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APPROXIMATION OF THE PARETO OPTIMAL SET FOR MULTIOBJECTIVE
OPTIMAL CONTROL PROBLEMS USING VIABILITY KERNELS

Alexis Guigue
1

Abstract. This paper provides a convergent numerical approximation of the Pareto optimal set for
finite-horizon multiobjective optimal control problems in which the objective space is not necessarily
convex. Our approach is based on Viability Theory. We first introduce a set-valued return function V
and show that the epigraph of V equals the viability kernel of a certain related augmented dynamical
system. We then introduce an approximate set-valued return function with finite set-values as the solu-
tion of a multiobjective dynamic programming equation. The epigraph of this approximate set-valued
return function equals to the finite discrete viability kernel resulting from the convergent numerical ap-
proximation of the viability kernel proposed in [P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre.
Birkhauser, Boston (1999) 177–247. P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Set-Valued
Analysis 8 (2000) 111–126]. As a result, the epigraph of the approximate set-valued return function con-
verges to the epigraph of V . The approximate set-valued return function finally provides the proposed
numerical approximation of the Pareto optimal set for every initial time and state. Several numerical
examples illustrate our approach.
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1. Introduction

Many applications, such as trajectory planning for spacecraft [7] and robotic manipulators [15], continuous
casting of steel [16], fishery management [8, 18], etc., involve optimal control formulations where p objective
functions (p > 1) need to be optimized simultaneously. For a General Optimization Problem (GOP) with a
vector-valued objective function, the definition of an optimal solution requires the comparison between elements
in the objective space, which is the set of all possible values that can be taken by the vector-valued objective
function. This comparison is generally provided by a binary relation, expressing the preferences of the decision
maker. In applications, it is common to consider the binary relation defined in terms of a pointed convex
cone P ⊂ Rp containing the origin [23]. However, in this paper, for simplicity, we will only consider the case
P = Rp

+, which yields the well-known Pareto optimality. The resolution of (GOP) therefore consists of finding
the set of Pareto optimal elements in the objective space, or Pareto optimal set. In general, this set cannot be
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obtained analytically and we have to resort to numerical approximations. The main objective of this paper is
therefore to propose a convergent numerical approximation of the Pareto optimal set for a general finite-horizon
multiobjective optimal control problem (MOC). We take care to avoid making any convexity assumption on
the objective space Y (or more generally, on the set Y + Rp

+). Indeed, in the case where the objective space
(or Y + Rp

+) is convex, simple methods such the weighting method can be used to generate the entire Pareto
optimal set [20], Theorem 3.4.4.

When the objective space is not convex, very few approaches to find the Pareto optimal set have been
proposed. An important line of research is to use evolutionary algorithms [9,11], such as genetic algorithms. Also,
very recently, an approach [17] inspired by the ε-constraint method in nonlinear multiobjective optimization [19],
pp. 85–95 has been developed for multiobjective exit-time optimal control problems where P = Rp

+. In this
approach, the n-dimensional state is augmented by p−1 dimensions, which yields a new single objective optimal
control problem. The Pareto optimal set of the original problem can be retrieved by inspecting the values of the
return function of this new augmented problem. The return function of the new problem is finally approximated
by solving numerically the corresponding (n + p − 1)-dimensional Hamilton–Jacobi–Bellman equation using a
semi-Lagrangian “marching” method.

In this paper, instead of an exit-time optimal control problem, we consider an optimal control problem
over a fixed finite horizon [0, T ]. The proposed approach differs fundamentally from the one in [17]. We use
Viability Theory [1, 6] and the existing numerical schemes for approximating viability kernels [4, 5, 10]. Our
first contribution is to reformulate the problem of finding the Pareto optimal set for (MOC) as the problem
of determining a viability kernel. This is done by considering the epigraph of the return function V (·, ·) :
[0, T ] × Rn → 2Rp

, defined as the set-valued map associating with each time t ∈ [0, T ] and state x ∈ Rn the
set of Pareto optimal elements in the objective space Y (t,x), where Y (t,x) is the set of all possible values that
can be taken by the vector-valued objective function for trajectories starting at x at time t [13, 14]. Hence,
the Pareto optimal set for any time t and state x can be obtained just by evaluating V at (t,x). Our second
contribution is to use the numerical schemes mentioned above to derive a convergent approximation of V . This
approximation is a set-valued map with finite set-values, called the approximate set-valued return function.
Hence, an approximation of the Pareto optimal set V (t,x) can be obtained just by evaluating the approximate
set-valued return function at (t,x). The advantage of using Viability Theory is that it provides a framework
that applies to problems with minimal regularity and convexity assumptions. Hence, it is expected that the
proposed approach could be easily extended to more general classes of problems than the one considered in this
paper, e.g., problems with state constraints, etc.

More precisely, the first step in the proposed approach is to show that the epigraph of V , i.e., the graph of the
set-valued map V +Rp

+, coincides with the viability kernel of a certain related augmented dynamical system. The
next step is to introduce an approximate set-valued return function as the solution of a multiobjective dynamic
programming equation. The epigraph of this function is shown to be equal to the finite discrete viability kernel
resulting from the convergent numerical approximation of the viability kernel proposed in [4, 5]. From there,
we easily obtain that the epigraph of the approximate set-valued return function converges in the sense of
Painlevé–Kuratowski to the epigraph of V . The multiobjective dynamic programming equation obtained is very
similar to the one obtained in [12], where no proof of convergence was provided.

This paper is organized as follows. In Section 2, we briefly discuss the concept of optimality in multiobjective
optimization and present several useful properties related to Pareto optimal sets. In Section 3, we detail the class
of multiobjective optimal control problems considered and define V . In Section 4, we show that the epigraph of
V equals the viability kernel of a certain related augmented dynamical system. Following [4,5], we then propose
in Section 5 a finite discrete approximation of this viability kernel. In Section 6, we show that this approximation
corresponds to the epigraph of a set-valued function that satisfies a certain multiobjective dynamic programming
equation. From the latter equation, we derive in Section 7 a numerical algorithm to compute this set-valued
function and therefore the approximate Pareto optimal set at (t,x). Some numerical examples, for which the
Pareto optimal set is analytically known, are provided in Section 8 and some conclusions are finally drawn in
Section 9.
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2. Multiobjective Optimization

For an optimization problem with a p-dimensional vector-valued objective function, the definition of an
optimal solution requires a comparison between elements in the objective space, which is the set of all possible
values that can be taken by the vector-valued objective function. This comparison is generally provided by a
binary relation, expressing the preferences of the decision maker. In applications, it is common to define a binary
preference relation in terms of a pointed convex cone P ⊂ Rp containing the origin [23].

Definition 2.1. Let y1,y2 ∈ Rp. Then, y1 � y2 if and only if y2 ∈ y1 + P .

The binary relation in Definition 2.1 yields the definition of generalized Pareto optimality.

Definition 2.2. Let S be a nonempty subset of Rp. An element y1 ∈ S is said to be a generalized Pareto
optimal element of S if and only if there is no y2 ∈ S (y2 �= y1) such that y2 � y1, or equivalently, if and
only if there is no y2 such that y1 ∈ y2 + P\{0}. The set of generalized Pareto optimal elements of S is called
the generalized Pareto optimal set and is denoted by E(S, P ). When P = Rp

+, the generalized Pareto optimal
elements are referred to simply as Pareto optimal elements, and the set E(S, P ) is denoted E(S).

An important role in this paper is played by the external stability or domination property ([21], pp. 59–66).

Definition 2.3 (External stability). A nonempty subset S of Rp is said to be externally stable if and only if

S ⊂ E(S, P ) + P.

