2, we have

Jj(t, x; u, v) = jGt,x;u,v
t,T [Φj(X

t,x;u,v
T )] = jGt,x;u,v

t,t+δ [jY t,x;u,v
t+δ ]

= jGt,x;u,v
t,t+δ [Jj(t + δ, Xt,x;u,v

t+δ , u, v)].

Remark 3.7. We consider a special case of fj. If fj is independent of (y, z), then we have

Jj(t, x; u, v) = jGt,x;u,v
t,t+δ [η] = E

[
η +

∫ t+δ

t

fj(r, Xt,x;u,v
r , ur, vr)dr + jK

t,x;u,v

t+δ

∣∣∣ Ft

]
.
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Proposition 3.8. Under the assumptions (H3.1)–(H3.3) we have the following dynamic programming principle:
for all 0 < δ ≤ T − t, x ∈ R

n,

Wj(t, x) = esssup
α∈At,t+δ

essinf
β∈Bt,t+δ

jGt,x;α,β
t,t+δ [Wj(t + δ, Xt,x;α,β

t+δ )],

and
Uj(t, x) = essinf

β∈Bt,t+δ

esssup
α∈At,t+δ

jGt,x;α,β
t,t+δ [Uj(t + δ, Xt,x;α,β

t+δ )].

The proof of the above proposition is similar to [1, 10], we omit the proof here.

Proposition 3.9. Under the assumptions (H3.1)–(H3.4), there exists a positive constant C such that, for all
t, t′ ∈ [0, T ] and x, x′ ∈ R

n, we have

(i) Wj(t, x) is 1
2 -Hölder continuous in t:

|Wj(t, x) − Wj(t′, x)| ≤ C(1 + |x|)|t − t′| 12 ;

(ii) |Wj(t, x) − Wj(t, x′)| ≤ C|x − x′|.
The same properties hold true for the function Uj.

By means of the standard arguments and Proposition 3.8 we can easily get the above proposition. The proof
of the above proposition is omitted here.

4. Probabilistic interpretation of systems of Isaacs equations with obstacle

The objective of this section is to give a probabilistic interpretation of systems of Isaacs equations with
obstacle, and show that Wj and Uj introduced in Section 3, are the viscosity solutions of the following Isaacs
equations with obstacle, for (t, x) ∈ [0, T )× R

n,{
min

{
Wj(t, x) − hj(t, x), − ∂

∂t
Wj(t, x) − H−

j (t, x, Wj(t, x), DWj(t, x), D2Wj(t, x))
}

= 0,

Wj(T, x) = Φj(x),
(4.1)

and {
min

{
Uj(t, x) − hj(t, x), − ∂

∂t
Uj(t, x) − H+

j (t, x, Uj(t, x), DUj(t, x), D2Uj(t, x))
}

= 0,

Uj(T, x) = Φj(x),
(4.2)

respectively, where

Hj(t, x, y, p, A, u, v) =
1
2
tr(σσT (t, x, u, v)A) + pT b(t, x, u, v)

+fj(t, x, y, pT σ(t, x, u, v), u, v),

(t, x, y, p, u, v) ∈ [0, T ]× R
n × R × R

n × U × V and A ∈ S
n (Sn denotes all the n × n symmetric matrices),

H−
j (t, x, y, p, A) = sup

u∈U
inf
v∈V

Hj(t, x, y, p, A, u, v),

and

H+
j (t, x, y, p, A) = inf

v∈V
sup
u∈U

Hj(t, x, y, p, A, u, v).

We denote by C3
l,b([0, T ]×R

n) the set of real-valued functions which are continuously differentiable up to the
third order and whose derivatives of order from 1 to 3 are bounded. Let us recall the definition of a viscosity
solution of (4.1). The definition of a viscosity solution of (4.2) can be defined in a similar way.
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Definition 4.1. For fixed j = 1, 2, let wj ∈ C([0, T ] × R
n; R) be a function. It is called

(i) a viscosity subsolution of (4.1) if

wj(T, x) ≤ Φj(x), for all x ∈ R
n,

and if for all functions ϕ ∈ C3
l,b([0, T ]×R

n), and (t, x) ∈ [0, T )×R
n such that wj−ϕ attains a local maximum

at (t, x),

min
{
wj(t, x) − hj(t, x), − ∂

∂t
ϕ(t, x) − H−

j (t, x, wj(t, x), Dϕ(t, x), D2ϕ(t, x))
}
≤ 0,

(ii) a viscosity supersolution of (4.1) if

wj(T, x) ≥ Φj(x), for all x ∈ R
n,

and if for all functions ϕ ∈ C3
l,b([0, T ]×R

n), and (t, x) ∈ [0, T )×R
n such that wj −ϕ attains a local minimum

at (t, x),

min
{
wj(t, x) − hj(t, x), − ∂

∂t
ϕ(t, x) − H−

j (t, x, wj(t, x), Dϕ(t, x), D2ϕ(t, x))
}
≥ 0,

(iii) a viscosity solution of (4.1) if it is both a viscosity subsolution and a supersolution of (4.1).

We adapt the methods in Buckdahn and Li [4] and Buckdahn, Cardaliaguet and Quincampoix [1] to our
framework. We can obtain the following theorem.

Theorem 4.2. Under the assumptions (H3.1)–(H3.3), the function Wj (resp., Uj) is a viscosity solution of the
system (4.1) (resp., (4.2)).

Let us now give a comparison theorem for the viscosity solution of (4.1) and (4.2). We first introduce the
following space:

Θ : =
{
ϕ ∈ C([0, T ]× R

n) : there exists a constant A > 0 such that

lim
|x|→∞

|ϕ(t, x)| exp{−A[log((|x|2 + 1)
1
2 )]2} = 0, uniformly in t ∈ [0, T ]

}
.

Theorem 4.3. Under the assumptions (H3.1)–(H3.3), if an upper semicontinuous function u1 ∈ Θ is a viscosity
subsolution of (4.1) (resp., (4.2)), and a lower semicontinuous function u2 ∈ Θ is a viscosity supersolution
of (4.1) (resp., (4.2)), then we have the following:

u1(t, x) ≤ u2(t, x), for all (t, x) ∈ [0, T ]× R
n.

