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A SINGULAR CONTROLLABILITY PROBLEM WITH VANISHING VISCOSITY

Ioan Florin Bugariu
1

and Sorin Micu
1

Abstract. The aim of this paper is to answer the question: Do the controls of a vanishing viscosity
approximation of the one dimensional linear wave equation converge to a control of the conservative
limit equation? The characteristic of our viscous term is that it contains the fractional power α of the
Dirichlet Laplace operator. Through the parameter α we may increase or decrease the strength of the
high frequencies damping which allows us to cover a large class of dissipative mechanisms. The viscous
term, being multiplied by a small parameter ε devoted to tend to zero, vanishes in the limit. Our
analysis, based on moment problems and biorthogonal sequences, enables us to evaluate the magnitude
of the controls needed for each eigenmode and to show their uniform boundedness with respect to ε,
under the assumption that α ∈ [0, 1)\{ 1

2

}
. It follows that, under this assumption, our starting question

has a positive answer.
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1. Introduction

For T > 0, we consider the one-dimensional linear wave equation with “lumped” control⎧⎪⎨⎪⎩
wtt(t, x) − ∂2

xxw(t, x) = v(t)f(x) (t, x) ∈ (0, T ) × (0, π)

w(t, 0) = w(t, π) = 0 t ∈ (0, T )

w(0, x) = w0(x), wt(0, x) = w1(x) x ∈ (0, π),

(1.1)

where the profile f ∈ L2(0, π) is given and verifies f̂n �= 0 for every n ≥ 1. Here and in the sequel, given any
function g ∈ L2(0, π), we denote by ĝn the n−th Fourier coefficient of g,

ĝn =
∫ π

0

g(x) sin(nx)dx (n ≥ 1).

Equation (1.1) is said to be null-controllable in time T > 0 if, for every initial data (w0, w1) ∈ H0 ⊂ H1
0 (0, π)×

L2(0, π), there exists a control v ∈ L2(0, T ) such that the corresponding solution of (1.1) verifies

w(T, · ) = wt(T, · ) = 0, (1.2)
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where the space H0 is defined as follows

H0 =

⎧⎪⎨⎪⎩(w0, w1) ∈ H1
0 (0, π) × L2(0, π)

∣∣∣∣∣∣∣
∑
n≥1

n2
∣∣ŵ0

n

∣∣2 +
∣∣ŵ1

n

∣∣2∣∣∣f̂n

∣∣∣2 <∞

⎫⎪⎬⎪⎭ . (1.3)

The goal is to drive the initial data (w0, w1) to rest by using a control v(t), depending only on time and acting
on the system through a given shape function in space f(x). Such types of controls are often used and sometimes
called “lumped” or “bilinear” (see, for instance, [1, 12, 21]).

The controllability properties of (1.1) are by now well-known (see, for instance, the monographs [7, 34]).
One of the oldest methods used to study such controllability problems consists in reducing them to a moment
problem whose solution is given in terms of an explicit biorthogonal sequence to a family Λ of exponential
functions. For instance, this method was used by Fattorini and Russell in the pioneering articles [12,13] to prove
the controllability of the one dimensional heat equation. In their case, the family Λ has only real exponential
functions. On the contrary, when equation (1.1) comes into discussion, the family Λ is given by (eμnt)n∈Z∗ ,

where μn = in, n ∈ Z∗, are the eigenvalues of the wave operator
(

0 −I
−∂2

xx 0

)
and are purely imaginary. It

follows easily that, (1.1) is null-controllable in time T if, and only if, for every initial data (w0, w1) ∈ H0, there
exists a solution v ∈ L2(0, T ) of the following moment problem:∫ T

2

−T
2

v

(
t+

T

2

)
eμntdt = −e−

T
2 μn

f̂|n|

(
ŵ1

|n| + μnŵ
0
|n|

)
(n ∈ Z

∗). (1.4)

In order to fix some ideas and to illustrate the method used in this paper, let us briefly show how do we obtain
a solution of (1.4). We begin by defining the function

Ψ̃m(z) =
sin(π(z +m))
π(z +m)

, (1.5)

which is an entire function of exponential type π such that
∫

R

∣∣∣Ψ̃m(x)
∣∣∣2 dx < ∞. It results from Paley–Wiener

Theorem that the Fourier transform of Ψ̃m,

θ̃m(t) =
1
2π

∫
R

Ψ̃m(x)e−ixtdx (m ∈ Z
∗), (1.6)

belongs to L2(−π, π). Moreover, from the inversion formula, it follows that
(
θ̃m

)
m∈Z∗

forms a biorthogonal

sequence to the family Λ = (eμnt)n∈Z∗ , i.e. verify∫ π

−π

θ̃m(t)eμnt dt = δmn (m,n ∈ Z
∗). (1.7)

From the above properties, we deduce that a formal solution of the moment problem (1.4) is given by

v(t) = −
∑

m∈Z∗

e−πμm

f̂|m|

(
ŵ1

|m| + μmŵ
0
|m|

)
θ̃m (t− π) (t ∈ (0, 2π)). (1.8)

In fact (1.8) gives a true solution of (1.4) if the right hand side of (1.8) converges in L2(0, 2π). For each
(w0, w1) ∈ H0, the convergence of this series follows from the existence of a constant C > 0 such that

‖θ̃m‖L2(−π,π) ≤ C (m ∈ Z
∗), (1.9)
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which is a consequence of the uniform boundedness (in m) of the L2(R)−norms of (Ψ̃m)m∈Z∗ and Plancherel’s
Theorem. Hence, for any initial data (w0, w1) ∈ H0, the moment problem has at least a solution v ∈ L2(0, 2π),
given by (1.8), and the controllability of (1.1) in time T = 2π follows.

In many applications it is of interest to study the uniform controllability properties of (1.1) when a viscous
term is introduced in the equation. Indeed, the mechanism of vanishing viscosity is a common tool in the study
of Cauchy problems or in improving convergence of numerical schemes for hyperbolic conservation laws and
shocks. For instance, in [16, 17], it is proved that, by adding an extra numerical viscosity term, the dispersive
properties of the finite difference scheme for the nonlinear Schrödinger equation become uniform when the mesh-
size tends to zero. This scheme reproduces at the discrete level the properties of the continuous Schrödinger
equation by dissipating the high frequency numerical spurious solutions. On the other hand, a viscosity term
is introduced in [10] to prove the existence of solutions of hyperbolic equations. In both examples the viscosity
is devoted to tend to zero in order to recover the original system. Thus, a legitimate question is related to the
behavior and the sensitivity of the controls during this process. For instance, given T > 0 and ε ∈ (0, 1), one
could consider the perturbed wave equation⎧⎨⎩

utt(t, x) − ∂2
xxu(t, x) + 2ε(−∂2

xx)αut(t, x) = vε(t)f(x) (t, x) ∈ (0, T ) × (0, π)
u(t, 0) = u(t, π) = 0 t ∈ (0, T )
u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ (0, π)

(1.10)

and study the possibility of obtaining a control v of (1.1) as limit of controls vε ∈ L2(0, T ) of (1.10). Here and
in what follows (−∂2

xx)α denotes the fractional power of order α ≥ 0 of the Dirichlet Laplace operator in (0, π).
More precisely,

(−∂2
xx)α : D((−∂2

xx)α) ⊂ L2(0, π) → L2(0, π),

D((−∂2
xx)α) =

⎧⎨⎩u ∈ L2(0, π) : u =
∑
n≥1

an sin(nx) and
∑
n≥1

|an|2n4α <∞
⎫⎬⎭ ,

u(x) =
∑
n≥1

an sin(nx) −→ (−∂2
xx)αu(x) =

∑
n≥1

ann
2α sin(nx).

(1.11)

Equation (1.10) is dissipative and it can be easily checked that, if f = 0,

d
dt

(
‖u(t)‖2

H1
0

+ ‖ut(t)‖2
L2

)
= −2ε

∫ π

0

∣∣(−∂2
xx)

α
2 ut(t, x)

∣∣2 dt ≤ 0. (1.12)

Hence, 2ε(−∂2
xx)αut(t, x) represents an added viscous term devoted to vanish as ε tends to zero. However, the

controllability properties of (1.10) are poor. Indeed, the family of exponential functions corresponding to this
case is given by Λ = (eνnt)n∈Z∗ , where νn = ε|n|2α + sgn (n)

√|n|4α − n2. If α > 1
2 , we have that

lim
n→−∞ νn = 0,

which implies that the family Λ is not minimal. Consequently, equation (1.10) is not spectrally controllable if
α > 1

2 (for more details in the case α = 1, see [30]).
Since we want to allow stronger dissipative terms which correspond to the case α > 1

2 , we perturb the wave
equation (1.1) in the following slightly different way⎧⎪⎨⎪⎩

utt(t, x) − ∂2
xxu(t, x) + 2ε(−∂2

xx)αut(t, x) + ε2(−∂2
xx)2αu(t, x) = vε(t)f(x) (t, x) ∈ (0, T ) × (0, π)

u(t, 0) = u(t, π) = 0 t ∈ (0, T )

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ (0, π).

(1.13)
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Equation (1.13) is still dissipative. Indeed, if f = 0, we have that

d
dt

(
‖u(t)‖2

H1
0

+ ε2‖(−∂xx)αu(t)‖2
L2 + ‖ut(t)‖2

L2

)
= −2ε

∫ π

0

∣∣(−∂2
xx)

α
2 ut(t, x)

∣∣2 dt ≤ 0. (1.14)

Note that, if α ≤ 1
2 , the norm

√
‖u‖2

H1
0

+ ε2‖(−∂xx)αu‖2
L2 + ‖ut‖2

L2 is equivalent to
√
‖u‖2

H1
0

+ ‖ut‖2
L2 and

the controllability properties of (1.10) and (1.13) are similar. However, in the case α > 1
2 , the controllability

properties of (1.13) are better than those of (1.10). Hence, the term ε2(−∂xx)2αu(t, x) allows us to consider
stronger dissipation and also to simplify some of our estimates.