An immediate consequence of the external stability property is that S + P = E(S, P ) + P . When P is closed,
a sufficient condition for a nonempty closed set S to be externally stable is given in Proposition 2.5. Note that
this condition is also sufficient to guarantee the existence of generalized Pareto optimal elements.

Definition 2.4 (Recession cone). Let S be a nonempty subset of Rp. The extended recession cone S+ is defined
by

S+ = {y ∈ Rp : ∃hk → 0+, ∃yk ∈ S, hkyk → y}.

Proposition 2.5 ([21, Thm. 3.2.10]). Let S be a nonempty closed subset of Rp. If P is closed and S is P -
bounded ([21], p. 52), i.e., S+ ∩ −P = {0}, then S is externally stable.

Corollary 2.6. Let K be a nonempty compact subset of Rp. If P is closed, then K is externally stable.

In the case of finite sets, which are compact and therefore externally stable from Corollary 2.6, we have the
two following results, which will be used to simplify the numerical algorithm proposed in Section 7.

Lemma 2.7. Let S1 and S2 be two finite subsets of Rp. Let P be closed. Then, E(S1∪S2, P ) = E(S1∪E(S2), P ).

Proof. Take z1 ∈ E(S1 ∪ S2, P ). Assume for contradiction that z1 /∈ E(S1 ∪ E(S2, P ), P ). Then, by external
stability, there exists z2 ∈ E(S1 ∪ E(S2, P ), P ) ⊂ S1 ∪ S2 such that z1 ∈ z2 + P\{0}. But this contradicts
z1 ∈ E(S1 ∪ S2, P ).

Conversely, take z1 ∈ E(S1 ∪ E(S2), P ). Assume for contradiction that z1 /∈ E(S1 ∪ S2, P ). Then, by external
stability, there exists z2 ∈ E(S1 ∪ S2, P ) ⊂ S1 ∪ S2 such that z1 ∈ z2 + P\{0}. Assume that z2 /∈ S2. Then,
necessarily z2 ∈ S1 ∪E(S2, P ). But, this contradicts z1 ∈ E(S1 ∪E(S2, P ), P ). Assume now that z2 ∈ S2. Then,
by external stability, there exists z3 ∈ E(S2, P ) such that z2 ∈ z3 + P\{0}. Hence, z1 ∈ z3 + P\{0} with
z3 ∈ S1 ∪ E(S2, P ). But this again contradicts z1 ∈ E(S1 ∪ E(S2, P ), P ). �
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Proposition 2.8. Let S1, . . . , SI be finite subsets of Rp. Let P be closed. Then,

E
( I⋃

i=1

Si, P

)
= EI ,

where EI is recursively defined by E1 = E(S1, P ) and the relation

Ei+1 = E(Si+1 ∪Ei, P ).

Proof. We proceed by induction. For I = 1, this is by definition. Assume now that the relation holds up to I.
We aim to prove that it holds for I + 1, i.e.,

E
( I+1⋃

i=1

Si

)
= EI+1.

Apply Lemma 2.7 to
⋃I

i=1 Si and SI+1. Then, we get

E
( I+1⋃

i=1

Si, P

)
= E

(
SI+1 ∪ E

( I⋃
i=1

Si, P

)
, P

)
.

Using the induction assumption, this yields

E
( I+1⋃

i=1

Si, P

)
= E(SI+1 ∪EI , P ) = EI+1. �

In this paper, for simplicity, we will only consider the case P = Rp
+.

3. A multiobjective finite-horizon optimal control problem

In this paper, we will take for ‖ · ‖ in Rp and Rn the supremum norm. Let B be the closed unit ball.
Consider the evolution over a fixed finite time interval I = [0, T ] (0 < T < ∞) of an autonomous dynamical

system [3] whose n-dimensional state dynamics are given by a continuous function f(·, ·) : Rn ×U → Rn, where
the control space U is a nonempty compact subset of Rm. The function f(·,u) is assumed to be Lipschitz, i.e.,
some Kf > 0 obeys

∀u ∈ U, ∀x1,x2 ∈ Rn, ‖f(x1,u) − f(x2,u)‖ ≤ Kf‖x1 − x2‖. (3.1)

We also assume that the function f is uniformly bounded, i.e., some Mf > 0 obeys

∀x ∈ Rn, ∀u ∈ U, ‖f(x,u)‖ ≤Mf . (3.2)

A control u(·) : I → U is a Lebesgue measurable function. The set of controls is denoted by U . The continuity of
f and the Lipschitz condition (3.1) guarantee that, given any t ∈ I, initial state x ∈ Rn, and control u(·) ∈ U ,
the initial value problem, {

ẋ(s) = f(x(s),u(s)) a.e. s ∈ [t, T ],
x(t) = x, (3.3)

has a unique solution, called a trajectory, which we denote s→ x(s; t,x,u(·)).
The cost of a trajectory over [t, T ], t ∈ I, is given by a vector-valued function J(·, ·, ·) : I × Rn × U → Rp,

J(t,x,u(·)) =
∫ T

t

L(x(s;x,u(·)),u(s)) ds, (3.4)
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where the vector-valued function L(·, ·) : Rn × U → Rp, called the running cost, is assumed to be continuous.
For simplicity, no terminal cost is included in (3.4). We assume that the function L is uniformly bounded, i.e.,
some ML ≥ 0 obeys

∀x ∈ Rn, ∀u ∈ U, ‖L(x,u)‖ ≤ML, (3.5)

and that the function L(·,u) satisfies a Lipschitz condition, i.e., some KL ≥ 0 obeys

∀u ∈ U, ∀x1,x2 ∈ Rn, ‖L(x1,u) − L(x2,u)‖ ≤ KL‖x1 − x2‖. (3.6)

The objective space Y (t,x) for (MOC) is defined as the set of all possible costs for all possible controls:

Y (t,x) =
{
J(t,x,u(·)),u(·) ∈ U

}
.

From (3.5), it follows that the set Y (t,x) is bounded (by MLT ), and also that Y (t,x) ⊂ {−(T − t)ML1}+Rp
+.

However, the set Y (t,x) is not necessarily closed.
The set-valued return function V (·, ·) : I × Rn → 2Rp

for (MOC) is defined as the set-valued map which
associates with each time t ∈ I and initial state x ∈ Rn the set of Pareto optimal elements in the objective
space Y (t,x):

V (t,x) = E(cl(Y (t,x))). (3.7)

The closure in (3.7) is used to guarantee the existence of Pareto optimal elements [14], Proposition 3.5. Hence,
∀t ∈ I, ∀x ∈ Rn, V (t,x) �= ∅.
Remark 3.1. When p = 1, (3.7) takes the form

V (t,x) =
{

inf
u(·)∈U

∫ T

t

L(x(s; t,x,u(·)),u(s)) ds
}
.

Hence, V (t,x) = {v(t,x)}, where v(·, ·) is the value function for single objective optimal control problems [3,22].

Finally, as V (t,x) ⊂ cl(Y (t,x)), we have

V (t,x) ⊂ {−(T − t)ML1} + Rp
+. (3.8)

The objective of this paper is to find a convergent approximation to the Pareto optimal set V (0,x0) where
x0 ∈ Rn is some given initial state.