By means of the arguments in Buckdahn and Li [4], we can give the proof of this theorem and the proof is
omitted here.

Remark 4.4. By Proposition 3.9 we see that Wj (resp., Uj) is a viscosity solution of linear growth. Therefore,
from the above theorem we know that Wj (resp., Uj) is the unique viscosity solution in Θ of the system (4.1)
(resp., (4.2)).

Isaacs condition:

For all (t, x, y, p, A, u, v) ∈ [0, T ]× R
n × R × R

n × S
n × U × V, j = 1, 2, we have

sup
u∈U

inf
v∈V

{
1
2
tr(σσT (t, x, u, v)A) + pT b(t, x, u, v) + fj(t, x, y, pT σ(t, x, u, v), u, v)

}

= inf
v∈V

sup
u∈U

{
1
2
tr(σσT (t, x, u, v)A) + pT b(t, x, u, v) + fj(t, x, y, pT σ(t, x, u, v), u, v)

}
.

(4.3)



NASH EQUILIBRIUM PAYOFFS FOR STOCHASTIC DIFFERENTIAL GAMES WITH REFLECTION 1197

Corollary 4.5. Let Isaacs condition (4.3) hold. Then we have, for all (t, x) ∈ [0, T ]× R
n,

(U1(t, x), U2(t, x)) = (W1(t, x), W2(t, x)).

In a symmetric way, for all (t, x) ∈ [0, T ]× R
n, we put

W j(t, x) := esssup
β∈Bt,T

essinf
α∈At,T

Jj(t, x; α, β),

and

U j(t, x) := essinf
α∈At,T

esssup
β∈Bt,T

Jj(t, x; α, β).

Using the arguments in [1, 10], we have the following propositions.

Proposition 4.6. Under the assumptions (H3.1)–(H3.3), for all (t, x) ∈ [0, T ] × R
n, the value functions

W j(t, x) and U j(t, x) are deterministic functions.

Proposition 4.7. Under the assumptions (H3.1)–(H3.3) we have the following dynamic programming principle:
for all 0 < δ ≤ T − t, x ∈ R

n,

W j(t, x) = esssup
β∈Bt,t+δ

essinf
α∈At,t+δ

jGt,x;α,β
t,t+δ [W j(t + δ, Xt,x;α,β

t+δ )],

and
U j(t, x) = essinf

α∈At,t+δ

esssup
β∈Bt,t+δ

jGt,x;α,β
t,t+δ [U j(t + δ, Xt,x;α,β

t+δ )].

Isaacs condition:

For all (t, x, y, p, A, u, v) ∈ [0, T ]× R
n × R × R

n × S
n × U × V, j = 1, 2, we have

inf
u∈U

sup
v∈V

{1
2
tr(σσT (t, x, u, v)A) + pT b(t, x, u, v) + fj(t, x, y, pT σ(t, x, u, v), u, v)

}

= sup
v∈V

inf
u∈U

{1
2
tr(σσT (t, x, u, v)A) + pT b(t, x, u, v) + fj(t, x, y, pT σ(t, x, u, v), u, v)

}
.

(4.4)

By virtue of arguments in this section, we have the following proposition.

Proposition 4.8. Let Isaacs condition (4.4) hold. Then we have, for all (t, x) ∈ [0, T ]× R
n,

(U1(t, x), U 2(t, x)) = (W 1(t, x), W 2(t, x)).

5. Nash equilibrium payoffs

The objective of this section is to obtain an existence of a Nash equilibrium payoff. For this, we consider two
zero-sum stochastic differential games associated with J1 and J2, i.e., the first player wants to maximize J1 and
the second player wants to minimize J1, while the first player wants to minimize J2 and the second player wants
to maximize J2.

In what follows, we redefine the following notations which are different from the above sections: for (t, x) ∈
[0, T ]× R

n,

W1(t, x) := esssup
α∈At,T

essinf
β∈Bt,T

J1(t, x; α, β), W2(t, x) := esssup
β∈Bt,T

essinf
α∈At,T

J2(t, x; α, β)
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We suppose that the following holds:

Isaacs condition A:

For all (t, x, y, p, A, u, v) ∈ [0, T ]× R
n × R × R

n × S
n × U × V, we have

sup
u∈U

inf
v∈V

{
1
2
tr(σσT (t, x, u, v)A) + pT b(t, x, u, v) + f1(t, x, y, pT σ(t, x, u, v), u, v)

}

= inf
v∈V

sup
u∈U

{
1
2
tr(σσT (t, x, u, v)A) + pT b(t, x, u, v) + f1(t, x, y, pT σ(t, x, u, v), u, v)

}
,

and

inf
u∈U

sup
v∈V

{
1
2
tr(σσT (t, x, u, v)A) + pT b(t, x, u, v) + f2(t, x, y, pT σ(t, x, u, v), u, v)

}

= sup
v∈V

inf
u∈U

{
1
2
tr(σσT (t, x, u, v)A) + pT b(t, x, u, v) + f2(t, x, y, pT σ(t, x, u, v), u, v)

}
.

Under the above condition, from the above section we see that: for (t, x) ∈ [0, T ]× R
n,

W1(t, x) = esssup
α∈At,T

essinf
β∈Bt,T

J1(t, x; α, β) = essinf
β∈Bt,T

esssup
α∈At,T

J1(t, x; α, β),

W2(t, x) = essinf
α∈At,T

esssup
β∈Bt,T

J2(t, x; α, β) = esssup
β∈Bt,T

essinf
α∈At,T

J2(t, x; α, β). (5.1)

In order to simplify arguments, let us also assume that the coefficients b, σ, fj, Φj , fj and hj (j = 1, 2), satisfy
the assumptions (H3.1)–(H3.4) and are bounded.

