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CONTROLLABILITY OF SCHRÖDINGER EQUATION
WITH A NONLOCAL TERM

Mariano De Leo1, Constanza Sánchez Fernández de la Vega2 and Diego Rial2

Abstract. This paper is concerned with the internal distributed control problem for the 1D
Schrödinger equation, i ut(x, t) = −uxx+α(x)u+m(u)u, that arises in quantum semiconductor models.
Here m(u) is a non local Hartree–type nonlinearity stemming from the coupling with the 1D Poisson
equation, and α(x) is a regular function with linear growth at infinity, including constant electric fields.
By means of both the Hilbert Uniqueness Method and the contraction mapping theorem it is shown
that for initial and target states belonging to a suitable small neighborhood of the origin, and for
distributed controls supported outside of a fixed compact interval, the model equation is controllable.
Moreover, it is shown that, for distributed controls with compact support, the exact controllability
problem is not possible.
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1. Introduction

We are mainly concerned with the internal distributed controllability for the following 1D Schrödinger
equation

iut = −uxx + α(x)u +m(u)u, x ∈ R, t > 0, (1.1)
u(x, 0) = u0(x), (1.2)

posed in the Sobolev space H = {φ ∈ H1(R) :
∫
μ(x)|φ|2 < ∞}, where μ is a positive regular function that

coincides with |x| away from the origin. Here, the non linearity m(u) is of non local nature:

m(φ)(x) =
∫
�(x, y)|φ(y)|2dy, (1.3)
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where the kernel satisfies the estimate |�(x, y)| ≤ μ(y). This choice is motivated for the self-consistent 1D
Schrödinger–Poissonequation used in quantum semiconductor theory

iut = −uxx + u
(|x| ∗ (D − |u|2)) (1.4)

where D ∈ C∞(R) denotes the fixed positively charged background or impurities, see [8] and references therein
for semiconductor models. After a suitable rearrangement of terms the Hartree potential reads

|x| ∗ (D − |u|2) =
∫

(|x − y| − μ(x))(D(y) − |u(y, t)|2)dy + μ(x)
∫

(D(y) − |u(y, t)|2)dy

=
∫

(|x − y| − μ(x))D(y)dy −
∫

(|x− y| − μ(x))|u(y, t)|2dy+
μ(x)

(‖D‖L1(R) − ‖u(·, t)‖2
L2(R)

)
.

Introducing a := ‖D‖L1(R) − ‖u(·, t)‖2
L2(R), F (x) :=

∫
(|x − y| − μ(x))D(y)dy, and �(x, y) = μ(x) − |x − y|,

equation (1.4) thus becomes

iut(x, t) = −uxx(x, t) + (aμ(x) + F (x))u(x, t) +m(u(x, t))u(x, t),

taking α(x) := aμ(x) + F (x) we show that the evolution equation (1.4) becomes (1.1).
We note that in the 1D case the kernel μ(x) is not bounded nor integrable so the classic theory developed

in [1] does not apply and we refer to [3] for details on the well posedness. In this article we will consider a
slightly extended version in which the term aμ(x) is replaced by a regular function α(x) ∈ C∞(R), with at
most linear growth at infinity (i.e. with the asymptotics α(x) ∼ C±x for x ∼ ±∞), in order to include constant
electric fields α(x) = qx. We note that due to the regularity requirements of the unique continuation technique
displayed in Lemma 3.2, the regular function α(x) appears as a regularized approximation of a locally constant
electric field, which is modelled with a continuous piecewise linear function. It is also worth to mention that
since the impurities give rise to a bounded potential

F (x) =
∫

(|x− y| − |x|)D(y)dy,

and hence enters in the model equation as a bounded multiplication operator, and since our results are still
valid for bounded perturbations, there is no loss of generality in restricting ourselves to the case F ≡ 0. Let us
finally mention that results on controllability with local nonlinearities as |u|2σu are widely developed, see [5,11],
and therefore local nonlinearities will not be taken into consideration.

The problem of exact internal controllability of equation (1.1)–(1.2) is usually described as the question of
finding a control function h ∈ L2(0, T,H) and its associated state function u ∈ C(0, T,H) such that

iut = −uxx + α(x)u +m(u)u+ ψ(x)h(x, t), x ∈ R, t ∈ (0, T ), (1.5)
u(x, t0) = u0(x), u(x, T ) = uT (x) (1.6)

where T > 0 is a given target time and u0 and uT are the given initial and target states respectively, and
ψ : R → R is a given C1 function that localizes the control to Supp(ψ). The problem of distributed controllability
for Schrödinger equations of nonlinear type appears often in nonlinear optics, see for instance [4, 9]. There are
several results on controllability of the Schrödinger equation, for a review on this topic we refer to [13].

In this paper we discuss the internal distributed controllability for the problem

iut = −uxx + α(x)u +m(u)u, x ∈ R, t > 0,
u(x, t0) = u0(x)
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and present results concerning two different situations depending on the support of the control: on one hand
controls that are supported outside a compact interval, in which case we shall give positive results, and on the
other hand localized controls, in which case we shall give a non controllability result.

We start dealing with a distributed control given by ψ(x)h(x, t) where ψ ∈ C1(R) satisfies:

ψ(x) =
{

1 for |x| ≥ R+ 1
0 for |x| ≤ R.

(1.7)

We thus show that for a given 0 < T there exist a (small) constant δ such that for every u0, uT ∈ H with
‖u0‖H, ‖uT‖H < δ there exists a control h(x, t) ∈ L2(0, T,H) such that the nonlinear problem (1.5)–(1.6) has a
unique solution u ∈ C(0, T,H).

We then turn to the case in which ψ ∈ C1 is compactly supported and show that for both α = μ (linear
operator with a discrete spectrum) and α(x) = x (constant electric field, which has a continuous spectrum),
the linear system is not exactly controllable. More precisely we show that for any fixed finite time T > 0 and
any fixed target state uT ∈ H there exist an open bounded interval Ω and an initial state u0 ∈ H, such that
for any ψ with Supp(ψ) ⊂ Ω, there is no control function ψ(x)h(x, y), with h ∈ L2(0, T,H), and no constant
C = C(T,Ω) such that

iut = −uxx + α(x)u + ψ(x)h, x ∈ R, t ∈ [0, T ],
u(x, 0) = u0(x), u(x, T ) = uT (x)

with ‖h‖L1(0,T,L2(Ω)) ≤ C(T,Ω) (‖u0‖H + ‖uT‖H) .
The paper is organized as follows. We set the problem in Section 1. In Section 2, we deal with the existence of

dynamics and establish useful estimates for the related evolution. Section 3 is devoted to the problem in which
the control vanishes inside an open bounded interval. We start studying the linear system for which we prove
global controllability in the space H; we then prove the local controllability for the nonlinear system (1.5). In
Section 4, we deal with the non controllability result for compactly supported controls.

2. Preliminaries

In this section we shall collect some results concerning spectral properties for the operator −∂2
x+α(x). Since

most of the estimates refer to different functional spaces we list them below:

• H1(R) := {φ ∈ L2(R) : φx ∈ L2(R)}.
• L2

μ(R) := {φ : μ1/2φ ∈ L2(R)} where μ is a regular even function satisfying 1 ≤ μ(x), and μ(x) ≡ |x| for
|x| ≥ 2.

