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1. Introduction

Recently a great deal of attention has been devoted to thin structures because of the many applications they
find in the applied sciences. A wide literature, concerning mathematical problems defined in thin structures and
modelled through partial differential equations and integral functionals, is available both in the Sobolev and
BV settings. To our knowledge little is known when one wants to investigate the relations between problems
dealing with thin structures whose deformation fields are functions of bounded variation and the analogous
problems modelled through Sobolev fields. This issue has been in fact pointed out also by [8], in the context
of applications dealing with approximations of yield sets in Plasticity and for models dealing with dielectric
breakdown.

The aim of this paper consists, in fact, in determining the asymptotic behaviour, both for ε → 0 and p → 1
of p−harmonic functions in thin domains of the type Ωε : ω × (− ε

2 , ε
2

)
, with prescribed boundary data v0 on

the lateral boundary of Ωε := ∂ω × (− ε
2 , ε

2

)
, i.e.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δpv := −div(|∇v|p−2∇v) = 0 in Ωε,

v ≡ v0 on ∂ω × (− ε
2 , ε

2

)
,

|∇v|p−2∇v · ν = 0 on ω × {− ε
2 , ε

2

}
,

(1.1)

where ν denotes the unit normal to the top and the bottom of the cylinder.
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We emphasize the fact that the thin domain is a cylinder, with cross section ω, satisfying suitable regularity
requirements, that will be clearly stated in the sequel (see in particular Sect. 5). We assume in our subsequent
analysis that the boundary is indeed piecewise C1 (see beginning of Sect. 3).

Equivalently one may think of studying as ε → 0 and p → 1, the associated Dirichlet integral, namely

1
ε

∫
Ωε

|∇v|pdx (1.2)

among all the fields v ∈ W 1,p(Ωε), with v ≡ v0 on ∂ω × (− ε
2 , ε

2

)·
Several issues appear at this point, (see for instance [24] for a recent survey on the asymptotics as p → 1):

varying domains Ωε, meaning of the equation (1.1) for p = 1, the possibility and the order with respect to which
one may take the limits as ε → 0 and p → 1.

We start by rescaling our problem, thus eliminating the varying domains, transferring the dependence on ε
to the expression of the equation and its associated variational functional.
To this end, we fix our notations: let ω ⊂ R2 be a bounded smooth domain which is piecewise C1 (or whose
boundary ∂ω has positive mean curvature (cf. [29] and Thm. 5.2 below)) and let u0 be in a suitable trace space
to be defined later according to the different formulations of the problems.

For every ε > 0, let Ωε be a cylindrical domain of cross section ω ⊂ R2 and thickness ε, namely Ωε :=
ω × (− ε

2 ; ε
2

)
. We reformulate (1.2), considering a 1

ε–dilation in the transverse direction x3.

Ω := Ω1 = ω × (− 1
2 , 1

2

)
,

u(x1, x2, x3) := v(x1, x2, εx3),

u0(x1, x2) = v0(x1, x2).

(1.3)

In the sequel we will denote the planar variables (x1, x2) by xα and for every ξ1, ξ2, ξ3 ∈ R, the vector (ξ1, ξ2, ξ3)
will be denoted by (ξα|ξ3).
Thus for every p > 1, (1.2) is replaced by Ip,ε : W 1,p(Ω) → R+, defined as

Ip,ε(u) :=
∫

Ω

∣∣∣∣
(
∇αu

∣∣∣∣1ε∇3u

)∣∣∣∣
p

dxαdx3. (1.4)

We can consider the following variational problem

Pp,ε := min
{

Ip,ε(u) : u ∈ W 1,p(Ω), u ≡ u0 on ∂ω ×
(
−1

2
,
1
2

)}
· (1.5)

The Euler–Lagrange equation associated to (1.5) is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δp,εu = 0 in Ω,

u ≡ u0 on ∂ω × (− 1
2 , 1

2

)
,

|Idε∇u · ∇u| p−2
2 (Idε∇u) · ν = 0 on ω × {− 1

2 , 1
2

}
,

(1.6)

where Idε ∈ R3×3 is the matrix defined as

(Idε)i,j =

⎧⎨
⎩

1
ε2 if i = j = 3,

δi,j otherwise,
(1.7)
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and Δp,ε is the simple anisotropic p, ε–Laplace operator defined as

Δp,εu = div
(
|Idε∇u · ∇u| p−2

2 Idε∇u
)
·

We are interested in the asymptotic behaviour of Pp,ε and argminPp,ε, (namely the behaviour of the weak
solutions of (1.6)) both in the order (p → 1, ε → 0) and in the reverse one, i.e. (ε → 0, p → 1).
In order to exploit pre-existing results in the Γ–convergence setting, we will discuss first the case ε → 0 before
p → 1.
For ε = 0 we may introduce the 3D problem in terms of PDE’s⎧⎪⎪⎪⎨

⎪⎪⎪⎩

−Δα,p,0u := −divα(|∇αu|p−2∇αu) = 0 in Ω,

∇3u = 0 in Ω,

u = u0 in ∂ω × (− 1
2 , 1

2

)
,

(1.8)

where the index α means that the derivatives are taken only with respect to xα.
Let Ip,0 : W 1,p(ω) → R+, be the functional defined as

Ip,0(u) :=
∫

ω

|∇αu|p dx, (1.9)

and define the minimum problem

Pp,0 := min
{
Ip,0(u) : u ∈ W 1,p(Ω), u ≡ u0 on ∂ω

}
. (1.10)

It is well known since the pioneering papers [1,26] that, for every p > 1, Pp,ε converges as ε → 0 to Pp,0, namely
the functionals Ip,ε Γ–converge with respect to Lp strong topology, as ε → 0 to Ip,0, (cf. Sect. 3.1). In particular,
it has to be observed that the convexity of the space functions in (1.5) and (1.10), the strict convexity and the
coerciveness of Ip,ε and Ip,0, due to the choice p > 1, ensure that Pp,ε and Pp,0 admit a unique solution, which,
in turn is a weak solution of (1.6) and (1.8), respectively, for instance when u0 ∈ W

p−1
p ,p(∂ω) (cf. Sect. 2 for

the definition of trace spaces).
At this point it is worth, identifying the fields in W 1,p(Ω) with ∇3u = 0 with the fields in W 1,p(ω), to observe

that (1.8) admits the equivalent 2D formulation⎧⎨
⎩

−Δp,0u := −div(|∇u|p−2∇u) = 0 in ω,

u = u0 on ∂ω.
(1.11)

For every fixed ε > 0 and p = 1, one can also define the following variational problems

P1,ε := inf
{

I1,ε(u) : u ∈ W 1,1(Ω), u ≡ u0 on ∂ω ×
(
−1

2
,
1
2

)}
, (1.12)

where I1,ε : W 1,1(Ω) → R+, is defined as

I1,ε(u) :=
∫

Ω

∣∣∣∣
(
∇αu

∣∣∣∣1ε∇3u

)∣∣∣∣ dx. (1.13)

In principle I1,ε may not admit a solution in the Sobolev setting, because of many reasons, first of all the lack
of coerciveness, but, as we shall see in Section 5, also the choice of the trace space and the regularity of the
set Ωε play a crucial role.
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Consequently in order to guarantee a correct formulation for problem P1,ε one needs to extend I1,ε (with abuse
of notations) on the space of functions with bounded variation BV (Ω), taking care of the fact that u = u0

outside the lateral boundary of Ω, thus considering

I1,ε(u) :=
∣∣∣∣
(

Dαu

∣∣∣∣1εD3u

)∣∣∣∣ (Ω) (1.14)

where the derivatives are intended in the sense of distributions and the integral is replaced by the total variation.
Hence the minimum problem, after a relaxation procedure (cf. [28], Thm. 3.4), becomes

P1,ε = min

{∣∣∣∣
(

Dαu

∣∣∣∣1εD3u

)∣∣∣∣ (Ω) +
∫

∂ω×(− 1
2 , 1

2 )
|u − u0|dH2, u ∈ BV (Ω)

}
. (1.15)

Analogously one may consider the problem Pp,ε for p = 1 and ε = 0, thus formally obtaining

P1,0 = min

{
|Dαu| (Ω) +

∫
∂ω×(− 1

2 , 1
2 )

|u − u0|dH2, u ∈ BV (Ω), D3u = 0

}
, (1.16)

which arises from the relaxation in BV (Ω) (see [2, 18]) of the functional I1,0 : U → R, where U := {u ∈
W 1,1(Ω) : ∇3u = 0, u ≡ u0 on ∂ω × (− 1

2 , 1
2

)}, defined as

I1,0(u) :=
∫

Ω

|∇αu|dx, (1.17)

whose related minimum problem in U is

P1,0 := inf {I1,0(u) : u ∈ U} . (1.18)

Also the asymptotic behaviour of I1,ε as ε → 0 is a consequence of the results in [6], cf. Section 3.1, where we
state the Γ–convergence of I1,ε to the functional in problem (1.16).

The asymptotics in terms of Γ–convergence for p → 1 are indeed one of the targets of this paper. Namely in
Theorems 3.8 and 3.11. we prove the convergence of Pp,0 to P1,0 and of Pp,ε to P1,ε respectively. In the above
mentioned analysis it is assumed that the prescribed boundary datum u0 is in the space W 1− 1

p ,p(∂ω), for a
certain p > 1.

We emphasize that a different view to the limit p → 1 of problems Pp,ε and Pp,0 can be provided in terms
of equations, namely, besides the asymptotic analysis in terms of Γ–convergence, mentioned above, via Duality
theory we define in a precise way the anisotropic −Δ1 and −Δ1, thus giving a clear meaning to (1.6) and (1.11)
when p = 1.

Our analysis focuses also on the study of least gradient problems in dimensional reduction, in connection
with P1,0 and P1,ε. In this framework the minimum problems can be stated essentially in the same way but test
fields are assumed in BV , thus in order to ensure existence of solutions a crucial role is played by the regularity
of the domain ω and the boundary datum u0.

The paper is organized as follows. Section 2 is devoted to preliminary results about Γ–convergence, measures,
functions of bounded variation, trace spaces and duality theory. In Section 3, we first discuss in Section 3.1
the asymptotics as ε → 0, for every p ≥ 1 by means of recalls to the existing literature, we then provide
sufficient conditions in order to pass to the limit as p → 1 for every ε ≥ 0 (cf. Sects. 3.2 and 3.3). Finally
in Section 3.4 we conclude that the limits p → 1 and ε → 0 commute (cf. the diagram therein). In Section 4
through Proposition 4.1 a meaning to 1–Laplacian and anisotropic 1–Laplacian operators is given and we state
a rigorous connection, for a suitable choice of the boundary datum u0, between the differential problems (1.6)
and the integral ones via the duality when p = 1, see Remark 4.2 and Proposition 4.4.

Connections with the least gradient problem will be addressed in Section 5, see Theorems 5.7 and 5.8. This
latter approach reveals its importance in determining the existence of solutions to the limit problems (as p → 1)
of (1.1). In fact, in spite of possible lack of coerciveness of Problems 1.15 and 1.16 below, the solution exists
provided suitable geometrical regularity assumptions on the cross section ω of the cylinder Ωε.
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2. Preliminary results

In the following subsections we give a brief survey of Γ–convergence, functions of bounded variation and
trace spaces. For a detailed treatment of these subjects, we refer to [3, 4, 9, 10] respectively.

2.1. Γ–convergence

Let (X, d) be a metric space.

Definition 2.1 (Γ–convergence for a sequence of functionals). Let {Jn} be a sequence of functionals defined
on X with values in R. The functional J : X → R is said to be the Γ − lim inf (resp. Γ − lim sup) of {Jn} with
respect to the metric d if for every u ∈ X

J(u) = inf
{
lim inf
n→∞ Jn(un) : un ∈ X, un → u in X

} (
resp. lim sup

n→∞

)
.

Thus we write
J = Γ − lim inf

n→∞ Jn

(
resp. J = Γ − lim sup

n→∞
Jn

)
.

Moreover, the functional J is said to be the Γ−limit of {Jn} if

J = Γ − lim inf
n→∞ Jn = Γ − lim sup

n→∞
Jn,

and we may write
J = Γ − lim

n→∞Jn.

For every ε > 0, let Jε be a functional over X with values in R, Jε : X → R.

Definition 2.2 (Γ–convergence for a family of functionals). A functional J : X → R is said to be the Γ–liminf
(resp. Γ–limsup or Γ–limit) of {Jε} with respect to the metric d, as ε → 0+, if for every sequence εn → 0+

J = Γ − lim inf
n→∞ Jεn

(
resp. J = Γ − lim sup

n→∞
Jεn or J = Γ − lim

n→∞Jεn

)
,

and we write
J = Γ − lim inf

ε→0+
Jε

(
resp. J = Γ − lim sup

ε→0+
Jε or J = Γ − lim

ε→0+
Jε

)
.

Next we state the Urysohn property for Γ–convergence in a metric space.

Proposition 2.3. Given J : X → R and εn → 0+, J = Γ − lim
n→∞Jεn if and only if for every subsequence{

εnj

} ≡ {εj} there exists a further subsequence
{
εnjk

}
≡ {εk} such that {Jεk

} Γ−converges to J.

In addition, if the metric space is also separable the following compactness property holds.

Proposition 2.4. Each sequence εn → 0+ has a subsequence
{
εnj

} ≡ {εj} such that Γ − lim
j→∞

Jεj exists.

Proposition 2.5. If J = Γ − lim inf
ε→0+

Jε (or Γ − lim sup
ε→0+

Jε) then J is lower semicontinuous (with respect to the

metric d).

We conclude with a result dealing with the convergence of minimizers and minimum points, [10], Corol-
lary 7.17.