We recall the definition of the Nash equilibrium payoff of nonzero-sum stochastic differential games, which
was introduced in Buckdahn, Cardaliaguet and Rainer [2] and Lin [9].

Definition 5.1. A couple (e1, e2) ∈ R
2 is called a Nash equilibrium payoff at the point (t, x) if for any ε > 0,

there exists (αε, βε) ∈ At,T × Bt,T such that, for all (α, β) ∈ At,T × Bt,T ,

J1(t, x; αε, βε) ≥ J1(t, x; α, βε) − ε, J2(t, x; αε, βε) ≥ J2(t, x; αε, β) − ε, P − a.s., (5.2)

and

|E[Jj(t, x; αε, βε)] − ej | ≤ ε, j = 1, 2.

From Lemma 3.5 it follows that the following lemma holds.

Lemma 5.2. For any ε > 0 and (αε, βε) ∈ At,T × Bt,T , (5.2) holds if and only if, for all (u, v) ∈ Ut,T × Vt,T ,

J1(t, x; αε, βε) ≥ J1(t, x; u, βε(u)) − ε, J2(t, x; αε, βε) ≥ J2(t, x; αε(v), v) − ε, P − a.s. (5.3)

Before giving the main results in this sections we first introduce the following lemma.

Lemma 5.3. Let (t, x) ∈ [0, T ]× R
n and u ∈ Ut,T be arbitrarily fixed. Then,

(i) for all δ ∈ [0, T − t] and ε > 0, there exists an NAD strategy α ∈ At,T such that, for all v ∈ Vt,T ,

α(v) = u, on [t, t + δ],
2Y

t,x;α(v),v
t+δ ≤ W2(t + δ, X

t,x;α(v),v
t+δ ) + ε, P − a.s.,
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(ii) for all δ ∈ [0, T − t] and ε > 0, there exists an NAD strategy α ∈ At,T such that, for all v ∈ Vt,T ,

α(v) = u, on [t, t + δ],
1Y

t,x;α(v),v
t+δ ≥ W1(t + δ, X

t,x;α(v),v
t+δ ) − ε, P − a.s.

Using arguments similar to Lin [9] we can prove this lemma. The proof is omitted here. We also need the
following lemma, which can be established by standard arguments for SDEs.

Lemma 5.4. There exists a positive constant C such that, for all (u, v), (u′, v′) ∈ Ut,T × Vt,T , and for all
Fr–stopping times S : Ω → [t, T ] with Xt,x;u,v

S = Xt,x;u′,v′
S , P − a.s., it holds, for all real τ ∈ [0, T ],

E[ sup
0≤s≤τ

|Xt,x;u,v
(S+s)∧T − Xt,x;u′,v′

(S+s)∧T |2
∣∣∣Ft] ≤ Cτ, P − a.s.

Let us now give one of main results in this section: the characterization of Nash equilibrium payoffs for
nonzero-sum stochastic differential games with reflection. We postpone its proof to Section 6.

Theorem 5.5. Let Isaacs condition (4.3) hold and (t, x) ∈ [0, T ] × R
n. If for all ε > 0, there exist uε ∈ Ut,T

and vε ∈ Vt,T such that for all s ∈ [t, T ] and j = 1, 2,

P

(
jY t,x;uε,vε

s ≥ Wj(s, Xt,x;uε,vε

s ) − ε | Ft

)
≥ 1 − ε, P − a.s., (5.4)

and

|E[Jj(t, x; uε, vε)] − ej| ≤ ε, (5.5)

then (e1, e2) ∈ R
2 is a Nash equilibrium payoff at point (t, x).

Before giving the existence theorem of a Nash equilibrium payoff we first establish the following proposition,
which is crucial for the proof of the existence theorem of a Nash equilibrium payoff.

Proposition 5.6. Under the assumptions of Theorem 4.2, for all ε > 0, there exists (uε, vε) ∈ Ut,T × Vt,T

independent of Ft such that, for all t ≤ s1 ≤ s2 ≤ T , j = 1, 2,

P

(
Wj(s1, X

t,x;uε,vε

s1
) − ε ≤ jGt,x;uε,vε

s1,s2
[Wj(s2, X

t,x;uε,vε

s2
)]
∣∣∣Ft

)
> 1 − ε.

Let us first give some preliminary result. Since the proof of the following lemma is similar to that in [9], we
omit here.

Lemma 5.7. For all ε > 0, all δ ∈ [0, T − t] and x ∈ R
n, there exists (uε, vε) ∈ Ut,T × Vt,T independent of Ft,

such that, j = 1, 2,

Wj(t, x) − ε ≤ jGt,x;uε,vε

t,t+δ [Wj(t + δ, Xt,x;uε,vε

t+δ )], P − a.s.

Let us establish the following Lemma.

Lemma 5.8. Let n ≥ 1 and let us fix some partition t = t0 < t1 < . . . < tn = T of the interval [t, T ]. Then,
for all ε > 0, there exists (uε, vε) ∈ Ut,T × Vt,T independent of Ft, such that, for all i = 0, . . . , n − 1,

Wj(ti, X
t,x;uε,vε

ti
) − ε ≤ jGt,x;uε,vε

ti,ti+1
[Wj(ti+1, X

t,x;uε,vε

ti+1
)], P − a.s.
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Proof. Let us prove this lemma by induction. By the above lemma, it is obvious for i = 0. We now suppose
that (uε, vε) independent of Ft, is constructed on the interval [t, ti) and we shall define it on [ti, ti+1). From the
above lemma it follows that, for all y ∈ R

n, there exists (uy, vy) ∈ Uti,T × Vti,T independent of Ft, such that,

Wj(ti, y) − ε

2
≤ jGti,y;uy,vy

ti,ti+1
[Wj(ti+1, X

t,y;uy,vy

ti+1
)], P − a.s, j = 1, 2. (5.6)

For arbitrarily j = 1, 2, for all y, z ∈ R
n and s ∈ [ti, ti+1], we set

y1
s = jGti,y;uy,vy

s,ti+1
[Wj(ti+1, X

ti,y;uy,vy

ti+1
)], and y2

s = jGti,z;uy,vy

s,ti+1
[Wj(ti+1, X

ti,z;uy,vy

ti+1
)].