• H := H1(R) ∩ L2
μ(R) with ‖φ‖2

H = ‖φx‖2
L2 + ‖φ‖2

L2
µ
.

2.1. Existence of dynamics

To start with we consider the auxiliar operator L+ defined by

L+ : H 
→ H′

φ 
→ L+(φ) :=
(−∂2

x + |x|) φ. (2.1)

Although this operator does not enter directly in our model, because of the loss of regularity of |x| in the
origin, it provides the workspace H and also it possesses useful spectral properties, easily deduced from the ones
of the Airy function, that are needed for the proof of the non controllability result of Theorem 4.1.

Lemma 2.1. The operator L+ satisfies the following properties:

(a) It is self-adjoint in L2(R).
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(b) It has a discrete spectrum 0 < λ̃1 < . . . < λ̃N ↗ +∞.

(c) It has a countable set of orthonormal (with respect to L2) eigenfunctions {φN : N ∈ N} ⊆ H satisfying

λ̃
−1/4
N

(∫
Ω

|(φN )x|2
)1/2

≤ C(Ω), (2.2)

where Ω is an arbitrary bounded interval.

Remark 2.2. Self-adjointness of L+ and the existence of both a discrete spectrum, {0 < λ̃1 < λ̃2 < . . .}, and
an orthonormal basis of eigenfunctions, {φN}N∈N ⊆ H, follows directly from [2] where by means of variational
methods it is only shown that L−1

+ is a compact operator. However, the non-controllability result relies on some
special feature of the eigenfunctions, given by claim (c), that are not considered there and we shall give an
alternative proof.

Proof. We first notice that the related quadratic form verifies 〈φ;L+φ〉 = ‖φx‖2
L2 + ‖|x|1/2φ‖2

L2 and this is an
equivalent norm for H, from where we recover the self-adjointness of L+. The operator L+ has an explicit spectral
decomposition expressed in terms of the Airy function Ai, defined as the solution of −Aixx(x) + xAi(x) = 0
such that Ai(+∞) = 0, as follows. Let 0 < z0 < z1 < . . . ↗ +∞, and 0 < w0 < w1 < . . . ↗ +∞ be the
zeros of Ai ′(−x) and Ai(−x) respectively, and take λ̃2N = zN , λ̃2N+1 = wN , and φ2N (x) = c2NAi(|x| − λ̃2N ),
φ2N+1(x) = c2N+1sgn(x)Ai(|x|−λ̃2N+1), where cN is a (bounded) sequence of normalization constants. A direct
computation shows that L+(φN ) = λ̃NφN . This gives the spectral decomposition of L+. Since for |x| ∼ +∞ it
happens that |x|− λ̃N > 0, each eigenfunction φN inherits the decaying properties of the Airy function near +∞
where it behaves as e−r

3/2
.

In order to get claim (c) we take profit of the integral expression for the Airy function and its derivative,
with x = −|x|,

Ai(x) = (2π)−1/2|x|1/2
∫

ei|x|
3/2(k3/3−k)dk

Ai ′(x) = (2π)−1/2

∫
ikei|x|

3/2(k3/3−k)dk

from where, by means of the stationary phase method, we deduce the asymptotics

|Ai ′(x)| ≤ C(M)|x|1/4 (2.3)

valid for x ≤ −M, and also an estimate for the eigenvalues

λ̃N ∼ N2/3. (2.4)

Let M be such that Ω ⊆ [−M,M ], from estimate (2.4) there exists N0 such that, for N > N0, λ̃2N − λ̃N > M.

Then, for x ∈ Ω one has |x| − λ̃2N < M − λ̃2N < −λ̃N . Using (2.3) we conclude |φ2N (x)| < λ̃
1/4
N , and therefore

‖(φN )x‖L2(Ω) ≤ (2M)1/2λ̃1/4
N/2. This finishes the proof. �

As a direct consequence of previous result we get the existence of dynamics for the operator Lμ defined by

Lμ : H 
→ H′

φ 
→ Lμ(φ) :=
(−∂2

x + μ(x)
)
φ (2.5)

where μ(x) is a regular even function satisfying μ(x) ≡ |x| for |x| ≥ 2 and max{1, |x|} ≤ μ(x) ≤ 1 + |x|.
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Lemma 2.3. The operator Lμ is well defined and verifies

(a) It is self adjoint.
(b) It has a discrete spectrum 0 < λ1 ≤ λ2 ≤ λN ↗ +∞, and a countable set of orthonormal (with respect to

L2) eigenfunctions {ϕN : N ∈ N} ⊆ H.
Proof. It follows directly from the inequalities

〈φ;L+φ〉 ≤ 〈φ;Lμφ〉 ≤ ‖φ‖2
L2 + 〈φ;L+φ〉 ,

and the compact embedding H ↪→ L2.
Notice that previous estimates yield the asymptotics

λN ∼ N2/3. �

In order to develop the observability inequality we need to build some appropriate Sobolev spaces, related to
the operator Lμ defined by (2.5). This is done as follows. Let {ϕN}N∈N be the orthonormal basis of L2 given
by Lemma 2.3 and, for φ ∈ L2, let φ̂ be the Fourier coefficient: φ̂(N) := 〈φ;ϕN 〉. We then set for k = 0, 1, 2 the
Hilbert spaces W k := {φ ∈ L2 :

∑
N≥0 λ

k
N φ̂(N)2 <∞}, with the inner product

〈ψ;φ〉Wk :=
∑
N≥0

λkN ψ̂(N)∗φ̂(N). (2.6)

Let F ⊂W 0 be the set of finite linear combinations of {ϕN}N∈N. Then for k = −3,−2,−1 the inner product (2.6)
is well defined. We then define W k as the Hilbert space obtained from the closure of F with the norm induced
by 〈·; ·〉Wk . We have that Lμ : W k → W k−2 is an isometry: ‖Lμw‖Wk−2 = ‖w‖Wk . Being Lμ positive, we have
L

1/2
μ : W k →W k−1 which is also an isometry: ‖L1/2

μ w‖Wk−1 = ‖w‖Wk .
We finally mention that W 0 = L2, W 1 = H, W 2 = D(Lμ), the domain of the operator Lμ : W 2 
→ L2, and

W−1 = H′, with compact embeddings

W 2 ⊂W 1 ⊂W 0 ⊂W−1 ⊂W−2. (2.7)

Remark 2.4. Since for any ψ ∈ W k and φ ∈W−k we have

〈ψ;φ〉L2 =
∑
N≥0

ψ̂(N)∗φ̂(N)

=
∑
N≥0

λ
k/2
N ψ̂(N)∗λ−k/2N φ̂(N)

≤ ‖ψ‖Wk‖φ‖W−k ,

we also have for k = −2,−1, 0, 1, 2 that
(
W k
)′ = W−k.

We now turn to the general situation L := −∂2
x + α(x), where α(x) ∈ C∞(R) is a regular function verifying

αx, αxx ∈ L∞, and also the asymptotics

lim
x→±∞

α(x)
μ(x)

= C±. (2.8)

The following lemma states precisely the self-adjointness result.

