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POINTWISE CONSTRAINED RADIALLY INCREASING MINIMIZERS
IN THE QUASI-SCALAR CALCULUS OF VARIATIONS ∗

Lúıs Balsa Bicho1 and António Ornelas1

Abstract. We prove uniform continuity of radially symmetric vector minimizers uA(x) =
UA (|x|) to multiple integrals

∫
BR

L∗∗ (u(x), |D u(x) |) dx on a ball BR ⊂ R
d, among the Sobolev

functions u(·) in A + W
1,1

0 (BR, Rm), using a jointly convex lsc L∗∗ : R
m×R → [0,∞] with

L∗∗ (S, ·) even and superlinear. Besides such basic hypotheses, L∗∗ (·, ·) is assumed to satisfy also
a geometrical constraint, which we call quasi − scalar; the simplest example being the biradial
case L∗∗ (|u(x) | , |D u(x) |). Complete liberty is given for L∗∗ (S, λ) to take the ∞ value, so that
our minimization problem implicitly also represents e.g. distributed-parameter optimal control prob-
lems, on constrained domains, under PDEs or inclusions in explicit or implicit form. While generic
radial functions u(x) = U (|x|) in this Sobolev space oscillate wildly as |x| → 0, our minimizing
profile-curve UA(·) is, in contrast, absolutely continuous and tame, in the sense that its “static level”
L∗∗(UA(r), 0) always increases with r, a original feature of our result.
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1. Introduction

Aim of this research is to extend into the vectorial m > 1 case, under the weakest possible hypotheses, the
regularity results appearing, for scalar situations, in our previous paper [1], namely: to reach a radial minimizer
whose profile satisfies (1.7) below. While a reader familiar with the contents of [1] may now jump directly
to (1.11) and proceed from there, for completeness let us recall such contents along the next paragraphs.

In [1] we have proved existence of a radial (or radially symmetric) minimizer u0
A(x) = U0

A (|x|) to the convex
vectorial multiple integral∫

BR

L∗∗ (u(x), |D u(x) | ρ1 (|x|)) . ρ2 (|x|) dx on W
1,1

A (BR, Rm) , (1.1)
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financial support from “Financiamento Plurianual do Cima-ue ” of FCT ( Fundação para a Ciência e a Tecnologia, Portugal )
in 2006/2012; CCM (Math Research Center of Universidade da Madeira, Portugal), during December 2009 by A. Ornelas.
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where the lagrangian

L∗∗ : R
m×R → [0,∞] is jointly convex lsc with L∗∗ (S, ·) even (1.2)

and ρ1 & ρ2 : [ 0, R ] → [ c0, c∞ ] ⊂ (0,∞) are Borel measurable, (1.3)

e.g. ρ1(·) ≡ 1 ≡ ρ2(·); while the class of functions in competition is the usual Sobolev space

W
1,1

A := A + W
1,1

0 (BR, R
m) (1.4)

of those u(·) taking the constant value A ∈ R
m along the boundary ∂ BR of the ball BR :=

{
x ∈ R

d : |x| < R
}
;

and |D u(x) | is the euclidian norm of the m×d − gradient matrix.
Many research books and papers (see e.g. [5, 8, 10, 11]) contain applications-oriented mathematical models

which motivate such search for general hypotheses on the lagrangian L∗∗(·, ·) ensuring existence of minimizers
to integrals like (1.1). On the other hand, several previous theoretical results already proved existence of radial
relaxed minimizers (see e.g. [3, 5–7,9, 10]) for integrals having separation of state from gradient variables,∫

BR

g (|x| , u(x)) + h∗∗ (|x| , |D u(x) |) dx ; and at least g (t, S) finite ∀ t, S. (1.5)

Naturally it is also quite helpful, for applications, to guarantee nice regularity properties which these minimiz-
ers must necessarily satisfy, besides belonging to W

1,1

A and being radial; namely to secure some specific geometric
behaviour of the optimal radial profile− curve UA : [ 0, R ] → R

m. Indeed, one should bear in mind that: even
reinforcing superlinearity into p-growth with p > 1, while radial functions u(x) = U (|x|) in W