Then let us consider the following BSDEs:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1
s = Wj(ti+1, X

ti,y;uy,vy

ti+1
) +

∫ ti+1

s

fj(r, Xti,y;uy,vy

r , y1
r , z1

r , uy
r , vy

r )dr

+ 1Kti+1 − 1Ks −
∫ ti+1

s

z1
rdBr,

y1
s ≥ hj(s, Xti,y;uy,vy

s ), s ∈ [ti, ti+1],

1Kti = 0,

∫ ti+1

ti

(y1
s − hj(s, Xti,y;uy,vy

s ))d 1Kr = 0,

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y2
s = Wj(ti+1, X

ti,z;uy,vy

ti+1
) +

∫ ti+1

s

fj(r, Xti,z;uy,vy

r , y2
r , z2

r , uy
r , v

y
r )dr

+ 2Kti+1 − 2Ks −
∫ ti+1

s

z2
rdBr,

y2
s ≥ hj(s, Xti,z;uy,vy

s ), s ∈ [ti, ti+1],
2Kti = 0,

∫ ti+1

ti

(y2
s − hj(s, Xti,z;uy,vy

s ))d 2Ks = 0.

From the Lemmas 2.3 and 3.1 it follows that

|jGti,y;uy,vy

ti,ti+1
[Wj(ti+1, X

t,y;uy,vy

ti+1
)] − jGti,z;uy,vy

ti,ti+1
[Wj(ti+1, X

ti,z;uy,vy

ti+1
)]|2

≤ CE[|Wj(ti+1, X
ti,y;uy,vy

ti+1
) − Wj(ti+1, X

ti,z;uy,vy

ti+1
)|2
∣∣∣Fti ]

+ CE[|
∫ ti+1

ti

fj(r, Xti,y;uy,vy

r , y1
r , z1

r , uy
r , vy

r )dr −
∫ ti+1

ti

fj(r, Xti,z;uy,vy

r , y1
r , z1

r , uy
r , v

y
r )dr|2

∣∣∣Fti ]

+ CE[ sup
ti≤s≤ti+1

|hj(s, Xti,y;uy,vy

s ) − hj(s, Xti,z;uy,vy

s )|2
∣∣∣Fti ]

1
2

≤ CE[|Xti,y;uy,vy

ti+1
− Xti,z;uy,vy

ti+1
|2
∣∣∣Fti ] + CE[

∫ ti+1

ti

|Xti,y;uy,vy

r − Xti,z;uy,vy

r |2dr
∣∣∣Fti ]

+ CE[ sup
ti≤s≤ti+1

|Xti,y;uy,vy

s − Xti,z;uy,vy

s |2
∣∣∣Fti ]

1
2

≤ C|y − z|.
Combining the above inequality, Proposition 3.9 and (5.6) we see that

Wj(ti, z) − ε ≤ Wj(ti, y) − ε + C|y − z| 12
≤ jGti,y;uy,vy

ti,ti+1
[Wj(ti+1, X

t,y;uy,vy

ti+1
)] − ε

2
+ C|y − z| 12

≤ jGt,z;uy,vy

ti,ti+1
[Wj(ti+1, X

t,z;uy,vy

ti+1
)] − ε

2
+ C|y − z| 12

≤ jGt,z;uy,vy

ti,ti+1
[Wj(ti+1, X

t,z;uy,vy

ti+1
)], P − a.s.,

for C|y − z| 12 ≤ ε

2
·
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Let {Oi}i≥1 ⊂ B(Rn) be a partition of R
n with diam(Oi) <

ε

2C
and let yl ∈ Ol. Then, for z ∈ Ol,

Wj(ti, z) − ε ≤ jGt,z;uyl ,vyl

ti,ti+1
[Wj(ti+1, X

t,z;uyl ,vyl

ti+1
)], P − a.s. (5.7)

Let us put

uε =
∑
l≥1

1Ol
(Xt,x;uε,vε

)uyl , vε =
∑
l≥1

1Ol
(Xt,x;uε,vε

)vyl .

Then

jGt,x;uε,vε

ti,ti+1

[
Wj

(
ti+1, X

t,x;uε,vε

ti+1

)]

= jG
ti,X

t,x;uε,vε

ti
;uε,vε

ti,ti+1

⎡
⎣∑

l≥1

Wj

(
ti+1, X

ti,X
t,x;uε,vε

ti
;uε,vε

ti+1

)
1Ol

(
Xt,x;uε,vε

ti

)⎤⎦

= jG
ti,X

t,x;uε,vε

ti
;uε,vε

ti,ti+1

⎡
⎣∑

l≥1

Wj

(
ti+1, X

ti,X
t,x;uε,vε

ti
;uyl ,vyl

ti+1

)
1Ol

(
Xt,x;uε,vε

ti

)⎤⎦
=
∑
l≥1

jG
ti,X

t,x;uε,vε

ti
;uyl ,vyl

ti,ti+1

[
Wj

(
ti+1, X

ti,X
t,x;uε,vε

ti
;uyl ,vyl

ti+1

)]
1Ol

(
Xt,x;uε,vε

ti

)
,

which together with (5.7) yields

jGt,x;uε,vε

ti,ti+1
[Wj(ti+1, X

t,x;uε,vε

ti+1
)] ≥

∑
l≥1

[Wj(ti, X
t,x;uyl ,vyl

ti
) − ε]1Ol

(Xt,x;uε,vε

ti
)

=
∑
l≥1

Wj(ti, X
t,x;uyl ,vyl

ti
)1Ol

(Xt,x;uε,vε

ti
) − ε = Wj(ti, X

t,x;uε,vε

ti
) − ε,

from which we get the desired result. �

Let us come to the proof of Proposition 5.6.