Lemma 2.5. Let α ∈ C∞(R) satisfying (2.8). Then L : H 
→ H′ defined by L := −∂2
x + α(x) is self-adjoint,

and therefore −iL generates a strongly continuous group of unitary operators in L2(R).
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Proof. To this purpose we first show that L is a closed operator. Let ϕ ∈ C∞
0 (R) and (φn;L(φn)) ∈ H × H′

a sequence such that (φn;L(φn)) → (φ;ψ) in H × H′, since 〈ϕ;φxx − (φn)xx〉 = 〈ϕxx;φ − φn〉 → 0 and
〈ϕ;α(φ − φn)〉 = 〈sgn(α)|α|1/2ϕ; |α|1/2(φ − φn)〉 → 0 we thus have 〈ϕ;L(φ − φn)〉 → 0, and consequently we
conclude 〈ϕ;ψ − Lφ〉 = 〈ϕ;ψ − Lφn〉 + 〈ϕ;L(φn − φ)〉 → 0. This shows that L : H → H′ is a closed operator.

Since Lμ := −∂2
x + μ(x), with μ(x) ≥ 1 we deduce that Lμ ≥ I (the identity operator). For ϕ, ψ ∈ H

we introduce the (well defined) bilinear form Q(φ, ψ) := 〈φx;ψx〉 + 〈φ;α(x)ψ〉. We now establish two useful
estimates

|Q(φ;ψ)| ≤ |〈φx;ψx〉| + |〈φ;αψ〉|
≤ (1 + ‖αμ−1‖L∞) |〈φ;Lμψ〉|
≤ (1 + ‖αμ−1‖L∞)‖L1/2

μ φ‖L2 ‖L1/2
μ ψ‖L2

|Q(Lμφ;ψ) −Q(φ;Lμψ)| = |〈φ; [Lμ : L]ψ〉|
≤ |〈φ; (μ− α)xxψ〉| + 2|〈(μ− α)xφ;ψx〉|
≤ (‖(μ− α)xx‖L∞ + 2‖(μ− α)x‖L∞) ‖L1/2

μ φ‖L2 ‖L1/2
μ ψ‖L2

where we have used the identity ‖L1/2
μ ϕ‖2

L2 = ‖ϕx‖2
L2 + ‖ϕ‖2

L2
µ
. Applying Theorem X.36’ in [10] we obtain that

L is a essentially self-adjoint operator in H, since it is closed, it follows that L is self adjoint. �

2.2. Scattering properties for constant electric fields

The non controllability result, see Theorem 4.4, for a constant electric field Le := −∂2
x−x, follows from a well-

known L1−L∞ estimate for the group Ue(t) generated by −iLe, which depends upon a result of Avron–Herbst,
see [12] for details.

Lemma 2.6. The operator Le is essentially self-adjoint on S(R) and

Ue(t) = e−it
3
eitxe−i(p

2t+t2p) (2.9)

where p = −i∂x is the momentum operator.

Remark 2.7. Identity (2.9) says that except for phase factors Ue(t)φ(x) is obtained by first translating by t2

units to the right and then applying the free particle group eit∂
2
x

Corollary 2.8. For φ ∈ L1(R) we have the following estimate:

‖Ue(t)φ‖L∞ ≤ C|t|−1/2‖φ‖L1.

2.3. Estimates for the evolution

Lemma 2.5 guarantees that −iL generates a group U(t). In the sequel we will exhibit useful bounds for the
evolution related to both the homogeneous and inhomogeneous problem.

Lemma 2.9. Let U(t) be the group generated by −iL where L := −∂2
x + α in H. Then

• ‖(U(t)φ)x‖L2 ≤ ‖φx‖L2 + |t|‖αx‖L∞‖φ‖L2 .

• ‖U(t)φ‖L2
µ
≤ ‖φ‖L2

µ
+ 21/2|t|1/2‖φ‖1/2

L2 ‖φx‖1/2
L2 + |t|‖αx‖L∞‖φ‖L2 .

• ‖U(t)φ‖H ≤ ‖φ‖H
(
1 + |t| · ‖μx − αx‖L∞

)
.
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Proof. Let u(t) = U(t)φ, since u verifies iut = −uxx + αu and ‖u‖2
H = ‖u‖2

L2
µ

+ ‖ux‖2
L2 we have

d
dt
〈
ux;ux

〉
L2 = 2Re

〈
uxt;ux

〉
L2

= 2Re
〈
ux;−iαxu

〉
L2

d
dt
〈
u;μu

〉
L2 = 2Re

〈
ut;μu

〉
L2

= 2Re
〈
ux; iμxu

〉
L2

d
dt
〈
u;u

〉
H = 2Re

〈
ux; i(μx − αx)u

〉
L2 .

The inequalities are obtained by means of a standard ODE argument given by the following lemma. Details are
given due to the lack of a suitable reference. �

Lemma 2.10. Let y : [0, T ] → [0,+∞) be an L1 function satisfying the inequality y2(t) ≤ y2(0) + C
∫ t
0
y(s)ds

for some constant C > 0. Then y(t) ≤ y(0) + Ct/2.

Proof. Let w(t) :=
∫ t
0
y(s)ds and z(t) :=

√
y2(0) + Cw(t). Then ż(t) ≤ C/2 and therefore y(t) ≤ z(t) ≤

z(0) + Ct/2. �

We now turn our attention to the non linear term in equation (1.5), and give the following estimates.

Lemma 2.11. Let m : H 
→ L∞(R) be given by

m(φ)(x) =
∫
�(x, y)|φ(y)|2dy

where |�(x, y)| ≤ μ(y) and |�x(x, y)| ≤ C. Then for φ, φ1 ∈ H the following estimates hold.

• ‖m(φ)‖L∞ ≤ ‖φ‖2
L2

µ

• ‖m(φ)φ−m(φ1)φ1‖H ≤ 3/2
(‖φ‖2

H + ‖φ‖H‖φ1‖H + ‖φ1‖2
H
) ‖φ− φ1‖H.

Proof. It is a straightforward computation and will be omitted.
�

We now turn to the non homogeneous problem (1.5) and give similar estimates in the lemma below, which
in turn express the global well posedness of the problem.

Lemma 2.12. Let T > 0 be fixed, and let u ∈ C(0, T,H) ∩ C1(0, T,H′) be a solution of (1.5) with fixed
h ∈ L2(0, T,H) and ψ ∈ C1(R) such that ψ, and ψx ∈ L∞(R). Then we have the following estimates:

• ‖u‖L∞(0,T,L2(R)) ≤ ‖u0‖L2(R) + T 1/2‖ψ‖L∞‖h‖L2(0,T,H).

• ‖ux‖L∞(0,T,L2(R)) ≤ ‖u0‖H1 + ‖h‖L2(0,T,H) T
3/2 C(u0, ψ).

• ‖u‖L∞(0,T,L2
µ(R)) ≤ ‖u0‖L2

µ
+ ‖h‖L2(0,T,H) T

3/2 C(u0, ψ).
• ‖u‖L∞(0,T,H) ≤ ‖u0‖H + ‖h‖L2(0,T,H) T

3/2 C(u0, ψ).