The aim of this paper is to study the controllability properties of (1.13) and their relation with the ones
of (1.1). The controllability of (1.13) is defined in a similar way as for (1.1). More precisely, given T > 0 and
f ∈ L2(0, π) with f̂n �= 0 for n ≥ 1, equation (1.13) is null-controllable in time T if, for any (u0, u1) ∈ H0, there
exists a control vε ∈ L2(0, T ) such that the corresponding solution (u, ut) of (1.13) verifies

u(T, · ) = ut(T, · ) = 0. (1.15)

The null-controllability problem is equivalent to find, for every initial data (u0, u1) ∈ H0, a solution vε ∈ L2(0, T )
of the following moment problem:∫ T

2

−T
2

vε

(
t+

T

2

)
eλntdt = −e−λn

T
2

f̂|n|

(
û1
|n| + λnû

0
|n|

)
(n ∈ Z

∗), (1.16)

where λn = in + ε|n|2α, are the eigenvalues of the operator
(

0 −I
−∂2

xx + ε2(−∂2
xx)2α 2ε(−∂2

xx)α

)
corresponding

to the “adjoint” problem of (1.13).
As in (1.4), if we have at our disposal a biorthogonal sequence to the family

(
eλnt

)
n∈Z∗ , denoted by (θm)m∈Z∗ ,

we can give immediately a formal solution of (1.16),

vε(t) = −
∑

m∈Z∗

e−λm
T
2

f̂|m|

(
û1
|m| + λmû

0
|m|

)
θm

(
t− T

2

)
(t ∈ (0, T )). (1.17)

This time the family
(
eλnt

)
n∈Z∗ has no longer purely imaginarily exponents like in (1.1). Thus, it is not so easy

as for (1.1) to give explicit entire functions (Ψm)m∈Z∗ whose Fourier transforms define a biorthogonal sequence
(θm)m∈Z∗ to

(
eλnt

)
n∈Z∗ . Moreover, we cannot guarantee anymore the boundedness of the sequence (θm)m∈Z∗

and (1.9) will be replaced by an estimate of the form

||θm||L2 ≤ Ceβ|�(λm)| (m ∈ Z
∗). (1.18)

Note that ||θm||L2 may become exponentially large as m goes to infinity. By taking into account the damping
mechanism introduced in equation (1.13), this growth estimate guarantees the convergence of series (1.17) for
each initial data (u0, u1) ∈ H0, if T is large enough. However, in order show that a control time T independent
of ε can be chosen and to prove the boundedness of the family of controls (vε)ε∈(0,1) in L2(0, T ), the dependence
in ε of the constants C and β from (1.18) is required. This represents one of the most difficult tasks of our
work. We shall prove that C and β from (1.18) can be chosen independent of ε, fact that ensures the uniform
boundedness of the sequence (vε)ε∈(0,1) and the possibility to pass to the limit as ε tends to zero in (1.13). The
main result of this paper reads as follows.

Theorem 1.1. Let α ∈ [0, 1)\{1
2

}
and f ∈ L2(0, π) be a function such that f̂n �= 0 for every n ≥ 1. There exists

a time T > 0 with the property that, for any (u0, u1) ∈ H0 and ε ∈ (0, 1), there exists a control vε ∈ L2(0, T )
of (1.13) such that the family (vε)ε∈(0,1) is uniformly bounded in L2(0, T ) and any weak limit v of it, as ε tends
to zero, is a control in time T for equation (1.1).
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The controllability problem studied in this paper belongs to the interface between parabolic and hyperbolic
equations. From this point of view, it is related to [8,14,23], where the controllability of the transport equation
is addressed after the introduction of a vanishing viscosity term. In [8] Carleman estimates are used to obtain
an uniform bound for the family of controls. The same result is shown in [14], improving the control time,
by means of nonharmonic Fourier analysis and biorthogonal technique. The recent article [23] deals with a
nonlinear scalar conservation law perturbed by a small viscosity term and proves the uniform boundedness of
the boundary controls. Related problems in which controls for an equation are obtained as limits of controls of
equations of different type may be also found in [24, 26, 28, 31, 37].

In order to justify the damping mechanism introduced in (1.13), which involves the fractional power α of
the Laplace operator, let us point out that sometimes it may be useful to control the amount of dissipation
introduced in the system not only by means of the vanishing parameter ε but also by an adequate choice of
the differential operator. For instance, the convergence rates in some perturbed problems can be improved by
choosing a viscosity operator of lower order (see, for instance, [18] in the context of Hamilton−Jacobi equations).
In (1.13) this is achieved through the parameter α. The case α = 1 has been studied, for a slightly different
problem, in [25], where a uniform controllability result with respect to the viscosity is proved. Theorem 1.1
shows that a similar result holds for any α ∈ [0, 1) \ {

1
2

}
. Note that, if α ∈ [

0, 1
2

)
, the imaginary parts of the

eigenvalues λn dominate the real ones and problem (1.13) has the same hyperbolic character as in the limit
case ε = 0. On the contrary, if α ∈ (

1
2 , 1

)
, (1.13) has a parabolic type. In this case we are dealing with a truly

singular control problem and the pass to the limit is sensibly more difficult. Finally, let us remark that α = 1
2

is a singular case in which the basic controllability properties (such as spectral controllability) of (1.13) do not
hold.

For α ∈ [0, 1) \ { 1
2}, the construction from the proof of Theorem 1.1 implies that the following Ingham-type

inequality (see [20]) holds, for any finite sequence (βn)n∈Z∗ and T sufficiently large,

C(T, α)
∑

n∈Z∗
|βn|2e−ωε|n|2α ≤

∫ T

−T

∣∣∣∣∣ ∑
n∈Z∗

βneλnt

∣∣∣∣∣
2

dt, (1.19)

where ε ∈ (0, 1), ω is an absolute positive constant and C a positive constant depending of T and α but
independent of ε. From this point of view our article extends the results from [11, 15, 32], where Ingham-type
inequalities are obtained under a more restrictive uniform sparsity condition of the sequence (λn)n∈Z∗ . Indeed,
one of the major difficulty in our study is related to the fact that the sequence of our eigenvalues (λn)n∈Z∗ is
not included in a sector of the positive real axis and does not verify a uniform separation condition of the type

|λn − λm| ≥ δ|nβ −mβ | (n,m ∈ Z
∗),

for some β > 1 and δ > 0 independent of ε. The fact that C(T, α) in (1.19) does not depend of ε is of
fundamental importance since it ensures the uniform boundedness of a family of controls (vε)ε∈(0,1) for (1.13)
and the possibility to pass to the limit in order to obtain a control v for (1.1).

The rest of the paper is organized as follows. Section 2 gives the equivalent characterization of the control-
lability property in terms of a moment problem. The core of the paper is Section 3 where two biorthogonal
sequences to the family

(
eλnt

)
n∈Z∗ are constructed and evaluated. The proof of Theorem 1.1 is provided in

Section 4. The article ends with an Appendix in which a technical lemma is proved.

2. The moment problem

In this section we show the equivalence between the controllability problem (1.13)−(1.15) and the moment
problem (1.16). In order to do this we need first a result concerning the existence of solutions for equation (1.13).
More precisely we have the following property.
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Proposition 2.1. Given any T > 0, α ∈ [0, 1], ε ≥ 0, h ∈ L1(0, T ;L2(0, π)) and (u0, u1) ∈ H1
0 (0, π)×L2(0, π),

there exists a unique weak solution (u, ut) ∈ C([0, T ], H1
0 (0, π) × L2(0, π)) of the problem⎧⎨⎩utt + (−∂2

xx)u+ ε2(−∂2
xx)2αu+ 2ε(−∂2

xx)αut = h(t, x) (x, t) ∈ (0, π) × (0, T )
u(t, 0) = u(t, π) = 0 t ∈ (0, T )
u(0, x) = u0(x) ut(0, x) = u1(x) x ∈ (0, π).

(2.1)

Proof. For any α ∈ [0, 1] and ε ≥ 0, let

X =

⎧⎨⎩D((−∂2
xx)α) × L2(0, π) if ε > 0 and α > 1

2

H1
0 (0, π) × L2(0, π) if ε = 0 or ε > 0 and α ≤ 1

2 ,

(for the definition of the operator (D((−∂2
xx)α), (−∂2

xx)α), see (1.11)). We suppose that the space X is endowed
with the inner product

((u1, u2), (v1, v2))X = (∂xu1, ∂xv1)L2(0,π) + ε2((−∂2
xx)αu1, (−∂2

xx)αv1)L2(0,π) + (u2, v2)L2(0,π).

Note that, sinceD((−∂2
xx)1/2) = H1

0 (0, π), it results that X ⊆ H1
0 (0, π)×L2(0, π). Now, we define the unbounded

operator (D(A), A) in X as follows,

D(A) =

⎧⎨⎩D((−∂2
xx)2α) ×D((−∂2

xx)α) if ε > 0 and α > 1
2

H2(0, π) ∩H1
0 (0, π) ×H1

0 (0, π) if ε = 0 or ε > 0 and α ≤ 1
2 ,

A =
(

0 −I
−∂2

xx + ε2(−∂2
xx)2α 2ε(−∂2

xx)α

)
.

The operator (D(A), A) is maximal and monotone in X . Indeed, for any U = (u1, u2) ∈ D(A), we have that

�(AU,U)X = 2ε((−∂2
xx)

α
2 u2, (−∂2

xx)
α
2 u2)L2(0,π) ≥ 0

from which we deduce that (D(A), A) is monotone in X .
To prove that (D(A), A) is maximal in X we only have to show that there exists λ > 0 with the property

that for any F = (f1, f2) ∈ X there exits U = (u1, u2) ∈ D(A) such that

(A+ λI)U = F, (2.2)

which is equivalent to{
u2 = λu1 − f1
−∂2

xxu1 + ε2(−∂2
xx)2αu1 + λ2u1 + 2ελ(−∂2

xx)αu1 = f2 + 2ε(−∂2
xx)αf1 + λf1.