Proof. Let t = t0 < t1 < . . . < tn = T be a partition of [t, T ], and τ = sup
i

(ti+1 − ti). By Proposition 3.9 and

Lemma 5.4 we see that, for all j = 1, 2, 0 ≤ k ≤ n, s ∈ [tk, tk+1) and (u, v) ∈ Ut,T × Vt,T ,

E[|Wj(tk, Xt,x;u,v
tk

) − Wj(s, Xt,x;u,v
s )|2]

≤ 2E[|Wj(tk, Xt,x;u,v
tk

) − Wj(s, X
t,x;u,v
tk

)|2]
+2E[|Wj(s, X

t,x;u,v
tk

) − Wj(s, Xt,x;u,v
s )|2]

≤ C|s − tk|(1 + E[|Xt,x;u,v
tk

|2]) + CE[|Xt,x;u,v
tk

− Xt,x;u,v
s |2]

≤ Cτ. (5.8)

Here and after C represents a generic constant which may be different at different places.
We let (uε, vε) ∈ Ut,T × Vt,T be defined as in Lemma 5.8 for ε = ε0, where ε0 > 0 will be specified later.

Then, for all i, 0 ≤ i ≤ n,

Wj(ti, X
t,x;uε,vε

ti
) − ε0 ≤ jGt,x;uε,vε

ti,ti+1
[Wj(ti+1, X

t,x;uε,vε

ti+1
)], P − a.s.
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For t ≤ s1 ≤ s2 ≤ T , let us suppose, without loss of generality, that ti−1 ≤ s1 < ti and tk < s2 ≤ tk+1, for some
1 ≤ i < k ≤ n − 1. Therefore, applying the Lemmas 2.3 and 2.4 we deduce that

jGt,x;uε,vε

ti,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] = jGt,x;uε,vε

ti,tk
[jGt,x;uε,vε

tk,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)]]

≥ jGt,x;uε,vε

ti,tk
[Wj(tk, Xt,x;uε,vε

tk
) − ε0]

≥ jGt,x;uε,vε

ti,tk
[Wj(tk, Xt,x;uε,vε

tk
)] − Cε0

≥ . . . ≥ jGt,x;uε,vε

ti,ti+1
[Wj(ti+1, X

t,x;uε,vε

ti+1
)] − C(k − i)ε0

≥ Wj(ti, X
t,x;uε,vε

ti
) − C(k − i + 1)ε0,

from which we see that
jGt,x;uε,vε

s1,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] = jGt,x;uε,vε

s1,ti
[ jGt,x;uε,vε

ti,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)]]

≥ jGt,x;uε,vε

s1,ti
[Wj(ti, X

t,x;uε,vε

ti
) − C(k − i + 1)ε0]

≥ jGt,x;uε,vε

s1,ti
[Wj(ti, X

t,x;uε,vε

ti
)] − C(k − i + 2)ε0

≥ jGt,x;uε,vε

s1,ti
[Wj(ti, X

t,x;uε,vε

ti
)] − ε

2
,

where we put ε0 =
ε

2Cn
. We set

I1 = jGt,x;uε,vε

s1,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] − jGt,x;uε,vε

s1,ti
[Wj(ti, X

t,x;uε,vε

ti
)] +

ε

2
≥ 0,

I2 = jGt,x;uε,vε

s1,s2
[Wj(s2, X

t,x;uε,vε

s2
)] − Wj(s1, X

t,x;uε,vε

s1
) +

ε

2
. (5.9)

In what follows we shall prove the following:

E[|I1 − I2|2] ≤ Cτ.

Let us put
ys = jGt,x;uε,vε

s,ti
[Wj(ti, X

t,x;uε,vε

ti
)], s ∈ [s1, ti].

Then we consider the associated BSDEs:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ys = Wj(ti, X
t,x;uε,vε

ti
) +

∫ ti

s

fj(r, Xt,x;uε,vε

r , yr, zr, u
ε
r, v

ε
r)dr + kti − ks −

∫ ti

s

zrdBr,

ys ≥ hj(s, Xt,x;uε,vε

s ), s ∈ [s1, ti],

ks1 = 0,

∫ ti

s1

(yr − hj(r, Xt,x;uε,vε

r ))dkr = 0,

and
y′

s = Wj(s1, X
t,x;uε,vε

s1
), s ∈ [s1, ti].

Thus, applying Lemma 2.3 we conclude

|jGt,x;uε,vε

s1,ti
[Wj(ti, X

t,x;uε,vε

ti
)] − Wj(s1, X

t,x;uε,vε

s1
)|2

≤ CE[|Wj(ti, X
t,x;uε,vε

ti
) − Wj(s1, X

t,x;uε,vε

s1
)|2|Fs1 ]

+CE[
∫ ti

s1

|fj(r, Xt,x;uε,vε

r , yr, zr, u
ε
r, v

ε
r)|2|Fs1 ]

+ CE[ sup
s1≤s≤ti

|hj(s, Xt,x;uε,vε

s ) − hj(s1, X
t,x;uε,vε

s1
)|2dr

∣∣∣Fs1 ]
1
2

≤ CE[|Wj(ti, X
t,x;uε,vε

ti
) − Wj(s1, X

t,x;uε,vε

s1
)|2|Fs1 ]

+C(ti − s1)α + CE[ sup
s1≤s≤ti

|Xt,x;uε,vε

s − Xt,x;uε,vε

s1
|2
∣∣∣Fs1 ]

1
2 ,
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where we have used the assumptions (H3.3) and (H3.4) and the boundedness of fj . Since (uε, vε) ∈ Ut,T ×Vt,T

is independent of Ft we have

E[|jGt,x;uε,vε

s1,ti
[Wj(ti, X

t,x;uε,vε

ti
)] − Wj(s1, X

t,x;uε,vε

s1
)|2|Ft]

≤ CE[|Wj(ti, X
t,x;uε,vε

ti
) − Wj(s1, X

t,x;uε,vε

s1
)|2] + C(ti − s1)

+ CE[ sup
s1≤s≤ti

|Xt,x;uε,vε

s − Xt,x;uε,vε

s1
|2
∣∣∣Ft]

1
2 .