Theorem 2.6. For every ε ∈ N, let {xε} be a minimizer of Jε in X. If {xε} converge to x in X, then x is a
minimizer of Γ − lim infε Jε and Γ − lim supε Jε in X and(

Γ − lim inf
ε

Jε

)
(x) = lim inf

ε
Jε (xε) ,

(
Γ − lim sup

ε
Jε

)
(x) = lim sup

ε
Jε (xε) .
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2.2. Measures

We start this subsection by recalling a result that may be found in [12].

Proposition 2.7. Let O be a bounded open set in RN , and for every sequence p > 1, let {μp}p and μ be
non-negative Borel measures on O such that⎧⎪⎪⎨

⎪⎪⎩
lim sup

p→1
μp(O) ≤ μ(O) < +∞,

lim sup
p→1

μp(A) ≥ μ(A) for every open subset A of O.

Then for every ϕ ∈ C(O) we have

lim
p→1

∫
O

ϕdμp =
∫

O

ϕdμ.

Let O be an open subset of RN , we denote by M(O) the space of all signed Radon measures in O with bounded
total variation. By the Riesz Representation Theorem, M(O) can be identified with the dual of the separable
space C0(O) of continuous functions on the closure of O vanishing on the boundary ∂O. The N–dimensional
Lebesgue measure in RN is designated as LN while HN−1 denotes the (N − 1)–dimensional Hausdorff measure.
If μ ∈ M(O) and λ ∈ M(O) is a nonnegative Radon measure, we denote by dμ

dλ the Radon–Nikodým derivative
of μ with respect to λ. By a generalization of the Besicovitch Differentiation Theorem (see [2], Prop. 2.2), it
can be proved that there exists a Borel set E ⊂ O such that λ(E) = 0 and

dμ

dλ
(x) = lim

ρ→0+

μ(x + ρ C)
λ(x + ρ C)

for all x ∈ Supp λ \ E

and any open convex set C containing the origin. (Recall that the set E is independent of C.)

2.3. Functions of bounded variation

We say that u ∈ L1(O; Rd) is a function of bounded variation, and we write u ∈ BV (O; Rd), if all its first
distributional derivatives Djui belong to M(O) for 1 ≤ i ≤ d and 1 ≤ j ≤ N . We refer to [3] for a detailed
analysis of BV functions. The matrix–valued measure whose entries are Djui is denoted by Du and |Du| stands
for its total variation. By the Lebesgue Decomposition Theorem we can split Du into the sum of two mutually
singular measures Dau and Dsu where Dau is the absolutely continuous part of Du with respect to the Lebesgue
measure LN , while Dsu is the singular part of Du with respect to LN . By ∇u we denote the Radon–Nikodým
derivative of Dau with respect to the Lebesgue measure so that we can write

Du = ∇uLN + Dsu.

The set Su of points where u does not have an approximate limit is called the approximated discontinuity set,
while Ju ⊆ Su is the so-called jump set of u defined as the set of points x ∈ O such that there exist u±(x) ∈ Rd

(with u+(x) �= u−(x)) and νu(x) ∈ SN−1 satisfying

lim
ε→0

1
εN

∫
{y∈Bε(x):(y−x)·νu(x)>0}

|u(y) − u+(x)| dy = 0,

and

lim
ε→0

1
εN

∫
{y∈Bε(x):(y−x)·νu(x)<0}

|u(y) − u−(x)| dy = 0.
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2.4. Trace spaces

If O is an open set with Lipschitz boundary ∂O and u ∈ BV (O), we denote by uo the null extension of u
to RN defined by {

u(x) if x ∈ O,
0 if x ∈ RN \ O,

for LN a.e. x ∈ RN . It turns out that uo ∈ BV (RN ), and we define the trace γO(u) of u on ∂O as

γO(u) = (uo)+ − (uo)−.

It results that for HN−1-a.e. x ∈ ∂O, the vector νuo(x) agrees with the exterior (interior) normal ν(x) to ∂O
at x, moreover u+

o (x) = 0 or u−
o (x) = 0 and γO(u)(x) = u+

o or γO(u)(x) = u−
o . We observe that

γO(u)(x) = u(x)

for every u ∈ W 1,p(O) ∩ C(O) and for HN−1-a.e. x ∈ ∂O. We also recall that (see [32])

lim
rN→0

1
rN

∫
O∩Br(x0)

|u(x) − γO(u)(x0)| N
N−1 dx = 0 for HN−1 − a.e. x0 ∈ ∂O.

Let O ⊂ RN be a bounded open set with Lipschitz boundary, p ≥ 1, there is a well defined continuous trace
operator from W 1,p(O) (resp. BV (O)) into Lp(∂O) (resp. L1(∂O)) satisfying the following integration by parts
formula ∫

O

udivφdx = −
∫

O

∇u · φdx +
∫

∂O

φγO(u) · νdHN−1,

for every u ∈ W 1,p(O) (resp. u ∈ BV (O)), φ ∈ C1
c (RN )N .

Then the trace space of W 1,p(O), meaning that there is a continuous surjection whose kernel is W 1,p
0 (O), is

denoted by W 1− 1
p ,p(∂O), and it turns out that for p = 1 W 0,1(∂O) = L1(∂O).

Namely the following inequalities hold

‖γO(u)‖
W

1− 1
p

,p
(∂O)

≤ C0‖u‖W 1,p(O) for every u ∈ W 1,p(O), (2.1)

and, conversely, for every ϕ ∈ W 1− 1
p ,p(∂O) there exists u ∈ W 1,p(O) such that γO(u) = ϕ and

‖u‖W 1,p(O) ≤ C1‖ϕ‖
W

1− 1
p

,p
(∂O)

, (2.2)

for suitable constants C0, C1 ≥ 0.
The following result (cf. [31], Prop. 1.1) allows us to extend the previous considerations and inequality (2.1)

to RN \ O, provided O is bounded.

Proposition 2.8. Let p > 1, let O be a bounded open set with Lipschitz boundary, then there exists C′
2 > 0

such that for every ϕ ∈ W 1− 1
p ,p(∂O) there exists u ∈ W 1,p(RN \ O) such that γ

RN\O(u) = ϕ and

‖u‖W 1,p(RN\O) ≤ C′
2‖ϕ‖

W
1− 1

p
,p

(∂O)
.

For every p ∈ [1, +∞[, let I be a bounded open set in RN with Lipschitz boundary such that Γ := ∂O∩I �= ∅
and suppose that HN−1(Γ \Γ ) = 0. We denote by W 1,p

0,Γ (O) the space {u ∈ W 1,p(O) : u = 0HN−1−a.e. on Γ},
W 1,p

0,∂O(O) = W 1,p
0 (O). In the sequel, for every u1 ∈ W 1,p

loc (RN ) we denote u1 + W 1,p
0,Γ (O) by W 1,p

u1,Γ (O), and
u1 + W 1,p

0 (O) by W 1,p
u1

(O).
Moreover with an abuse of notation, we will identify (the restriction of) a function u with its trace on ∂O

(or part of ∂O), γO(u).
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2.5. Duality

We end this section by recalling a result due to Ekeland and Temam (cf. [17], Thm. 4.1 Chap. III) that will
be exploited in the sequel, we refer to the version mentioned in [16], Theorem 2.

Theorem 2.9. Suppose that X and Y are Banach spaces, that Λ is a linear and continuous operator which
sends X into Y , that F and G are convex functions on X and Y , respectively. We denote F ∗ and G∗ their
Fenchel conjugates, defined, respectively, on X∗ and Y ∗, by Λ∗ the adjoint operator of Λ. Then

inf
u∈X

{F (u) + G(Λu)} ≥ sup
p∗∈Y ∗

{−F ∗(Λ∗p∗) − G∗(−p∗)} .

Suppose that there exists u0 ∈ X, such that F (u0) < ∞, and G is continuous on Λu0. Then,

inf
u∈X

{F (u) + G(Λu)} = sup
p∗∈Y ∗

{−F ∗(Λ∗p∗) − G∗(−p∗)} ,

and the dual problem on the right-hand side of the above possesses at least one solution.

3. Asymptotics in terms of Γ–convergence

In order to study the asymptotics for ε → 0 and p → 1 of problems Pp,ε and Pp,0 in (1.5) and (1.10)
respectively, we will invoke previous results and prove more general ones for generic open sets O ⊂ RN . Finally
we will apply these lemmata to the specific open sets Ω ⊂ R3 and ω ∈ R2 involved in problems Pp,0 and Pp,ε.
We will assume, in all the following statements, that ω is a bounded open set in R2, which is piecewise C1,
on the other hand we will weaken this assumption in some particular cases as below specified. We conjecture
that it is possible, in the general framework, to assume ω with Lipschitz boundary, but, since our aim consists
of providing Γ–convergence results in dimension reduction for −Δ1, connecting our results, in the last section,
with ‘Least Gradient’ theory, we do not focus on the regularity assumptions for the boundary ∂ω.

3.1. Asymptotics as ε → 0

The first part of this section is devoted to recall the results available in literature for the asymptotics as
ε → 0 of problems Pp,ε in (1.5) for p > 1 and P1,ε in (1.12). Within this subsection ω ⊂ R2 will be a bounded
open set with Lipschitz boundary and Ω := ω × (− 1

2 , 1
2

) ·
First we refer to the Sobolev case, i.e. p > 1, to this end we state the following result due to Le Dret and

Raoult (cf. [26], Thm. 2 where also loadings are considered). Their result deals with the hyperelastic case, besides
some technical restrictions have been imposed. For the scalar case one may refer to [1], where the 3D − 1D
dimension reduction has been performed under mechanically consistent hypotheses.

Theorem 3.1. Let u0 ∈ W 1,p(ω; R3), let f : R3×3 → [0, +∞[ be a continuous function satisfying the following
growth and coercivity condition

C1|ξ|p − C2 ≤ f(ξ) ≤ C3(1 + |ξ|p)
for every ξ ∈ R3×3 and for some C1, C3 > 0, and C2 ≥ 0. Then the family of functionals Eε : Lp(Ω; R3) →
[0, +∞] defined by

Eε(u) =

⎧⎪⎨
⎪⎩
∫

Ω

f

(
∇αu

∣∣∣∣1ε∇3u

)
dx if u ∈ W 1,p

u0,∂ω×(− 1
2 , 12 )

(Ω; R3),

+∞ otherwise,



50 M.E. AMENDOLA ET AL.

Γ–converges, with respect to the Lp(Ω; R3) convergence, as ε → 0 to the functional E0 : Lp(Ω; R3) → [0, +∞]
defined by

E0(u) =

⎧⎪⎨
⎪⎩
∫

ω

Qf0(∇αu)dxα if u ∈ W 1,p
u0

(ω; R3),

+∞ otherwise,

where W 1,p
u0

(ω; R3) has been identified with {u ∈ W 1,p

u0,∂ω×(− 1
2 , 1

2 )
(Ω; R3) : ∇3u = 0} and f0 : R3×2 → [0, +∞[ is

defined as
f0(z) := inf

c∈R3
f(z, c)

and Qf0 : R3×2 → [0, +∞) is the quasiconvexification of f0, viz

Qf0(z) = inf
{

1
|D|
∫

D

f0(z + ∇ϕ)dx : ϕ ∈ W 1,∞
0 (D; R2)

}
(3.1)

with D ⊂ R3.

Remark 3.2. The above result applies to the family Ip,ε in (1.4), just replacing the density f(·) by | · |p as
in (1.4), providing the Γ–convergence, as ε → 0, to Ip,0 in (1.9) (observe that Q(| · |p)0 = | · |p).

Analogously, in the linear case, i.e. p = 1, from [6], Theorem 3.2, where the SBV setting has been considered,
the following result can be deduced.

Theorem 3.3. Let f : R
3×3 → [0, +∞[ be a continuous function satisfying the following growth and coercivity

condition
|ξ| ≤ f(ξ) ≤ C(1 + |ξ|)

for every ξ ∈ R3×3 and for some C > 0. Assume also that there exist constants C, L > 0, 0 < r < 1, such that∣∣∣∣f∞(ξ) − f(tξ)
t

∣∣∣∣ ≤ C
1
tr

for every ξ ∈ R3×3 with |ξ| = 1 and for all t > 0 and t > L. Then the family of functionals Jε : L1(Ω; R3) →
[0, +∞] defined by

Jε(u) =

⎧⎨
⎩
∫

Ω

f

(
∇αu,

∣∣∣∣1ε∇3u

)
dx if u ∈ W 1,1(Ω; R3),

+∞ otherwise,

Γ–converges, with respect to the L1(Ω; R3) convergence, as ε → 0 to the functional J0 : L1(Ω; R3) → [0, +∞]
defined by

J0(u) =

⎧⎨
⎩
∫

ω

Qf0(∇αu)dxα +
∫

ω

(Qf0)∞
(

dDs
αu

d|Ds
αu|
)

d|Ds
αu| if u ∈ BV (Ω; R3), D3u = 0,

+∞ otherwise,

where (Qf0)∞ represents the recession function of the quasiconvexification of f0 in (3.1), namely

(Qf0)∞(v) := lim sup
t→+∞

Qf0(tv)
t

·
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Let Wε : R3 → R be the function defined as Wε(ξ) = Wε(ξ1, ξ2, ξ3) =
∣∣(ξα|1εξ3

)∣∣. We recall the functionals
I1,ε : BV (Ω) → R, introduced in (1.14), as

I1,ε(u) :=
∣∣∣∣
(

Dαu
∣∣∣1
ε
D3u

)∣∣∣∣ (Ω) +
∫

∂ω×(− 1
2 , 1

2 )
Wε((u − u0)ν)dH2, (3.2)

where ν is the unit exterior normal to ∂ω × (− 1
2 , 1

2

) ·
We observe that the restriction of I1,ε to W 1,1

u0,∂ω×(− 1
2 , 12 )

(Ω) is given by (1.13).