Proof. Using estimates for the linear and nonlinear term, given in Lemmas 2.9 and 2.11 respectively, the proof
relies on a procedure similar to the one displayed in Lemma 2.9 and will be omitted. �
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3. Controllability

3.1. Linear system

We start this section taking into consideration the controllability of the linear problem, which throughout this
section means the existence of a control h(x, t) such that the unique solution of the related non homogeneous
linear equation

iut(x, t) = Lu(x, t) + ψ(x)h(x, t) (3.1)
u(x, 0) = u0(x) x ∈ R (3.2)

satisfies u(x, T ) = uT (x), for given T > 0 and u0, uT (x) ∈ H, where L := −∂2
x + α(x) is the operator of

Lemma 2.5, and ψ is defined in (1.7). The main result is given in the following theorem; its proof is based on
the Hilbert Uniqueness Method (HUM), requires some technicalities, which we shall first develop, and will be
delayed until the end of this subsection.

Theorem 3.1 (Global controllability: linear case). Let T > 0 be given. Then there exists a bounded linear
operator G : H × H → L2(0, T,H) such that for any u0, uT ∈ H the system (3.1)–(3.2), with h = G(u0, uT ),
admits a solution u ∈ C(0, T,H) satisfying u(x, T ) = uT .

As we stated before, we need first to present the ingredients to apply the HUM. To do this, we consider the
corresponding adjoint problem in H′:

ivt(x, t) = Lv, (3.3)
v(x, 0) = v0(x). (3.4)

Let Λ : H → H′ denote the usual isomorphism between the real spaces H and H′ defined by Λ(v) = 〈v, ·〉H.
Given v0 ∈ H′, let v be the solution of equation (3.3). Then, take h(·, t) = Λ−1(ψv(·, t)) and consider the
problem {

iwt(x, t) = Lw + ψ(x)h(x, t),
w(x, T ) = u1(x),

(3.5)

which we split into the two problems: {
iw

(1)
t (x, t) = Lw(1),

w(1)(x, T ) = u1(x),
(3.6)

and {
iw

(2)
t (x, t) = Lw(2) + ψ(x)h(x, t),

w(2)(x, T ) = 0.
(3.7)

Clearly, w = w(1) + w(2). As usual with the HUM procedure, given v0 ∈ H′ the initial condition of equation
(3.3), we define the linear operator S : H′ → H by

S(v0) = −iw(2)(·, 0) (3.8)

where w(2) is the solution of (3.7).
If we can show that S is an isomorphism, then the inverse image by S of −iu0 + iw(1)(·, 0), is the initial

condition for equation (3.3) that will provide the sought control h = Λ−1(ψv(·, t)).
This is shown by establishing the observability inequality of system (3.3) in H′ which we describe in the

following lemma.

Lemma 3.2. Let ψ be a C1 function defined by (1.7). There exists a constant C > 0 such that for all v0 ∈ H′,
the solution v of (3.3)–(3.4) satisfies ∫ T

0

‖ψv(., t)‖2
H′dt ≥ C‖v0‖2

H′ . (3.9)
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The proof of the observability inequality (3.9) is quite similar to the one given by L. Rosier and B. Zhang
in [11]. We repeat most of the construction given in that paper for the sake of completeness.

In order to prove Lemma 3.2 we begin by proving the corresponding observability inequality in H. We recall
the isomorphism Lμ : H → H′, Lμ = −∂2

x + μ. Consider the Schrödinger equation

iwt(x, t) = Lw + P (w), (3.10)
w(x, 0) = w0(x), (3.11)

where P (w) = L−1
μ [ν, Lμ](w), with ν := α− μ.

Lemma 3.3. Following assertions are true:

(a) ∂ : W k 
→W k−1 is a bounded operator for k = 0, 1.
(b) For g ∈ L∞ such that g′ ∈ L∞ the related multiplication operator g : W k 
→W k is bounded for k = 0, 1,−1.
(c) P : W k 
→W k is a bounded operator for k = 0, 1,−1.
(d) ‖w‖L∞(0,T,Wk) ≤ C(T )‖w0‖Wk for k = 0, 1,−1.

Proof. For k = 0 claims (a) and (b) are evident. Claim (a) for k = 1 is obtained from k = 0 by duality
W−1 = (W 1)′ (see Rem. 2.4). Claim (b) for k = 1 follows from the estimate:

‖gφ‖H ≤ ‖g′‖L∞‖φ‖L2 + ‖g‖L∞‖φ′‖L2 + ‖g‖L∞‖φ‖L2
µ
.

By duality we also get claim (b) for k = −1. Claim (c) is a consequence of claims (a) and (b) applied to the
identity

L−1
μ [ν, Lμ] = L−1

μ (2νx∂x + νxx)

where we have used that νx, νxx ∈ L∞.
Finally, claim (d) is a direct consequence of claim (c). �

Lemma 3.4. Let ψ be a C1 function defined by (1.7). There exists a constant C > 0 such that for every w0 ∈ H,
the solution w of (3.10)–(3.11) satisfies∫ T

0

‖ψw(·, t) ‖2
H dt ≥ C‖w0‖2

H. (3.12)

Proof. By Duhamel, we know that there exists C > 0 such that for w0 ∈ H, the solution w of (3.10)–(3.11)
satisfies

‖w0‖2
H ≤ C

∫ T

0

‖w(·, t)‖2
H dt. (3.13)

Therefore, (3.12) will follow if we prove the following inequality in H:∫ T

0

‖w(·, t)‖2
H dt ≤ C

∫ T

0

‖ψw(·, t) ‖2
H dt. (3.14)

We use the multiplier technique. Define q ∈ C∞
0 (R)

q(x) =
{
x for |x| ≤ R+ 2
0 for |x| ≥ R+ 3. (3.15)

We have that ∫ T

0

d
dt

〈w, iqwx〉dt = 〈w, iqwx〉
∣∣T
0
. (3.16)
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Recall L = −∂2
x + α, then the l.h.s of the last equation reads:∫ T

0

〈iwxx, iqwx〉 − 〈iαw + iP (w), iqwx〉 + 〈w, iqiwxxx〉 + 〈w, iq(−i)(αw + P (w))x〉dt. (3.17)

Integrating by parts we have that:

〈w, iqwx〉
∣∣T
0

=
∫ T

0

−2〈wx, qxwx〉 − 2〈αw + P (w), qwx〉 − 〈qxxw,wx〉 − 〈αw + P (w), qxw〉dt (3.18)

and therefore, using that 〈f, g〉 = Re
∫

R
fg∗:

1
2
Im

∫
R

qww̄x
∣∣T
0

+Re

∫ T

0

∫
R

[
qx|wx|2 +

1
2
qxxww̄x + (αw + P (w))(qw̄x +

1
2
qxw̄)

]
dxdt = 0. (3.19)