By virtue of (5.8) we have

E[|jGt,x;uε,vε

s1,ti
[Wj(ti, X

t,x;uε,vε

ti
)] − Wj(s1, X

t,x;uε,vε

s1
)|2] ≤ Cτ

1
2 . (5.10)

By a similar argument

E[|jGt,x;uε,vε

s2,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] − Wj(s2, X

t,x;uε,vε

s2
)|2] ≤ Cτ

1
2 . (5.11)

For s ∈ [s1, s2] we put

y1
s = jGt,x;uε,vε

s,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] = jGt,x;uε,vε

s,s2
[jGt,x;uε,vε

s2,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)]],

and
y2

s = jGt,x;uε,vε

s,s2
[Wj(s2, X

t,x;uε,vε

s2
)].

Let us consider the associated BSDEs:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y1
s = jGt,x;uε,vε

s2,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] +

∫ s2

s

fj(r, Xt,x;uε,vε

r , y1
r , z1

r , uε
r, v

ε
r)dr

+k1
s2

− k1
s −

∫ s2

s

z1
rdBr,

y1
s ≥ hj(s, Xt,x;uε,vε

s ), s ∈ [s1, s2],

k1
s1

= 0,

∫ s2

s1

(yr − hj(r, Xt,x;uε,vε

r ))dk1
r = 0,

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y2
s = Wj(s2, X

t,x;uε,vε

s2
) +

∫ s2

s

fj(r, Xt,x;uε,vε

r , y2
r , z2

r , uε
r, v

ε
r)dr

+k2
s2

− k2
s −

∫ s2

s

z2
rdBr,

y2
s ≥ hj(s, Xt,x;uε,vε

s ), s ∈ [s1, s2],

k2
s1

= 0,

∫ s2

s1

(yr − hj(r, Xt,x;uε,vε

r ))dk2
r = 0.

From the Lemmas 2.3 and 3.1 it follows that

|jGt,x;uε,vε

s1,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] − jGt,x;uε,vε

s1,s2
[Wj(s2, X

t,x;uε,vε

s2
)]|2

≤ CE[|jGt,x;uε,vε

s2,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] − Wj(s2, X

t,x;uε,vε

s2
)|2
∣∣∣Fs1 ].

Hence, by (5.11) we see that

E[|jGt,x;uε,vε

s1,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] − jGt,x;uε,vε

s1,s2
[Wj(s2, X

t,x;uε,vε

s2
)]|2] ≤ Cτ

1
2 .
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The above inequality and (5.10) yield

E[|I1 − I2|2] ≤ Cτ
1
2 .

Therefore,

P(I2 ≤ −ε

2
) ≤ P(|I1 − I2| ≥ ε

2
) ≤ 4E[|I1 − I2|2]

ε2
≤ 4Cτ

1
2

ε2
≤ ε,

where we choose τ ≤
( ε3

4C

)2

, and by (5.9) we have

P

(
Wj(s1, X

t,x;uε,vε

s1
) − ε ≤ jGt,x;uε,vε

s1,s2
[Wj(s2, X

t,x;uε,vε

s2
)]
)
≥ 1 − ε.

We also refer to the fact that since (uε, vε) is independent of Ft, the conditional probability P(·|Ft) of the
event

{
Wj(s1, X

t,x;uε,vε

s1
) − ε ≤ jGt,x;uε,vε

s1,s2
[Wj(s2, X

t,x;uε,vε

s2
)]
}

coincides with its probability. Indeed, also{
Wj(s1, X

t,x;uε,vε

s1
) − ε ≤ jGt,x;uε,vε

s1,s2
[Wj(s2, X

t,x;uε,vε

s2
)]
}

is independent of Ft The proof is complete. �

Finally, we give another main result: the existence theorem of a Nash equilibrium payoff.

Theorem 5.9. Under the Isaacs condition A, for all (t, x) ∈ [0, T ]×R
n, there exists a Nash equilibrium payoff

at (t, x).

Proof. By Theorem 4.2 we only have to prove that, for all ε > 0, there exists (uε, vε) ∈ Ut,T × Vt,T which
satisfies (5.4) and (5.5) for s ∈ [t, T ], j = 1, 2. For ε > 0, let us consider (uε, vε) ∈ Ut,T × Vt,T given
by Proposition 5.6, i.e., in particular, (uε, vε) is independent of Ft. Setting s1 = t and s2 = T in Propo-
sition 5.6, we get (5.4). Since (uε, vε) is independent of Ft, Jj(t, x; uε, vε), j = 1, 2, are deterministic and{

(J1(t, x; uε, vε), J2(t, x; uε, vε)), ε > 0
}

is a bounded sequence. Therefore, we can choose an accumulation
point of this sequence, as ε → 0. We denote this point by (e1, e2). From Theorem 4.2 we see that (e1, e2) is a
Nash equilibrium payoff at (t, x). The proof is complete. �

6. Proof of Theorem 4.2

We now give the Proof of Theorem 4.2.

Proof. For arbitrarily fixed ε > 0 and some ε0 > 0 (ε0 depends on ε and will be precise later), let us assume
that (uε0 , vε0) ∈ Ut,T × Vt,T satisfies (5.4) and (5.5), i.e., for all s ∈ [t, T ] and j = 1, 2,

P

(
jY t,x;uε0 ,vε0

s ≥ Wj(s, Xt,x;uε0 ,vε0

s ) − ε0 | Ft

)
≥ 1 − ε0, P − a.s., (6.1)

and

|E[Jj(t, x; uε0 , vε0 )] − ej | ≤ ε0. (6.2)

We fix some partition: t = t0 ≤ t1 ≤ . . . ≤ tm = T of [t, T ] and put τ = sup
i

|ti − ti+1|. Let us apply Lemma 5.3

to uε0 and t + δ = t1, . . . , tm, successively. Then, for ε1 > 0 (ε1 depends on ε and is specified later) we have the
existence of NAD strategies αi ∈ At,T , i = 1, . . . , m, such that, for all v ∈ Vt,T ,

αi(v) = uε0 , on [t, ti],
2Y

t,x;αi(v),v
ti

≤ W2(ti, X
t,x;αi(v),v
ti

) + ε1, P − a.s. (6.3)
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For all v ∈ Vt,T , we set

Sv = inf
{
s ≥ t | λ({r ∈ [t, s] : vr 	= vε0

r }) > 0
}
,

tv = inf
{
ti ≥ Sv | i = 1, . . . , m

}
∧ T.