4. Characterization of the set-valued return function

In this section, we show that the epigraph of the set-valued return function V , i.e., the graph of the set-valued
map V + Rp

+, is equal to the viability kernel of a certain related augmented dynamical system.
Define two set-valued maps FL− and FL+ from Rn to Rn × Rp by

FL−(x) = co
( ⋃

u∈U

{(f(x,u),−L(x,u))}
)
,

and

FL+(x) = co
( ⋃

u∈U

{(f(x,u),L(x,u))}
)
,

where co(S) denotes the closure of the convex hull of the set S. Observe that these two set-valued maps
take convex compact nonempty values. Moreover, they are bounded by MFL = max{Mf ,ML} and Lipschitz
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with Lipschitz constant KFL = max{Kf ,KL}. Define also an expanded set-valued map from R × Rn × Rp to
R × Rn × Rp by

φ(t,x, z) =
{{1} × FL−(x) if t < T,

[0, 1] × co(FL−(x) ∪ {(0,0)}) if t ≥ T.
(4.1)

It is easy to see that φ is a Marchaud map ([4], Def. 2.2) bounded by max{1,MFL}.
Consider now the differential inclusion

(ṫ(s), ẋ(s), ż(s)) ∈ φ(t(s),x(s), z(s)) a.e. s ≥ 0, (4.2)

and the closed set H by

H = {(t,x, z) : t ∈ [0, T ], x ∈ Rn, z ∈ {−(T − t)ML1} + Rp
+}.

Proposition 4.1. The epigraph of the set-valued map V equals the viability kernel of H for φ, i.e.,

Epi(V ) = Viabφ(H),

where Epi(V ), by definition, Epi(V ) = Graph(V + Rp
+).

Proof. First, we prove the inclusion
Viabφ(H) ⊂ Graph(V + Rp

+).

Take (t,x, z) ∈ Viabφ(H). Of course (t,x, z) ∈ H, so t ∈ I and z ∈ {−(T − t)ML1} + Rp
+.

• Assume that t = T . Then, as V (T,x) = {0}, it follows that z ∈ Rp
+ = V (T,x) + Rp

+.
• Assume that t ∈ [0, T ). Let (t(·),x(·), z(·)) be a solution to (4.2) with initial condition (t,x, z) which remains

in H. By definition of φ, (x(·), z(·)) is a solution to the differential inclusion⎧⎨⎩ (ẋ(s), ż(s)) ∈ FL−(x(s)) a.e. s ∈ [0, T − t],
x(0) = x,
z(0) = z,

while t(s) = s + t. Let s′ = s + t. For s′ ∈ [t, T ], define x′(s′) = x(s′ − t) and z′(s′) = z(s′ − t). Then,
(x′(·), z′(·)) satisfies the differential inclusion⎧⎨⎩ (ẋ′(s′), ż′(s′)) ∈ FL−(x′(s′)) a.e. s′ ∈ [t, T ],

x′(t) = x,
z′(t) = z,

By the Relaxation Theorem [22], Theorem 2.7.2, for each fixed ε > 0, there exists u(·) ∈ U such that

‖x′(·) − x(·; t,x,u(·))‖ ≤ ε and ‖z′(·) − z(·; t, (x, z),u(·))‖ ≤ ε

(the initial state for the evolving vector (x(·), z(·)) is (x, z), but we have simplified the notation by noting
only the relevant components for each block).
In particular, we get

z′(T ) ≤ z(T ; t, (x, z),u(·)) + ε1.

Moreover, as (s′,x′(s′), z′(s′)) ∈ H for all s′ ∈ [t, T ], we have

z′(s′) ∈ {−(T − s′)ML1} + Rp
+,

or
z′(T ) ∈ Rp

+.
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Hence,

z(T ; t, (x, z),u(·)) = z −
∫ T

t

L(x(s′; t,x,u(·)),u(s′)) ds′ ≥ z′(T ) − ε1 ≥ −ε1,
or

z + ε1 ≥
∫ T

t

L(x(s′; t,x,u(·)),u(s′)) ds′.

Therefore z + ε1 ∈ Y (t,x) + Rp
+ for each ε > 0. This implies that z ∈ cl(Y (t,x)) + Rp

+ = V (t,x) + Rp
+ by

external stability.

Second, we prove the inclusion
Graph(V + Rp

+) ⊂ Viabφ(H).

Take (t,x, z) ∈ Graph(V + Rp
+). Hence, t ∈ [0, T ] and from (3.8), z ∈ {−(T − t)ML1} + Rp

+.

• Assume that t = T . Then z ∈ Rp
+, so (t(·),x(·), z(·)) = (T,x, z) is a solution to (4.2) viable in H.

• Assume that t ∈ [0, T ). We have z = z′ + d, where z′ ∈ V (t,x) and d ∈ Rp
+. By definition of V (t,x), there

exists a sequence un(·) ∈ U such that

lim
n→+∞

∫ T

t

L(xn(s; t,x,un(·)),un(s)) ds = z′. (4.3)

Using the Compactness of Trajectories Theorem [22], Theorem 2.5.3 and by passing to a subsequence if
necessary, we can assume that there exists (x(·), z(·)) solution on [t, T ] to the differential inclusion

(ẋ(s′), ż(s′)) ∈ FL+(x(s′)) a.e. s′ ∈ [t, T ]

with initial condition (x,0) such that

lim
n→+∞ ‖xn(·; t,x,un(·)) − x(·)‖ = 0,

and
lim

n→+∞ ‖zn(·; t, (x,0),un(·)) − z(·)‖ = 0. (4.4)

From (4.3) and (4.4), we deduce that z(T ) = z′.
Define now (x′(·), z′(·)) as follows:

(t(s),x′(s), z′(s)) =

{
(s+ t,x(s+ t), z − z(s+ t)) s ∈ [0, T − t],

(T,x(T ),d) s > T − t.

As z′(T − t) = z − z(T ) = z − z′ = d, it follows that (t(·),x′(·), z′(·)) is a solution of (4.2). It remains to check
that (t(s),x′(s), z′(s)) ∈ H for all s ≥ 0. For s > T − t, as d ∈ Rp

+, this is obvious. For s ∈ [0, T − t], using the
definition of z, (4.3), and (4.4), we have

z′(s) = lim
n→+∞

∫ T

t

L(xn(s; t,x,un(·)),un(s)) ds+ d − zn(s+ t; t, (x,0),un(·)).

As

zn(s+ t; t, (x,0),un(·)) =
∫ s+t

t

L(xn(s; t,x,un(·)),un(s)) ds,

we get

z′(s) = d + lim
n→+∞

∫ T

s+t

L(xn(s; t,x,un(·)),un(s)) ds.
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As ∫ T

s+t

L(xn(s; t,x,un(·)),un(s)) ds ≥ −(T − (s+ t))ML1

and d ∈ Rp
+, we finally obtain z′(s) ≥ −(T − t(s))ML1. Hence, (t(s),x′(s), z′(s)) ∈ H and (t(·),x′(·), z′(·)) is

viable in H. �

Remark 4.2. Proposition 4.1 remains valid if we take for H the closed set {(t,x, z) : t ∈ [0, T ], x ∈ Rn, z ∈
{−(T − t)ML1} + Rp

+}, where ML > ML. This remark will be used in Section 6.

5. Approximation of Viabφ(H)

In this section, we approximate Viabφ(H) by finite discrete viability kernels. This is done two stages. First
we replace the original differential inclusion system (4.2) by a finite difference inclusion system defined by a
certain set-valued map Gε. Then we associate with Gε a suitable finite set-valued map Γε,h defined on finite
sets. The finite discrete viability kernel for this set-valued map approximates Viabφ(H).

5.1. Approximation of Viabφ(H) by discrete viability kernels

Theorem 2.14 in [4] shows how Viabφ(H) can be approximated by discrete viability kernels in the sense of
Painlevé–Kuratowski by considering an approximation φε of φ satisfying the following three properties:

(H0) φε is an upper semicontinuous set-valued map from R × Rn × Rp to R × Rn × Rp whose values are
nonempty convex compact sets.

(H1)
Graph(φε) ⊂ Graph(φ) + g(ε)B and lim

ε→0+
g(ε) = 0+.