1,p

A (BR, R
m) are,

as one easily checks, necessarily Hölder continuous away from zero (e.g. u (·) ∈ C
0,1/7

loc (BR \ {0}, R
m) whenever

p ≥ 7/6 & d > 1), they generically turn wildly discontinuous as |x| → 0, to the point of mapping arbitrarily
small balls B (0, ε) onto the whole of R

m ! A simple and striking example (using p = 7/6) is

u(x) := |x|−1/4
∣∣∣ sin

(
|x|−1/4

) ∣∣∣ (
cos

(
|x|−1/4

)
, sin

(
|x|−1/4

))
, (1.6)

in which U ((0, 1/i)) = R
2 ∀ i ∈ N. ( Clearly |U(r) | ∼ r−1/4 & |U ′(r) |p rd−1 ∼ r−3/4 rd−2 both belong to

L
1
(0, R), while |U ′(r) | ∼ r−3/2 does not.)
In contrast with (1.6) and with previous results by other authors, our minimizer uA(·) is uniformly

continuous, more precisely its profile

UA(·) is AC with increasing static − level L∗∗ (UA(·), 0) (1.7)

in the scalar m = 1 case of our previous paper [1]. (Notice that UA(·) being AC (absolutely continuous) is
the same as having UA(·) ∈ W

1,1
([ 0, R ] , R

m).) We need no growth hypotheses on L∗∗ (S, ·), sufficing the
knowledge of existence of minimum to the integral (1.1); which is automatic e.g. whenever L∗∗ (·, ·) satisfies the
usual superlinear growth

inf L∗∗ (Rm, λ)
λ

→ ∞ as λ → ∞. (1.8)

On the other hand, again in contrast with previous results by other authors, recall (1.5), our lagrangians
L∗∗ (S, |ξ| ρ1 (|x|)) . ρ2 ( |x|) satisfy two novelties: they jointly depend on state & gradient (though joint-
convexity must be enforced here; and possibly in a nonautonomous way, provided their nonautonomous part
appears under such factorized form); with value L∗∗ (S, λ) = ∞ freely allowed. In particular, implicitly in-
cluded is the possibility of imposing state & gradient pointwise constraints at will, e.g. under the form of
partial differential equations or inclusions (in explicit or implicit form), so that e.g. optimal control problems
on constrained domains are also ( theoretically) included in our optimization problem for the integral (1.1).
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Provided, of course, their variational reformulation has the form (1.1), with (1.2) and (1.3), and our extra
hypotheses are satisfied, as explained below.

Now just two simple observations before formally stating our previous result: for jointly depending L∗∗ (·, ·),
clearly the general hypothesis (1.2) is anyway needed, in order to apply Jensen inequality so as to reach radial
minimizers ; and the simple hypothesis

∃ min L∗∗ (Rm, 0) (1.9)

holds true not only whenever L∗∗ (·, 0) has bounded sublevel sets

ΣA := {S ∈ R
m : L∗∗ (S, 0) ≤ L∗∗ (A, 0) } , (1.10)

but also in case its set of minimizers is unbounded, e.g. a half-space.
Here is, finally, a first version of our previous result:

Proposition 1.1 (See [1], Thms. 1 and 2). Under (1.2) and (1.3), the vectorial multiple integral

(1.1) has radial minimizers u0
A(x) = U0

A (|x|) provided it has minimizers ; (1.11)

and (1.1) must have minimizers e.g. whenever L∗∗(·, ·) is superlinear, as in (1.8).
Moreover, its optimal profile U0

A : [ 0, R ] → R
m in (1.11) satisfies the extra regularity:

m = 1 & ∃ min L∗∗ (R, 0) ⇒ U0
A(·) is AC monotone & L∗∗ (

U0
A(·), 0

)
increases. (1.12)

Aim of the present paper is to extend into the vectorial m > 1 case this extra regularity, namely to reach a
radial minimizer uA(·) having profile satisfying (1.7). In order to fulfill such aim, we would first need to overcome
the main difficulty blocking our road in [1]: a complete lack of info on the spatial path followed by the given
minimizing vector profile-curve U 0

A(·); in particular, full ignorance on whether it did, or did not, always remain
inside the sublevel region ΣA defined in (1.10).