Moreover, for every ε > 0, let G1,ε : BV (Ω) → [0, +∞) be the functionals defined as

G1,ε(u) :=

⎧⎪⎨
⎪⎩
∫

Ω

∣∣∣∣
(
∇αu
∣∣∣1
ε
∇3u

)∣∣∣∣dx if u ∈ W 1,1

u0,∂ω×(− 1
2 , 1

2 )
(Ω),

+∞ otherwise.

(3.3)

Then, their relaxed functionals (with respect to L1- strong topology) coincide with the functionals I1,ε in (3.2)
(cf. [28], Thm. 3.4).

We point out that entirely similar arguments to those adopted in the proof of Theorem 3.3 (cf. also [7]
where bending moments are taken into account) allow to consider the case with fields u clamped on the lateral
boundary, thus leading to the following result.

Proposition 3.4. The family of functionals {I1,ε} in (1.13), defined in
{
u ∈ W 1,1(Ω) : u ≡ u0 on ∂ω×(− 1

2 , 1
2

)}
, Γ–converges as ε → 0, with respect to L1 strong convergence, to I1,0(u) = |Du|(ω)+

∫
∂ω

|u−u0|dH1,
where this latter functional describes in {u ∈ BV (Ω) : D3u = 0}, the relaxed functional, with respect to the
L1–strong convergence, of I1,0 in (1.17).

Remark 3.5. We recall that the Γ–convergence result as ε → 0, stated in Proposition 3.4 is the same either if
we consider the family of functionals {G1,ε}ε in (3.3) or their relaxed ones {I1,ε}ε in (3.2) (cf. [10], Prop. 6.11).

3.2. Asymptotics as p → 1 in the reduced 2D model

Let ω ⊂ R2 be a bounded open set, piecewise C1, let p ≥ p > 1, let u0 ∈ W 1− 1
p ,p(∂ω) and let Hp,0 : BV (ω) →

R be the family of functionals defined as

Hp,0(u) :=

⎧⎪⎪⎨
⎪⎪⎩
(∫

ω

W p(∇u)dx

) 1
p

if u ∈ W 1,p
u0

(ω),

+∞ otherwise,

(3.4)

where W : R2 → [0, +∞[ is convex, positively 1–homogeneous and verifies (3.8).
The target of this subsection is to study the asymptotic behaviour as p → 1 of (3.4) in terms of Γ–convergence.

We start by observing that the regularity of ω, and the fact that u0 ∈ W 1− 1
p

,p(∂ω) allow us to apply Propo-
sition 2.8 and thus deduce that u0 can be naturally extended as a W 1,p(R2) function. Consequently in this
subsection we will implicitly assume that u0 ∈ W 1,p(R2) and prove the following result.

Theorem 3.6. The family of functionals {Hp,0}p defined in (3.4), Γ–converges, as p tends to 1 and with respect
to L1 strong convergence, to the functional H1,0 : BV (ω) → R defined as

H1,0(u) :=
∫

ω

W

(
dDu

d|Du|
)

d|Du| +
∫

∂ω

W ((u0 − u)ν)dHN−1, (3.5)

where ν denotes the unit exterior normal to ∂ω.
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This result will be achieved by several steps: first we will consider the case W (·) := | · |, stating first the upper
bound inequality in Proposition 3.7 for any dimension N and achieving full Γ–convergence in Theorem 3.8.
Then we will treat the case of W convex and positively 1–homogeneous, proving the upper bound inequality in
Proposition 3.9 and arguing, in the proof of Theorem 3.6 exactly as in Theorem 3.8.

We start by recalling the following result that can be found in [14, 21].

Proposition 3.7. Let O ⊂ RN be some bounded open set, which is piecewise C1. Let u1 ∈ L1(∂O). Suppose
that up ∈ W

p−1
p ,p(∂O) converges in L1(∂O) to u1. Then for every u ∈ BV (O), there exists Up ∈ W 1,p(O),

Up = up on ∂O, such that

lim
p→1

∫
O

|∇Up|pdx = |Du|(O) +
∫

O

|u − u1|dHN−1,

lim
p→1

∫
O

|Up − u|1∗
dx = 0,

where 1∗ = N
N−1 ·

We restate the above result in terms of Γ–convergence with respect to L1–strong convergence.
Let Fp,0 : BV (ω) → R be the functional defined as

Fp,0(u) :=

⎧⎪⎪⎨
⎪⎪⎩
(∫

ω

|∇u|pdx

) 1
p

if u ∈ W 1,p
u0

(ω),

+∞ otherwise.

(3.6)

Let F1,0 : BV (ω) → R be defined as

F1,0(u) := |Du|(ω) = |Du|(ω) +
∫

∂ω

|u − u0|dH1. (3.7)

We can prove the following theorem

Theorem 3.8. Let {Fp,0}p be the family of functionals introduced in (3.6), then {Fp,0}p Γ–converges, with
respect to the L1(ω) strong topology, to F1,0.

Proof. The lower bound is trivially obtained if {up}p is such that limp→1 Fp,0(up) = +∞. Let {up}p strongly
converge in L1(ω) to u ∈ BV (ω) and assume also that it is a sequence with equibounded energy, namely there
exists C > 0 such that

Fp,0(up) =
(∫

ω

|∇up|pdx

) 1
p

≤ C.

By Hölder inequality, and the fact that up ∈ W 1,p
u0

(ω) it results that

|Dup|(ω) ≤
(∫

ω

|∇up|pdx

) 1
p

|ω|1− 1
p ≤ C′ for every 1 ≤ p ≤ p̄.

Observe that, by virtue of Poincaré inequality, any sequence with equibounded energy {up}p admits a further
subsequence, converging weakly ∗ in BV (ω) to u ∈ BV (ω).

Now by the observations made at the beginning of Section 3.2, u0 can be assumed as a W 1,p(R2 \ω)-function,
whence the regularity assumptions on ∂ω ensure that we can extend u ∈ BV (ω) by u0 in R2 \ω, thus obtaining
a BV (R2) function, still denoted by u. In the same way we may extend, with an abuse of notations, any up, by
u0 ∈ R2 \ ω, getting up ∈ W 1,p(R2).
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Clearly {up}p weakly ∗ converges to u in BV (ω′) for any bounded open set ω′ ⊃⊃ ω. Consequently the lower
semicontinuity of the total variation with respect to the weak ∗ topology in BV , and Hölder inequality provide
the following chain of inequalities

|Du|(ω′) ≤ lim inf
p→1

|Dup|(ω′) ≤ lim inf
p→1

(∫
ω′

|∇up|pdx

) 1
p

|ω′|1− 1
p

= lim inf
p→1

(∫
ω

|∇up|pdx +
∫

ω′\ω

|∇u0|pdx

) 1
p

, for every p ≤ p.

As ω′ shrinks to ω, by (3.7), we obtain the so-called Γ–liminf inequality

|Du|(ω) ≤ lim inf
p→1

(∫
ω

|∇up|pdx

) 1
p

, for every p ≤ p.

For what concerns the upper bound, we invoke Proposition 3.7 with N = 2, thus for every u ∈ BV (ω) we get
the existence of a sequence {up}p ∈ W 1,p

u0
(ω) such that

lim
p→1

∫
ω

|up − u|1∗dx = 0,

lim
p→1

(∫
ω

|∇up|pdx

) 1
p

= |Du|(ω) +
∫

∂ω

|u − u0|dH1,

and this concludes the proof. �

The following result carries Proposition 3.7 over to more general integrands. To this end we will consider
bounded open subsets O of RN , with piecewise C1 boundary and boundary datum u1 ∈ W 1− 1

p̄ ,p̄(∂O) for
some p > 1. The same argument invoked at the beginning of Section 3.2, namely the regularity of O and
Proposition 2.8, lead us, without loss of generality, to assume that u1 ∈ W 1,p(RN ).

Proposition 3.9. Let O ⊂ R
N be a bounded open set, with piecewise C1 boundary. Let W : R

N → [0, +∞[ be
a continuous, positively 1–homogeneous function such that

1
C
|ξ| ≤ W (ξ) ≤ C|ξ| for every ξ ∈ R

N , (3.8)

for a suitable positive constant C. Let u1 ∈ W 1− 1
p̄ ,p̄(∂O), for some p̄ > 1. Then, for every u ∈ BV (O), and for

every 1 < p ≤ p, there exists Up ∈ W 1,p(O), Up = u1 on ∂O, such that

lim
p→1

∫
O

(W (∇Up))pdx =
∫

O

W

(
dDu

d|Du|
)

d|Du| +
∫

∂O

W ((u1 − u)ν)dHN−1,

lim
p→1

∫
O

|Up − u|1∗
dx = 0,

where ν is the unit exterior normal to ∂O, and 1∗ = N
N−1 ·

Proof. Let u ∈ BV (O), first we claim that for every sequence {p} converging to 1, with p ≥ 1, it is possible to
find a subsequence, still denoted by {p} and a sequence {vp} ⊂ W 1,p(O) ∩ C∞(O), with vp = u1 on ∂O such
that

lim
p→1

∫
O

|vp − u|1∗
dx = 0 (3.9)
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and

lim
p→1

∫
O

W (∇vp)dx =
∫

O

W

(
dDu

d|Du|
)

d|Du| +
∫

∂O

W ((u1 − u)ν)dHN−1. (3.10)

To prove the claim we observe that [15], Proposition 2 ensures that there exists a sequence {vp}p such that

vp ∈ W 1,p(O) ∩ C∞(O), and vp = u1 on ∂O, (3.9) holds, lim
p→1

∫
O

|vp − u|1∗
dx = 0 and lim

p→1

∫
O

|∇vp|pdx =

|Du|(O) +
∫

∂O

|u − u1|dHN−1. This in turn, by virtue of Hölder inequality, implies that lim
p→1

∫
O

|∇vp|dx ≤

lim
p→1

(∫
O

|∇vp|pdx

) 1
p

|O|1− 1
p = |Du|(O) +

∫
∂O

|u − u1|dHN−1.

The opposite inequality follows by well known relaxation results, see [20], where the functional |Dv|(O) +∫
∂O |v − u1|dHN−1 turns out to be the relaxed functional (with respect to L1(O) strong convergence) of{∫

O |∇v|dx if v ∈ W 1,1
u1

(O),
+∞ if v ∈ BV (O) \ W 1,1

u1
(O).

Now, observing that, without loss of generality u1 can be considered a W 1,p(RN \O) function, we can extend
vp and u by u1 outside O, thus obtaining a W 1,p(RN ) function and a BV (RN ) one (cf. Prop. 2.8 and [3],
Cor. 3.89), respectively. Consequently for every open set O′ ⊃⊃ O, applying Reshetnyak’s continuity theorem
([3], Thm. 2.39), it results

lim
p→1

∫
O′

|∇vp|dx = lim
p→1

(∫
O′\O

|∇u1|dx +
∫

O

|∇vp|dx

)

= |Du|(O) +
∫

∂O

|u − u1|dHN−1+
∫

O′\O

|∇u1|dx.

Thus, as O′ shrinks to O, we obtain, invoking again Reshetnyak’s continuity theorem, (3.10) and this proves
the claim.

Again, via an extension argument to any open set O′ ⊃⊃ O, we can assume that all the functions are extended
as u1 to all O′.

Next, the density of smooth functions in W 1,p(O), with respect to strong W 1,p convergence, the Sobolev
embedding theorems and the continuity of W imply that there exists a further sequence {wq}q ∈ W 1,p(O) ∩
C∞(O), with wq ≡ u1 on ∂O, converging strongly in W 1,p(O) to vp as q → 1, such that lim

q→1

∫
O

|vp − wq|1∗
dx = 0,

∇wq and W q(∇vq) pointwise converge a.e. to ∇vp and W (∇vp), respectively, as q → 1.
The growth from above in (3.8), and Hölder inequality entail that W q(∇wq) is equi-integrable, thus we can

conclude that
∫

O W q(∇wq)dx converges to
∫

O W (∇vp)dx as q → 1.
Finally a diagonal argument guarantees that there exists another sequence in W 1,p(O)∩C∞(O), denoted by

{Up} such that Up ≡ u1 on ∂O, (3.9) holds and

lim
p→1

∫
O

W p(∇Up)dx =
∫

O

W

(
dDU

d|DU |
)

d|DU | +
∫

∂O

W ((u1 − U)ν)dHN−1. (3.11)

By the arbitrariness of the sequence {p} the thesis follows. �

Proof of Theorem 3.6. The proof develops along the same lines as Theorem 3.8. Namely the lower bound can
be proved arguing exactly as in the latter theorem, just exploiting the lower semicontinuity with respect to
BV –weak ∗ convergence, of the functional H1,0 as proven in [19]. On the other hand the upper bound is an
immediate consequence of Proposition 3.9. �

Remark 3.10. Let O ⊂ RN be any bounded open set with piecewise C1 boundary, 1 < p < p̄, and let
u1 ∈ W 1− 1

p̄ ,p̄(∂O). The results expressed by Proposition 3.7 and the arguments in the first part of that proof,
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allow us to prove Γ–convergence, as p → 1, with respect to L1–strong convergence of the functionals {Gp}p :

u ∈ W 1,p
u1

(O) → ∫
O

W p(∇u)dx to G1 : u ∈ BV (O) → ∫
O

W
(

dDu
d|Du|
)

d|Du| + ∫
∂O

W (|u − u1|ν)dHN−1 (ν being

the unit exterior normal to ∂O) for any W : RN → [0, +∞) convex, positively 1–homogeneous, satisfying a
linear growth condition as (3.8)

3.3. Asymptotics as p → 1 in the original 3D model

As in the previous subsections we recall that we are assuming p > 1, ω a bounded open subset of R2 with
piecewise C1 boundary, and Ω := ω × (− 1

2 , 1
2

)
and let u0 ∈ W 1− 1

p ,p(∂ω). Clearly the same arguments used at
the beginning of Section 3.2 about the regularity of ω, and the possibility of applying Proposition 2.8 ensure
that u0 can be naturally extended to a function in W 1,p(R2), in turn with an abuse of notations, this latter
function can be regarded as a function depending also on x3, u ∈ W 1,p(R3).