(H2)
∀(tε,xε, zε) ∈ R × Rn × Rp,

⋃
‖(t,x,z)−(tε,xε,zε)‖≤Mε

φ(t,x, z) ⊂ φε(tε,xε, zε),

where M = max{1,MFL} denotes a bound for φ and ε > 0 is the time step discretization.
We now demonstrate that these conditions hold for the set-valued map φε, ε > 0, from R × Rn × Rp to

R × Rn × Rp defined by

φε(t,x, z) =
{ {1} × (FL−(x) + εKMB), if t < T −Mε,

[0, 1] × co((FL−(x) + εKMB) ∪ {(0,0)}), if t ≥ T −Mε.
(5.1)

Theorem 5.1. The set-valued map φε satisfies (H0), (H1), and (H2).

Proof.

(H0) This follows from the properties of the set-valued map FL− and the fact that FL−(x) + εKMB ⊂
co((FL−(x) + εKMB) ∪ {(0,0)}).

(H1) This relation holds with g(ε) = εmax{1,K}M. To see this, let (tε,xε, zε) ∈ R×Rn ×Rp and (sε, fε, lε) ∈
φε(tε,xε, zε). Two cases arise:
• tε < T −Mε. Here sε = 1 and (fε, lε) ∈ FL−(xε) + εKMB, so g(ε) = εKM.
• tε ≥ T −Mε. Here we have sε ∈ [0, 1] and (fε, lε) ∈ co((FL−(xε) + εKMB) ∪ {(0,0)}). There exists
t ≥ T such that |t− tε| ≤Mε. Thus

(fε, lε) ∈ co((FL−(xε) + εKMB) ∪ {(0,0)}),
⊂ co(FL−(xε) ∪ {(0,0)}) + εKMB.

The choice g(ε) = εmax{1,K}M covers both alternatives.
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(H2) Let (tε,xε, zε) ∈ R × Rn × Rp. Take (t,x, z) ∈ R × Rn × Rp such that ‖(t,x, z) − (tε,xε, zε)‖ ≤ Mε. In
particular, ‖x − xε‖ ≤Mε. Two cases arise:
• tε < T −Mε. This implies t < T . The Lipschitz property of FL− yields:

φ(t,x, z) = {1} × FL−(x) ⊂ {1} × (FL−(xε) + εKMB) = φε(tε,xε, zε).

• tε ≥ T −Mε. If, in addition, t < T, then as above,

φ(t,x, z) = {1} × FL−(x) ⊂ {1} × (FL−(xε) + εKMB) ⊂ φε(tε,xε, zε).

Alternatively, suppose t ≥ T. Then, using the Lipschitz property of FL−, we have

FL−(x) ∪ {(0,0)} ⊂ (FL−(xε) + εKMB) ∪ {(0,0)}.

Hence,
φ(t,x, z) = [0, 1]× co(FL−(x) ∪ {(0,0)}) ⊂ φε(tε,xε, zε).

�

5.2. Approximation of Viabφ(H) by discrete finite viability kernels

Theorem 2.19 in [4] goes on to show how Viabφ(H) can be approximated by finite discrete viability kernels
in the sense of Painlevé–Kuratowski by considering an approximation Γε,h of Gε(·) satisfying the following two
properties:

(H3)

Graph(Γε,h) ⊂ Graph(Gε) + ψ(ε, h)B and lim
ε→0+, h

ε →0+

ψ(ε, h)
ε

= 0+.

(H4) ∀(th,xh, zh) ∈ Rh × Rn
h × Rp

h,⋃
‖(tε,xε,zε)−(th,xh,zh)‖≤h

(Gε(tε,xε, zε) + hB) ∩ Rh × Rn
h × Rp

h ⊂ Γε,h(th,xh, zh),

where h > 0 is the state step discretization, Rh = {kh, k ∈ Z}, and Gε is the set-valued map from R×Rn×Rp

to R × Rn × Rp defined by
Gε(tε,xε, zε) = {(tε,xε, zε)} + εφε(tε,xε, zε).

We apply this result to the set-valued map Γε,h from Rh × Rn
h × Rp

h to Rh × Rn
h × Rp

h defined as follows:

• If th < T −Mε− h, Γε,h(th,xh, zh) =

[th + ε− 2h, th + ε+ 2h] ∩ Rh × ({(xh, zh)} + εFL−(xh) + αε,hB) ∩ Rn
h × Rp

h. (5.2)

• If th ≥ T −Mε− h, Γε,h(th,xh, zh) =

[th, th + ε+ 2h] ∩ Rh × co(({(xh, zh)} + εFL−(xh) + αε,hB) ∪ ({(xh, zh)} + 2hB)) ∩ Rn
h × Rp

h, (5.3)

where αε,h = 2h+ εhK + ε2KM .

We assume that ε > 2h.

Theorem 5.2. The set-valued map Γε,h satisfies (H3) and (H4).

Proof.
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(H3) This relation holds with ψ(ε, h) = 4h+ εhK, which verifies

lim
ε→0+, h

ε →0+

(4 + εK)h
ε

= 0+.

Let (th,xh, zh) ∈ Rh × Rn
h × Rp

h and (sh, fh, lh) ∈ Γε,h(th,xh, zh). Two cases arise:
• th < T −Mε− h. Then, sh ∈ [th + ε− 2h, th + ε+ 2h] ∩ Rh ⊂ th + ε+ [−2h, 2h], and

(fh, lh) ∈ ({(xh, zh)} + εFL−(xh) + αε,hB) ∩ Rn
h × Rp

h,

⊂ {(xh, zh)} + εFL−(xh) + αε,hB,

= {(xh, zh)} + ε(FL−(xh) + εKMB) + (2h+ εhK)B.

Hence, (sh, fh, lh) ∈ (th,xh, zh)+εφε(th,xh, zh)+max{2h, 2h+εhK}B = Gε(th,xh, zh)+(2h+εhK)B.
• th ≥ T −Mε− h. We have sh ∈ [th, th + ε+ 2h] ∩ Rh and

(fh, lh) ∈ co(({(xh, zh)} + εFL−(xh) + αε,hB) ∪ ({(xh, zh)} + hB)) ∩ Rn
h × Rp

h.

There exists tε ≥ T −Mε such that 0 ≤ tε − th ≤ h. We have

sh ∈ [th, th + ε+ 2h] ∩Rh,

⊂ [th, th + ε+ 2h],

⊂ tε + ε[0, 1] + [−2h, 2h].

Moreover,

(fh, lh) ∈ co(({(xh, zh)} + εFL−(xh) + αε,hB) ∪ ({(xh, zh)} + 2hB)) ∩ Rn
h × Rp

h,

⊂ co(({(xh, zh)} + εFL−(xh) + αε,hB) ∪ ({(xh, zh)} + 2hB)),

= {(xh, zh)} + co((εFL−(xh) + αε,hB) ∪ ({(0,0)} + 2hB)),

= {(xh, zh)} + co((ε(FL−(xh) + εKMB) + (2h+ εhK)B) ∪ ({(0,0)} + 2hB)),

⊂ {(xh, zh)} + co((ε(FL−(xh) + εKMB)) ∪ {(0,0)}) + (4h+ εhK)B.

Hence, (sh, fh, lh) ∈ (tε,xh, zh)+εφε(tε,xh, zh)+max{4h+εhK, 2h}B = Gε(tε,xh, zh)+(4h+εhK)B.
(H4) Let (th,xh, zh) ∈ Rh×Rn

h×Rp
h. Take (tε,xε, zε) ∈ R×Rn×Rp such that ‖(tε,xε, zε)−(th,xh, zh)‖ ≤ h.