(2.3)

Nextly, we define the bilinear form a : X̃ × X̃ → C and the linear form L : X̃ → C given by

a(ϕ, ψ) =
∫ π

0

ϕx(x)ψx(x)dx+ ε2
∫ π

0

(−∂2
xx)αϕ(x)(−∂2

xx)αψ(x)dx

+ 2ελ
∫ π

0

(−∂2
xx)

α
2 ϕ(x)(−∂2

xx)
α
2 ψ(x)dx+ λ2

∫ π

0

ϕ(x)ψ(x)dx,

L(ψ) =
∫ π

0

(
f2(x) + 2ε(−∂2

xx)αf1(x) + λf1(x)
)
ψ(x)dx,
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where

X̃ =

⎧⎨⎩D((−∂2
xx)α) if ε > 0 and α > 1

2

H1
0 (0, π) if ε = 0 or ε > 0 and α ≤ 1

2 .

From Lax–Milgram Theorem it follows that the problem

a(ϕ, ψ) = L(ψ) (ψ ∈ X̃ )

has a unique solution ϕ ∈ X̃ . Consequently, (2.2) has a solution U ∈ D(A) and the maximality of the operator
(D(A), A) follows. From Hille−Yosida’s Theorem we deduce that the operator (D(A), A) generates a semigroup
of contraction (S(t))t≥0 in X . At the same time, [4], Lemma 4.1.5 ensures the existence and uniqueness of a weak
solution for (2.1) which belongs to C([0, T ],X ). Since X ⊆ H1

0 (0, π) × L2(0, π)), the proof is completed. �

Remark 2.2. A more general equation than (2.1) is studied in [5, 6]. It is proved that, if 1
2 ≤ α ≤ 1, the

generated semigroup is analytic on a triangular sector of C containing the positive real axis. This is not true if
0 ≤ α < 1

2 ·
Remark 2.3. A lumped control of the form vε(t)f(x) has been chosen to act on our system (1.13). Of course,
other types of controls can be proposed (interior, boundary etc.). At least formally, these new controllability
problems may be reduced to prove an inequality of type (1.19) and the same technique could be used to study
all of them. However, in the boundary control case we need to work in a space X̃ not included in any D((−∂2

x)α),
α > 0, which requires much more care. We recall that the fractional Laplace operator may also be introduced
by considering the Dirichlet to Neumann map for the two-dimensional cylinder (0, π)×R+ (see [2,3] for details).
This method is commonly used in the recent literature since it allows to write nonlocal problems in a local way
and this permits to use the variational techniques for these kind of problems. It is known that, for functions in
the spaces D((−∂2

x)α) from above, this definition is coherent with the spectral one (1.11) used by us (see [2],
Cor. 3.6). Consequently, homogeneous Dirichlet boundary condition may be easily treated by using the spectral
definition of the fractional Laplace operator. On the contrary, to study the nonhomogeneous boundary problems
for the same operator (or for general nonlocal operator) the strategy should be different. These problems are
known to be more difficult and even ill-posed [9].

Now we can give the characterization of the controllability property of (1.13)−(1.15) in terms of a moment
problem. Based on the Fourier expansion of solutions, the moment problems have been widely used in linear
control theory. We refer to [1, 22, 34, 36] for a detailed discussion of the subject.

Theorem 2.4. Let T > 0, ε ∈ (0, 1), (u0, u1) ∈ H0 and f ∈ L2(0, π). There exists a control vε ∈ L2(0, T ) such
that the solution (u, ut) of equation (1.13) verifies (1.15), if and only if, vε ∈ L2(0, T ) satisfies

f̂|n|

∫ T
2

−T
2

vε

(
t+

T

2

)
eλntdt = −e−λn

T
2

(
û1
|n| + λnû

0
|n|

)
(n ∈ Z

∗), (2.4)

where λn = in+ ε|n|2α, for any n ∈ Z∗.

Proof. We consider the “adjoint” equation⎧⎨⎩ϕtt + (−∂2
xx)ϕ+ ε2(−∂2

xx)2αϕ− 2ε(−∂2
xx)αϕt = 0 (x, t) ∈ (0, π) × (0, T )

ϕ(t, 0) = ϕ(t, π) = 0 t ∈ (0, T )
ϕ(T, x) = ϕ0(x) ϕt(T, x) = ϕ1(x) x ∈ (0, π).

(2.5)

If we multiply (1.13) by ϕ and we integrate by parts over (0, T ) × (0, π), we deduce that vε ∈ L2(0, T ) is a
control for (1.13) if, and only if, it verifies∫ T

0

vε(t)
∫ π

0

f(x)ϕ(t, x)dxdt = −
∫ π

0

u1(x)ϕ(0, x)dx +
∫ π

0

u0(x)
(
ϕt(0, x) − 2ε

(−∂2
xx

)α
ϕ(0, x)

)
dx, (2.6)
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for every (ϕ,ϕt) solution of (2.5) with the initial data (ϕ0, ϕ1). Since (sin(nx))n≥1 is a basis for L2(0, π) we
have to check (2.6) only for the initial data of the form (ϕ0, ϕ1) = (sin(nx), 0) and (ϕ0, ϕ1) = (0, sin(nx)), for
each n ≥ 1. In the first case the solution of (2.6) is given by

ϕ(t, x) =
(

λn

λn − λn

e(t−T )λn +
λn

λn − λn

e(t−T )λn

)
sin(nx) (n ∈ N

∗), (2.7)

whereas in the second case it becomes

ϕ(t, x) =
(

1
λn − λn

e(t−T )λn +
1

λn − λn

e(t−T )λn

)
sin(nx) (n ∈ N

∗). (2.8)

By tacking in (2.6) ϕ of the form (2.7) and (2.8), we obtained that vε ∈ L2(0, T ) is a control of (1.13) if and
only if it verifies (2.4). �

Remark 2.5. Note that (λn)n∈Z∗ introduced in the previous theorem are the eigenvalues of the differential
operator corresponding to the “adjoint” equation (2.5).

Remark 2.6. The condition f̂n �= 0 for any n ∈ N∗ is necessary in order to solve the moment problem (2.4)
for any initial data in H0. Indeed, if there exists n0 ∈ N∗ such that f̂n0 = 0, then (2.4) has a solution only if
the initial data (u0, u1) verify the additional condition û1

n0
+ λn0 û

0
n0

= 0.

We recall that (θm)m∈Z∗ ∈ L2(−T
2 ,

T
2 ) is a biorthogonal sequence to the family of exponential func-

tions
(
eλnt

)
n∈Z∗ ∈ L2(−T

2 ,
T
2 ) if and only if

∫ T
2

−T
2

θm(t)eλntdt = δmn (m,n ∈ Z
∗).

It is easy to see from (2.4) that, if (θm)m∈Z∗ is a biorthogonal sequence to the family of exponential functions(
eλnt

)
n∈Z∗ in L2(−T

2 ,
T
2 ), then a control of (1.13) is given by

vε(t) = −
∑

m∈Z∗

e−λm
T
2

f̂|m|

(
û1
|m| + λmû

0
|m|

)
θm

(
t− T

2

)
(t ∈ (0, T )), (2.9)

provided that the right hand side converges in L2(0, T ). Now the main problem is to show that there exists a
biorthogonal sequence (θm)m∈Z∗ to the family of exponential functions

(
eλnt

)
n∈Z∗ in L2(−T

2 ,
T
2 ) and to evaluate

its norm, in order to prove the convergence of the right hand side of (2.9) for any (u0, u1) ∈ H0.

3. Construction of a biorthogonal sequence

The aim of this section is to construct and evaluate an explicit biorthogonal sequence to the family
(
etλn

)
n∈Z∗

in L2
(−T

2 ,
T
2

)
, where λn = in+ ε|n|2α are the eigenvalues introduced in Theorem 2.4. In order to do that, we

define a family (Ψm(z))m∈Z∗ of entire functions of exponential type independent of ε (see, for instance, [35])
such that Ψm(iλn) = δmn. The inverse Fourier transform of (Ψm)m∈Z∗ will give us the biorthogonal sequence
(θm)m∈Z∗ that we are looking for. Each Ψm is obtained from a Weierstrass product Pm multiplied by an
appropriate function Mm with rapid decay on the real axis. Such a method was used for the first time by Paley
and Wiener [29] and, in the context of control problems, by Fattorini and Russell [12,13]. The main difficulty in
our analysis is to obtain good estimates for the behavior of Pm on the real axis and to construct an appropriate
multiplier Mm in order to ensure the boundedness of Ψm on the real axis. As we shall see in Proposition 3.6
below, the behavior of ln |Pm(x)| is always dominated by a subunitary power of |x|, if α < 1

2 which facilitates
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the entire construction and analysis. In the more difficult case α > 1
2 , ln |Pm(x)| behaves like |x| on an interval

of length O
((

1
ε

) 1
2α−1

)
. It is precisely this property which makes the construction of Mm more problematic

and imposes the necessity of a careful analysis of Pm(x). Finally, the bounds obtained on the real axis for Ψm

and the Plancherel’s Theorem, will provide the desired estimates for ‖θm‖L2(0,T ) and their dependence of the
parameters m, ε and α.

3.1. An entire function

In this subsection we construct the Weierstrass product Pm mentioned above and we study some of its
properties. For every m ∈ Z∗, we define the function

Pm(z) =
∏

n∈Z
∗

n�=m

(
1 +

zi

λn

)(
λn

λn − λm

)
· (3.1)

Firstly, let us state the following technical result concerning the second part of the product Pm, whose proof
will be given in the Appendix.