Having in mind the functionals {Ip,ε}p,ε quoted in (1.4), we define, for every p > 1, with p ≤ p̄ and ε > 0,
Fp,ε : BV (Ω) → R as the functionals

Fp,ε(u) :=

⎧⎪⎪⎨
⎪⎪⎩
(∫

Ω

W p

(
∇αu
∣∣∣1
ε
∇3u

)
dx

) 1
p

if u ∈ W 1,p

u0,∂ω×(− 1
2 , 12 )

(Ω),

+∞ otherwise,

(3.12)

where W : R3 → [0, +∞[ is a continuous and positively 1–homogeneous function satisfying (3.8)
and the space W 1,p

u0,∂ω×(− 1
2 , 1

2 )
(Ω) has been introduced in Section 2 (cf. Sect. 2.4 and observe that

H2
(
∂ω × (− 1

2 , 1
2

) \ ∂ω × (− 1
2 , 1

2

))
= 0).

The main result of this subsection is stated in the following theorem.

Theorem 3.11. Let {Fp,ε}p be the functionals introduced in (3.12). Then {Fp,ε}p Γ–converges as p → 1, with
respect to the L1(Ω) strong topology, to

∫
Ω

Wε

(
dDu

d|Du|
)

d|Du| +
∫

∂ω×(− 1
2 , 1

2 )
Wε((u − u0)ν)dH2,

where Wε(ξ1, ξ2, ξ3) := W
(
ξ1, ξ2,

1
εξ3

)
.

Remark 3.12. This theorem provides Γ–convergence of the functionals {Ip,ε}p,ε in (1.4) towards the functional
I1,ε in (3.2) as p → 1, just replacing the function W (·) in (3.12) by | · |.

To prove the Γ–convergence of {Fp,ε}p to I1,ε in (3.2) as p → 1, we need some preliminary results in the same

spirit of those proposed in [28], which need the assumption H2
(
∂ω × (− 1

2 , 1
2

) \ ∂ω × (− 1
2 , 1

2

))
= 0. We also

observe that, having in mind the subsequent applications to −Δ1-type equations, and for the sake of simplicity
in the exposition of the proof, we consider an energy density W positively 1–homogeneous, but analogous results
hold replacing W with its recession function W∞ where necessary.

The Γ–convergence result of Theorem 3.11 will be obtained through several steps. First in Lemma 3.13 we
prove the lower bound inequality, then via intermediate results we will achieve the upper bound inequality in
Lemma 3.17. The main difficulty consists in fact of the construction of recovery sequence, realized through
Lemmas 3.14, 3.15 and 3.16. Indeed the imposed mixed boundary conditions require, roughly speaking, to glue
three ‘recovery sequences’, one for the Dirichlet part, one for the Neumann and one for the open subset far from
the boundary. In this “gluing” procedure it is important the requirement of essential closedness of the Dirichlet
part of the boundary.
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Lemma 3.13. Let p, ω, Ω and u0 be as above and let W : R3 → [0, +∞[ be a convex and positively 1–
homogeneous function, satisfying (3.8). Then for every u ∈ BV (Ω), for every 1 < p ≤ p̄ it results

∫
Ω

W

(
dDu

d|Du|
)

d|Du| +
∫

∂ω×(− 1
2 , 1

2 )
W ((u0 − u)ν)dH2 ≤ lim inf

p→1

(∫
Ω

W p(∇up)dx

) 1
p

(3.13)

for every sequence {up}p with up ∈ W 1,p

u0,∂ω×(− 1
2 , 12 )

(Ω), such that up → u in L1(Ω).

Proof. The result easily follows from the lower semicontinuity with respect to L1(Ω) strong topology of the left
hand side of (3.13) as proven in [28], Proposition 3.1, and the Hölder inequality. �

Now we introduce the following notations, already adopted in [11, 28]. We say that an open set O ⊂ RN is
cone-shaped if and only if there exists x0 ∈ RN , S ⊂ RN , such that

O = {(1 − t)x0 + tx : x ∈ S, t ∈]0, 1[}.

We call x0 the vertex of O, S the basis of O and observe that, if t ∈]0, 1[, then

x0 + t(O − x0) ⊂ O, x0 + t(S − x0) ⊂ O.

Let x0 ∈ RN and S ⊂ RN we denote by Cx0,S the cone

Cx0,S = {(1 − t)x0 + tx : x ∈ S, t > 0}.

In what follows we will consider cone-shaped sets of vertex x0 and basis S such that for any fixed x ∈ S, one
has,

{(1 − t)x0 + tx : t ∈ [0, 1]} ∩ S = {x}. (3.14)

The following lemma develops along the lines of [11], Lemma 2.1.

Lemma 3.14. Let 1 < p and let W : RN → [0, +∞[ be convex, positively 1–homogeneous and verify (3.8). Let
u1 ∈ W 1,p

loc (RN ), O be an open set with piecewise C1 boundary. Let A, B be open sets such that A ⊆ O, A ⊂⊂
B, O \ B �= ∅, and let us assume that O ∩ B has piecewise C1 boundary. Let u ∈ BV (O), with u = u1 a.e. in
O \ A, then there exists {up}p such that up ∈ W 1,p

loc (RN ) and up ≡ u1 a.e. in O \ B for every 1 < p ≤ p̄ and

lim
p→1

∫
O

|up − u|1∗
dx = 0,

and

lim
p→1

∫
O

W p(∇up)dx ≤
∫

O∩B

W (∇u)dx

+
∫

A

W

(
dDsu

d|Dsu|
)

d|Dsu| +
∫

O∩∂A

W ((u1 − u)ν)dHN−1 +
∫

O\A

W (∇u1)dx.

Proof. Since O ∩ B has Lipschitz boundary, by virtue of Proposition 3.9, applied to O ∩ B, and since u ≡ u1

a.e. in O \ A we know that for every p ≥ p > 1 there exists {vp}p with vp ∈ W 1,p
loc (RN ), such that

lim
p→1

∫
O∩B

|vp − u|1∗
dx = 0,
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and

lim
p→1

∫
O∩B

(W (∇vp))pdx =
∫

O∩B

W

(
dDu

d|Du|
)

d|Du|. (3.15)

For every sequence p > 1, k ∈ N, let χk : R → R be a smooth function such that 0 ≤ χ′
k ≤ 1 with

χk(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(k + 1) if t ≤ −(k + 2),

t if − k ≤ t ≤ k,

k + 1 if t ≥ k + 2,

and set

v̂k,p = u1 + χk(vp − u1),
v̂k = u1 + χk(u − u1).

Let ϕ ∈ C∞
0 (B) with ϕ = 1 in A and define, for t ∈]0, 1[,

wt,k,p = t2(2 − t)[ϕv̂k,p + (1 − ϕ)u1] + (1 − t)(1 + t − t2)u1,

wt,k = t2(2 − t)[ϕv̂k + (1 − ϕ)u1] + (1 − t)(1 + t − t2)u1,

wt = t2(2 − t)[ϕu + (1 − ϕ)u1] + (1 − t)(1 + t − t2)u1

Clearly, for every p > 1, k ∈ N, t ∈]0, 1[, wt,k,p ∈ W 1,p
loc (RN ) and wt,k,p = u1 a.e. in O \ B. By the convexity

of W , the convexity and increasing monotonicity of s ∈ R+ → sp ∈ R+, we get

∫
O

W p(∇wt,k,p)dx

≤ t

∫
O

W p(t(2 − t)(ϕ∇v̂k,p + (1 − ϕ)∇u1 + (v̂k,p − u1)∇ϕ))dx

+ j(1 − t)
∫

O

W p((1 + t − t2)∇u1)dx

≤ t2(2 − t)
∫

O

W p(ϕ∇v̂h,k + (1 − ϕ)∇u1)dx

+ t(1 − t(2 − t))
∫

O

W p

(
t(2 − t)

1 − t(2 − t)
(v̂k,p − u1)∇ϕ

)

+ (1 − t)
∫

O

W p((1 + t − t2)∇u1)dx,

(3.16)

for every p > 1, k ∈ N, t ∈]0, 1[.
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The estimate of the first term in the right hand side of (3.16), gives, since W p(·) is convex,∫
O

W p(ϕ∇v̂k,p + (1 − ϕ)∇u1)dx

=
∫

A

W p(∇v̂k,p)dx +
∫

O∩(B\A)

W p(ϕ∇v̂k,p + (1 − ϕ)∇u1)dx +
∫

O\B

W p(∇u1)dx

≤
∫

A

W p(∇v̂k,p)dx +
∫

O∩(B\A)

ϕW p(∇v̂k,p)dx

+
∫

O∩(B\A)

(1 − ϕ)W p(∇u1)dx +
∫

O\B

W p(∇u1)dx

≤
∫

O∩B

W p(∇v̂k,p)dx +
∫

O\A

W p(∇u1)dx

=
∫

O∩B∩{|vp−u1|≥k+2}
W p(∇u1)dx +

∫
O∩B∩{|vp−u1|≤k}

W p(∇vp)dx

+
∫

O∩B∩{k<|vp−u1|<k+2}
W p(χ′

k(vp − u1)∇vp + (1 − χ′
k(vp − u1))∇u1)dx

+
∫

O\A

W p(∇u1)dx

≤
∫

O∩B∩{|vp−u1|≥k+2}
W p(∇u1)dx +

∫
O∩B∩{|vp−u1|≤k}

W p(∇vp)dx

+
∫

O∩B∩{k<|vp−u1|<k+2}
[χ′

k(vp − u1)W p(∇vp) + (1 − χ′
k(vp − u1))W p(∇u1)] dx

+
∫

O\A

W p(∇u1)dx

≤
∫

O∩B∩{|vp−u1|<k+2}
W p(∇vp)dx +

∫
O∩B∩{|vp−u1|>k}

W p(∇u1)dx +
∫

O\A

W p(∇u1)dx,

(3.17)

for every p > 1, k ∈ N, t ∈]0, 1[. The growth condition on W , expressed in (3.8), the fact that u1 ∈ W 1,p
loc (RN )

entail that
lim sup

p→1

∫
O∩B∩{|vp−u1|>k}

W p(∇u1)dx ≤
∫

O∩B∩{|u−u1|≥k}
W (∇u1)dx. (3.18)

On the other hand, since we want an upper bound we can estimate the asymptotics as p → 1 of the term∫
O∩B∩{|vp−u1|<k+2}

W p(∇vp)dx as follows

lim sup
p→1

∫
O∩B∩{|vp−u1|<k+2}

W p(∇vp)dx ≤ lim sup
p→1

∫
O∩B

W p(∇vp)dx =
∫

O∩B

W

(
dDu

d|Du|
)

d|Du|,∫
O∩B

W (∇u)dx +
∫

A

W

(
dDsu

d|Dsu|
)

d|Dsu|
(3.19)

where we have used (3.15) and the fact that u coincides with u1 outside A.
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Again Lebesgue’s dominated convergence theorem implies that

lim
p→1

∫
O\A

W p(∇u1)dx =
∫

O\A

W (∇u1)dx. (3.20)

Consequently by (3.17), (3.19), (3.18), (3.20), the fact that u coincides with the Sobolev function u1 a.e. in
O \ A, we obtain

lim sup
p→1

∫
O

W p(ϕ∇v̂k,p + (1 − ϕ)∇u1)dx

≤
∫

O∩B

W

(
dDu

d|Du|
)

d|Du|

+
∫

O∩B∩{|u−u1|≥k}
W (∇u1)dx +

∫
O\A

W (∇u1)dx

=
∫

O∩B

W (∇u)dx +
∫

A

W

(
dDsu

d|Dsu|
)

d|Dsu| +
∫

O∩∂A

W ((u1 − u)ν)dHN−1

+
∫

O∩B∩{|u−u1|≥k}
W (∇u1)dx +

∫
O\A

W (∇u1)dx,

(3.21)

for every k ∈ N, t ∈]0, 1[.
Let us fix k ∈ N, t ∈]0, 1[ and observe that ‖v̂k,p −u1‖L∞(O∩B) ≤ k+2 for every p > 1. Therefore, the growth

condition on W (3.8), its convexity and the fact that t(2−t)
1−t(2−t) (v̂k,p − u1)∇ϕ ∈ L∞(O ∩ B) converges pointwise

a.e. in O ∩ B to t(2−t)
1−t(2−t) (v̂k − u1)∇ϕ, lead us, via Lebesgue’s dominated convergence theorem, to get

lim
p→1

∫
O∩B

W p

(
t(2 − t)

1 − t(2 − t)
(v̂k,p − u1)∇ϕ

)
dx =
∫

O∩B

W

(
t(2 − t)

1 − t(2 − t)
(v̂k − u1)∇ϕ

)
dx (3.22)

for every k ∈ N, t ∈]0, 1[.
Consequently by (3.16), (3.21), (3.22), we obtain

lim sup
p→1

∫
O

W p(∇wt,k,p)dx

≤ t2(2 − t)
[∫

O∩B

W (∇u)dx +
∫

A

W

(
dDsu

d|Dsu|
)

d|Dsu|

+
∫

O∩∂A

W ((u1 − u)ν)dHN−1

+
∫

O∩B∩{|u−u1|≥k}
W (∇u1)dx +

∫
O\A

W (∇u1)dx

]

+ t(1 − t(2 − t))
∫

O

W

(
t(2 − t)

1 − t(2 − t)
(v̂k − u1)∇ϕ

)
dx + (1 − t)

∫
O

W
(
(1 + t − t2)∇u1

)
dx

for every k ∈ N, t ∈]0, 1[.
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The proof from now on is identical to that of Lemma 2.1 in [11] and we omit the details. We just observe
that the positive 1–homogeneity of W allows us to replace the recession function W∞ in [11] by W .