In particular, |tε − th| ≤ h and ‖x − xh‖ ≤ h. Two cases arise:
• th < T −Mε− h. This implies tε < T −Mε. The Lipschitz property of FL− yields:

Gε(tε,xε, zε) + hB = (tε,xε, zε) + εφε(tε,xε, zε) + hB,

= (tε + ε+ [−h, h]) × ({(xε, zε)} + εFL−(xε) + ε2KMB + hB),

⊂ (th + ε+ [−2h, 2h])× ({(xh, zh)} + hB + εFL−(xh) + εhKB + ε2KM + hB),

= (th + ε+ [−2h, 2h])× ({(xh, zh)} + εFL−(xh) + αε,hB).

Hence,
(Gε(tε,xε, zε) + hB) ∩ Rh × Rn

h × Rp
h ⊂ Γε,h(th,xh, zh).

• th ≥ T −Mε− h. If, in addition, tε < T −Mε, then as above,

Gε(tε,xε, zε) + hB ⊂ (th + ε+ [−2h, 2h])× ({(xh, zh)} + εFL−(xh) + αε,hB).
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As ε > 2h,
th + ε+ [−2h, 2h] ⊂ [th, th + ε+ 2h].

Moreover,

{(xh, zh)} + εFL−(xh)+αε,hB ⊂ co(({(xh, zh)} + εFL−(xh) + αε,hB) ∪ ({(xh, zh)} + 2hB)).

Hence,
(Gε(tε,xε, zε) + hB) ∩ Rh × Rn

h × Rp
h ⊂ Γε,h(th,xh, zh).

Alternatively, tε ≥ T −Mε. In this case, using the Lipschitz property of FL−, we have

Gε(tε,xε, zε) + hB = (tε,xε, zε) + ε([0, 1] × co((FL−(xε) + εKMB) ∪ {(0,0)})) + hB,
= ([tε − h, tε + ε+ h]) × (co({(xε, zε) + εFL−(xε) + ε2KMB} ∪ {(xε, zε)}) + hB).

Now,

co({(xε, zε) + εFL−(xε) + ε2KMB} ∪ {(xε, zε)}) + hB,

⊂ co({(xh, zh) + hB + εFL−(xh) + εKh+ ε2KMB} ∪ ({(xh, zh)} + hB)) + hB,

⊂ co({(xh, zh) + εFL−(xh) + αε,hB} ∪ ({(xh, zh)} + 2hB)).

Hence,
(Gε(tε,xε, zε) + hB) ∩ Rh × Rn

h × Rp
h ⊂ Γε,h(th,xh, zh).

�

6. Convergent approximation of the set-valued return function V

In this section, we first introduce a sequence of approximate set-valued return functions with finite set-values
recursively defined by a multiobjective dynamic programming equation [13,14]. We then show that the epigraphs
of these approximate set-valued return functions are equal to the sets involved in the calculation of the finite
discrete viability kernels of the discrete set Hh = (H+hB)∩Rh×Rn

h ×Rp
h for the finite discrete dynamics Γε,h

([4], Prop. 2.18). This allows us to conclude that the sequence of approximate set-valued return functions is
finite and that the epigraph of the final approximate set-valued return function of this sequence converges to
the epigraph of the set-valued return function V in the sense of Painlevé–Kuratowski.

Recall the definition of H = {(t,x, z) : t ∈ [0, T ], x ∈ Rn, z ∈ {−(T − t)ML1}+ Rp
+}. Here, we take ML >

ML (Rem. 4.2) in the definition of H. Hence, H = {(t,x, z) : t ∈ [0, T ], x ∈ Rn, z ∈ {−(T − t)ML1} + Rp
+}.

Let Ih = (I + [−h, h]) ∩ Rh. We define the finite-valued set-valued map V 0
ε,h from Ih × Rn

h to Rp
h such that

Graph(V 0
ε,h + Rp

h,+) = Hh,

where Hh = (H+ hB)∩Rh ×Rn
h ×Rp

h. We now recursively define the finite set-valued maps V k
ε,h, k ≥ 1, from

Ih × Rn
h to Rp

h as follows:

• If th < T −Mε− h, V k+1
ε,h (th,xh) =

E
({

(εl + αε,hB) ∩ Rp
h + V k

ε,h((th + ε + [−2h, 2h]) ∩ Rh, (xh + εf + αε,hB) ∩ Rn
h) : (f , l) ∈ FL+(xh)

})
.

(6.1)

• Otherwise,
V k+1

ε,h (th,xh) = V k
ε,h(th,xh). (6.2)
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Remark 6.1. The closure is not required in (6.1) as the sets involved are finite.

We aim in the following two propositions to prove that

Graph(V k+1
ε,h + Rp

h,+) ⊂ Graph(V k
ε,h + Rp

h,+),

and
Graph(V k

ε,h + Rp
h,+) = Ak,

where the sets Ak are recursively defined ([4], Prop. 2.18) from A0 = Hh and the relation

Ak+1 = {(th,xh, zh) ∈ Ak : Γε,h(th,xh, zh) ∩Ak �= ∅}.
To simplify the proof of Proposition 6.2, we will assume that T is a multiple of h and that ε− 2h > 2h, which
guarantees that ∀th ∈ Ih, th + ε− 2h > h. We will also assume that for all (th,xh) ∈ Ih ×Rn

h such that th ≥ h,

V 0
ε,h(th,xh) = {(−(T + h− th)ML − h)1}.

This guarantees that, for all (th,xh) ∈ Ih × Rn
h, for all (f , l) ∈ FL+(xh), for all t̃h ∈ (th + ε+ [−2h, 2h]) ∩ Rh,

for all x̃h ∈ (xh + εf + αε,h) ∩ Rn
h,

V 0
ε,h(t̃h, x̃h) = {(−(T + h− t̃h)ML − h)1}.

We will finally assume that ε, h, and ML have been chosen such that

εML + αε,h ≤ (ε− 2h)ML. (6.3)

Proposition 6.2.
∀k, Graph(V k+1

ε,h + Rp
h,+) ⊂ Graph(V k

ε,h + Rp
h,+).

Proof. We start by proving that this relation holds for k = 0. Take (th,xh, zh) ∈ Graph(V 1
ε,h + Rp

h,+). Hence,
zh ∈ V 1

ε,h(th,xh) + Rp
h,+. Two cases arise:

1. If th ≥ T −Mε− h. From (6.2), we directly get zh ∈ V 0
ε,h(th,xh) + Rp

h,+.
2. Otherwise, th < T −Mε− h. By (6.1),

V 1
ε,h(th,xh)=E

({
(εl+αε,hB)∩Rp

h+V 0
ε,h((th+ε+[−2h, 2h])∩Rh, (xh+εf+αε,hB)∩Rn

h) : (f , l) ∈ FL+(xh)
})

,

Let t̃h ∈ (th + ε+[−2h, 2h])∩Rh, x̃h ∈ (xh + εf +αε,hB)∩Rn
h, zh ∈ V 0

ε,h(t̃h, x̃h), and z̃h ∈ (εl+αε,hB)∩Rp
h.

Hence, z̃h ≥ −(εML + αε,h)1. Moreover, from above, we have

zh = (−(T +h− t̃h)ML−h)1 ≥ (−(T +h−th−(ε−2h))ML−h)1 = (−(T +h−th)ML−h)1+(ε−2h)ML1.

Hence, by (6.3),

zh ≥ (−(T+h−th)ML−h)1+(ε−2h)ML1−(εML+αε,h)1+(εML+αε,h)1 ≥ −(T+h−th)ML1+(εML+αε,h)1.

Therefore,
z̃h + zh ∈ V 0

ε,h(th,xh) + Rp
h,+.

Hence,
V 1

ε,h(th,xh) ⊂ V 0
ε,h(th,xh) + Rp

h,+,

from which we get that

zh ∈ V 1
ε,h(th,xh) + Rp

h,+ ⊂ V 0
ε,h(th,xh) + Rp

h,+ + Rp
h,+ = V 0

ε,h(th,xh) + Rp
h,+.
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Assume now that the desired relation holds up to k. We aim to prove that it holds for k + 1, i.e.,

Graph(V k+2
ε,h + Rp

h,+) ⊂ Graph(V k+1
ε,h + Rp

h,+).