Lemma 3.1. There exists a constant C > 0 such that, for all ε ∈ (0, 1) and m ∈ Z∗, we have

∏
n∈Z

∗
n�=m

∣∣∣∣ λn

λn − λm

∣∣∣∣ ≤ 16 exp(Cεm2α). (3.2)

Now we pass to study the basic properties of the product Pm.

Proposition 3.2. Let α ∈ [0, 1)\{1
2

}
and ε ∈ (0, 1). For each m ∈ Z∗, Pm is an entire function of exponential

type at most L1, where

L1 :=

⎧⎪⎪⎨⎪⎪⎩
max

{√
2π
2 , 4ε

1−2α

}
α ∈ [

0, 1
2

)
max

{√
2π
2 , 8

2α−1

}
α ∈ (

1
2 , 1

)
,

with the property that
Pm(iλn) = δmn (n ∈ Z

∗). (3.3)

Remark 3.3. Note that Proposition 3.2 does not consider the case α = 1
2 · In fact, if α = 1

2 , the family of
exponential functions

(
eλnt

)
n∈Z∗ is complete in L2(0, a), for any a > 0. Indeed, since

∑
n∈Z∗

�(λn)
1 + |λn|2 = ∞, (3.4)

the completeness is a consequence of the Theorem Szász–Müntz [33]. Since this property remains true if we
eliminate a finite number of elements, we deduce that

(
eλnt

)
n∈Z∗ is not minimal in L2(0, a) and there exists

no biorthogonal sequence to it in L2(0, a). From the controllability point of view, it follows that (1.13) is not
spectrally controllable if α = 1

2 ·
Proof of Proposition 3.2. By taking into account the estimate (3.2) from Lemma 3.1, we only have to study the
function

Em(z) =
∏

n∈Z
∗

n�=m

(
1 +

zi

λn

)
·
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We have that

|Em(z)| =
∣∣∣∣1 +

zi

λm

∣∣∣∣ ∏
n∈N

∗
n�=|m|

∣∣∣∣(1 +
zi

λn

)(
1 +

zi

λn

)∣∣∣∣ ≤ (
1 +

|z|
|λm|

) ∞∏
n=1

|λn|2 + 2|�(λn)||z| + |z|2
|λn|2

=
(

1 +
|z|
|λm|

)
exp

( [Nz]∑
n=1

ln
(

1 +
2|�(λn)||z| + |z|2

|λn|2
)

︸ ︷︷ ︸
S1

+
∞∑

n=[Nz]+1

ln
(

1 +
2|�(λn)||z| + |z|2

|λn|2
)

︸ ︷︷ ︸
S2

)
,

where Nz =
(

|z|
2ε

) 1
2α

. It follows that

S1 ≤
[Nz]∑
n=1

ln
(

1 +
2|z|2
|λn|2

)
≤

∫ Nz

0

ln
(

1 +
2|z|2

t2 + ε2t4α

)
dt ≤

∫ Nz

0

ln
(

1 +
2|z|2
t2

)
dt

≤ √
2|z|

∫ ∞

0

ln
(

1 +
1
t2

)
dt =

√
2π
2

|z|.
Thus, we have that

S1 ≤
√

2π
2

|z|. (3.5)

For α ∈ [
0, 1

2

)
we have that

S2 ≤ 4|z|
∞∑

n=[Nz]+1

εn2α

n2 + ε2n4α
≤ 4|z|

∞∑
n=2

εn2α−2 ≤ 4ε
1 − 2α

|z|.

For α ∈ (
1
2 , 1

)
we define γε =

(
1
ε

) 1
2α−1

and we deduce that

S2 ≤
∞∑

n=[Nz]+1

4|�(λn)||z|
|λn|2 = 4|z|

∞∑
n=[Nz]+1

εn2α

n2 + ε2n4α
≤ 4|z|

⎛⎝ [γε]∑
n=1

+
∞∑

n=[γε]+1

⎞⎠ εn2α

n2 + ε2n4α

≤ 4|z|
⎛⎝ [γε]∑

n=1

ε

n2−2α
+

∞∑
n=[γε]+1

1
εn2α

⎞⎠ ≤ 8
2α− 1

|z|.

It follows that

S2 ≤
⎧⎨⎩

4ε
1−2α |z| α ∈ [

0, 1
2

)
8

2α−1 |z| α ∈ (
1
2 , 1

)
.

(3.6)

From (3.5) and (3.6) we deduce that Em(z) is an entire function of exponential type at most L1 and the proof
ends. �

3.2. Evaluation of Pm on the real axis

This subsection is devoted to study the behavior of the entire function Pm on the real axis. The main result
will be presented in Proposition 3.6 below. Let us begin with the following two simple lemmas. We recall that,

for α > 1
2 , we have introduced the notation γε =

(
1
ε

) 1
2α−1

.

Lemma 3.4. Let ε ∈ (0, 1) be fixed and α ∈ [0, 1) \ {
1
2

}
. For any x ≥ 0 there exists a unique xε ≥ 0 such that

x2 = x2
ε + ε2x4α

ε . Moreover, if α ∈ [
0, 1

2

)
or α ∈ (

1
2 , 1

)
and x ≤ γε, then

xε ≤ x ≤
√

2xε, (3.7)
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|x− |λn|| ≥ |xε − n|√
2

(n ∈ N
∗, n ≤ γε). (3.8)

Finally, if α ∈ (
1
2 , 1

)
and x > γε, then

|λn| − x ≥ ε(n2α − x2α
ε )

2
√

2
(n ∈ N

∗, n > γε). (3.9)

Proof. Let us first note that, for all t ≥ 0, the equation

r2 + ε2r4α = t (3.10)

has only one solution in [0,∞). Indeed, if we define the function f : [0,∞) → R, f(r) = r2 + ε2r4α − t, it results
that f is increasing. Therefore equation (3.10) has at most one solution in [0,∞). On the other hand, we notice
that f(0) = −t and lim

r→∞ f(r) = ∞, from which we conclude that equation (3.10) has a unique solution in

[0,∞). Concerning (3.7), it is obviously that xε ≤ x and for the second part of the inequality we notice that

x2 = x2
ε + ε2x4α

ε ≤ 2x2
ε

for any α ∈ [
0, 1

2

)
or α ∈ (

1
2 , 1

)
and xε ≤ γε. Finally, taking into account that

|x− |λn|| =

∣∣∣∣∣ x2
ε − n2 + ε

(
x4α

ε − n4α
)√

x2
ε + ε2x4α

ε +
√
n2 + ε2n4α

∣∣∣∣∣ ,
relations (3.8) and (3.9) follows immediately. �

Lemma 3.5. The following inequalities hold

n4α−2 − x4α−2

n2 − x2
≤

⎧⎨⎩x4α−4 n ≤ x

n4α−4 0 ≤ x ≤ n

(
α ∈ (

1
2 , 1

))
, (3.11)

n4α−2 − x4α−2

n2 − x2
≤ 0

(
α ∈ [

0, 1
2

))
. (3.12)

Proof. We notice that, when x ≥ n, then

n4α−2 − x4α−2

n2 − x2
= x4α−4

(
n
x

)4α−2 − 1(
n
x

)2 − 1
≤

⎧⎨⎩0 α ∈ [
0, 1

2

)
x4α−4 α ∈ (

1
2 , 1

)
,

The case n ≤ x is treated similarly. �

The main result from this subsection is the following estimate of the function Pm on the real axis.

Proposition 3.6. Let ε ∈ (0, 1) and m ∈ Z∗. For each α ∈ [0, 1)\ 1
2 there exist two positive constants C and ω,

independent of ε and m, such that the function Pm defined by (3.1) verifies

|Pm(x)| ≤ C exp [ω (ϕε(x) + |�(λm)|)] (x ∈ R), (3.13)

where

ϕε(x) =

⎧⎪⎨⎪⎩
ε|x|2α if

(
α ∈ [

0, 1
2

)
and x ∈ R

)
or

(
α ∈ (

1
2 , 1

)
and |x| ≤ γε

)
(

|x|
ε

) 1
2α

if α ∈ (
1
2 , 1

)
and |x| > γε·

(3.14)
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Proof. With the notations from Proposition 3.2 and by taking into account estimate (3.2) from Lemma 3.1,
it follows that it is enough to evaluate |Em(x)|. Moreover, since Pm is a continuous function it is sufficient to
consider x �= |λn| for all n ∈ Z∗. In the sequel, C denotes a generic constant which may change from one row to
another but it is always independent of ε and m.

To begin with, we evaluate Em on the real axis in the case
(
α ∈ [

0, 1
2

)
and x ∈ R

)
or(

α ∈ (
1
2 , 1

)
and |x| ≤ γε

)
.

|Em(x)|2 =

∣∣∣∣∣∣∣∣
∏

n∈Z
∗

n�=m

(
1 +

xi

λn

)∣∣∣∣∣∣∣∣
2

=
∣∣∣∣1 +

xi

λm

∣∣∣∣2 ∞∏
n=1
n�=m

∣∣∣∣ |λn|2 + 2xi�(λn) − x2

|λn|2
∣∣∣∣2

=
(x +m)2 + ε2m4α

m2 + ε2m4α

∞∏
n=1
n�=m

(|λn|2 − x2
)2

|λn|4︸ ︷︷ ︸
E1

m(x)

∞∏
n=1
n�=m

(|λn|2 − x2
)2 + 4x2 (�λn)2

(|λn|2 − x2)2︸ ︷︷ ︸
E2

m(x)

·

We shall consider that x ≥ 0. The opposite case can be treated in a similar way. Now, we evaluate E1
m(x) by

using Lemma 3.4. We have that

∣∣E1
m(x)

∣∣ =
∞∏

n=1
n�=m

∣∣∣∣ |λn|2 − x2

|λn|2
∣∣∣∣2 =

∞∏
n=1
n�=m

∣∣∣∣n2 + ε2n4α − x2
ε − ε2x4α

ε

n2 + ε2n4α

∣∣∣∣2

=
(

m2

m2 − x2
ε

)2 ∞∏
n=1

∣∣∣∣n2 − x2
ε

n2

∣∣∣∣2 ∞∏
n=1
n�=m

∣∣∣∣1 +
ε2x2

ε

1 + ε2n4α−2

n4α−2 − x4α−2
ε

n2 − x2
ε

∣∣∣∣2
︸ ︷︷ ︸

A1
m(x)

=
(

m2

m2 − x2
ε

)2 ( sinπxε

πxε

)2

A1
m(x) ≤ m2

(m− xε)2

(
sinπxε

πxε

)2

A1
m(x).