Then ∣∣∣∫ T0 ∫|x|≤R+2
|wx|2

∣∣∣ ≤ 1
2

∣∣∣∫{|x|≤R+3} qww̄x
∣∣T
0

∣∣∣+ ∫ T0 [∣∣∣∫{R+2≤|x|≤R+3} qx|wx|2
∣∣∣

+ 1
2

∣∣∣∫{R+2≤|x|≤R+3} qxxww̄x
∣∣∣+ ∣∣∣∫{|x|≤R+3}(αw + P (w))(qw̄x + 1

2qxw̄)
∣∣∣] (3.20)

and using Lemma 3.3 and

‖w(t0, .)‖2
H1(R) ≤ C

∫ T

0

‖w(t, ·)‖2
H1(R)dt ∀t0 ∈ [0, T ] (3.21)

‖αw‖L2({|x|≤R+3}) ≤ C‖w‖L2(R) (3.22)

we have that there exist ε > 0 and a constant Cε such that∫ T

0

∫
|x|≤R+2

|wx|2dxdt ≤ ε

∫ T

0

‖w(t, ·)‖2
H1dt+ Cε

∫ T

0

‖w(t, ·)‖2
L2dt (3.23)

+ C2

∫ T

0

∫
{R+2≤|x|≤R+3}

|wx|2dxdt. (3.24)

We have that
‖w‖H ≤ ‖ψw‖H + ‖(1 − ψ)w‖H (3.25)

and since 1 − ψ = 0 for |x| > R+ 1

‖(1 − ψ)w‖H ≤ C‖(1 − ψ)w‖H1 . (3.26)

It is clear that

‖(1 − ψ)w‖2
H1 ≤ C

(∫
|x|≤R+1

|wx|2dx+ ‖w‖2
L2(R)

)
, (3.27)

and since (ψw)x = wx for |x| ≥ R+ 2, we have that∫
|x|≥R+2

|wx|2dx ≤ ‖ψw‖2
H. (3.28)

Therefore, if ε is chosen small enough, from (3.23) and (3.25)–(3.28), it follows the inequality∫ T

0

‖w(·, t)‖2
H dt ≤ C

(∫ T

0

‖ψw(·, t) ‖2
H dt+

∫ T

0

‖w(·, t)‖2
L2 dt

)
. (3.29)
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It remains to prove that ∫ T

0

‖w(·, t)‖2
L2dt ≤ C

∫ T

0

‖ψw(·, t)‖2
H dt. (3.30)

Assume inequality (3.30) is not true, then there exists a sequence wk0 ∈ H such that the corresponding sequence
wk of solutions of (3.10) satisfies

1 =
∫ T

0

‖wk(t)‖2
L2(R)dt ≥ k

∫ T

0

‖ψwk(t)‖2
Hdt, k = 1, 2, . . . (3.31)

According to (3.29) and (3.31), the sequence {wk} is bounded in L2(0, T,H). Therefore by (3.13) the sequence
{wk0} is bounded in H. Extracting a subsequence if needed, we may assume that

wk0 ⇀ w0 weakly in H and wk ⇀ w weakly in L2(0, T ;H) (3.32)

where w ∈ C([0, T ];H) solves equation (3.10)–(3.11) with initial data w0. Indeed, we first have that wk0 ⇀ w0

weakly in H and wk ⇀ u weakly in L2(0, T,H). Being H compactly imbedded in L2(R), we may assume that
wk0 → w0 strongly in L2(R) and therefore

wk → w strongly in L2(0, T, L2(R)) (3.33)

where w ∈ C(0, T,H) since it is the solution of equation (3.10)–(3.11) with initial data w0 ∈ H. From the
uniqueness of weak limit in L2(0, T, L2(R)) we obtain that w = u.

By (3.31), ψwk → 0 strongly in L2(0, T,H) and since ψwk ⇀ ψw weakly in L2(0, T,H), we conclude that
ψw ≡ 0 on R × (0, T ). Consequently,

w(x, t) = 0, |x| > R+ 1, t ∈ (0, T ). (3.34)

Let v = Lμw, then v satisfies equation (3.3) and

v(x, t) = 0, |x| > R+ 1, t ∈ (0, T ). (3.35)

We consider the new problem (similar to (3.3))

ivt = −vxx + αψ̃v (3.36)
v(x, 0) = v0.

where ψ̃ is a C∞
0 (R) given by

ψ̃(x) =
{

1 for |x| ≤ R+ 1
0 for |x| ≥ R+ 2 . (3.37)

Then, problems (3.3) and (3.36) have the same solution which satisfy (3.35). Using Proposition 2.3 from [11]
with a = −αψ̃ and b = 0 functions in C∞

0 (R) and being v0 ∈ H′ with compact support, we have that v is of
class C∞ on R × (0, T ).

By the unique continuation property for Schrödinger equation we conclude that v ≡ 0 on R × (0, T ). This
implies w ≡ 0 on R × (0, T ). From (3.33) and (3.31) we have a contradiction.

Then observability inequality in H (3.12) is proved. �

We are now in position to prove the observability inequality (3.9) in H′. We first prove a weaker inequality:

Lemma 3.5. There exists a constant C > 0 such that for every v0 ∈ H′ = W−1 and v the solution of
equation (3.3)–(3.4), the following inequality is satisfied

‖v0‖2
W−1 ≤ C

(∫ T

0

‖ψv(t)‖2
W−1dt+ ‖v0‖2

W−2

)
. (3.38)



34 M. DE LEO ET AL.

Proof. Suppose that inequality (3.38) is false. Then there exist a sequence vk of solutions of (3.3) in C(0, T,H′)
such that

1 = ‖vk(0)‖2
W−1 ≥ k

(∫ T

0

‖ψvk(t)‖2
W−1dt+ ‖vk(0)‖2

W−2

)
. (3.39)

Then we can extract a subsequence such that vk(0) → v0 weak in H′ for some v0 ∈ H′ and we can assume
vk → 0 strongly en W−2 and therefore v0 = 0. Moreover, we can assume ψvk → 0 strongly in L2(0, T,H′).

Since H ⊂ H1(R) continuosly, we have that

‖wx‖W 0 ≤ ‖w‖W 1 . (3.40)

Now, let v ∈ H′ = W−1, there exists w ∈ H = W 1 such that v = Lμw, then

‖vx‖W−2 = ‖Lμwx + μxw‖W−2 = ‖L−1
μ (Lμwx + μxw)‖W 0 ≤ ‖wx‖W 0 + ‖L−1

μ μxw‖W 0 (3.41)

using (3.40), we have ‖vx‖W−2 ≤ C‖v‖W−1 . From Lemma 3.3 we also know that there exists a constant C > 0
such that for all w ∈ L2 = W 0

‖wx‖W−1 ≤ C‖w‖W 0 . (3.42)

Next, we will prove that vk(0) → 0 strongly in W−1 arriving to a contradiction by (3.39).
Let wk = L−1

μ (vk), then wk ∈ C([0, T ],W 1) is a solution of equation (3.10) in H and

ψwk = ψL−1
μ vk = L−1

μ (ψvk) + [ψ,L−1
μ ]vk = L−1

μ (ψvk) + L−1
μ [Lμ, ψ]wk. (3.43)

Since ψvk → 0 strongly in L2(0, T,H′) and ‖L−1
μ (ψvk)‖1 = ‖ψvk‖−1, we deduce that L−1

μ (ψvk) → 0 strongly in
L2(0, T,H). On the other hand, using (3.42) and Lemma 3.3 we get

‖L−1
μ [Lμ, ψ](wk)‖W 1 = ‖[Lμ, ψ](wk)‖W−1

= ‖ψxxwk + 2ψx(wk)x‖W−1

≤ C(‖vk‖W−3 + ‖vk‖W−2)
≤ C‖vk‖W−2

and this implies that L−1
μ [Lμ, ψ](wk) → 0 strongly in L2(0, T,H), since vk(0) → 0 strongly in W−2.