Here λ denotes the Lebesgue measure on the real line R. We see that Sv and tv are stopping times such that
Sv ≤ tv ≤ Sv + τ .

We put

αε(v) =
{

uε0 , on [[t, tv]],
αi(v), on (ti, T ] × {tv = ti}, 1 ≤ i ≤ m.

Then, αε is an NAD strategy. It follows from (6.3) that

2Y
t,x;αε(v),v
tv =

m∑
i=1

2Y
t,x;αε(v),v
ti

1{tv=ti}

≤
m∑

i=1

W2(ti, X
t,x;αε(v),v
ti

)1{tv=ti} + ε1

= W2(tv, X
t,x;αε(v),v
tv ) + ε1, P − a.s. (6.4)

Let us show that, for all ε > 0 and v ∈ Vt,T ,

J2(t, x; αε(v), v) ≤ J2(t, x; uε0 , vε0) + ε, αε(vε0) = uε0 . (6.5)

Thanks to (6.4), from Lemmas 2.3 and 2.4 we see that there exists a positive constant C such that

J2(t, x, αε(v), v) = 2G
t,x;αε(v),v
t,tv [2Y t,x,αε(v),v

tv ]

≤ 2G
t,x;αε(v),v
t,tv [W2(tv, X

t,x;αε(v),v
tv ) + ε1]

≤ 2G
t,x;αε(v),v
t,tv [W2(tv, X

t,x;αε(v),v
tv )] + Cε1. (6.6)

Therefore, from Lemma 2.3

| 2G
t,x;αε(v),v
t,tv [W2(tv, X

t,x;uε0 ,vε0

tv )] − 2G
t,x;αε(v),v
t,tv [W2(tv, X

t,x;αε(v),v
tv )]|

≤ CE[|W2(tv, Xt,x;uε0 ,vε0

tv ) − W2(tv, X
t,x;αε(v),v
tv )|2

∣∣∣Ft]
1
2

≤ CE[|Xt,x;uε0 ,vε0

tv − X
t,x;αε(v),v
tv |2

∣∣∣Ft]
1
2

≤ Cτ
1
2 , P − a.s.,

for the last two inequalities we have used Proposition 3.9 and Lemma 5.4. Then, (6.6) yields

J2(t, x, αε(v), v) ≤ 2G
t,x;αε(v),v
t,tv [W2(tv, Xt,x;uε0 ,vε0

tv )] + Cε1

+| 2G
t,x;αε(v),v
t,tv [W2(tv, X

t,x;uε0 ,vε0

tv )] − 2G
t,x;αε(v),v
t,tv [W2(tv, X

t,x;αε(v),v
tv )]|

≤ 2G
t,x;αε(v),v
t,tv [W2(tv, Xt,x;uε0 ,vε0

tv )] + Cε1 + Cτ
1
2 .

Putting

Ωs =
{

2Y t,x;uε0 ,vε0

s ≥ W2(s, Xt,x;uε0 ,vε0

s ) − ε0

}
, s ∈ [t, T ], (6.7)
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we have

J2(t, x; αε(v), v) ≤ 2G
t,x;αε(v),v
t,tv

[
m∑

i=1

W2(ti, X
t,x;uε0 ,vε0

ti
)1{tv=ti}

]
+ Cε1 + Cτ

1
2

≤ 2G
t,x;αε(v),v
t,tv

[
m∑

i=1

W2(ti, X
t,x;uε0 ,vε0

ti
)1{tv=ti}1Ωti

]
+ Cε1 + Cτ

1
2 + I, (6.8)

where

I =

∣∣∣∣∣ 2G
t,x;αε(v),v
t,tv

[
m∑

i=1

W2(ti, X
t,x;uε0 ,vε0

ti
)1{tv=ti}

]
− 2G

t,x;αε(v),v
t,tv

[
m∑

i=1

W2(ti, X
t,x;uε0 ,vε0

ti
)1{tv=ti}1Ωti

]∣∣∣∣∣ .
Since Φ2, f2 and h2 are bounded, from Lemma 2.2 we conclude that W2 is bounded. Therefore,

I ≤ E

[
m∑

i=1

|W2(ti, X
t,x;uε0 ,vε0

ti
)|21{tv=ti}1Ωc

ti

∣∣∣Ft

] 1
2

≤ C

m∑
i=1

P(Ωc
ti
|Ft)

1
2 ≤ Cmε

1
2
0 , (6.9)

where we have used (6.1) for the latter estimate. From the Lemmas 2.3, 2.4 and (6.7) we have

2G
t,x;αε(v),v
t,tv

[
m∑

i=1

W2(ti, X
t,x;uε0 ,vε0

ti
)1{tv=ti}1Ωti

]
≤ 2G

t,x;αε(v),v
t,tv

[
m∑

i=1

(2Y t,x;uε0 ,vε0

ti
+ ε0)1{tv=ti}1Ωti

]

≤ 2G
t,x;αε(v),v
t,tv

[
m∑

i=1

2Y t,x;uε0 ,vε0

ti
1{tv=ti}1Ωti

+ ε0

]

≤ 2G
t,x;αε(v),v
t,tv

[
m∑

i=1

2Y t,x;uε0 ,vε0

ti
1{tv=ti}1Ωti

]
+ Cε0,

and using the above arguments we also have∣∣∣∣∣ 2G
t,x;αε(v),v
t,tv

[
m∑

i=1

2Y t,x;uε0 ,vε0

ti
1{tv=ti}1Ωti

]
− 2G

t,x;αε(v),v
t,tv

[
m∑

i=1

2Y
t,x;αε(v),v
ti

1{tv=ti}

]∣∣∣∣∣ ≤ Cmε
1
2
0 .