Take (th,xh, zh) ∈ Graph(V k+2
ε,h + Rp

h,+). Hence, zh ∈ V k+2
ε,h (th,xh) + Rp

h,+. Two cases arise:

1. If th ≥ T −Mε− h. From (6.2), we directly get zh ∈ V k+1
ε,h (th,xh) + Rp

h,+.
2. Otherwise, th < T −Mε− h. By (6.1), for some (f , l) ∈ FL+(xh), there exist t̃h ∈ (th + ε+ [−2h, 2h])∩Rh,

x̃h ∈ (xh + εf + αε,hB) ∩ Rn
h, and z̃h ∈ (εl + αε,hB) ∩ Rp

h such that

zh ∈ z̃h + V k+1
ε,h (t̃h, x̃h) + Rp

h,+.

From the induction assumption, we get:

zh ∈ z̃h + V k
ε,h(t̃h, x̃h) + Rp

h,+,

or,

zh ∈
{

(εl+αε,hB)∩Rp
h +V k

ε,h((th + ε+[−2h, 2h])∩Rh, (xh + εf +αε,hB)∩Rn
h) : (f , l) ∈ FL+(xh)

}
+Rp

h,+.

Applying external stability to

S =
{

(εl + αε,hB) ∩ Rp
h + V k

ε,h(th + ε+ [−2h, 2h]) ∩ Rh, (xh + εf + αε,hB) ∩ Rn
h) : (f , l) ∈ FL+(xh)

}
,

and using (6.1) yields zh ∈ V k+1
ε,h (th,xh) + Rp

h,+. �

Proposition 6.3.
∀k, Graph(V k

ε,h + Rp
h,+) = Ak.

Proof. This relation holds for k = 0 by definition. Assume now that it holds up to k. We aim to prove that it
holds for k + 1, i.e.,

Graph(V k+1
ε,h + Rp

h,+) = Ak+1.

First, we prove the inclusion
Graph(V k+1

ε,h + Rp
h,+) ⊂ Ak+1. (6.4)

Take (th,xh) ∈ Ih × Rn
h and zh ∈ V k+1

ε,h (th,xh) + Rp
h,+. Two cases arise:

1. If th ≥ T −Mε − h, then by (6.2), we have (th,xh, zh) ∈ Graph(V k
ε,h + Rp

h,+). Therefore, from the induc-
tion assumption, (th,xh, zh) ∈ Ak. Moreover, by (5.3), we also have (th,xh, zh) ∈ Γε,h(th,xh, zh). Hence,
(th,xh, zh) ∈ Γε,h(th,xh, zh) ∩Ak, or Γε,h(th,xh, zh) ∩Ak �= ∅, which shows that (th,xh, zh) ∈ Ak+1.

2. Otherwise, th < T −Mε− h. By (6.1), for some (f , l) ∈ FL+(xh), there exist t̃h ∈ (th + ε+ [−2h, 2h])∩Rh,
x̃h ∈ (xh + εf + αε,hB) ∩ Rn

h, and z̃h ∈ (εl + αε,hB) ∩ Rp
h such that

zh ∈ z̃h + V k
ε,h(t̃h, x̃h) + Rp

h,+.

Hence, from the induction assumption, (t̃h, x̃h, zh − z̃h) ∈ Ak. To get that (th,xh, zh) ∈ Ak+1, it remains to
prove that (th,xh, zh) ∈ Ak and (t̃h, x̃h, zh − z̃h) ∈ Γε,h(th,xh, zh) where Γε,h(th,xh, zh) is given by (5.2).
(th,xh, zh) ∈ Ak comes from Proposition 6.2 and the induction assumption, i.e.,

(th,xh, zh) ∈ Graph(V k+1
ε,h + Rp

h,+) ⊂ Graph(V k
ε,h + Rp

h,+) = Ak.
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Moreover, we have:
(a) t̃h ∈ (th + ε+ [−2h, 2h]) ∩ Rh,
(b) x̃h ∈ (xh + εf + αε,hB) ∩ Rn

h,
(c) and

z̃h ∈ (εl + αε,hB) ∩ Rp
h,⇒ −z̃h ∈ (−εl + αε,hB) ∩ Rp

h,⇒ zh − z̃h ∈ (zh − εl + αε,hB) ∩Rp
h.

Hence, Γε,h(th,xh, zh) ∩Ak �= ∅ and (6.4) is proved.
Conversely, we prove the inclusion

Ak+1 ⊂ Graph(V k+1
ε,h + Rp

h,+). (6.5)

Take (th,xh, zh) ∈ Ak+1. Two cases arise:
1. If th ≥ T −Mε− h. By definition of Ak+1, (th,xh, zh) ∈ Ak. Hence, from the induction assumption, we get

zh ∈ V k
ε,h(th,xh) + Rp

h,+, and from (6.2), zh ∈ V k+1
ε,h (th,xh) + Rp

h,+.

2. Otherwise, th < T −Mε−h. Then, there exist (t̃h, x̃h, z̃h) ∈ Ak such that (t̃h, x̃h, z̃h) ∈ Γε,h(th,xh, zh), or:
(a) t̃h ∈ (th + ε+ [−2h, 2h]) ∩ Rh,
(b) x̃h ∈ (xh + εf + αε,hB) ∩ Rn

h,
(c) z̃h ∈ (zh − εl + αε,hB) ∩ Rp

h ⇒ zh ∈ z̃h + (εl + αε,hB) ∩Rp
h,

for some (f , l) ∈ FL−(xh). From the induction assumption, we have z̃h ∈ V k
ε,h(t̃h, x̃h) + Rp

h,+. Hence,

zh ∈ (εl + αε,hB) ∩ Rp
h + V k

ε,h(t̃h, x̃h) + Rp
h,+.

Applying external stability to

S =
{

(εl + αε,hB) ∩ Rp
h + V k

ε,h(th + ε+ [−2h, 2h]) ∩ Rh, (xh + εf + αε,hB) ∩ Rn
h) : (f , l) ∈ FL+(xh)

}
,

and using (6.1) yields zh ∈ V k+1
ε,h (th,xh) + Rp

h,+. �

Corollary 6.4. The sequence of approximate set-valued return functions V k
ε,h is finite.

Proof. This follows from Proposition 6.3 and the fact that the sequence Ak is finite ([4], Prop. 2.18). �

We let k(ε, h) denote the smallest index associated with the last element of the sequence in Corollary 6.4.

Corollary 6.5. The epigraph of the approximate set-valued return function V
k(ε,h)
ε,h converges in the sense of

Painlevé–Kuratowski to the epigraph of the set-valued return function V , i.e.,

Graph(V + Rp
+) = lim

ε→0+, h
ε →0+

Graph(V k(ε,h)
ε,h + Rp

h,+).

Proof. From ([4], Thm. 2.19), we have

Viabφ(H) = lim
ε→0+, h

ε →0+

−−→
V iabΓε,h

(Hh),

where, in general,
−−→
V iabF (K) denotes the discrete viability kernel of a nonempty closed set K ⊂ Rp for the

set-valued map F defined from Rp to Rp ([4], Prop. 2.12). Moreover, from Proposition 4.1, we have

Graph(V + Rp
+) = Viabφ(H).

Finally, from Proposition 6.3 and ([4], Prop. 2.18), we have

Graph(V k(ε,h)
ε,h + Rp

h,+) = Ak(ε,h) =
−−→
V iabΓε,h

(Hh).