Therefore ψwk → 0 strongly in L2(0, T,H). Since wk is a solution of (3.10) we have from the observability
inequality (3.12) that wk(0) → 0 strongly in H. It follows that vk(0) = Lμwk(0) → 0 strongly in H′, which
contradicts the fact that ‖vk(0)‖H′ = 1. �

Proof of Lemma 3.2. Assume that inequality (3.9) is false, then there exists a sequence vk of solutions of (3.3)
in C([0, T ];H′) such that

1 = ‖vk(0)‖2
W−1 ≥ k

∫ T

0

‖ψvk(t)‖2
W−1dt (3.44)

for all k ≥ 0.
Extracting a subsequence, we may assume that

vk → v in L∞(0, T ;H′) weak− �,
vk(0) → v(0) weakly in H′ (3.45)

for some solution v ∈ C(0, T ;H′) of (3.3)–(3.4). From (3.44), ψvk → 0 strongly in L2(0, T,H′) and since
ψvk → ψv in L∞(0, T ;H′) weak-�, we have that ψv ≡ 0. We deduce as before that v ≡ 0 in R × (0, T ).

{vk(0)} being a bounded sequence in W−1 and since W−1 is compactly imbedded in W−2, see (2.7), there
exists a subsequence such that vk(0) converges strongly in W−2 necessarily to 0.

We infer from (3.38) that vk(0) converges strongly to 0 in W−1 which is absurd from (3.44). This finishes
the proof. �
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Proof of Theorem 3.1. Let v0 ∈ H′ and v(x, t) the solution of (3.3) such that v(x, 0) = v0. Let w be the solution
of (3.7) with u1 = 0 and h = Λ−1(ψv(·, t)). Then∫ T

0

〈v, iwt − Lw〉H′,Hdt =
∫ T

0

〈v, ψh〉H′,Hdt. (3.46)

Using that
〈v, iwt〉H′,H = d

dt 〈v, iw〉H′,H + 〈ivt, w〉H′,H
〈v, ∂2

xw〉H′,H = 〈∂2
xv, w〉H′,H

(3.47)

we obtain ∫ T

0

d
dt

〈v, iw〉H′,Hdt =
∫ T

0

〈−ivt + Lv,w〉H′,Hdt+
∫ T

0

〈v, ψh〉H′,Hdt. (3.48)

By (3.3), being w(·, T ) = 0 and h(·, t) = Λ−1(ψv(·, t))

〈v0,−iw(x, 0)〉H′,H =
∫ T

0

〈ψv, Λ−1(ψv)〉H′,Hdt, (3.49)

and therefore

〈v0, S(v0)〉H′,H =
∫ T

0

‖ψv‖2
H′dt ≥ C‖v0‖2

H′ . (3.50)

It follows from Lax Milgram that S is an isomorphism. �

3.2. Non linear system

We are now in a position to present the local controllability of the non linear problem

iut(x, t) = Lu+m(u)u+ ψ(x)h(x, t) (3.51)
u(x, 0) = u0(x) x ∈ R (3.52)

which, as in the linear case, means the existence of a control h ∈ L2(0, T,H) such that the related solution
satisfies u(x, T ) = uT (x).

Theorem 3.6. Let T > 0 be fixed, then there exists R > 0 such that for every u0, uT ∈ H with
max{‖u0‖H; ‖uT ‖H} < R there exists h ∈ L2(0, T ;H) such that the unique solution of (3.51)–(3.52) satis-
fies u(x, T ) = uT (x).

Equation (3.51)–(3.52) can be written in its integral form

u(x, t) = e−iLtu0(x) − i

∫ t

0

eiL(s−t)m(u(x, s))u(x, s)ds − i

∫ t

0

eiL(s−t)ψ(x)h(x, s)ds.

We then set, for v ∈ C(0, T,H), the mapping that defines the nonlinear term

N (v, 0, t) := −i
∫ t

0

eiL(s−t)(m(v(s))v(s)
)
ds. (3.53)

We next define Γ : C(0, T,H) → C(0, T,H) as follows:
Given v ∈ C(0, T,H), we compute N (v, 0, t) as in (3.53). Given the initial state u0 and the target state

uT −N (v, 0, T ), from Theorem 3.1 there exists a control hlin ∈ L2(0, T,H) such that the solution w̃ of the linear
equation (3.1)–(3.2) with h = hlin

w̃(t) = e−iLtu0(x) − i

∫ t

0

eiL(s−t)ψ(x)hlin(x, s)ds (3.54)
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satisfies w̃ ∈ C(0, T,H) and
w̃(T ) = uT −N (v, 0, T ). (3.55)

Observe that hlin depends on v and therefore w̃ also depends on v.
Let

Γ (v)(t) := e−iLtu0 + N (v, 0, t) − i

∫ t

0

eiL(s−t)ψ(x)hlin(x, s)ds. (3.56)

Since w̃ ∈ C(0, T,H) and is a solution of the linear equation (3.1), then Γ (v) reads

Γ (v)(t) := w̃(t) + N (v, 0, t) (3.57)

and therefore Γ (v) ∈ C(0, T,H), Γ (v)(0) = u0, and Γ (v)(T ) = uT . We shall remark that any fixed point of Γ
yields the function needed to build the control h ∈ L2(0, T,H). Hence, it only remains to show that Γ has a
fixed point. Let δ > 0 and set Kδ := {v ∈ C(0, T,H) : v(0) = u0, v(T ) = uT , ‖v‖L∞(t0,T,H) ≤ δ}. As usual, we
must show that Kδ is left invariant by Γ, and also that this is a contractive mapping. With this in mind we list
below some useful estimates.

Lemma 3.7. Let R > 0 and let u0, uT ∈ H be such that max{‖u0‖H; ‖uT‖H} < R, let also δ > 0 and take
v, u ∈ Kδ. Thus the following estimates hold,

• ‖Γ (v)‖L∞(0,T,H) ≤ AR +Bδ3

• ‖Γ (v) − Γ (u)‖L∞(0,T,H) ≤ Cδ2‖u− v‖L∞(0,T,H).

where A,B,C are positive constants.