To overcome such obstacle, we have in this research decided to experiment with an original strategy: to
gradient-flow, in R

m, starting from the given final boundary-data point A, towards decreasing L∗∗ (·, 0); thus
ensuring, by construction, permanence within ΣA, and wishfully hoping to again obtain, in this novel way, a
(new) minimizing profile-curve UA(·).

Although our geometric intuition was, finally, correct, it turned out much harder to prove rigorously than
anticipated. Indeed, to our great surprise, it was quite hard to discover the adequate hidden precise previous steps
appropriate to open the gate towards a successful proof of the crucial geometric inequalities (3.64) and (3.65),
hence to what we regard as our main technical achievement in this paper: the statement and proof of the heavy
Claim 1 − consisting in a chain of fifteen affirmations, (3.56) to (3.70) − which will become a useful technical
tool in future researches.

We would never have expected uniform continuity of radial minimizers to hold necessarily true again in the
much more complex vectorial case under the same amazingly simple basic hypotheses (1.2), (1.3) and (1.9)
previously used by us in the scalar case. But we do succeed here in proving such extension into the vectorial
m > 1 case by adding just three very precise extra hypotheses. First, a trivial one: we assume

the subdifferential of L∗∗(·, 0) at A to be nonempty. (1.13)

Second, and defining

∂ 0 L∗∗ (S, 0) := the minimal norm element of the subdifferential of L∗∗(·, 0) at S, (1.14)

unless L∗∗(·, 0) ≡ L∗∗ (A, 0) we ask that ∃μL > 0 for which, at any S ∈ R
m having ∂ L∗∗ (S, 0) = ∅,

∂ 0 L∗∗ (S, 0) = 0 ⇒
∣∣ ∂ 0 L∗∗ (S, 0)

∣∣ ≥ μL > 0. (1.15)
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(While (1.13) generally holds true in real-life applications, clearly the effect of (1.15) is to reinforce (1.9), due
to (1.2), by imposing a mild geometrical restriction on approaching min points: the slope of L∗∗(·, 0) cannot
approach smoothly zero, on the contrary, if this slope ever moves away from zero, it must do it by jumping
nonsmoothly).

Finally, our third extra hypothesis turns out to be our main restrictive hypothesis, to the point of inspiring
the title of this paper. Its most obvious instance, for which we would expect useful geometric applications, is
the special case in which the static-level only depends − see (1.25) − on the distance to a set and L∗∗ (·, λ) is
a scalar function of this distance. We are still not sure whether there may exist other possibilities, essentially
different from this one; or whether it is, instead, a simple geometric necessity which is somehow intrinsically
encoded in our analytic definition.

Such hypothesis, concerning any pair S, S ′ of points along the same level “line” of the static-level, was hidden
in the scalar or biradial case by being trivially true: for any S & S ′ in R

m,

inf L∗∗ (Rm, 0) < L∗∗ (S, 0) = L∗∗ (S ′, 0) ≤ L∗∗ (A, 0) ⇒
⇒

∣∣∂ 0 L∗∗ (S, 0)
∣∣ =

∣∣∂ 0 L∗∗ (S ′, 0)
∣∣ & L∗∗ (S, λ) = L∗∗ (S ′, λ) ∀λ.