The desired result follows. �
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7. A general numerical algorithm

In this section, we present a general algorithm to determine the approximate set-valued return function
V

k(ε,h)
ε,h . As shown in Proposition 7.1, to find V k(ε,h)

ε,h , it is not necessary to compute V k
ε,h, k = 0, . . . , k(ε, h) over

their entire domain Ih × Rn
h.

Proposition 7.1. ∀k ≥ 0, ∀th ∈ Ih, th ≥ T −Mε− h− k(ε− 2h), ∀xh ∈ Rn
h,

V k+1
ε,h (th,xh) = V k

ε,h(th,xh). (7.1)

Proof. For k = 0, (7.1) follows directly from (6.2). Assume now that (7.1) holds for some fixed k > 0. We prove
that (7.1) also holds for k+1. Let th ∈ Ih, th ≥ T −Mε−h− (k+1)(ε− 2h) and t̃h ∈ (th + ε+ [−2h, 2h])∩Rh.
Then,

t̃h ≥ th + (ε− 2h) ≥ T −Mε− h− (k + 1)(ε− 2h) + (ε− 2h) = T −Mε− h− k(ε− 2h).

From the induction assumption, we get ∀xh ∈ Rn
h, ∀(f , l) ∈ FL+(xh), ∀x̃h ∈ (xh + εf + αε,hB) ∩ Rn

h,

V k+1
ε,h (t̃h, x̃h) = V k

ε,h(t̃h, x̃h).

Hence, using (6.1), we obtain V k+2
ε,h (th,xh) = V k+1

ε,h (th,xh), which completes the proof. �

We now present a very general numerical algorithm to approximate the set V (0,x0), where for simplicity,
we take the initial state x0 in Rn

h. From Corollary 6.5, the suggested approximation to V (0,x0) is given by
the finite set V k(ε,h)

ε,h (−h,x0). The proposed numerical algorithm is composed of two stages. In the first stage
(Algorithm 7.2), the computational domain is determined using the bound on the dynamics. In the second stage
(Algorithm 7.3), V k(ε,h)

ε,h (−h,x0) is calculated using the multiple dynamic programming equation (6.1)–(6.2)
together with Proposition 7.1.

Choose for example εi = 1/2i and hi = 1/22i. Let J be the number of discretization steps in hi for the
interval [−hi, T + hi], i.e., J = (T + 2hi)/hi + 1 (for simplicity, we assume that T is a multiple of hi) and let
tj = −hi + jhi. First, we need to determine the computational domains Ωj , j = 0, . . . , J − 1.

Algorithm 7.2. Determination of the computational domain.

Initialization: ∀tj , −hi ≤ tj < εi − 3hi, Ωj = {x0}. Otherwise, Ωj = ∅.
Main loop: Set j = 0.

1: Repeat
1.1: Set xh to the first grid point in Ωj .
1.2: Repeat
1.3: For all tj′ , tj + εi − 2hi ≤ tj′ ≤ tj + εi + 2hi,

Ωj′ = Ωj′ ∪ {(xh + εif + αεi,hiB) ∩Rn
hi

: (f , l) ∈ FL+(xh)}.

1.4: Until all the grid points in Ωj have been visited.
2: Until j = J − 1.

Algorithm 7.3. Resolution of the multiobjective dynamic programming equation (6.1)–(6.2).

Initialization: ∀tj , T − Mεi − hi ≤ tj ≤ T + hi, ∀xh ∈ Ωj , V
k(εi,hi)
εi,hi

(tj ,xh) = {0}. Otherwise,

V
k(εi,hi)
εi,hi

(tj ,xh) = ∅.
Let j∗ be the largest index such that tj∗ < T −Mεi − hi.

Main loop: Set j = j∗.
1: Repeat
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1.1: Set xh to the first grid point in Ωj and A = ∅.
1.2: Repeat
1.3: For all tj′ , tj + εi − 2hi ≤ tj′ ≤ tj + εi + 2hi,

A = A ∪ {(εil + αεi,hiB) ∩ Rp
hi

+ V
k(εi,hi)
εi,hi

(tj′ , (xh + εif + αεi,hiB) ∩ Rn
hi

)) : (f , l) ∈ FL+(xh)}.

1.4: Set V
k(εi,hi)
εi,hi

(tj ,xh) = E(A).
1.5: Until all the grid points in Ωj have been visited.

2: Until j = 0.

To reduce the size of the set A in Algorithm 7.3, it is possible to keep only the Pareto optimal elements at
each iteration in Step 1.3. Using Proposition 2.8, we can change Step 1.3 in Algorithm 7.3 to Step 1.3’ as
follows:

1.1: Set xh to the first point in Ωj and A = ∅.
1.2: Repeat
1.3’: For all tj′ , tj + εi − 2hi ≤ tj′ ≤ tj + εi + 2hi,

A = E(A ∪ {(εil + αεi,hiB) ∩ Rp
hi

+ V
k(εi,hi)
εi,hi

(tj′ , (xh + εif + αεi,hiB) ∩ Rn
hi

)) : (f , l) ∈ FL+(xh)}).

1.4: Set V k(εi,hi)
εi,hi

(tj ,xh) = E(A).
1.5: Until all the points in Ωj have been visited.

8. Numerical examples

In this section, the algorithms from Section 7 are applied to a simple family of optimal control problems for
which the set-valued return function V can be obtained analytically. The convergence of V k(εi,hi)

εi,hi
(−hi,x0) to

V (0,x0) is investigated. Recall that incrementing i by 1 means dividing the discrete time step by 2 and the
state mesh width by 4.

8.1. Description

We consider an autonomous biobjective (p = 2) problem whose one-dimensional (n = 1) dynamics are simply

ẋ(s) = u(s), s ∈ [0, T ], x(0) = x0,

with U = {−1, 1}. The two cost components of a trajectory x(·) over I is given by

J1(0, x0, u(·)) =
∫ T

0

P (x(s))u(s) ds, J2(0, x0, u(·)) =
∫ T

0

u(s) ds,

where P (·) is a given polynomial.
The objective space Y (0, x0) for the problem above can be determined easily. Clearly,

J2(0, x0, u(·)) =
∫ T

0

u(s) ds =
∫
{u=1}

ds−
∫
{u=−1}

ds = αT − (1 − α)T = (2α− 1)T,

where α = 1
T

∫
{u=1} ds, and

J1(0, x0, u(·)) =
∫ T

0

P (x(s))u(s) ds =
∫ T

0

P (x(s))ẋ(s) ds = [Q(x(t))]T0 ,
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where Q(·) is an antiderivative of P (·). With

x(T ) = x(0) +
∫ T

0

u(s) ds = x0 + (2α− 1)T,

and defining δ = (2α− 1)T , we get

J1(0, x0, u(·)) = Q(x0 + δ) −Q(x0) and J2(0, x0, u(·)) = δ.

The set Y (0, x0) can finally be generated parametrically by varying δ between −T and T .
It is possible to derive a systematic procedure that gives a subinterval of [−T, T ] such that for all δ in this

interval, the corresponding element (J1(0, x0, u(·)),J2(0, x0, u(·))) = (Q(x0 + δ) − Q(x0), δ) in the objective
space is Pareto optimal. We therefore assume that the Pareto optimal set V (0, x0) is known.