From Lemma 3.5 we deduce that, if α ∈ [
0, 1

2

)
, the product A1

m(x) has the following property

A1
m(x) ≤ 1.

On the other hand, if α ∈ (
1
2 , 1

)
, from (3.11) we deduce that

A1
m(x) ≤ exp

⎛⎝2
[xε]∑
n=1

ln
(

1 +
ε2x4α−2

ε

1 + ε2n4α−2

)
+ 2

∞∑
n=[xε]+1

ln
(

1 +
x2

εε
2n4α−4

1 + ε2n4α−2

)⎞⎠
≤ exp

(
2

[xε]∑
n=1

ε2x4α−2
ε

1 + ε2n4α−2︸ ︷︷ ︸
A11

m (x)

+ 2
∞∑

n=[xε]+1

x2
εε

2n4α−4

1 + ε2n4α−2︸ ︷︷ ︸
A12

m (x)

)
.

Next, we proceed to evaluate the sums A11
m (x) and A12

m (x). Firstly, we have that

A11
m (x) = 2

[xε]∑
n=1

ε2x4α−2
ε

1 + ε2n4α−2
≤ 2

∫ xε

0

ε2x4α−2
ε

1 + ε2t4α−2
dt ≤ 2

∫ xε

0

ε2x4α−2
ε dt ≤ 2ε2x4α−1

ε ≤ 2εx2α
ε ,

and secondly we deduce that

A12
m (x) =

∞∑
n=[xε]+1

2x2
εε

2n4α−4

1 + ε2n4α−2
≤

∫ ∞

xε

2x2
εε

2t4α−4

1 + ε2t4α−2
dt =

∫ γε

xε

2x2
εε

2t4α−4

1 + ε2t4α−2
dt+

∫ ∞

γε

2x2
εε

2t4α−4

1 + ε2t4α−2
dt ≤ 2εx2α

ε .
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Consequently, we have proved that

E1
m(x) ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m2

(m− xε)2

(
sinπxε

πxε

)2

α ∈ [
0, 1

2

)
, x ∈ R

m2

(m− xε)2

(
sinπxε

πxε

)2

exp
(
4εx2α

)
α ∈ (

1
2 , 1

)
, x ≤ γε.

(3.15)

Nextly, we evaluate the product E2
m(x). In the following estimates we shall use the notation nx = [xε] and

relations (3.7)–(3.8) from Lemma 3.4.

E2
m(x) =

(|λm|2 − x2
)2

(|λm|2 − x2)2 + 4x2�2(λm)

(
1 +

4x2�2(λnx)

(|λnx |2 − x2)2

)(
1 +

4x2�2(λnx+1)

(|λnx+1|2 − x2)2

)
︸ ︷︷ ︸

E21
m (x)

nx−1∏
n=1

(
1 +

4x2�2(λn)
(|λn|2 − x2)2

) ∞∏
n=nx+2

(
1 +

4x2�2(λn)
(|λn|2 − x2)2

)

≤ E21
m (x)

nx−1∏
n=1

(
1 +

4�2(λn)
(|λn| − x)2

) ∞∏
n=nx+2

(
1 +

4x2�2(λn)
|λn|2 (|λn| − x)2

)

= E21
m (x) exp

[ nx−1∑
n=1

ln

(
1 +

4�2(λn)
(x− |λn|)2

)
︸ ︷︷ ︸

E22
m (x)

+
∞∑

n=nx+2

ln

(
1 +

4x2�2(λn)
|λn|2 (|λn| − x)2

)
︸ ︷︷ ︸

E23
m (x)

]
.

We estimate E22
m (x) by using Lemma 3.4 as follows

E22
m (x) ≤

nx−1∑
n=1

ln

(
1 +

8ε2n4α

(nx − n)2

)
≤ 32α

∫ nx

0

nxε
2t4α−1

(nx − t)2 + 8ε2t4α
dt.

To bound from above the last integral we have to split the interval (0, nx) in three parts, by taking into account
the following inequalities

0 ≤ nx

2
≤ nx − εn2α

x

1 + εn2α−1
x

≤ nx. (3.16)

Thus, we have that∫ nx

0

nxε
2t4α−1

(nx − t)2 + 8ε2t4α
dt ≤

∫ nx
2

0

ε2nxt
4α−1

(nx − t)2
dt+

∫ nx− εn2α
x

1+εn
2α−1
x

nx
2

ε2nxt
4α−1

(nx − t)2
dt+

∫ nx

nx− εn2α
x

1+εn
2α−1
x

nx

t
dt

≤
∫ nx

2

0

ε2nxt
4α−1(

nx

2

)2 dt+
∫ nx− εn2α

x

1+εn
2α−1
x

nx
2

ε2n4α
x

(nx − t)2
dt+ nx ln(1 + εn2α−1

x ) ≤ Cεn2α
x .

The last inequality takes place because ε2n4α−1
x ≤ εn2α

x if
(
α ∈ [

0, 1
2

)
and x ∈ R

)
or

(
α ∈ (

1
2 , 1

)
and x ≤ γε

)
.

Now let us evaluate E23
m (x) by treating separately the following cases:

Case I. α ∈ [
0, 1

2

)
and x ∈ R. Using relation (3.8) from Lemma 3.4 we obtain that

cE23
m (x) ≤

∫ ∞

xε+1

ln
(

1 +
8x2ε2t4α−2

(t− xε)2

)
dt ≤ 32

∫ ∞

xε+1

x2ε2t4α−2

(t− xε)2 + x2ε2t4α−2
dt

= 32
(∫ 2xε

xε+1

+
∫ ∞

2xε

)
x2ε2t4α−2

(t− xε)2 + x2ε2t4α−2
dt ≤ Cεx2α

ε .
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Case II. α ∈ (
1
2 , 1

)
and x ≤ γε. Using the relations (3.8) and (3.9) from Lemma 3.4 we have that

E23
m (x) ≤

∫ γε

xε

ln

(
1 +

8x2ε2t4α−2

(t− xε)
2

)
dt︸ ︷︷ ︸

I1

+
∫ ∞

γε

ln

(
1 +

32x2

ε2 (t2α − x2α
ε )2

)
dt︸ ︷︷ ︸

I2

.

To evaluate I1 we integrate by parts and we take into account that there exists a constant v ∈ (0, 1) such
that xε ≤ vγε. The existence of this constant allows us to separate the interval (xε, γε) as follows

I1 ≤ 4x2ε
1

2α−1 + 8x2ε2

(∫ 1
v xε

xε

+
∫ γε

1
v xε

)
t4α−2

(t− xε)2 + 4x2ε2t4α−2
dt

≤ 4εx2α +
∫ 1

v xε

xε

Cx4α
ε ε2

(t− xε)2 + x4α
ε ε2

dt+
∫ γε

1
v xε

Cx2
εε

2t4α−4

1 + x2
εε

2t4α−4
dt

≤ 4εx2α +
∫ ∞

0

Cx4α
ε ε2

t2 + x4α
ε ε2

dt+
∫ γε

1
v xε

Cx2
εε

2t4α−4dt ≤ Cεx2α.

In order to estimate I2 we remark that t2α − x2α
ε ≥ (1 − v2α)t2α. It follows that

I2 ≤
∫ ∞

γε

ln
(

1 +
32x2

(1 − v2α)2ε2t4α

)
dt ≤

∫ ∞

γε

32x2

(1 − v2α)2ε2t4α
dt ≤ 32

(4α− 1)(1 − v2α)2
εx2α.

Thus, we have that
E2

m(x) ≤ E21
m (x) exp(Cε|x|2α). (3.17)

Note that, for any m ∈ Z∗, there exists a positive constant C̃, independent of m and ε, such that

(x+m)2 + ε2m4α

m2 + ε2m4α

m2

(m− xε)2

(
sinπxε

πxε

)2
(

1 +
4x2�2(λnx)

(|λnx |2 − x2)2

)(
1 +

4x2�2(λnx+1)
(|λnx+1|2 − x2)2

)
≤ C̃. (3.18)

Indeed, the terms m2

(m−xε)2
, 1 + 4x2�2(λnx )

(|λnx |2−x2)2
and 1 + 4x2�2(λnx+1)

(|λnx+1|2−x2)2
explodes as x tends to m, λnx and λnx+1

respectively, but not simultaneously. This allows us to couple them with the sine function
(

sin πxε

πxε

)2

in order to
obtain a bounded function. On the other hand, when x tends to infinity we couple the first two terms so that
we obtain once again a bounded function.

Consequently, from (3.15), (3.17) and (3.18) it follows that, for every α ∈ [0, 1) \ { 1
2} there exists an absolute

positive constant C, such that for any
(
x ∈ R if α ∈ [

0, 1
2

))
or

(|x| ≤ γε if α ∈ (
1
2 , 1

))
, we have that

|Em(x)| ≤ exp(Cεx2α). (3.19)

To conclude the proof it remains to evaluate the product Em(x) in the case α ∈ (
1
2 , 1

)
and |x| > γε. Note that

|Em(x)|2 =

∣∣∣∣∣∣∣∣
∏

n∈Z
∗

n�=m

(
1 +

xi

λn

)∣∣∣∣∣∣∣∣
2

=
∣∣∣∣1 +

xi

λm

∣∣∣∣2
∣∣∣∣∣∣∣

∞∏
n=1
n�=m

(
1 +

xi

λn

)(
1 +

xi

λn

)∣∣∣∣∣∣∣
2

≤ (m+ x)2 + ε2m4α

m2 + ε2m4α
exp

[ [ηε(x)]∑
n=1

ln
(

1 +
x4 + 4x2�2 (λn)

|λn|4
)

︸ ︷︷ ︸
S1

m(x)

+
∞∑

n=[ηε(x)]+1

ln
(

1 +
x4 + 4x2�2 (λn)

|λn|4
)

︸ ︷︷ ︸
S2

m(x)

]
,
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where ηε(x) =
(

x√
2ε

) 1
2α

. Now, we evaluate the above sum as follows.