Consequently,

2G
t,x;αε(v),v
t,tv

[
m∑

i=1

W2(ti, X
t,x;uε0 ,vε0

ti
)1{tv=ti}1Ωti

]

≤ 2G
t,x;αε(v),v
t,tv

[
2Y t,x;uε0 ,vε0

tv

]
+ Cε0 + Cmε

1
2
0

≤
∣∣∣ 2G

t,x;αε(v),v
t,tv

[
2Y t,x;uε0 ,vε0

tv

]
− 2Gt,x;uε0 ,vε0

t,tv

[
2Y t,x;uε0 ,vε0

tv

]∣∣∣
+ 2Gt,x;uε0 ,vε0

t,tv

[
2Y t,x;uε0 ,vε0

tv

]
+ Cε0 + Cmε

1
2
0

=
∣∣∣ 2G

t,x;αε(v),v
t,tv

[
2Y t,x;uε0 ,vε0

tv

]
− 2Gt,x;uε0 ,vε0

t,tv

[
2Y t,x;uε0 ,vε0

tv

]∣∣∣
+J2(t, x; uε0 , vε0) + Cε0 + Cmε

1
2
0

≤ J2(t, x; uε0 , vε0) + Cε0 + Cmε
1
2
0 + Cτ

1
2 ,
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where we have used the fact that

| 2G
t,x;αε(v),v
t,tv [ 2Y t,x;uε0 ,vε0

tv ] − 2Gt,x;uε0 ,vε0

t,tv [ 2Y t,x;uε0 ,vε0

tv ]| ≤ Cτ
1
2 .

Indeed, let us consider the following BSDE

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ys = 2Y t,x;uε0 ,vε0

tv +
∫ tv

s

f2(r, Xt,x;αε(v),v
r , yr, zr, αε(vr), vr)dr + ktv − ks −

∫ tv

s

zrdBr,

ys ≥ h2(s, X
t,x;αε(v),v
s ), s ∈ [t, tv],

kt = 0,

∫ tv

t

(yr − h2(r, Xt,x;αε(v),v
r ))dkr = 0,

which compared with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Y t,x;uε0 ,vε0

s = 2Y t,x;uε0 ,vε0

tv +
∫ tv

s

f2(r, Xt,x;uε0 ,vε0

r , 2Y t,x;uε0 ,vε0

r , 2Zt,x;uε0 ,vε0

r , uε0
r , vε0

r )dr

+ 2Kt,x;uε0 ,vε0

tv − 2Kt,x;uε0 ,vε0

s −
∫ tv

s

2Zt,x;uε0 ,vε0

r dBr,

2Y t,x;uε0 ,vε0
s ≥ h2(s, Xt,x;uε0 ,vε0

s ), s ∈ [t, tv],

2Kt,x;uε0 ,vε0

t = 0,

∫ tv

t

(2Y t,x;uε0 ,vε0

r − h2(r, Xt,x;uε0 ,vε0

r ))d 2Kt,x;uε0 ,vε0

r = 0,

Note that αε(v) = uε0 , on [[t, tv]], v = vε0 , on [[t, Sv]], and from Lemma 2.3 we obtain

| 2G
t,x;αε(v),v
t,tv [2Y t,x;uε0 ,vε0

tv ] − 2Gt,x;uε0 ,vε0

t,tv [2Y t,x;uε0 ,vε0

tv ]|2

≤ CE[
∫ tv

t

|f2(r, Xt,x;αε(v),v
r , yr, zr, αε(v)r, vr)dr − f2(r, Xt,x;uε0 ,vε0

r , yr, zr, u
ε0
r , vε0

r )|2|Ft]

+ CE[ sup
r∈[t,tv]

|h2(r, Xt,x;αε(v),v
r ) − h2(r, Xt,x;uε0 ,vε0

r )|2|Ft]
1
2

= CE[
∫ tv

Sv

|f2(r, Xt,x;αε(v),v
r , yr, zr, αε(v)r, vr)dr − f2(r, Xt,x;uε0 ,vε0

r , yr, zr, u
ε0
r , vε0

r )|2|Ft]

+ CE[ sup
r∈[Sv,tv ]

|Xt,x;αε(v),v
r − Xt,x;uε0 ,vε0

r |2|Ft]
1
2

≤ CE[
∫ tv

Sv

1{vr 	=v
ε0
r }|Ft] + Cτ

1
2 ≤ CE[tv − Sv|Ft] + Cτ

1
2 ≤ Cτ

1
2 ,

where we have used the boundedness of f2, b and σ. Consequently,

2G
t,x;αε(v),v
t,tv

[
m∑

i=1

W2(ti, X
t,x;uε0 ,vε0

ti
)1{tv=ti}1Ωti

]
≤ Cτ

1
2 + J2(t, x; uε0 , vε0) + Cε0 + Cmε

1
2
0 ,

and thus, (6.8) and (6.9) yield

J2(t, x; αε(v), v) ≤ J2(t, x; uε0 , vε0) + Cε0 + Cmε
1
2
0 + Cε1 + Cτ

1
4 .

We can choose τ > 0, ε0 > 0, and ε1 > 0 such that Cε0 + Cmε
1
2
0 + Cε1 + Cτ

1
4 ≤ ε and ε0 < ε. Thus,

J2(t, x; αε(v), v) ≤ J2(t, x; uε0 , vε0) + ε, v ∈ Vt,T .
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Using a symmetric argument we can construct βε ∈ Bt,T such that, for all u ∈ Ut,T ,

J1(t, x; u, βε(u)) ≤ J1(t, x; uε0 , vε0) + ε, βε(uε0) = vε0 . (6.10)

Finally, from (6.5), (6.10), (6.2) and Lemma 5.2 it follows that (αε, βε) satisfies Definition 5.1. Hence, (e1, e2)
is a Nash equilibrium payoff. �
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