Thus we have that

lim sup
t→1

lim sup
k→+∞

lim sup
p→1

∫
O

W p(∇wt,k,p)dx

≤
∫

O∩B

W (∇u)dx +
∫

A

W

(
dDsu

d|Dsu|
)

d|Dsu|

+
∫

O∩∂A

W ((u1 − u)ν)dHN−1 +
∫

O\A

W (∇u1)dx.

(3.23)

By (3.23) the thesis follows by a standard diagonal argument once we observe that wt,k,p → wt,k in L1∗
(O) for

every k ∈ N, t ∈]0, 1[ as p → 1, and wt,k → wt in L1∗
(O) for every t ∈]0, 1[ as k → +∞ and wt → u in L1∗

(O)
as t → 1. �

The result stated below is analogous to [11], Lemma 2.2.

Lemma 3.15. Let p̄ > 1, let O be a cone-shaped open set with piecewise C1 boundary, with vertex x0 and
basis S, W : R

N → [0, +∞[ be convex, positively 1–homogeneous and verifying (3.8), u1 ∈ W 1,p̄(RN ), and
u ∈ BV (O). Then there exists {up}p, p̄ ≥ p > 1, such that up ∈ W 1,p

loc (RN ) and up ≡ u1 a.e. in Cx0,S \ O for
every p > 1, up → u in L1∗

(O) and

lim sup
p→1

∫
O

W p(∇up)dx ≤
∫

O

W (∇u)dx +
∫

O

W

(
dDu

d|Du|
)

d|Du| +
∫

S

W ((u1 − u)ν)dHN−1.

Proof. The proof is very similar to that of Lemma 2.2 in [11]. We do not propose it in its entirety but we just
outline the main steps and differences.

First we extend u ∈ Cx0,S by defining u = u1 a.e. in Cx0,S\O. Let t ∈]1, +∞[ and τ ∈]0, 1[, set Ot = x0+
(O−x0)

t
and define ut,τ = u1 + τ

t (u − u1)(x0 + t(· − x0)). We have that if x �∈ Ot, then x0 + t(x − x0) �∈ O, hence being
u = u1 a.e. in Cx0,S \ O, it turns out that ut,τ ∈ BV (A) for every bounded subset A of Cx0,S , ut,τ = u1 a.e. in
Cx0,S \ Ot and

∇ut,τ (x) = ∇u1(x) + τ∇(u − u1)(x0 + t(x − x0)) for a.e. x ∈ Cx0,S .

We claim that ut,τ → u in L1∗
(O) first as t → 1 and then τ → 1.

Indeed, by Lemma 3.14, applied to A = Ot and B a bounded open set satisfying Ot ⊂⊂ B, O \ B �= ∅ and
such that O ∩ B is piecewise C1, there exists {ut,τ

p }p,t,τ such that ut,τ
p ∈ W 1,p

loc (RN ) and verifies ut,τ
p → ut,τ in

L1∗
(O), ut,τ

p = u1 a.e. in O \ B for every p > 1, and

lim sup
p→1

∫
O

W p(∇ut,τ
p )dx

≤
∫

O∩B

W (∇ut,τ )dx +
∫

Ot

W

(
dDsut,τ

d|Dsut,τ |
)

d|Dsut,τ |

+
∫

O∩∂Ot

W ((u1 − ut,τ )ν)dHN−1 +
∫

O\Ot

W (∇u1)dx.

(3.24)

Observe also that it is not restrictive to assume that ut,τ
p = u1 a.e. in Cx0,S \ O for every p > 1.

Then, exploiting the convexity and the positive 1–homogeneity of W and the change of variable y = x0 +
t(x − x0) the proof develops along the same lines of [11], Lemma 2.1, thus we omit it.
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In conclusion, taking first the limit as t → 1 and then letting τ go to 1, we have,

lim sup
τ→1

lim sup
t→1

{∫
O∩B

W (∇ut,τ )dx +
∫

Ot

W

(
dDsut,τ

d|Dsut,τ |
)

d|Dsut,τ |

+
∫

O∩∂Ot

W ((u1 − u)ν)dHN−1 +
∫

O\Ot

W (∇u1)dx

}
≤

≤
∫

O

W (∇u)dx +
∫

O

W

(
dDsu

d|Dsu|
)

d|Dsu| +
∫

S

W ((u1 − u)ν)dHN−1.

(3.25)

By (3.24), (3.25) and a diagonal argument, the thesis follows. �

The following result, developed in the same spirit of [28], Lemma 3.2 will be exploited in the sequel.

Lemma 3.16. Let O be a cone-shaped open set in RN with piecewise C1 boundary with vertex x0 and basis S,
satisfying (3.14). Let I be another bounded open set in R

N piecewise C1 such that Γ := S ∩ I �= ∅, and assume
that HN−1(Γ̄ \Γ ) = 0. Let W : RN → [0. +∞[ be a convex, positively 1–homogeneous function satisfying (3.8).
Let u ∈ BV (O) and u1 ∈ W 1,p̄

loc (RN ) for some p̄ > 1. Then there exists a sequence {up}p such that for every
1 < p < p̄, up ∈ W 1,p

loc (RN ) and up = u1 on Cx0,Γ \ O, up → u1 in L1∗
(O) and

lim sup
p→1

∫
O

W p(∇up)dx ≤
∫

O

W

(
dDu

d|Du|
)

d|Du| +
∫

Γ

W ((u1 − u)ν)dHN−1.

Proof. Without loss of generality we may assume that the right hand side of the above formula is finite.
Let {Bε}ε>0 be a decreasing family of open subsets of O with Lipschitz boundary such that, setting Γ ε =

Bε ∩ S, one has,

i) Γ ε ⊃ Γ̄ ;
ii) ∩ε>0Γ

ε = Γ̄ .

Let A be a cone-shaped set of basis Γ and vertex xA with xA ∈ int(O), and for every ε denote by Aε a cone-
shaped set of basis Γ ε and vertex xε, with xε ∈ int(O \ A) suitably chosen (a convenient choice is to take xε

along the line which provide the distance between xA and Γ with a bigger distance from Γ ). Assume that
{Aε}ε>0 is a decreasing family of sets such that ∩ε>0A

ε = Ā. (3.8) allows us to apply Lemma 3.15. Hence there
exists a sequence {uε

p}p with uε
p ∈ W 1,p

loc (RN ), uε
p = u1 in Cxε,Γ ε \ Aε, such that uε

p → u in L1∗
(Aε) and

lim sup
p→1

∫
Aε

W p(∇uε
p)dx ≤

∫
Aε

W

(
dDu

d|Du|
)

d|Du| +
∫

Γ ε

W ((u1 − u)ν)dHN−1. (3.26)

Moreover an argument analogous to that exploited in the proof of Proposition 3.9 guarantees that there exists
a sequence {vp}p such that vp ∈ W 1,p

loc (RN ), limp→1

∫
O\Ā

|vp − u|1∗
dx = 0 and

lim
p→1

∫
O\Ā

W p(∇vp)dx =
∫

O\Ā

W

(
dDu

d|Du|
)

d|Du|. (3.27)
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For every ε > 0, let 0 ≤ ϕε ≤ 1 be a smooth function such that

ϕε : x ∈ O →
{

0 if x ∈ CxA,Γ ,
1 if x ∈ Cx0,S \ Cxε,Γ ε ,

and set wε
p = (1 − ϕε)uε

p + ϕεvp.

We observe that, by definition, wε
p ∈ W 1,p

loc (RN ) and that wε
p = u1 in Cx0,Γ \ O. Let us fix ε > 0 and observe

that

lim sup
p→1

∫
O

W p(∇wε
p)dx = lim sup

p→1

{∫
A

W p(∇uε
p)dx

+
∫

Aε\A

W p([(1 − ϕε)∇uε
p + ϕε∇vp + ∇ϕε(vp − uε

p)])dx +
∫

O\Aε

W p(∇vp)dx

}
.

(3.28)

Next, by exploiting the convexity of W and (3.8), we obtain the following inequality due to the local Lipschitz
continuity of W p (the constant C below may vary from line to line, being uniformly bounded in p as p tends
to 1).

∫
Aε\Ā

W p([(1 − ϕε)∇uε
p + ϕε∇vp + ∇ϕε(vp − uε

p)])dx

≤
∫

Aε\A

W p((1 − ϕε)∇uε
p + ϕε∇vp)dx

+ C

∫
Aε\A

( ∣∣[(1 − ϕε)∇uε
p + ϕε∇vp + ∇ϕε(vp − uε

p)]
∣∣p−1 +

∣∣(1 − ϕε)∇uε
p + ϕε∇vp

∣∣p−1
)

×∣∣∇ϕε(vp − uε
p)
∣∣dx.

By exploiting again the convexity of W and Hölder inequality we obtain

∫
Aε\Ā

W p([(1 − ϕε)∇uε
p + ϕε∇vp + ∇ϕε(vp − uε

p)])dx

≤
∫

Aε\A

W p(∇uε
p)dx +

∫
Aε\A

W p(∇vp)dx

+ C

(∫
Aε\A

(∣∣[(1 − ϕε)∇uε
p + ϕε∇vp + ∇ϕε(vp − uε

p)]
∣∣p−1 +

∣∣(1 − ϕε)∇uε
p + ϕε∇vp

∣∣p−1
) p

p−1
dx

) p−1
p

·

(∫
Aε\A

∣∣∇ϕε(vp − uε
p)
∣∣p dx

) 1
p

.
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Thus, the last inequality and (3.28) provide

lim sup
p→1

∫
O

W p(∇wε
p)dx

≤ lim sup
p→1

⎡
⎣∫

Aε

W p(∇uε
p)dx +

∫
O\A

W p(∇vp)dx

+ C

(∫
Aε\A

(∣∣[(1 − ϕε)∇uε
p + ϕε∇vp + ∇ϕε(vp − uε

p)]
∣∣p−1 +

∣∣(1 − ϕε)∇uε
p + ϕε∇vp

∣∣p−1
) p

p−1
dx

) p−1
p

·

(∫
Aε\A

∣∣∇ϕε(vp − uε
p)
∣∣p dx

) 1
p

⎤
⎦ .

Exploiting (3.26),(3.27), the bounds on
∫

Aε\A |∇uε
p|pdx and

∫
Aε\A |∇vp|pdx following from (3.26) and (3.27)

and the growth from below of W in (3.8), and since both uε
p and vp ∈ W 1,p

loc (RN ) converge to u in L1∗
(Aε) and

L1∗
(O \ A) respectively, we can conclude, passing to the limit as p → 1, that

lim
p→1

∫
O

∣∣wε
p − u
∣∣1∗

dx = 0,

obtaining also

lim sup
p→1

∫
O

W p(∇wε
p)dx ≤

∫
O

W

(
dDu

d|Du|
)

d|DU | +
∫

Γ ε

W ((u1 − u)ν)dHN−1

+
∫

Aε\A

W (∇u)dx +
∫

Aε\Ā

W

(
dDsu

d|Dsu|
)

d|Dsu|.

We also observe that∫
Γ ε

W ((u1 − u)ν)dHN−1 =
∫

Γ

W ((u1 − u)ν)dHN−1 +
∫

Γ ε\Γ

W ((u1 − u)ν)dHN−1,

where this latter term is finite as a consequence of (3.8). Then the thesis follows exploiting again the growth
condition and the fact that HN−1(Γ̄ \ Γ ) = 0 as Aε shrinks to A. �

The following result, analogous to [28], Lemma 3.3, allows us to obtain the upper bound inequality for
the desired Γ–convergence. We emphasize that the arguments below essentially rely on the application of a
partition of unity to glue the recovery sequences (in L1∗

(Ω) and not just in L1(Ω) as in [28]) for the Neumann
and Dirichlet parts of Ω, i.e. “lateral boundary” and ‘bases’ of the domain and exploit the local p–Lipschitz
continuity of W p and the fact that in the above lemmas, the “almost” recovery sequences converge in L1∗

and
not only in L1.

Lemma 3.17. Let p, ω, Ω and u0 be as above. Let W : R3 → [0, +∞[ be a convex, positively 1–homogeneous
function verifying (3.8). Let u ∈ BV (ω). Then there exists a sequence {up}p such that up ∈ W 1,p

u0,∂ω×(− 1
2 , 12 )

(Ω),

with 1 < p < p̄ such that

lim
p→1

∫
Ω

|up − u|1∗
dx = 0,
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and

lim
p→1

∫
Ω

W p(∇up)dx ≤
∫

Ω

W

(
dDu

d|Du|
)

d|Du| +
∫

∂ω×(− 1
2 , 1

2 )
W ((u0 − u)ν)dH2. (3.29)

Proof. We start by recalling, as always in this section, that u0 can be considered with an abuse of notations as
a function in W 1,p̄

loc (R3).
Without loss of generality we may assume the right hand side of (3.29) is finite, otherwise there is nothing

to prove.
Let γ
(
∂ω × (− 1

2 , 1
2

))
be the boundary of Γ in the topology induced on ∂Ω. Take a finite open covering

Sj , j = 1, . . . , i of γ
(
∂ω × (− 1

2 , 1
2

))
, made up of balls in R3 centered in γ

(
∂ω × (− 1

2 , 1
2

))
, and let Sj , j = i+1, . . . l

be a finite covering of the remaining part of ∂ω × (− 1
2 , 1

2

)
, made up of balls centered on Γ , such that Sj ∩ ∂Ω

is the graph of a piecewise C1 function for j = 1, . . . , l.
Let xj ∈ ∂Sj ∩ (∂ω × (− 1

2 , 1
2

))
, and, for every j = 1, . . . , l, define Aj as the cone-shaped set of basis

Sj ∩ (∂ω × (− 1
2 , 1

2

))
with vertex xj . Clearly Aj has piecewise C1 boundary. Let r > 1 and consider Bj =

xj + r(Aj − xj) for every j = 1, . . . , l, then we obtain an open covering of Γ̄ with cone-shaped open sets.
Moreover for j = l + 1, . . . , m let Bj be a finite family of balls such that {Bj}j=1,...,m is an open covering
of ω × (− 1

2 , 1
2

)
. Let {ϕj}j=1,...,m be a partition of the unity, relative to this covering, namely ϕj ∈ C∞

0 (Bj),
0 ≤ ϕj ≤ 1, for j = 1, . . . , m and

∑m
j=1 ϕj(x) = 1 in Ω.