Proof. These estimates follow from identities (3.53), (3.54), (3.57) and Lemmas (2.9) and (2.11):

‖N (v, 0, t)‖H ≤
∫ t

0

‖eiL(s−t)(m(v(s))v(s)
)‖H ds

≤
∫ t

0

‖m(v(s))v(s)‖H
(
1 + (t− s)‖μx − αx‖L∞

)
ds

≤ 3
2

(1 + T ‖μx − αx‖L∞)
∫ t

0

‖v(s)‖3
H ds

≤ B(T, ‖μx − αx‖L∞)‖v‖3
L∞(0,T,H)

≤ B(T, ‖μx − αx‖L∞)δ3,

and ∥∥∥∥∫ t

0

eiL(s−t)ψ(x)hlin(x, s)ds
∥∥∥∥
H

≤
∫ t

0

‖ψhlin(·, s)‖H
(
1 + (t− s)‖μx − αx‖L∞

)
ds

≤ Cψ‖hlin‖L2(0,T,H) ‖1 + (t− s)‖μx − αx‖L∞‖L2(0,t)

≤ C(ψ, T, ‖μx − αx‖L∞) (‖u0‖H + ‖uT −N (v, 0, T )‖H)

≤ C(ψ, T, ‖μx − αx‖L∞)
(
‖u0‖H + ‖uT ‖H + ‖v‖3

L∞(0,T,H)

)
≤ A1(ψ, T, ‖μx − αx‖L∞)R+B(T, ‖μx − αx‖L∞)δ3.

For the second assertion note that

Γ (v)(t) − Γ (u)(t) = −i
∫ t

0

eiL(s−t)(m(v)(s)v(s) −m(u)(s)u(s)
)
ds. (3.58)
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A similar reasoning leads us to the inequality

‖Γ (v)(t) − Γ (u)(t)‖H ≤
∫ t

0

‖eiL(s−t)(m(v(s))v(s) −m(u(s))u(s)
)‖H ds

≤ B(T, ‖μx − αx‖L∞)
∫ t

0

‖m(v(s))v(s) −m(u(s))u(s)‖H ds

≤ B(T, ‖μx − αx‖L∞)
∫ t

0

(‖v‖2
H + ‖v‖H‖u‖H + ‖u‖2

H
) ‖v − u‖H ds

≤ B(T, ‖μx − αx‖L∞)δ2‖v − u‖L∞(0,T,H),

from where second estimate follows easily. This finishes the proof. �

Proof of Theorem 3.6. As we state above, it relies on a fixed point argument. Set Kδ := {v ∈ C(0, T,H) :
v(0) = u0, v(T ) = uT , ‖v‖L∞(0,T,H) ≤ δ}. Using the estimates given by Lemma 3.7, we get the following
sufficient conditions

AR+Bδ3 ≤ δ

Cδ2 < 1

which are easily satisfied taking δ = 2RA and R < min
{

1
2
√
CA

, 1
2
√

2BA

}
. �

4. Non controllability for compactly supported controls

Throughout this section we shall focus our attention to controls ψ(x)h(x, t) with Supp(ψ) compact, and
consider two different situations, depending on the linear term: Lμ = −∂2

x + μ, which has a discrete spectrum,
and Le = −∂2

x− x with a continuous spectrum. The negative result concerning the related exact controllability
for the linear problem is similar to the one given in [6], however our problem is posed in H which is not L2 but
a suitable Sobolev space. For this reason we shall adapt both the result and its proof, and this heavily relies
upon the spectral properties reported in section 2. Actually, since the proof relies on a special feature of the
eigenstates of the linear operator, we shall use the unitary group U+, and the eigenfunctions {φN}N∈N of the
auxiliar operator L+ := −∂2

x + |x| yielded by Lemma 2.1.

4.1. Discrete spectrum

We first consider the non-controllability result for the model equation,

iut(x, t) = Lμu(x, t) + ψ(x)h(x, t), x ∈ R, (4.1)
u(x, 0) = u0(x), u(x, T ) = uT (x), (4.2)

with Supp(ψ) compact. The main result reads as follows.

Theorem 4.1. The exact internal distributed control is not possible, i.e. for a given target state uT ∈ H there
exist a bounded open set Ω ⊆ R and an initial function u0 such that there is no control function h and no
constant C = C(Ω, T ) > 0 such that the equation (4.1) holds with u(0) = u0, u(T ) = uT , and ‖h‖L1(0,T,H) ≤
C (‖u0‖H + ‖uT‖H)

Proof. As in [6] we argue by contradiction. Let Ω be a fixed finite interval and take φN , the Nth eigenfunction
of L+, as a target state, and assume that there exist a time T > 0, a control function hN ∈ L2(0, T,H), a
constant C(Ω, T ), with ‖h‖L2(0,T,H) ≤ C(Ω, T )(‖u0‖H + ‖φN‖H) an initial state u0 and a solution uN of (4.1).
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Let U+(t) be the unitary group generated by −iL+ in H, since Lμ = L++b where b(x) = μ(x)−|x| has compact
support, from Duhamel identity we have:

φN (x) = U+(T )u0(x) − i

∫ T

0

U+(T − s)(ψhN + buN)ds.

Since U+(t)ψ =
∑

e−itλ̃N ψ̂(N)φN (x), where ψ̂(N) =
∫
ψ(x)φN (x)dx are the related Fourier coefficients, after

taking the L2-inner product with φN we get

1 = e−iT λ̃N 〈u0;φN 〉 − i

∫ T

0

e−i(T−s)λ̃N 〈ψhN + buN ;φN 〉ds. (4.3)

Since u0 ∈ H the first term goes to zero. The second term verifies

〈ψhN + buN ;φN 〉 = λ̃−1
N 〈ψhN + buN ;L+φN 〉

= λ̃−1
N 〈∂(ψhN + buN ); (φN )x〉 + λ̃−1

N 〈|x|ψhN + |x|buN ;φN 〉
= λ̃−1

N 〈ψxhN + ψ(hN )x + bxuN + b(uN )x; (φN )x〉 + λ̃−1
N 〈|x|ψhN + |x|buN ;φN 〉.

From Lemma 2.1 we see that the eigenfunctions {φN}N∈N satisfy ‖φN‖L2 = 1, ‖φN‖H = λ̃
1/2
N , and

‖(φN )x‖L2(Ω) ∼ λ̃
1/4
N , we also recall that both ψ and b have compact support, and verifies bx, ψx ∈ L∞.

With this in mind we get:∣∣∣∣∣i
∫ T

0

e−i(T−s)λ̃N 〈ψhN + buN ;φN 〉
∣∣∣∣∣ ≤

∫ T

0

|〈ψhN + buN ;φN 〉|

≤ C(ψ, b)λ̃−1
N ‖φN‖L2

∫ T

0

(‖uN‖H + ‖hN‖H)

+ C(ψ, b)λ̃−1
N ‖(φN )x‖L2(Ω)

∫ T

0

(‖uN‖H + ‖hN‖H)

≤ λ̃−1
N C(ψ,Ω, T )(‖u0‖H + λ̃

1/2
N )(1 + λ̃

1/4
N )

which goes to zero as N goes to infinity. This contradicts identity (4.3), and finishes the proof. �

4.2. Continuous spectrum

We now consider the non-controllability result for the linear model equation, with Le = −∂2
x − x,

iut(x, t) = Leu(x, t) + ψ(x)h(x, t), x ∈ R, (4.4)
u(x, 0) = u0(x), u(x, T ) = uT (x), (4.5)

with Supp(ψ) compact. The main result reads as follows.