S1
m(x) ≤

[ηε(x)]∑
n=1

ln
(

1 +
x4

|λn|4
)

≤
∫ ηε(x)

0

ln

(
1 +

x4

(t2 + ε2t4α)2

)
dt =

∫ γε

0

ln
(

1 +
x4

t4

)
dt

+
∫ ηε(x)

γε

ln
(

1 +
x4

ε4t8α

)
dtC

(x
ε

) 1
2α

,

S2
m(x) ≤

∞∑
n=[ηε(x)]+1

x4 + 4x2�2 (λn)
|λn|4 ≤

∞∑
n=[ηε(x)]+1

8x2�2 (λn)
|λn|4 =

∞∑
n=[ηε(x)]+1

8x2ε2n4α

(n2 + ε2n4α)2

≤
∞∑

n=[ηε(x)]+1

8x2

ε2n4α
≤

∫ ∞

ηε(x)

8x2

ε2
t−4αdt ≤ C

(x
ε

) 1
2α

.

Thus, for α ∈ (
1
2 , 1

)
and |x| > γε, we have proved that

|Em(x)| ≤ exp

(
C

( |x|
ε

) 1
2α

)
· (3.20)

Now, by taking into account (3.19) and (3.20) the proof of the Proposition ends. �

3.3. A multiplier

In this subsection we construct a function, called multiplier, used to compensate the grow of the product Pm

on the real axis given in Proposition 3.6.
Let ϕ : [0,∞) → [0,∞) be a continuous, increasing and onto function. We define the real sequence (an)n≥1

by
ϕ(ean) = n (n ≥ 1) (3.21)

and we suppose that the following properties hold:

(I1)
∑
n≥1

1
an

≤ L2 <∞

(I2)
∞∑

n=nm

1
a2

n

≤ D
1 + |�(λm)|

|λm|2 ,

where L2 and D are two positive constants and

nm = [ϕ(e|λm|)] + 1 (m ≥ 1). (3.22)

We have the following result.

Lemma 3.7. Let x ≥ anm and define nx := [ϕ(ex)]. Then

nx∑
j=nm

ln
(aj

x

)
= −

∫ x

anm

A(u) − nm + 1
u

du, (3.23)

where A(u) = #{an ≤ u} = [ϕε(eu)] .
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Proof. We have that

−
∫ x

anm

A(u)
u

du = −
nx−1∑
j=nm

∫ aj+1

aj

A(u)
u

du−
∫ x

anx

A(u)
u

du = −
nx−1∑
j=nm

∫ aj+1

aj

j

u
du−

∫ x

anx

nx

u
du

= ln

⎛⎝nx−1∏
j=nm

aj
j

aj
j+1

anx
nx

xnx

⎞⎠ = ln

⎛⎝anm−1
nm

xnm−1

nx∏
j=nm

aj

x

⎞⎠ = −
∫ x

anm

nm − 1
u

du+
nx∑

j=nm

ln
(aj

x

)
,

which completes the proof of the lemma. �

Now we can construct a multiplier function.

Theorem 3.8. Let ϕ : [0,∞) → [0,∞) be a continuous, increasing, onto function such that the sequence
(an)n≥1 defined by (3.21) verifies (I1) and (I2). For each m ≥ 1 there exists Mm : C → C with the following
properties:
1. Mm is an entire function of exponential type L2

2. |Mm(x)| ≤ exp (−ϕ(|x|) + ϕ(e|λm|) + 1) for all x ∈ R

3.
∣∣Mm(iλm)

∣∣ ≥ exp
(
−D

6
(1 + |�(λm)|)

)
.

Proof. By adapting an idea from [19], we define the function Mm : C → C as follows

Mm(z) =
∞∏

n=nm

sin
(

z
an

)
z

an

, (3.24)

where the sequence (an)n≥1 is given by (3.21) and nm is defined in (3.22).
Mm is an entire function of exponential type. Indeed, this is a consequence of property (I1) of the sequence

(an)n≥1 and the following estimate which holds for each N > nm,

N∏
n=nm

∣∣∣∣∣∣
sin

(
z

an

)
z

an

∣∣∣∣∣∣ ≤
N∏

n=nm

e| z
an
| = e

|z|
N∑

n=nm

1
an ≤ eL2|z|.

To prove the second property of Mm we need to analyze the following two cases:

Case 1. x ≤ eanm . We deduce that ϕ(x) ≤ ϕ(eanm) = nm ≤ ϕ(e|λm|) + 1 and consequently

|Mm(x)| =
∞∏

n=nm

∣∣∣∣∣∣
sin

(
x
an

)
x

an

∣∣∣∣∣∣ ≤ 1 ≤ exp (ϕ (e|λm|) − ϕ(x) + 1) .

Case 2. eanm < x. From Lemma 3.7 we deduce that

|Mm(x)| =
∞∏

n=nm

∣∣∣∣∣∣
sin

(
x

an

)
x

an

∣∣∣∣∣∣ ≤
nx∏

n=nm

∣∣∣an

x

∣∣∣ = exp

(
nx∑

n=nm

ln
(an

x

))
= exp

(
−

∫ x

anm

A(u) − nm + 1
u

du

)
.

Since anm < x
e , it follows that

|Mm(x)| ≤ exp

(
−

∫ x

x
e

A(u) − nm + 1
u

du

)
≤ exp

(
−

∫ x

x
e

ϕ(x) − 1 − nm + 1
u

du

)
= exp (−ϕ(x) + nm) .

Since nm = [ϕ(e|λm|)] + 1 ≤ ϕ(e|λm|) + 1, the second property of Mm is proved.
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To prove the third property of Mm, note that

anm =
1
e
ϕ−1(nm) ≥ 1

e
ϕ−1(ϕ(e|λm|)) = |λm|

and consequently
∣∣∣λm

an

∣∣∣ ≤ 1 for each n ≥ nm. It follows that

|Mm(iλm)| =
∞∏

n=nm

∣∣∣∣∣∣
sin

(
iλm

an

)
iλm

an

∣∣∣∣∣∣ ≥
∞∏

n=nm

sin
∣∣∣λm

an

∣∣∣∣∣∣λm

an

∣∣∣ ≥
∞∏

n=nm

∣∣∣∣1 − 1
6
|λm|2
a2

n

∣∣∣∣
=exp

( ∞∑
n=nm

ln
(

1 − 1
6
|λm|2
a2

n

))
≥ exp

(
−|λm|2

6

∞∑
n=nm

1
a2

n

)

By using property (I2) of the sequence (an)n≥1, we deduce that the third property of Mm also holds and the
proof of the theorem ends. �

Proposition 3.9. For α ∈ (0, 1)\{1
2

}
and ε ∈ (0, 1), let ϕε : [0,∞) → [0,∞) be the function defined by (3.14).

For each m ≥ 1 there exists Mm : C → C with the following properties:

1. Mm is an entire function of exponential type L2

2. |Mm(x)| ≤ exp
(−ϕε(x) + 2e2|�(λm)| + 1

)
for all x ∈ R

3.
∣∣Mm(iλm)

∣∣ ≥ exp (−D (1 + |�(λm)|))),
where L2 and D are positive constants independent of m and ε.

Proof. The existence of the function Mm follows from Theorem 3.8 if we prove that the function ϕε verifies the
hypothesis from Theorem 3.8 and

ϕε(e|λm|) ≤ 2e2|�(λm)| (m ≥ 1). (3.25)

From (3.14) we deduce immediately that ϕε : (0,∞) → (0,∞) is continues, increasing, onto and (3.25) is
verified. Moreover, the sequence (an)n≥1 defined by an = 1

eϕ
−1(n) verifies the following properties.

• For α ∈ (
0, 1

2

)
we have that

1
e

∑
n≥1

1
an

= ε
1
2α + ε

1
2α

∑
n≥2

(
1
n

) 1
2α

≤ 4α+ 1
2α

ε
1
2α .

• For α ∈ (
1
2 , 1

)
we have that

1
e

∑
n≥1

1
an

=
∑
n≥1

1
ϕ−1

ε (n)
≤

∫ ∞

0

1
ϕ−1

ε (s)
ds =

∫ γε

0

(ε
s

) 1
2α

ds+
∫ ∞

γε

1
εs2α

ds =
2α+ 1
2α− 1

·

By taking L2 = 4α+1
2α ε

1
2α e for α ∈ (

0, 1
2

)
and L2 = 2α+1

2α−1e for α ∈ (
1
2 , 1

)
it follows that hypothesis (I1) is

verified.
On the other hand we have that

• For α ∈ (
0, 1

2

)
we have that

1
e2

∞∑
n=nm

1
a2

n

=
∞∑

n=nm

( ε
n

) 1
α ≤

∫ ∞

ϕε(e|λm|)

(ε
s

) 1
α

ds ≤ ε|λm|2α−2 ≤ 1
|λm|2 (1 + 2α|�(λm)|) .
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• For α ∈ (
1
2 , 1

)
it follows that

1
e2

∞∑
n=nm

1
a2

n

=
∞∑

n=nm

1
(ϕ−1

ε (n))2
≤ 1

(ϕ−1
ε (nm))2

+
∫ ∞

nm

1
(ϕ−1

ε (s))2
ds.