We also observe that, by Lemma 3.16, applied to the cone-shaped set Aj , for j = 1, . . . , i, there exists a
sequence {vj

p} such that vj
p ∈ W 1,p

loc (RN ) and vj
p = u0 on Cxj ,Sj∩(∂ω×(− 1

2 , 1
2 )) \Aj ,

∫
Aj

|vj
p−u|1∗

dx → 0 as p → 1,
and

lim sup
p→1

∫
Aj

W p(∇vj
p)dx ≤

∫
Aj

W

(
dDu

d|Du|
)

d|Du| +
∫

Sj∩(∂ω×(− 1
2 , 12 ))

W ((u0 − u)ν)dH2, (3.30)

for every j = 1, . . . , i. Moreover the growth condition (3.8) allows us to apply Lemma 3.15 to the cone-shaped
set Aj for j = i + 1, . . . , l, hence we can conclude that there exists a sequence {vj

p}p, with vj
p ∈ W 1,p

loc (RN ) such
that vj

p = u0 on Cxj ,Sj∩(∂ω×(− 1
2 , 1

2 )) \ Aj ,
∫

Aj
|vj

p − u|1∗
dx → 0 as p → 1, and

lim sup
p→1

∫
Aj

W p(∇vj
p)dx ≤

∫
Aj

W

(
dDu

d|Du|
)

d|Du| +
∫

Sj∩(∂ω×(− 1
2 , 12 ))

W ((u0 − u)ν)dH2, (3.31)

for every j = i + 1, . . . , l.
Concerning the remaining part of the domain Ω, we recall that an argument entirely similar to that of

Proposition 3.9, guarantees that for all j = l + 1, . . . , m there exists {vj
p}p with vj

p ∈ W 1,p
loc (RN ) such that

vj
p → u in L1∗

(Bj ∩ Ω) and

lim
p→1

∫
Bj∩Ω

W p(∇vj
p)dx =

∫
Bj∩Ω

W

(
dDu

d|Du|
)

d|Du|. (3.32)

Now, for every p > 1 we may define the function wp ∈ W 1,p

u0,∂ω×(− 1
2 , 1

2 )
(Ω) as

wp =
m∑

j=1

ϕjv
j
p.
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The convexity of W p and, the growth condition (3.8) entail the local p–Lipschitz property for W p. Thus ex-
ploiting the convexity of W p, the Hölder inequality we get

∫
Ω

W p(∇wp)dx =
∫

Ω

W p

⎛
⎝ m∑

j=1

(ϕj∇vj
p + vj

p∇ϕj)

⎞
⎠ dx

≤
∫

Ω

W p

⎛
⎝ m∑

j=1

ϕj∇vj
p

⎞
⎠dx + C

∫
Ω

⎛
⎜⎝
∣∣∣∣∣∣

m∑
j=1

(ϕj∇vj
p + ϕj

p∇vj
p)

∣∣∣∣∣∣
p−1

+

∣∣∣∣∣∣
m∑

j=1

ϕj∇vj
p

∣∣∣∣∣∣
p−1
⎞
⎟⎠
∣∣∣∣∣∣

m∑
j=1

vj
p∇ϕj

∣∣∣∣∣∣ dx

≤
∫

Ω

W p

⎛
⎝ m∑

j=1

ϕj∇vj
p

⎞
⎠dx + C

⎛
⎜⎜⎝
∫

Ω

⎛
⎜⎝
∣∣∣∣∣∣

m∑
j=1

(ϕj∇vj
p + ϕj

p∇vj
p)

∣∣∣∣∣∣
p−1

+

∣∣∣∣∣∣
m∑

j=1

ϕj∇vj
p

∣∣∣∣∣∣
p−1
⎞
⎟⎠

p
p−1

dx

⎞
⎟⎟⎠

p−1
p

·

⎛
⎝∫

Ω

∣∣∣∣∣∣
m∑

j=1

vj
p∇ϕj

∣∣∣∣∣∣
p

dx

⎞
⎠

1
p

≤
m∑

j=1

∫
Ω

ϕjW
p(∇vj

p)dx + C

⎛
⎜⎜⎝
∫

Ω

⎛
⎜⎝
∣∣∣∣∣∣

m∑
j=1

(ϕj∇vj
p + ϕj

p∇vj
p)

∣∣∣∣∣∣
p−1

+

∣∣∣∣∣∣
m∑

j=1

ϕj∇vj
p

∣∣∣∣∣∣
p−1
⎞
⎟⎠

p
p−1

dx

⎞
⎟⎟⎠

p−1
p

·

⎛
⎝∫

Ω

∣∣∣∣∣∣
m∑

j=1

vj
p∇ϕj

∣∣∣∣∣∣
p

dx

⎞
⎠

1
p

.

(3.33)

We notice that vj
p ∈ W 1,p

loc (RN ),
∑m

j=1 ∇ϕj = 0 and vj
p → u in L1∗

(Aj) as p → 1, for j = 1, . . . , m. Hence

lim
p→1

∫
Ω

∣∣∣∣∣∣
m∑

j=1

vj
p∇ϕj

∣∣∣∣∣∣
p

dx = 0. (3.34)

Next we want to show that

lim
p→1

∫
Ω

ϕjW
p(∇vj

p)dx ≤
∫

Ω

ϕjW

(
dDu

d|Du|
)

d|Du| +
∫

Sj∩(∂ω×(− 1
2 , 1

2 ))
ϕjW ((u0 − u)ν)dH2, (3.35)

for j = 1, . . . , l.

To this aim we start by fixing j ∈ {1, . . . , i} and consider the set Cj = Bj \
(
Cxj ,(Sj∩∂Ω)\∂ω×(− 1

2 , 12 ) \ Aj

)
.

We may assume that Cj is an open set with piecewise C1 boundary (the general case always reduce to this
one by considering a set C∗

j with piecewise C1 boundary such that Aj ∪
(
∂ω × (− 1

2 , 1
2

)) ⊂ C∗
j ⊂ Cj , and apply

the following argument to C∗
j ). Thus, we extend u to Cj setting u = u0 in Cj \ Aj . Clearly u ∈ BV (Cj) and
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by (3.30) we can write

lim sup
p→1

∫
Cj

W p(∇vj
p)dx = lim sup

p→1

[∫
Aj

W p(∇vj
p)dx +

∫
Cj\Aj

W p(∇u0)dx

]

≤
∫

Aj

W

(
dDu

d|Du|
)

d|Du| +
∫

Sj∩(∂ω×(− 1
2 , 1

2 ))
W ((u0 − u)ν)dH2

+
∫

Cj\Aj

W (∇u0)dx =
∫

Cj

W

(
dDu

d|Du|
)

d|Du|.

(3.36)

The growth condition on W (3.8), the regularity of u0, namely the fact that u0 ∈ W 1,p̄
loc (R3), entail that the

right hand side of (3.36) is finite.
On the other hand, well known lower semicontinuity results, and Hölder inequality provide∫

A

W

(
dDu

d|Du|
)

d|Du| ≤ lim inf
p→1

∫
A

W p(∇vj
p)dx (3.37)

for every open subset A of Cj . By (3.36) and (3.37) we can apply Proposition 2.7 to Cj for μp =
∫
· W

p(∇vj
p)dx

and μ =
∫
· W
(

dDu
d|Du|
)

d|Du| to obtain (3.35) for j = 1, . . . , i as follows

lim
p→1

∫
Ω

ϕjW
p(∇vj

p)dx = lim
p→1

[∫
Cj

ϕjW
p(∇vj

p)dx −
∫

Cj\Aj

ϕjW
p(∇u0)dx

]

=
∫

Cj

W

(
dDu

d|Du|
)

d|Du| −
∫

Cj\Aj

W (∇u0)dx

=
∫

Aj

W

(
dDu

d|Du|
)

d|Du| +
∫

Sj∩(∂ω×(− 1
2 , 1

2 ))
W ((u0 − u)ν)dH2.

Next, we fix j ∈ {i + 1, . . . , l} and extend u to Bj setting u = u0 in Bj \ Aj . Clearly u ∈ BV (Bj) and we can
reason as in the previous case taking Bj in place of Cj to obtain (3.35) for j = i + 1, . . . , l. Now, notice that for
fixed j ∈ {l + 1, . . . , m}, (3.37) still holds for every subset A of Bj ∩ ∂Ω. Moreover by (3.32) we get that

lim
p→1

∫
Bj∩Ω

W p(∇vj
p)dx =

∫
Bj∩Ω

W

(
dDu

d|Du|
)

d|Du| < +∞.

Thus applying again Proposition 2.7 to Bj ∩Ω with μp =
∫
· W

p(∇vj
p)dx and μ =

∫
· W
(

dDu
d|Du|
)

d|Du| we obtain

lim
p→1

∫
Ω

ϕjW
p(∇vj

p)dx ≤
∫

Ω

ϕjW

(
dDu

d|Du|
)

d|Du|, (3.38)

for j = l + 1, . . . , m. Thus, putting together (3.33)÷ (3.35) and (3.38), since W is convex we conclude that

lim sup
p→1

∫
Ω

W p(∇wp)dx ≤
m∑

j=1

(∫
Ω

ϕjW

(
dDu

d|Du|
)

d|Du| +
∫

∂ω×(− 1
2 , 12 )

ϕjW ((u0 − u)ν)dH2

)

=
∫

ω

W

(
dDu

d|Du|
)

d|Du| +
∫

∂ω×(− 1
2 , 1

2 )
W ((u − u0)ν)dH2,

(3.39)

and this concludes the proof. �
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Proof of Theorem 3.11. We start observing that Lemma 3.17 guarantees the existence of a sequence {up}p such
that up ∈ W 1,p

u0,∂ω×(− 1
2 , 12 )

(Ω),

lim
p→1

∫
Ω

|up − u|1∗
dx = 0,

and

lim
p→1

∫
Ω

W p
ε (∇up)dx =

∫
Ω

Wε

(
dDu

d|Du|
)

d|Du| +
∫

∂ω×(− 1
2 , 1

2 )
Wε((u − u0)ν)dH2.

These prove the upper bound. For what concerns the lower bound it is enough to invoke Lemma 3.13. This
concludes the proof. �

Remark 3.18. We observe that in Theorem 3.11 and in the preliminary lemmata, we have chosen a function W
positively 1–homogeneous, having in mind the applications to the −Δ1 type equations, but the Γ–convergence
results hold similarly without this assumption, introducing the recession function W∞ in the integrals dealing
with the singular part of Du.

3.4. Summary of the results

Let ω ⊂ R2 be a bounded open set, with piecewise C1 boundary, and let u0 ∈ W 1− 1
p̄ ,p̄(∂ω), for some p̄ > 1;

recall the families of problems {Pp,ε}p,ε, {P1,ε}ε, {Pp,0}p and P1,0 in (1.5), (1.12), (1.10) and (1.16), respectively.
As a consequence of the above results we obtain that the dimensional reduction, i.e. the asymptotics as

ε → 0, and the so-called power law approximation, namely the convergence as p → 1, commute in the sense of
Γ -convergence with respect to L1(Ω)–strong convergence, as summarized by the following diagram:

�Pp,ε P1,ε

p −→ 1

�

ε −→ 0

�

ε −→ 0

Pp,0
�

p −→ 1
P1,0

Indeed, the left vertical arrow is a consequence of Remark 3.2, the right vertical arrow has been proven in
Proposition 3.4, the upper horizontal arrow has been proved in Theorem 3.11 while the lower horizontal arrow
follows from Theorem 3.8.

Other types of analysis of solutions to problems Pp,ε as p → 1 and ε → 0 will be discussed in the following
sections.

In the following remark we point out a result which turns out to be a byproduct of our previous Γ–convergence
analysis.

Remark 3.19. Let ω ⊂ R2 be a bounded open set, piecewise C1, with L2(ω) = 1 for convenience, let Ω :=
ω × (− 1

2 , 1
2

)
, let W : R3 → [0, +∞[ be a continuous function, positively 1–homogeneous and verifying (3.8). Fix

p > 1, and let u0 ∈ W 1,p
loc (R2). For every 1 < p ≤ p we can define the functionals

Fp(u) =

⎧⎨
⎩

‖W (∇u)‖Lp(Ω) if u ∈ W 1,p

u0,∂ω×(− 1
2 , 1

2 )
(Ω),

+∞ otherwise in BV (Ω).
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It is easily verified that dom(Fp) ⊃ dom(Fq) whenever 1 < p < q and if u ∈ dom(Fq) then Fp(u) ≤ Fq(u).
Let F : BV (Ω) → [0, +∞] be the functional defined as

F(u) =

⎧⎪⎨
⎪⎩

‖W (∇u)‖L1(Ω) if u ∈ ⋃p>1 W 1,p

u0,∂ω×(− 1
2 , 1

2 )
(Ω),

+∞ if u ∈ BV (Ω) \⋃p>1 W 1,p

u0,∂ω×(− 1
2 , 12 )

(Ω).