(1.16)

Definition 1.2. Under (1.2) and (1.14), we call

L∗∗(·, ·) quasi-scalar whenever (1.16) is satisfied. (1.17)

In order to analyze the meaning of (1.16), let us consider those L∗∗(·, ·) of the special form

L∗∗ (S, λ) :=

{
�∗∗ (L∗∗ (S, 0) , λ) where L∗∗ (S, 0) < ∞
∞ elsewhere,

(1.18)

for some �∗∗ : IL×R → [0,∞] yielding a L∗∗(·, ·) as in (1.2) & (1.9), (1.19)

using the interval IL := [ min L∗∗ (Rm, 0) , sup L∗∗ (Rm, 0) ] ∩ R, (1.20)

so that in particular
�∗∗(p, ·) is even with �∗∗ (p, 0) = p ∀ p ∈ IL. (1.21)

As is natural, along the next paragraphs we always assume the given

L∗∗ (·, 0) : R
m → [0,∞] to be convex lsc and satisfy (1.13) & (1.9). (1.22)

(Then, by picking − as seems natural − any convex lsc �∗∗ : IL×R → [0,∞] satisfying (1.21), the easiest
recipe to ensure that such �∗∗(·, ·) yields − through (1.18) − a L∗∗(·, ·) satisfying (1.2) is by imposing �∗∗ (·, λ)
to increase along IL, ∀λ, as is easily checked.)

Clearly the last equality in (1.16) trivially holds true for any L∗∗(·, ·) as in (1.18) ; while, reciprocally, the last
equality in (1.16), satisfied by a L∗∗(·, ·) as in (1.2), implies existence of an adequate

�∗∗ : IL,A×R → [0,∞], IL,A := [ min L∗∗ (Rm, 0) , L∗∗ (A, 0) ] (1.23)

to satisfy (1.21) ∀ p ∈ IL,A together with

L∗∗ (S, λ) = �∗∗ (L∗∗ (S, 0) , λ) whenever L∗∗ (S, 0) ≤ L∗∗ (A, 0) . (1.24)

Indeed, just define �∗∗ (p, λ) := L∗∗ (S, λ), at any p ∈ IL,A, by picking any point S of the given level set
L∗∗ (·, 0)−1 (p). (Notice, by the way, that the inequality ≤ L∗∗ (A, 0) (resp. the interval IL,A) can be replaced
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by the inequality < ∞ in (1.16), hence in (1.24) (resp. by the interval IL in (1.23)), since this just means to
assume a stronger hypothesis).

Thus the last equality in (1.16), for such L∗∗(·, ·), simply tells us that L∗∗(·, ·) has the form (1.24). On the
contrary, the first equality in (1.16) poses an intrinsic geometrical constraint on the graph of the static-level:
L∗∗ ( ·, 0) must have constant slope (= length of the gradient) along each one of its level sets, as happens notably
in case

L∗∗ (S, 0) := (signed) distance from S to a set C; (1.25)

in particular whenever L∗∗ (S, 0) = |S | or L∗∗ (·, 0) is affine, or whenever m = 1 (using L∗∗ ( s, 0) = s and the
set (−∞, 0)). Another example: an adequate function f (·) − e.g. f (d) := max

{
−1/2, ed − 1

}
− of the (signed)

distance to an open convex set, the simplest nontrivial examples being the interior of an ellipse or triangle. (The
signed distance to an open set becomes negative inside such set, equal to minus the distance to its boundary.)

While our third extra hypothesis (1.16) may now seem a bit restrictive, a remarkable feature of our approach
is as follows. We did not impose, from the start, to treat just the simple biradial case (as in the Abstract)
or just the more general case (1.18), (1.21) and (1.25), in which L∗∗ (·, λ) is a scalar function of the (signed)
distance to a set. On the contrary, we have begun by developing first our original solution method; and only
afterwards did we push its hypotheses to their weakest possibility. Thus our third extra hypothesis (1.16) is
not a convenience one to facilitate proofs; rather it arose intrinsically as a minimal necessity imposed on us by
the solution method which was our starting point. So, while it is nice to have joint dependence L∗∗ (S, λ) on
state & gradient yielding uniform continuity of vector minimizers with increasing static-level, maybe (1.16) is a
unavoidable price to be paid for such convenience. To settle such question it would certainly be good to find a
counterexample featuring discontinuous or nonincreasing minimizers.

Besides the nonautonomous vectorial multiple integral (1.1), we also deal here with the problems of minimizing
three other auxiliary nonautonomous scalar and vectorial single convex integrals (as stated in the next section),
for which we prove both existence of AC minimizers (unknown before, we feel, even in the superlinear case (1.8))
and regularity as well.