Theorem 4.2. The exact internal distributed control is not possible, i.e. for a given target state uT ∈ H there
exist a bounded open set Ω ⊆ R and an initial function u0 such that there is no control function h and no
constant C = C(Ω, T ) > 0 such that the equation (4.4) holds with u(0) = u0, u(T ) = uT , and ‖h‖L1(0,T,H) ≤
C (‖u0‖H + ‖uT‖H)

Remark 4.3. As for the result of the previous subsection we follow the ideas of Theorem 3 of [6], but in order
to accomplish the task we need an extra ingredient given by the following Lemma.
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Lemma 4.4. Let Ue(t) be the group generated by −iLe where Le := −∂2
x + x. Then [∂x : Ue(t)] = −itUe(t).

Proof. We start noting that [∂x : Le] = [∂x : x] = 1 and [∂x : LM+1
e ] = [∂x : LMe ]Le +LMe [∂x : Le]. An inductive

argument shows the identity [∂x : LM+1
e ] = (M + 1)LMe . For φ in the Schwartz space we have

[∂x : Ue(t)]φ =
∑
M≥0

(−it)M
M !

[∂x : LMe ]φ

=
∑
M≥0

(−it)M+1

(M + 1)!
[∂x : LM+1

e ]φ

= −itUe(t)φ.

A density argument allows us to extend the result for φ ∈ H. �

Proof of Theorem 4.2. We first set Ψ(x) ∈ C∞
0 (R) such that 0 ≤ Ψ(x), Supp(Ψ) = [−1; 1], and 1 =

∫
Ψ(x), and

take Ψε = ε−1Ψ(ε−1x). We below collect the behavior of the different norms involved in the proof, their validity
is evident and will not be reported.

‖Ψε‖L1 = ‖Ψ‖L1 = 1 (4.6)

‖Ψε‖L2 = ε−1/2‖Ψ‖L2 (4.7)

‖Ψε‖L2
µ
≤ ε−1/2(1 + ε)1/2‖Ψ‖L2

µ
(4.8)

‖(Ψε)x‖L1 = ε−1‖Ψx‖L1 (4.9)

‖(Ψε)x‖L2 = ε−3/2‖Ψx‖L2. (4.10)

We also add, for a fixed T > 0, the function φε := Ue(2T )Ψε, where Ue is the related unitary group, and
notice that ‖φε‖2

L2 = ‖Ψε‖2
L2 = ε−1‖Ψ‖2

L2. We now argue by contradiction. Assume the exact controllability
of (4.4), then there exist hε ∈ L2(0, T,H) such that

‖hε‖L2(0,T,H) ≤ C(‖u0‖H + ‖φε‖H),

and a solution uε(x, t) of (4.4) with uε(·, T ) = φε, and u0 ∈ H arbitrary.
From Duhamel identity we have

φε = Ue(T )u0 − i

∫ T

0

Ue(T − s)(ψhε)ds

and taking the L2 inner–product with Lμφε we get

〈φε;Lμφε〉 = 〈Ue(T )u0 − i

∫ T

0

Ue(T − s)(ψhε)ds;Lμφε〉, (4.11)

left hand side reads:
〈φε;Lμφε〉 = 〈Ψε;Ue(−2T )(−∂2

x)Ue(2T )Ψε〉 + 〈φε;μφε〉.
Before going further we develop an useful identity, based on the commutator relation given by Lemma 4.4:

Ue(r)(−∂2
x)Ue(s) = −[Ue(r) : ∂x]∂xUe(s) − ∂xUe(r)∂xUe(s)

= −irUe(r)∂xUe(s) + is∂xUe(r)Ue(s) − ∂xUe(r)Ue(s)∂x
= r2Ue(r + s) − i(r − s)∂xUe(r + s) − ∂xUe(r + s)∂x. (4.12)
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With this result, the left hand side of (4.11) reads

〈φε;Lμφε〉 = 4T 2‖Ψε‖2
L2 + 4iT 〈Ψε; ∂xΨε〉 − 〈Ψε; ∂2

xΨε〉 + 〈φε;μφε〉
= 4T 2ε−1‖Ψ‖2

L2 + ε−3‖Ψx‖2
L2 + ‖φε‖2

L2
µ
.

The last term is bounded with the help of Lemma 2.9

‖φε‖2
L2

µ
≤ ‖Ψε‖2

L2
µ

+ 4T ‖Ψε‖L2‖(Ψε)x‖L2 + 4T 2‖Ψε‖2
L2 .

Previous estimates altogether yield:

ε3〈φε;Lμφε〉 = ‖Ψx‖2
L2 +O(ε). (4.13)

After multiplying by ε3, the right hand side of (4.11) reads:

ε3〈Ue(T )u0;LμUe(2T )Ψε〉 − iε3
∫ T

0

〈Ue(T − s)(ψh);LμUe(2T )Ψε〉ds .

The first term goes to zero as easily follows from Lemma 2.9 and estimates (4.6):

ε3 |〈Ue(T )u0;LμUe(2T )Ψε〉| ≤ ε3‖φε‖H‖Ue(T )u0‖H
≤ ε3C(T )‖Ψε‖H‖u0‖H
≤ C(T, u0, Ψ)ε3/2.

The second term is splitted as

−iε3
∫ T

0

〈Ue(T − s)(ψh); (−∂2
x)Ue(2T )Ψε〉ds− iε3

∫ T

0

〈Ue(T − s)(ψh);μUe(2T )Ψε〉ds.

and each term is treated separately. For the later we apply a similar procedure as for the initial datum:

ε3 |〈Ue(T − s)(ψh);μUe(2T )Ψε〉| ≤ ‖φε‖L2
µ
‖Ue(T − s)ψhε‖L2

µ

≤ C(T, Ψ)ε2‖ψhε‖1/2
L2 ‖(ψhε)x‖1/2

L2

≤ C(T, Ψ,Ω)ε2‖hε‖H1

≤ C(T, Ψ,Ω)ε1/2,

and the former is handled using the L1 −L∞ estimate displayed in Corollary 2.8. To see this we first apply the
identity (4.12) and get:

Ue(−2T )(−∂2
x)Ue(T − s) = 4T 2Ue(−T − s) − i(s− 3T )∂xUe(−T − s) − ∂xUe(−T − s)∂x.

This leads to: ∣∣〈Ue(T − s)(ψh); (−∂2
x)Ue(2T )Ψε〉

∣∣ ≤ 4T 2‖Ψε‖L1‖Ue(−T − s)(ψhε)‖L∞

+ 3T ‖(Ψε)x‖L1‖Ue(−T − s)(ψhε)‖L∞

+ ‖(Ψε)x‖L1‖Ue(−T − s)(ψhε)x‖L∞

≤ C(Ω, T )‖hε‖L2 + C(Ω, T, Ψ)ε−1‖hε‖H1

≤ C(Ω, T, Ψ, u0)ε−5/2

where we have used the estimates ‖ψhε‖L1 ≤ C(Ω, T )‖hε‖L2, ‖(ψhε)x‖L1 ≤ C(Ω, T )‖hε‖H1 , and the fact that
| − T − s|−1/2 ≤ T−1/2. Integrating in [0, T ] and multiplying by ε3 we see that the right hand side of (4.11)
tends to zero, contradicting the estimate (4.13). This finishes the proof. �
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