The monotonicity of {Fp}p provides pointwise convergence as p → 1 of Fp(u) to F(u), for every u ∈ BV (Ω). On
the other hand it is easy to verify that F is not lower semicontinuous with respect to L1(Ω) strong convergence.
Thus [10], Proposition 5.7 ensures Γ–convergence, with respect to L1(Ω) strong convergence, of Fp, as p → 1,
to the lower semicontinuous envelope of F , denoted by F . On the other hand Lemma 3.13 and Lemma 3.17
guarantee that {Fp}p Γ – converges, with respect to L1(Ω) strong convergence, as p → 1, to the functional

F1(u) =
∫

Ω

W (∇u)dx +
∫

Ω

W

(
dDsu

d|Dsu|
)

d|Dsu| +
∫

∂ω×(− 1
2 , 1

2 )
W ((u − u0)ν)dH2

for every u ∈ BV (Ω). Consequently we have proven that F(u) = F1(u) for every u ∈ BV (Ω).

4. The case p = 1 in terms of differential problems

The aim of this section is to provide another view to the limit problems of (1.6) and (1.11) as p → 1, by
means of duality. As it is well known that (1.6) and (1.11) represent the Euler–Lagrange equations associated
to (1.5) and (1.10) respectively, in the sequel we state some results which allow us to regard the limiting
equations (4.1) and (4.2) as the counterparts in duality of the limit functionals (3.2) and (3.7) respectively,
achieved via Γ–convergence in Section 3.

Formally, putting p = 1 in (1.6) and (1.11), one obtains

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Δ1,εu = −div
(
|Idε∇u · ∇u|−1

2 Idε∇u
)

= 0 in ω,

u = u0 on ∂ω × (− 1
2 , 1

2

)
,

|Idε∇u · ∇u|−1
2 (Idε∇u) · ν = 0 on ω × {− 1

2 , 1
2

}
(4.1)

where Idε has been defined in (1.7), and

⎧⎪⎨
⎪⎩

−Δ1,0u = −div
( ∇u

|∇u|
)

= 0 in ω,

u = u0 on ∂ω.

(4.2)

Clearly the above equations are meaningless in W 1,1(ω). In order to deal with problems (1.15) and (1.16) in
terms of PDE’s it is useful to approach them using the theory developed by Ekeland and Temam in the context
of variational problems (see [17]).

The following proposition is stated in [25], Proposition 1.1 and, with the purpose of applications to 1–Laplace
equations quoted also in [13–15]. A proof can be found in [25], Theorem 3.2 in the context of Hencky’s Plasticity
theory, cf. also [5], Section 4 for a proof in the scalar case.
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Proposition 4.1. Let O ⊂ RN be an open set. Suppose that u ∈ BV (O) and σ ∈ L∞(O; RN ) is such that
divσ ∈ LN (O). One defines the distribution σ · Du by the following

1. For every ϕ ∈ C∞
0 (O)

< σ · Du, ϕ >= −
∫

O

div(σ)uϕdx −
∫

O

σ · (Dϕ)udx.

Then, the distribution σ ·Du hence defined is a bounded measure in O, absolutely continuous with respect to
|Du|, with

|σ · Du| ≤ |Du||σ|∞. (4.3)

2. Suppose that O is piecewise C1. The following generalized Green’s formula holds for ϕ ∈ C∞
0 (RN )

< σ · Du, ϕ >= −
∫

O

div(σ)uϕdx −
∫

O

σ · Dϕudx +
∫

∂O

σ · νuϕdHN−1, (4.4)

where ν denotes the unit outer normal to ∂O and HN−1 the N − 1 dimensional Hausdorff measure.

By virtue of Proposition 4.1 applied to O = ω, with u0 ∈ W 1− 1
p ,p(∂ω) for a suitable p > 1 one may consider

the following equation which provides a rigorous meaning to (4.2).⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−divσ = 0, in ω,

σ · Du = |Du| in ω,

σ · ν(u − u0) = |u − u0| on ∂ω.

(4.5)

Applying again Proposition 4.1 to O = ω× (− 1
2 , 1

2

)
we can give a meaning to the anisotropic −Δ1,ε operator

appearing in dimension reduction, and we can also consider it as the “Euler–Lagrange equation” associated
to (1.15).

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−divσε = 0 in ω × (− 1
2 , 1

2

)
,

σε · ∇u = |Idε∇u · ∇u| 12 in ω × (− 1
2 , 1

2

)
,

σε · ν(u − u0) = |u − u0| on ∂ω × (− 1
2 , 1

2

)
,

σε · ν = 0 on ω × {− 1
2 , 1

2

}
,

(4.6)

where ν represents the unit outer normal vector to ∂ω × (− 1
2 , 1

2

)
and Idε is as in (1.7).

Via the duality theory the solutions to (4.5) and (4.6) are in correspondence with the minimizers of P1,ε

in (1.15) and P1,0 in (1.16), according to the regularity assumptions on u0.
In fact we can invoke Theorem 2.9 and apply it to (4.5) and (4.6). Namely, having in mind the notations of

Theorem 2.9 in the first case we can set X = W 1,1(ω) and Y = (L1(ω))2, the linear operator Λ maps u ∈ X to
∇u ∈ Y , G and F are defined as

G(p) =
∫

ω

(
2∑

i=1

p2
i

) 1
2

dx1dx2,

with p = (p1, p2)

F (u) =

⎧⎨
⎩

0 if u ≡ u0 in ∂ω,

+∞ otherwise,
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where the equality is intended, as usual, in the sense of traces, recalling that u0 ∈ W 1− 1
p̄ ,p̄(∂ω), for some p̄ > 1.

Thus it easily checked that the dual Problem of P1,0 is

D0 = sup
σ ∈ L∞(ω; R3),
divσ = 0, |σ| ≤ 1

{
−
∫

∂ω

σ · νu0dH1

}
, (4.7)

where in fact σ is exactly as in (4.5).
Analogously in the ε–dependent case, by assuming X = W 1,1

(
ω × (− 1

2 , 1
2

))
and Y = (L1

(
ω × (− 1

2 , 1
2

))
)3

and Λ : u ∈ X →
(
∇αu
∣∣∣1ε∇3u
)
∈ Y , let G be given by

G(p) =
∫

Ω

(
3∑

i=1

p2
i

) 1
2

dx1dx2dx3,

(where we kept track of the factor 1
ε in the space of admissible functions rather than in the integrand), and

F (u) =

⎧⎨
⎩

0 if u ≡ u0 in ∂ω × (− 1
2 , 1

2

)
,

+∞ otherwise.

The dual problem becomes

D1,ε = sup
σε ∈ L∞(Ω; R3),
divσε = 0,

∣∣∣Id 1
ε
σε

∣∣∣ ≤ 1,

σε · ν = 0 on ω × {− 1
2 , 1

2

}

{
−
∫

∂ω×(− 1
2 , 1

2 )
σε · νu0dH2

}
.

Remark 4.2. We observe that the application of Theorem 2.9 entails the existence of the solution only to the
dual problems, related to anisotropic almost 1–Laplacian and almost 1–Laplacian, namely to (4.5) and (4.6).
On the other hand the regularity of u0, namely the fact that it is in some suitable trace space, guarantees the
application of our Γ–convergence results, Theorem 3.8 and 3.11. On the other hand by virtue of Theorem 2.6,
the same arguments exploited to exhibit the recovery sequence for the upper bound in Theorems 3.8 and 3.11
guarantee the convergence of the minimizers at p–level of Pp,0 and Pp,ε (that exist for convexity reasons) to the
minimum points in the original problems P1,0 and P1,ε respectively as p → 1, in spite of the lack of coerciveness
of I1,0 and I1,ε.

A direct proof of existence of minimizers to P1,0 and P1,ε will be provided in the last section.

The relations between the extremal points in the dual problems P1,0 and D1,0 are stated in Proposition 4.3,
while the relations between P1,ε and D1,ε are stated in 4.4. We omit the proofs of these results for the sake of
brevity.

Proposition 4.3. Suppose that u ∈ BV (ω), and σ ∈ L∞(ω; R3), with divσ = 0 and |σ| ≤ 1 a.e. in ω. Then u
and σ are extremal for P1,0 and D0, respectively if and only if

−σ · Du = |Du| as measures on ω, (4.8)

and
σ · ν =

u − u0

|u − u0| on ∂ω ∩ {u �= u0}. (4.9)
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Proposition 4.4. Suppose that u ∈ BV
(
ω × (− 1

2 , 1
2

))
, and σ ∈ L∞ (ω × (− 1

2 , 1
2

)
; R3
)
, with divσ = 0 and∣∣∣Id 1

ε
σ
∣∣∣ ≤ 1 a.e. in ω × (− 1

2 , 1
2

)
. Then u and σ are extremal for P1,ε and D1,ε, respectively if and only if

−σ · Du = |IdεDu · Du| 12 as measures on ω ×
(
−1

2
,
1
2

)
,

and

σ · ν =
u − u0

|u − u0| on ∂ω ×
(
−1

2
,
1
2

)
∩ {u �= u0},

and

σ · ν = 0 on ω ×
{
−1

2
,
1
2

}
·

5. Asymptotics in terms of least gradient problem

The target of this section consists of discussing asymptotics as ε → 0 and p → 1 for problems (1.6) when
the imposed boundary datum has a regularity, in principle different from that required in the previous Γ–
convergence analysis, but a more stringent requirement is imposed on the domain ω × (− 1

2 , 1
2

)
. Under this new

set of assumptions we will prove that the problems P1,ε in (1.15) and P1,0 in (1.16) indeed admit a solution.
Consequently in the light of Propositions 4.3 and 4.4, there exist solutions to the anisotropic almost 1–Laplacian
and almost 1–Laplacian in (4.1) and (4.2), respectively, when both the assumptions introduced in Section 3 and
Section 5 are imposed. We recall that the symbols for the domains Ω and ω denote the same sets as in (1.3),
namely ω ⊂ R2 is a bounded open set and Ω = ω × (− 1

2 , 1
2

) ·
As already observed in the Introduction there is equivalence, in the sense of “Euler–Lagrange”, between

problems (1.6) and (1.11) and their variational formulation (1.5) and (1.10) respectively when p > 1 and the
boundary datum u0 is in a suitable trace space. Analogously, with the same regularity assumptions on u0,
and via the duality argument invoked in Section 4, there is ‘equivalence’ between (4.6) ((4.5) respectively) and
the minimum problems (1.15) ((1.16) respectively). This fact may be no longer true if one requires u0 to be a
continuous function on ∂ω, cf. [23].

On the other hand, as already emphasized, the problems Pp,ε and Pp,0 may exhibit other behaviors when
p = 1, and the integral formulation can be understood in different ways. Besides the duality approach quoted
in Section 4 in the present section we aim to make a link in terms of least gradient functions, which will allow
us to determine other sufficient conditions for the existence of solutions to P1,0 and P1,ε.

We start by focusing on the case p > 1 and ε = 0, and we recall the definition of p−harmonic functions
following [23], Definition 2.2, namely local weak solutions of (1.11), when u0 ∈ C(∂ω). First we give this
definition on any generic open set O ⊂ Rn. Then we formulate the least gradient problems, cf. (5.1) and (5.2).
We recall the results available in literature in which there have been provided sufficient conditions for the
existence and uniqueness of solutions to the least gradient (cf. [29]). Moreover we recall the approximation
result due to Juutinen, where p–harmonic functions approach locally uniformly functions of least gradient.
Essentially these latter results represent another asymptotic analysis as p → 1 for problems {Pp,0}. Then, for
what concerns the asymptotics as p → 1 of problems {Pp,ε} we prove explicitly in Lemma 5.6 a uniqueness result
for p–harmonic functions up,ε in cylindrical domains of the type ω × (− 1

2 , 1
2

)
with mixed boundary conditions:

Neumann conditions on the basis and Dirichlet ones on the lateral boundary. Finally in Theorem 5.7 we prove
that these latter functions up,ε are not dependent on x3, thus p–harmonic in ω. We deduce also the trivial
limiting behavior of up,ε as ε → 0 to a function of least gradient in ω, i.e. still independent on x3.

Definition 5.1. Let 1 < p < ∞, a continuous function u ∈ W 1,p
loc (O) is p−harmonic in O if∫

O

|∇u|p−2∇u · ∇ϕdx = 0

for every ϕ ∈ C∞
0 (O).
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The continuity in Definition 5.1 is redundant as shown in [23].
It is useful also to recall (see [23]) that a continuous function u ∈ W 1,p

loc (O) is p−harmonic in O if and only if∫
O0

|∇u|pdx ≤
∫

O0

|∇v|pdx whenever O0 open set ⊂⊂ O and u − v ∈ W 1,p
0 (O0).

Now we recall some results deeply connected with −Δ1, problem (1.16) and its approximating ones (1.5) (as
p → 1 and ε → 0). The analysis we present will be mainly concerned with differential problems defined in the
cross section ω, when the boundary datum u0 is regular. To this end we will recall the notion of functions of
least gradient in a generic open set O ⊂ Rn.

Let O ⊂ Rn be an open set, following [29], we say that a function u ∈ BV (O), with prescribed boundary
value u0 ∈ C(∂O) is of least gradient if it is a solution of

inf
u∈BV (O)

{|Du|(O), u ≡ u0 on ∂O}. (5.1)

It has been established in [30] that the existence of such a function is deeply related with the regularity of O,
the regularity of the trace u0 and the sense in which this trace must be understood, indeed this latter fact plays
a crucial role.