Here is a rough description of the proof: after defining the raw, possibly wild, static-level w0
A(·) of a given

radial minimizer u0
A(·) to the integral (1.1), we begin by regularizing it, thus reaching an increasing AC static-

level wA(·), from which we build a new, more regular, minimizer uA(·) to (1.1), as follows. Starting from the final
endpoint A, we build uA(·) by gradient-flowing in R

m, downwards, using wA(·) as guide; and show, moreover,
that also wA(·) itself minimizes a (new) integral, an intuitive idea which seems to us quite original. Indeed,
we have thus reduced our minimization problem (1.1), of a vectorial multiple integral, to the (e.g. numerical)
minimization of a scalar single integral. Moreover, since the spatial path followed by our minimizer now becomes
known as soon as one fixates the problem-data, it clearly suffices to − roughly speaking − assume hypotheses
along that path only; or, in other words, one is given complete freedom to increase L∗∗ (·, λ) − e.g. so as to
become ∞ − away from such path without affecting our minimizer. This is a feature which might prove useful
e.g. in optimal control.

After having decided on our new strategy, much of the proof turned out relatively straightforward, even if
unavoidably long and technical; the main exception being the above-mentioned crucial inequality (3.65), whose
conquest took us months of faith, ingenuity and perseverance, leading to the whole Claim 1.

Since this paper is already long, its nonconvex version [2], in which L∗∗ (S, ·) in (1.1) is replaced by a
nonconvex L (S, ·), appears elsewhere.

2. Statement of the integrals to be minimized and their spaces
of functions in competition

Starting from a given

u0
A(·) (e.g. radial) minimizer to the integral (1.1), (2.1)
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we construct below, under the basic hypotheses (1.2), (1.3), (1.9), (1.13), (1.15) and (1.16), and recalling the
notation W

1,1

A in (1.4), a radial minimizer uA(·) to the vectorial convex multiple integral∫
BR

L∗∗ (u(x), |D u(x) | ρ1 (|x|)) . ρ2 (|x|) dx on W
1,1

A↗, (2.2)

W
1,1

A↗ :=
{

u(·) ∈ W
1,1

A ∩ C0
(
BR, R

m
)

: ∃U(·) ∈ U0,R
A↗ with u(x) = U (|x|) ∀x

}
, (2.3)

U0,R
A↗ :=

{
U(·) ∈ W

1,1
([ 0, R ] , R

m) : L∗∗ (U(·), 0) increases & U(R) = A
}

. (2.4)

However, besides this main pair of vectorial convex multiple integrals (1.1) and (2.2), we also consider below
the problems of minimizing two new pairs of auxiliary single integrals (the second in each pair being, again, the
same integral but defined over a more regular class of functions in competition). First such pair:

αd

∫ R

0

L∗∗ (U(r), |U ′(r) | ρ1(r)) . ρ2(r) rd−1 dr on U0,R
A (2.5)

αd

∫ R

0

L∗∗ (U(r), |U ′(r) | ρ1(r)) . ρ2(r) rd−1 dr on U0,R
A↗, (2.6)

where αd is the Hausdorff measure in dimension d − 1 of the unit sphere Sd :=
{

x ∈ R
d : |x| = 1

}
, while

U0,R
A↗ has been defined in (2.4) and

U0,R
A :=

{
U(·) ∈ W

1,1

loc ( (0, R ] , R
m) : r → |U ′(r) | rd−1 ∈ L

1
(0, R) & U(R) = A

}
. (2.7)

Second such pair of auxiliary single integrals:

αd

∫ a

0

L∗∗(z(t), | z ′(t) | ρ(t)) dt on Z0,a
A (2.8)

αd

∫ a

0

L∗∗(z(t), | z ′(t) | ρ(t)) dt on Z0,a
A↗, (2.9)

using the following definitions:

a :=
∫ R

0

ρ2(r) rd−1 dr & ρ(t) := ρ1 (γ(t)) ρ2 (γ(t)) γ(t)d−1, (2.10)