8.2. Results

We consider four different polynomials P (·) and initial conditions x0 with T = 0.5, which yield four problems
of the form above. We have chosen these polynomials such that the Pareto optimal sets V (0, x0) present different
characteristics. For each problem and for i = 3, i = 4, and i = 5, we compute V k(εi,hi)

εi,hi
(−hi, x0) using Algo-

rithms 7.2 and 7.3 from Section 7, provide the cardinality Card(V k(εi,hi)
εi,hi

(−hi, x0)) of the set V k(εi,hi)
εi,hi

(−hi, x0),

calculate the Hausdorff distance [2], p. 365 dH(V k(εi,hi)
εi,hi

(−hi, x0), V (0, x0)) between V
k(εi,hi)
εi,hi

(−hi, x0) and
V (0, x0), and finally generate a “normalized” Hausdorff distance

dH(V k(εi,hi)
εi,hi

(−hi, x0), V (0, x0)) =
dH(V k(εi,hi)

εi,hi
(−hi, x0), V (0, x0))

dH(V k(ε3,h3)
ε3,h3

(−h3, x0), V (0, x0))
·

Our results are summarized in Tables 1, 2, 3, and 4 and also in Figures 1, 2, 3, and 4. Tables 1, 2, 3, and 4
also contain the size of the corresponding problem. The first number corresponds to the total number of grid
points, i.e., the cardinality Card(Ωj) of all the sets Ωj . The second number corresponds to the total number
of successors for all the grid points, where a successor to a grid point xh is defined as a grid point that can
be reached from xh. Using the terminology of Graph Theory, the size of a problem would correspond to the
number of nodes and vertices respectively. Figures 1, 2, 3, and 4 display the objective space, the Pareto optimal
set, and the approximate Pareto optimal sets for i = 3, i = 4, and i = 5 or each problem.

(MOC1) P (x) = x− 1, x0 = 1.
The set Y (0, x0) + R2

+ is convex. Hence, it is possible to obtain every element of V (0, x0) using the
weighting method.

(MOC2) P (x) = −x+ 1, x0 = 1.5.
The set Y (0, x0) − R2

+ is convex. Only the two Pareto optimal elements for δ = −T and δ = T can
be obtained using the weighting method.

(MOC3) P (x) = −2x3 − (15/4)x2 + (2/75)x+ 1/5, x0 = 0.
The set Y (0, x0) + R2

+ is nonconvex and the set V (0, x0) is nonconnected. More precisely, V (0, x0)
is the union of two sets.

(MOC4) P (x) = −(3/2)x− 1/8, x0 = 0.
This problem is similar to (MOC3).

Remark 8.1. To reduce the size of the problems, we have proceeded to some simplifications in Algorithms 7.2
and 7.3. First, we have individually computed αεi,hi for the dynamics f(·, ·) and each component of the running
cost L(·, ·). Second, we have reduced the interval [tj + εi − 2hi, tj + εi + 2hi] to the single time tj + εi − 2hi.
Finally, for any given l, we have reduced the set (εil+αεi,hiB)∩Rp

hi
to a single element, i.e., the closest lattice

element to εil, which somehow corresponds to setting αεi,hi = 0 for the running cost. Hence, we have set M to
max{1,Mf} = 1.
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Table 1. Results for (MOC1).

i = 3 i = 4 i = 5

Size (306,5897) (1630,65093) (10422,856445)

Card(V
k(εi,hi)

εi,hi
(−hi, x0)) 10 33 130

dH(V
k(εi,hi)

εi,hi
(−hi, x0), V (0, x0)) 0.091227 0.046550 0.022605

dH(V
k(εi,hi)

εi,hi
(−hi, x0), V (0, x0)) 1 0.5103 0.2478

Table 2. Results for (MOC2).

i = 3 i = 4 i = 5

Size (306,10961) (1630,132125) (10422,1826357)

Card(V
k(εi,hi)
εi,hi

(−hi, x0)) 34 130 514

dH(V
k(εi,hi)
εi,hi

(−hi, x0), V (0, x0)) 0.051067 0.033192 0.016627

dH(V
k(εi,hi)
εi,hi

(−hi, x0), V (0, x0)) 1 0.65 0.3256

Table 3. Results for (MOC3).

i = 3 i = 4 i = 5

Size (306,6529) (1630,66613) (10422,834285)

Card(V
k(εi,hi)

εi,hi
(−hi, x0)) 3 21 99

dH(V
k(εi,hi)

εi,hi
(−hi, x0), V (0, x0)) 0.765685 0.054420 0.035360

dH(V
k(εi,hi)

εi,hi
(−hi, x0), V (0, x0)) 1 0.0711 0.0462

Table 4. Results for (MOC4).

i = 3 i = 4 i = 5

Size (306,7553) (1630,85213) (10422,1134221)

Card(V
k(εi,hi)

εi,hi
(−hi, x0)) 9 33 129

dH(V
k(εi,hi)

εi,hi
(−hi, x0), V (0, x0)) 0.033857 0.028646 0.014031

dH(V
k(εi,hi)

εi,hi
(−hi, x0), V (0, x0)) 1 0.8461 0.4144

8.3. Discussion

Because the dynamics and the final time T are the same for all four problems, it is to be expected that the
total number of grid points remains the same. On the other hand, the running cost L1 is different for the four
problems, hence for a given grid point xh, the sets FL+(xh) differ, which explains why the number of successors
varies between the four problems.

The large value, i.e., 0.765685, in Table 3 for (MOC3) comes from the fact that the approximate Pareto
optimal set is not able for i = 3 to capture the upper part of the true Pareto optimal set. However, as i
increases, the approximate Pareto optimal set now captures the upper part of the Pareto optimal set, and as a
result, the Hausdorff distance dH(V k(εi,hi)

εi,hi
(−hi, x0), V (0, x0)) decreases considerably.

As i increases, as expected, for the four problems, a better approximation of the true Pareto optimal set is
obtained. The proposed approach also works well regardless whether the set Y (0, x0) + Rp

+ is convex or not.
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Figure 1. (MOC1): Objective space Y (0, x0) (plain line), Pareto optimal set V (0, x0) (bold
line) and approximate Pareto optimal set V k(εi,hi)

εi,hi
(−hi, x0) with x0 = 1 and for i = 3 (o), i = 4

(+), and i = 5 (·).
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Figure 2. (MOC2): Objective space Y (0, x0) (plain line), Pareto optimal set V (0, x0) (bold
line) and approximate Pareto optimal set V k(εi,hi)

εi,hi
(−hi, x0) with x0 = 1.5 and for i = 3 (o),

i = 4 (+), and i = 5 (·).
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Figure 3. (MOC3): Objective space Y (0, x0) (plain line), Pareto optimal set V (0, x0) (bold
lines) and approximate Pareto optimal set V k(εi,hi)

εi,hi
(−hi, x0) with x0 = 0 and for i = 3 (o),

i = 4 (+), and i = 5 (·).
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Figure 4. (MOC4): Objective space Y (0, x0) (plain line), Pareto optimal set V (0, x0) (bold
lines) and approximate Pareto optimal set V k(εi,hi)

εi,hi
(−hi, x0) with x0 = 0 and for i = 3 (o),

i = 4 (+), and i = 5 (·).
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9. Conclusion

In this paper, we have derived a convergent approximation of the Pareto optimal set for finite-horizon multi-
objective optimal control problems from the computation of finite discrete viability kernels. A limitation of the
proposed approach is the curse of dimensionality induced by the dynamic programming structure underlying
this computation. In general, the resolution of high-dimensional problems using dynamic programming remains
a challenge and is still an active research topic. We briefly mention domain decomposition [3] or dynamic grid
refinement [4] as techniques which have been proposed to address this issue. Closely related to the proposed ap-
proach is also the idea of clustering recently presented in [12], which consists of keeping only a subset (with fixed
cardinality) of the approximate Pareto optimal set at each grid point during the resolution of the multiobjective
dynamic programming equation (6.1)–(6.2).

A direct extension to this work would be to consider the general case of a pointed closed convex cone P instead
of the nonnegative orthant Rp

+ and to allow explicit constraints on the state. Also, the proposed approach could
be considered for other classes of optimal control problems, such as multiobjective exit-time optimal control
problems [17].
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