Since nm ≥ ϕε(e|λm|) it results that

1
(ϕ−1

ε (nm))2
≤ 1

e2|λm|2 (m ∈ N
∗). (3.26)

On the other hand, if e|λm| ≤ γε we have that∫ ∞

ϕε(e|λm|)

1
(ϕ−1

ε (s))2
ds =

∫ γε

ϕε(e|λm|)

(ε
s

) 1
α

ds+
∫ ∞

γε

1
ε2s4α

ds ≤

≤ α

1 − α
ε

1
α

(
ε(e|λm|)2α

)α−1
α +

1
4α− 1

1
ε2
γ1−4α

ε ≤ 4α
1 − α

1
|λm|2 |�(λm)|

and if e|λm| > γε∫ ∞

ϕε(e|λm|)

1
(ϕ−1

ε (s))2
ds =

∫ ∞

ϕε(e|λm|)

1
ε2s4α

ds ≤ 1
4α− 1

e
1−4α
2α

1
ε2

( |λm|
ε

) 1−4α
2α

≤ 4e2

4α− 1
1

|λm|2 |�(λm)|·

By taking D = 2αe2 for α ∈ (
0, 1

2

)
and D = 4α

1−αe2 for α ∈ (
1
2 , 1

)
it follows that hypothesis (I2) is verified and

the proof of the proposition finishes. �

3.4. Two biorthogonal sequences

Now we have all the ingredients needed to construct a biorthogonal sequence (θm)m∈Z∗ to the family(
eλnt

)
n∈Z∗ , by using the method presented in the section’s introduction.

Theorem 3.10. Let ε ∈ (0, 1). There exist T̃ > 0 independent of ε and a biorthogonal sequence (θm)m∈Z∗ to
the family (eλnt)n∈Z∗ in L2(− T̃

2 ,
T̃
2 ), with the following property

‖θm‖
L2(− T̃

2 , T̃
2 )

≤ C exp(β|�(λm)|) (m ∈ Z
∗), (3.27)

where C and β are positive constants independent of m and ε.

Proof. If α �= 0, for each m ∈ Z∗, let Pm and M|m| be the functions from Propositions 3.2 and 3.9, respectively.
We define the function

Ψm(z) = Pm(z)

(
M|m|(z)

M|m|(iλm)

)ω
sin(δ(z − iλm))
δ(z − iλm)

, (3.28)

where δ > 0 is an arbitrary constant and ω is the constant from Proposition 3.6. Let

θm(t) =
1
2π

∫
R

Ψm(x)eixtdx. (3.29)

From Propositions 3.2 and 3.9 we deduce that there exists T̃ = 2(L1 + ωL2 + δ), independent of ε, such that
Ψm is an entire function of exponential type T̃

2 · Moreover, from the estimate of the function Pm on the real axis
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given by Proposition 3.6 and the properties of the function M|m| from Proposition 3.9, we obtain that∫
R

|Ψm(x)|2dx ≤ Ce2ω(1+D) exp
(
2ω(1 + 2e2 +D)|�(λm)|) ∫

R

∣∣∣∣sin(δ(x − iλm))
δ(x− iλm)

∣∣∣∣2 dx

≤ C

δ
exp

(
2(ω + 2ωe2 + ωD + δ)|�(λm)|) ∫

R

∣∣∣∣ sin tt
∣∣∣∣2 dt ≤ C exp (2β|�(λm)|) ,

where β is any number greater that ω + 2ωe2 + ωD + δ.
Now, by taking into account the properties of Ψm and by applying the Paley–Wiener Theorem, [35],

Theorem 18, Section 2.4, we deduce that θm ∈ L2(− T̃
2 ,

T̃
2 ). Moreover, from the inverse Fourier transform

property we obtained that (θm)m∈Z∗ is a biorthogonal sequence to
(
eλnt

)
n∈Z∗ in L2(− T̃

2 ,
T̃
2 ). Finally, from

Plancherel’s Theorem we deduce that (3.27) holds.
If α = 0, we take

Ψm(z) = Pm(z)
sin(δ(z − iλm))
δ(z − iλm)

, (3.30)

where δ > 0 is an arbitrary constant. The same argument as before allows us to end the proof of the theorem. �

The following result gives the existence of a new biorthogonal sequence with better norm properties than the
one from Theorem 3.10.

Theorem 3.11. Let ε ∈ (0, 1). There exist T0 > 0 independent of ε and a biorthogonal sequence (ζm)m∈Z∗ to
the family

(
eλnt

)
n∈Z∗ in L2

(−T0
2 ,

T0
2

)
, such that, for any finite sequence (cm)m∈Z∗ , we have

∫ T0
2

−T0
2

∣∣∣∣∣ ∑
m∈Z∗

cmζm(t)

∣∣∣∣∣
2

dt ≤ C(T0)
∑

m∈Z∗
|cm|2e2β|�(λm)|, (3.31)

where β is the same as in Theorem 3.10 and C(T0) is a constant depending only of T0.

Proof. Since it is similar to that of Theorem 3.4 from [27], we only give the main ideas. Let (θm)m∈Z∗ ⊂
L2

(
− T̃

2 ,
T̃
2

)
be the biorthogonal sequence from Theorem 3.10. For any a > 0 define ka =

√
2π

a2 (χa ∗ χa), where
χa represents the characteristic function χ[−a/2,a/2]. Evidently, supp(ka) ⊂ [−a, a]. We introduce the function
ρm(x) = eix
(λm)ka(x) and we define

ζm =
1√

2πρ̂m(iλm)
θm ∗ ρm (m ∈ Z

∗), (3.32)

where ρ̂m is the Fourier transform of ρm. Evidently, ζm ∈ L2
(
− T̃

2 − a, T̃
2 + a

)
. Let T0 = T̃+2a. From the convo-

lution’s properties, it follows that (ζm)m∈Z∗ is a biorthogonal sequence to the family
(
eλnt

)
n∈Z∗ in L2

(−T0
2 ,

T0
2

)
and (3.31) is proved. �

4. Controllability results

Now we are able to prove the main result of this paper.

Proof of Theorem 1.1. Let T >max{2β, T0} and (ζm)m∈Z∗ as in Theorem 3.11. We construct a control vε ∈
L2(0, T ) of (1.13) corresponding to the initial data (u0, u1) ∈ H0 as follows

vε(t) = −
∑

m∈Z∗

e−λm
T
2

f̂|m|

(
û1
|m| + λmû

0
|m|

)
ζ̃m

(
t− T

2

)
(t ∈ (0, T )), (4.1)
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where ζ̃m is the extension by zero of ζm to the interval
(−T

2 ,
T
2

)
. From the properties of the biorthogonal

sequence (ζm)m∈Z∗ , it is easy to see that vε verifies (2.4). To conclude that vε is a control for (1.13), we only
have to prove that the right hand side of (4.1) converges in L2(0, T ). This follows immediately from Theorem 3.11
and the fact that (u0, u1) ∈ H0. Indeed, we have that

∫ T

0

|vε(t)|2dt =
∫ T

0

∣∣∣∣∣− ∑
m∈Z∗

e−λm
T
2

f̂|m|

(
û1
|m| + λmû

0
|m|

)
ζ̃m

(
t− T

2

)∣∣∣∣∣
2

dt

=
∫ T̃

2 +a

− T̃
2 −a

∣∣∣∣∣− ∑
m∈Z∗

e−λm
T
2

f̂|m|

(
û1
|m| + λmû

0
|m|

)
ζm (t)

∣∣∣∣∣
2

dt ≤ C(T0)‖(u0, u1)‖2
H0
.

The last inequality results from (3.31) with the constant C(T0) independent of ε and m. Thus, the family
of controls (vε)ε∈(0,1) is uniformly bounded in L2(0, T ). In order to show that any weak limit of the family
(vε)ε∈(0,1) is a control for (1.1) we only have to pass to the limit as ε goes to zero in (2.4). �

Remark 4.1. Theorem 1.1 ensures the existence of a time T > 0, sufficiently large but independent of ε, for
which the uniform controllability of (1.13) holds. From Propositions 3.2, 3.6 and 3.9 we can give an explicit
expression of T . It is well known that the wave equation (1.1), corresponding to the limit case ε = 0, is
controllable in any time T ≥ 2π. Probably, the uniform controllability of (1.13) holds in the same time. However,
to obtain the optimal time we should be able to obtain a multiplier function Mm in Proposition 3.9 with
arbitrarily small exponential type L2 and constant D. This seems to be a difficult problem (see [8, 14, 27] for
similar uniform controllability results proved in a time larger than the optimal one).

A. Appendix

The aim of this section is to give the proof of Lemma 3.1 from Subsection 3.1. Through this section C denotes
an absolute positive constant.