In fact one may also consider

inf
u∈BV (O)∩C(O)

{|Du|(O), u ≡ u0 on ∂O}. (5.2)

Clearly in this latter problem the trace is intended in the classical sense (restriction), and the equality u = u0

is understood pointwise in ∂O. On the contrary in (5.1) the equality u = u0 on ∂O has to be taken in the sense
of traces for BV –functions (see Sect. 2.4).

The following result has been proven in [29].

Theorem 5.2. Let O ⊂ Rn be a bounded Lipschitz open domain such that ∂O has non-negative mean curvature
(in a weak sense) and is not locally area-minimizing. If u0 ∈ C(∂O), then there exists a unique function of least
gradient u ∈ BV (O) ∩ C(O) such that u ≡ u0 on ∂O, namely u is the unique solution of (5.2).

The assumptions in Theorem 5.2 read as

• For every x ∈ ∂O there exists ε0 > 0 such that for every set of finite perimeter A ⊂⊂ B(x, ε0)

P (O; Rn) ≤ P (O ∪ A; Rn) (5.3)

• For every x ∈ ∂O, and every η > 0 there exists a set of finite perimeter A ⊂⊂ B(x, η) such that

P (O, B(x, η)) > P (O \ A, B(x, η)), (5.4)

where P (·; Rn) denotes the perimeter in Rn. Examples showing that neither (5.3) nor (5.4) can be dropped are
given in [29].

On the other hand in [30], (to which we refer for the precise assumptions) it has been established the following
result.

Theorem 5.3. Let O ⊂ Rn be a bounded Lipschitz open domain satisfying, the same assumptions of
Theorem 5.2, namely (5.3) and (5.4). Assume also that a uniform interior ball condition of radius R holds.
Then there is at most one solution to the least gradient problem (5.1).

Combining both the assumptions in Theorems 5.2 and 5.3, and observing that any solution of (5.2) (which, in
this setting, exists and is unique) solves also (5.1) (which, in turn, with these hypotheses admits one solution),
we conclude that the solutions of problems (5.1) and (5.2) are unique and coincide.

In order to deal with the asymptotics as p → 1 of the −Δp- equations, Juutinen in [23], Theorem 3.1 has
proven the following theorem (cf. also Rem. 3.4 therein).
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Theorem 5.4. Let O ⊂ Rn be a bounded smooth open domain whose boundary has positive mean curvature
and u0 ∈ C(∂O), and let u ∈ BV (O) ∩ C(O) be the unique function of least gradient such that u = u0 on ∂O.
Then if up ∈ W 1,p

loc (O) ∩ C(O) is the unique p–harmonic function satisfying up = u0 on ∂O, it results

up → u locally uniformly in O, as p → 1.

Remark 5.5. We recall that the existence and uniqueness of the solution up mentioned in Theorem 5.4 do
not rely on ‘classical’ Calculus of Variations arguments, since the boundary datum u0 may not be the trace
of a Sobolev function. Namely for a generic open set O when u0 ∈ C(∂O), one cannot conclude that u0 ∈
W 1− 1

p ,p(∂O) for some p ≥ p > 1 and thus the existence of a p–harmonic function cannot be deduced by
minimizing an integral functional of the type (1.4). The exploited techniques in [23] to have a unique p–harmonic
function up with boundary datum u0 are those suitably employed in the context of Nonlinear PDEs, cf. [22].
On the other hand we underline the fact that if p → 1, namely it is 1 < p < 2, and O is as in Theorem 5.4 the
unique p–harmonic function up ∈ W 1,p(O) with boundary datum u0 (for instance in C1,1(∂O)), solves {P}p,0

and converges to the solution of the least gradient problem.

In the next lemma, by means of duality products in terms of Lions–Magenes spaces and trace spaces, exploiting
the monotonicity of the p–laplacian operator (see Eq. (3.8) in [22]) and arguing as in [22], Theorem 3.17 and
Lemma 3.18 we will deduce the following uniqueness result.

First we recall that for p > 1 if u ∈ W 1,p(O), then Δpu ∈ [W 1,p(O)]∗ (the dual space of W 1,p(O)) and
|∇u|p−2∇u has a normal trace, denoted by |∇u|p−2∇u · ν, (where ν denotes the normal to ∂O), such that

|∇u|p−2∇u · ν ∈ W
− 1

p′ ,p′
(∂O) := [W

1
p′ ,p′

(∂O)]∗,

where 1
p + 1

p′ = 1. Moreover if Γ1 ⊂ ∂O is open in the relative topology, then the restriction of |∇u|p−2∇u · ν
to Γ1, denoted by |∇u|p−2∇u · ∇u|Γ1 satisfies

|∇u|p−2∇u · ν|Γ1 ∈ W
− 1

p′ ,p′
(Γ1) := [W

1
p′ ,p

00 (Γ1)]∗,

where W
1
p′ ,p

00 (Γ1) is the Lions–Magenes space of all functions u ∈ Lp(Γ1) whose extension by 0 on ∂O \ Γ1

belongs to W
1
p′ ,p(∂O).

Lemma 5.6. Let O be a smooth open domain with ∂O = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅. Let u, v ∈ W 1,p(O) satisfy

−Δpu ≥ −Δpv

in O, in the sense of [W 1,p(O)]∗,

|∇u|p−2∇u · ν ≥ |∇v|p−2∇v · ν
on Γ1, in the sense of W

− 1
p′ ,p′

(Γ1) and

u ≥ v

on HN−1 a.e. on Γ2, in the sense of traces. Then u ≥ v in O.

Proof. In order to prove that u ≥ v in O it is enough to show that

(u − v)− ≡ 0,

where for any couple of functions f and g, (f − g)− := min(f − g, 0).
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To this purpose, given ε > 0, we observe that (u + ε − v)− belongs to W 1,p(O) and its trace on Γ2 is 0 HN−1

almost everywhere. Thus (u + ε + v)−|Γ1 ∈ W
− 1

p′ ,p

00 (Γ1) and thus we can take it as a non positive test function
in the inequality

− (Δpu − Δpv) ≥ 0, in [W 1,p(O)]∗

namely we deduce that

< − (Δpu − Δpv) , (u + ε − v)− >|[W 1,p(O)]∗,W 1,p(O)≤ 0.

Then by the definition of the normal trace we obtain

∫
O

(|∇u|p−2∇u − |∇v|p−2∇v
)∇ (u + ε − v)− dx−

<
(|∇u|p−2∇u · ν − |∇v|p−2∇v · ν) , (u + ε − v)− >

W
−1
p′ ,p′

(∂O),W
1
p′ ,p

(∂O)
≤ 0.

(5.5)

Recall that

∫
O

(|∇u|p−2∇u − |∇v|p−2∇v
)∇ (u + ε − v)− dx

=
∫

O∩{u+ε<v}

(|∇u|p−2∇u − |∇v|p−2∇v
) · (∇u −∇v) dx

=
∫

O∩{u+ε<v}
|∇u|p−2∇u · (∇u −∇v) dx −

∫
O∩{u+ε<v}

|∇v|p−2∇v · (∇u −∇v) dx.

We use the following inequality (cf. [27], Lem. 4.2)

|x2|p − |x1|p ≥ p|x1|p−2x1 · (x2 − x1) + c(p)
|x2 − x1|p

(|x1| + |x2|)2−p

and we get

|∇u|p−2∇u · (∇u −∇v) ≥ 1
p

[
|∇u|p − |∇v|p + c(p)

|∇u −∇v|p
(|∇u| + |∇v|)2−p

]

a.e. in O,

−|∇v|p−2∇v · (∇u −∇v) ≥ 1
p

[
|∇v|p − |∇u|p + c(p)

|∇u −∇v|p
(|∇u| + |∇v|)2−p

]

a.e. in O.
Hence

(|∇u|p−2∇u − |∇v|p−2∇v
) · (∇u −∇v) ≥ 2

p
c(p)

|∇u −∇v|p
(|∇u| + |∇v|)2−p > 0,

a.e. in O, when ∇u �= ∇v, i.e. the monotonicity of the p–laplacian.
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This proves the positivity of the first term in (5.5). For the second term, since (u + ε + v)−|Γ1 ∈ W
1
p′ ,p

00 (Γ1) we
deduce that

<
(|∇u|p−2∇u · ν − |∇v|p−2∇v · ν) , (u + ε − v)− >

W
− 1

p′ ,p′
(∂O),W

1
p′ ,p

(∂O)

= <
(|∇u|p−2∇u · ν|Γ1 − |∇v|p−2∇v · ν|Γ1

)
, (u + ε − v)−Γ1

>
W

− 1
p′ ,p′

(Γ1),W
− 1

p′ ,p

00 (Γ1)
≤ 0.

We know that the function on Γ1 is non positive since (u + ε − v)− ≤ 0, while the second term is zero. Then
the left hand side of (5.5) is strictly positive. Again the first term in (5.5) turns out both ≥ 0 and ≤ 0. This
together with the monotonicity of the p–laplacian, ensures that ∇ (u + ε − v) ≡ 0, so v = u + C in the set
{u + ε < v}. Hence v ≤ u + ε for any ε, and then u ≥ v. �

We can now prove the following result.

Theorem 5.7. Let Ω := ω × (− 1
2 , 1

2

)
and assume that ω ⊂ R2 is a bounded smooth open domain whose

boundary has positive mean curvature, and let u0 ∈ C(∂ω). Then the unique weak solutions of (1.6) up, in the
sense that they are in C(Ω) ∩ W 1,p

loc (Ω) and
∫

Ω

(
|Idε∇up · ∇up|

p−2
2 Idε∇up

)
· ∇ϕdx = 0

for every ϕ ∈ C∞
0 (Ω), for every ε > 0, are also p−harmonic functions referred to (1.8) and (1.11), and thus

independent on x3. Moreover they converge locally uniformly as p → 1 to the unique function of least gradient
in ω with datum u0.

Proof. For p > 1, the existence and uniqueness of p−harmonic solutions (independent on x3) to (1.8) and (1.11)
can be deduced as already observed in Theorem 5.4. For p = 1, we observe that Theorem 5.2 applied to ω ensures
that there exists a unique function u of least gradient with datum u0. Moreover again Theorem 5.4 and [23],
Remark 3.4 provide the locally uniform convergence of the above up to this solution u. To conclude the proof it
remains to show that up are also unique among the functions in W 1,p

loc (Ω) ∩ C(Ω). This latter fact follows from
the lemma 5.6 applied to the unrescaled domain Ωε and the well-posedness of the problem (cf. [22, 23]). �

Now we can introduce the least gradient problem in the thin domain, taking into account the rescaling in (1.3)

inf
u∈BV (Ω)

{∣∣∣∣
(

Dαu
∣∣∣1
ε
D3u

)∣∣∣∣ (Ω), u ≡ u0 on ∂ω ×
(
−1

2
,
1
2

)}
, (5.6)

and its version on the class BV (Ω) ∩ C(Ω),

inf
u∈BV (Ω)∩C(Ω)

{∣∣∣∣
(

Dαu
∣∣∣1
ε
D3u

)∣∣∣∣ (Ω), u ≡ u0 on ∂ω ×
(
−1

2
,
1
2

)}
· (5.7)

In order to provide sufficient conditions ensuring that both problems (5.6) and (5.7) admit a unique solution,
we prove the following theorem.

Theorem 5.8. Let Ω : ω×(− 1
2 , 1

2

)
with ω ⊂ R2 a bounded open domain, piecewise C1, and verifying (5.3), (5.4)

and a uniform interior ball condition as in Theorem 5.3. Let u0 ∈ C1,1(∂ω). Then problems (5.6) and (5.7)
admit a unique coincident solution, independent on x3, obtained as limit for p → 1 in L1(Ω)–strong topology
and locally uniformly in Ω of {up,ε}, where the latter is the unique solution of (1.6).
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We observe that in the statement of this theorem we denoted the unique solution of (1.6) by up,ε while
in Theorem 5.7 we denoted it simply by up. The present choice is due to the fact that we want to stress
the fact that up,ε = up and it solves (1.6) for every ε > 0. We emphasize that Theorem 5.8 holds whenever
u0 ∈ C(∂ω) ∩ W 1− 1

p ,p(∂ω) for p ≥ p > 1, while if u0 ∈ C(∂ω) it is possible to deduce just the locally uniform
convergence.

Proof. We start by observing that the assumptions on ω ensure that, as can be deduced from [23], Theorem 3.1
and already emphasized in Remark 5.5, u0 ∈ W 1− 1

p ,p(∂ω) for 1 < p < 2. Consequently for every 1 < p < 2 there
exists a unique function up ∈ W 1,p(ω) solution of (1.11). The fact that up is independent of x3, implies that up

solves also (1.8) and (1.6) for every ε > 0. On the other hand theorem 5.7 says also that up is the unique solution
of (1.6). Thus we can denote this solution up also as up,ε. Next we can observe, by virtue of the strict convexity
of Ip,ε in (1.4) and Ip,0 in (1.9), that for every 1 < p < 2 and for every ε > 0, up ≡ up,ε is also the unique
minimum point of Pp,0 and Pp,ε. On the other hand Theorem 5.7 guarantees that up,ε = up converges locally
uniformly in Ω to the unique solution u of (5.1) and (5.2). It is easily seen that the function u is admissible also
for problems (5.6) and (5.7). Moreover the fact that u0 is an admissible boundary datum for the Γ–convergence
Theorems 3.8 and 3.11, leads us to conclude that the common minimum values up of Pp,ε and Pp,0 converge to
the minimum of P1,0 and P1,ε. Consequently exploiting Theorem 2.6 we can say that u (the strong L1(Ω) limit
of up,ε = up as p → 1) is a minimum both for (5.6) and (5.7). This concludes the proof. �
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