Proof of Lemma 3.1. From the symmetry of the sequence (λn)n∈Z∗ , it is sufficient to consider only the case
m ∈ N∗. We have that∏

n∈Z
∗

n�=m

∣∣∣∣ λn

λn − λm

∣∣∣∣2 =
m2 + ε2m4α

4m2

∞∏
n=1
n�=m

(n2 + ε2n4α)2[|n−m|2 + ε2|n2α −m2α|2] [(n+m)2 + ε2|n2α −m2α|2]

=
m2 + ε2m4α

4m2

∞∏
n=1
n�=m

|λn|4
|λ|n−m||2|λm+n|2︸ ︷︷ ︸

Q1
m

∞∏
n=1
n�=m

[|n−m|2 + ε2|n−m|4α
] [

(n+m)2 + ε2(n+m)4α
][|n−m|2 + ε2|n2α −m2α|2] [(n+m)2 + ε2|n2α −m2α|2]︸ ︷︷ ︸

Q2
m

·

Since,

Q1
m =

∞∏
n=1
n�=m

|λn|4
|λ|n−m||2|λm+n|2 ≤

∞∏
n=1
n�=m

|λn|4

m−1∏
n=1

|λn|2
∞∏

n=1

|λn|2
∞∏

n=m+1
n�=2m

|λn|2
≤ |λ2m|2

|λm|2 ,

it follows that
Q1

m ≤ 16 (m ∈ N
∗). (A.1)
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For the product Q2
m we have that

Q2
m =

∞∏
n=1
n�=m

⎛⎜⎜⎝1 +
|n−m|2(n+m)2

[
ε2m4α−2f( n

m ) + ε4m8α−4g( n
m )

]
|n−m|2(n+m)2

(
1 + ε2

|n2α −m2α|2
|n−m|2

)(
1 + ε2

|n2α −m2α|2
(n+m)2

)
⎞⎟⎟⎠

= exp

⎛⎜⎜⎝ ∞∑
n=1
n�=m

ln

⎛⎜⎜⎝1 +
ε2m4α−2f( n

m ) + ε4m8α−4g( n
m )(

1 + ε2
|n2α −m2α|2
|n−m|2

)(
1 + ε2

|n2α −m2α|2
(n+m)2

)
⎞⎟⎟⎠
⎞⎟⎟⎠

≤ exp

⎛⎜⎜⎝ ∞∑
n=1
n�=m

ε2m4α−2f( n
m ) + ε4m8α−4g( n

m )(
1 + ε2

|n2α −m2α|2
|n−m|2

)(
1 + ε2

|n2α −m2α|2
(n+m)2

)
⎞⎟⎟⎠ ,

where f, g : (0,∞) → R are the functions defined by

f(t) = |t− 1|4α−2 + (t+ 1)4α−2 − 2(t2 + 1)
(t2α − 1)2

(t2 − 1)2
,

g(t) = |t2 − 1|4α−2 − (t2α − 1)4

(t2 − 1)2
.

Let us remark that, for any α ∈ [0, 1) \ {
1
2

}
, the function g can be bounded as follows

g(t) ≤ C

⎧⎪⎨⎪⎩
t2α t < 1

2

|t2 − 1|4α−2 t ∈ [
1
2 , 2

]
t6α−4 t > 2.

(A.2)

We prove the following inequality

Sg :=
∞∑

n=1
n�=m

ε4m8α−4g( n
m )(

1 + ε2
|n2α −m2α|2
|n−m|2

)(
1 + ε2

|n2α −m2α|2
(n+m)2

) ≤ C|�(λm)| (m ∈ N
∗). (A.3)

For that we write Sg as follows

Sg =

⎛⎜⎜⎜⎝
[m

2 ]∑
n=1

+
2m−1∑

n=[m
2 ]+1

n�=m

+
∞∑

n=2m

⎞⎟⎟⎟⎠ ε4m8α−4g( n
m)(

1 + ε2
|n2α −m2α|2
|n−m|2

)(
1 + ε2

|n2α −m2α|2
(n+m)2

) = S1
g + S2

g + S3
g .

In order to evaluate Si
g we use the following inequalities

|n2α −m2α|2
|n−m|2 ≥ |n−m|4α−2,

|n2α −m2α|2
|n−m|2 ≥ (n+m)4α−2, (A.4)

which hold for every α ∈ (
1
2 , 1

)
and n ∈ N∗, n �= m.
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For any α ∈ [0, 1) \{1
2

}
we evaluate the sum S1

g by using (A.2) and by taking into account that m+n ≤ 2m
and m− n ≥ 1

2m for every n ∈ [
1, m

2

]
. We deduce that

S1
g ≤ C

[m
2 ]∑

n=1

ε4m6α−4n2α(
1 + ε2m4α−2

)2 ≤ Cε4m6α−4

(1 + ε2m4α−2)2

∫ [m
2 ]+1

1

t2αdt ≤ Cε4m8α−3

(1 + ε2m4α−2)2
≤ C|�(λm)|.

Similarly, for any α ∈ [0, 1) \ {
1
2

}
we evaluate the sum S3

g as follows

S3
g ≤

∞∑
n=2m

Cε4m2αn6α−4(
1 + ε2

|n2α −m2α|2
|n−m|2

)(
1 + ε2

|n2α −m2α|2
(n+m)2

) ≤
∞∑

n=2m

Cε4m2αn6α−4

(1 + ε2n4α−2)2
≤ C|�(λm)|.

For α ∈ [
0, 1

2

)
we analyze S2

g as follows

S2
g ≤

2m−1∑
n=[m

2 ]+1

Cε4|n2 −m2|4α−2(
1 + ε2

|n2α −m2α|2
|n−m|2

)(
1 + ε2

|n2α −m2α|2
(n+m)2

) ≤
2m−1∑

n=[m
2 ]+1

Cε4m4α−2|n−m|4α−2 ≤ C|�(λm)|.

And, for α ∈ (
1
2 , 1

)
, we have to treat separately the cases m ≤ γε and m > γε. For m ≤ γε, we notice that the

function g is continuous on a compact set, so there exists a positive constant C independent of ε and m such
that g(t) ≤ C. By using again (A.4) it follows that

S2
g ≤

2m−1∑
n=[m

2 ]+1

Cε4m8α−4

(1 + ε2|n−m|4α−2)
(

1 + ε2
|n−m|4α

m2

) ≤
m∑

k=1

Cε4m8α−2

(1 + ε2k4α−2)
(
m2 + ε2k4α

) ≤ C|�(λm)|.

For the case m > γε it follows that

S2
g ≤

2m−1∑
n=[m

2 ]+1

Cε4m4α−2|n−m|4α−2

ε2m4α−2

(
1 + ε2

(m+ n)4α−2|n−m|2
m2

) ≤
m∑

k=1

Cε2m2k4α−2

m2 + ε2m4α−2k2

≤ Cε2

[
m2−2α

ε

]∑
k=1

k4α−2 + Cm4−4α
m∑

k=
[

m2−2α

ε

]
+1

k4α−4 ≤ C|�(λm)|,

which concludes the proof of (A.3).
Let us remark that, for any α ∈ [0, 1) \ {

1
2

}
, the function f can be bounded in the following way

f(t) ≤ C

⎧⎪⎨⎪⎩
t2α t < 1

2

|t− 1|4α−2 t ∈ [
1
2 , 2

]
t2α−2 t > 2.

(A.5)

We prove the following inequality

Sf :=
∞∑

n=1
n�=m

ε2m4α−2f( n
m )(

1 + ε2
|n2α −m2α|2
|n−m|2

)(
1 + ε2

|n2α −m2α|2
(n+m)2

) ≤ C|�(λm)| (m ∈ N
∗). (A.6)
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Indeed, we have that

Sf =

⎛⎜⎜⎜⎝
[m

2 ]∑
n=1

+
2m−1∑

n=[m
2 ]+1

n�=m

+
∞∑

n=2m

⎞⎟⎟⎟⎠ Cε2m4α−2f( n
m )(

1 + ε2
|n2α −m2α|2
|n−m|2

)(
1 + ε2

|n2α −m2α|2
(n+m)2

) = S1
f + S2

f + S3
f .

For any α ∈ [0, 1) \ {
1
2

}
we evaluate the sum S1

f by taking into account (A.5) and the fact that m + n ≤ 2m
and m− n ≥ 1

2m for every n ∈ [
1, m

2

] · We deduce that

S1
f =

[m
2 ]∑

n=1

Cε2m2α−2n2α(
1 + ε2 (m2α−n2α)2

(m−n)2

)(
1 + ε2 (m2α−n2α)2

(n+m)2

) ≤ Cε2m2α−2

(1 + ε2m4α−2)2

[m
2 ]∑

n=1

n2α ≤ C|�(λm)|.

Similarly, for any α ∈ [0, 1) \ {
1
2

}
, we deduce that S3

f is bounded by C|�(λm)|. Indeed,

S3
f =

∞∑
n=2m

ε2m2αn2α−2(
1 + ε2

|n2α −m2α|2
|n−m|2

)(
1 + ε2

|n2α −m2α|2
(n+m)2

) ≤
∞∑

n=2m

ε2m2αn2α−2

(1 + ε2n4α−2)2
≤ C|�(λm)|.

For α ∈ [
0, 1

2

)
we evaluate S2

f , as follows

S2
f =

2m−1∑
n=[m

2 ]+1

Cε2|n−m|4α−2(
1 + ε2

|n2α −m2α|2
|n−m|2

)(
1 + ε2

|n2α −m2α|2
(n+m)2

) ≤
2m−1∑

n=[m
2 ]+1

Cε2|n−m|4α−2

1 + ε2
|n2α −m2α|2
|n−m|2

≤
2m−1∑

n=[m
2 ]+1

Cε2|n−m|4α

|n−m|2 + ε2m4α =
m∑

k=1

Cε2k4α

k2 + ε2m4α ≤
m∑

k=1

Cε2m4α

k2 + ε2m4α ≤ C|�(λm)|.

If α ∈ (
1
2 , 1

)
and m ≤ γε, we have that

S2
f ≤

2m−1∑
n=[m

2 ]+1

Cε2|n−m|4α−2m2

(1 + ε2m4α−2) (m2 + ε2|n−m|2m4α−2)
≤ Cε2m2

m∑
k=1

k4α−2 ≤ C|�(λm)|,

and for α ∈ (
1
2 , 1

)
and m > γε the following estimates takes place

S2
f ≤

2m−1∑
n=[m

2 ]+1

Cε2|n−m|4α−2m2

(1 + ε2m4α−2) (m2 + ε2|n−m|2m4α−2)
≤ Cε2m2

1 + ε2m4α−2

m∑
k=1

k4α−2

m2 + ε2k2m4α−2

≤ Cm4−4α

⎛⎜⎝
[

m2−2α

ε

]∑
k=1

k4α−2

m2
+

m∑
k=

[
m2−2α

ε

]
+1

k4α−4

ε2m4α−2

⎞⎟⎠ ≤ C|�(λm)|.

Now from (A.1), (A.3) and (A.6) it results (3.2) and the proof of Lemma 3.1 ends. �
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