γ : [0, a] → [ 0, R ] , r = γ(t), being the inverse function of (2.11)

γ−1(·) : r �→ t = γ−1(r) :=
∫ r

0

ρ2(α) αd−1 d α, (2.12)

Z0,a
A :=

{
z(·) ∈ W

1,1

loc ((0, a], R
m) : | z ′(·) | γ(·)d−1 ∈ L

1
(0, a) & z(a) = A

}
, (2.13)

Z0,a
A↗ :=

{
z(·) ∈ W

1,1
([0, a], R

m) : L∗∗ (z(·), 0) increases & z(a) = A
}

. (2.14)

Another related pair of single integrals will be introduced near the end of this paper (in (4.1) and (4.2)).
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3. Radially increasing minimizers to vectorial quasi-scalar
convex multiple integrals

Here is our first existence and regularity result (to be complemented by (4.6) below):

Theorem 3.1. Assume (1.2), (1.3), (1.9), (1.13), (1.15) and (1.16) together with

either (1.8) or else ∃ minimum to (1.1) or (2.5) or (2.8). (3.1)

Then
∃ radial uA(x) = UA (|x|) minimizing both (1.1) & (2.2), (3.2)

∃ UA(r) minimizing both (2.5) & (2.6), (3.3)

∃ zA(t) minimizing both (2.8) & (2.9). (3.4)

Moreover: the minimum value to all these integrals is the same and the following equivalences hold true

(3.1) ⇔ (3.2) ⇔ (3.3) ⇔ (3.4). (3.5)

Proof. More precisely than in (1.11), the first part of our previous result is:

Proposition 3.2 (See [1], Thm.1).
Assume (1.2) and (1.3). Then the following four statements are all equivalent:

the integral (1.1) has minimum (which is implied e.g. by (1.8)) (3.6)

∃ a radial minimizer u0
A(x) = U0

A (|x|) to (1.1) (3.7)

∃ a minimizer U0
A(r) to (2.5) (3.8)

∃ a minimizer z0
A(t) to (2.8). (3.9)

Moreover the minimum value to all these integrals is the same and

U0
A(·) = z0

A

(
γ−1(·)

)
, with γ−1(·) Lipschitz increasing (3.10)

(see (2.12) and (1.3)), in the sense that: by picking a minimizer U0
A(·) to (2.5) (resp. z0

A(·) to (2.8)) and
applying the formula (3.10) one gets a minimizer z0

A(·) to (2.8) (resp. U0
A(·) to (2.5)).

Thus, by the above equivalences, all the implications

(3.7) ⇔ (3.1) ⇔ (3.8) ⇔ (3.9) ⇒ (3.4) (3.11)

are proved, except for the last one, (3.9) ⇒ (3.4), which will be established only in (3.74) & (3.78), after
lengthy, though unavoidable, technical preliminaries. (This lengthy first step almost exhausts the whole proof
of Theorem 3.1, remaining only minor steps.)

To begin with take (3.9), namely a

z0
A(·) ∈ Z0,a

A minimizer to (2.8), (3.12)
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define its “lsc optimal level”

w0
A(0) := inf L∗∗ (

z0
A ( (0, a]) , 0

)
& w0

A(t) := L∗∗ (
z0

A (t) , 0
)

for t ∈ (0, a]; (3.13)

and its “increasing continuous optimal level”

wA(t) := min w0
A ([t, a]) ∀ t ∈ [0, a]. (3.14)

Then clearly
0 ≤ wA(·) ≤ w0

A(·) ∈ W 1,1
loc ((0, a]) , (3.15)

by (3.13), (3.14), (2.13) and (1.2), since L∗∗(·, 0) is convex hence locally Lipschitz there; while since wA(·) ∈
C0 ([0, a]), wA(·) increases and wA(·) ∈ W 1,1

loc ((0, a]) (due to remaining constant where it differs from w0
A(·)),

by [12], Theorem 13.8, we have:

wA(·) ∈ W 1,1 ([0, a]) & wA(·) increases. (3.16)

Hence, setting
pmin

A := wA(0) & pmax
A := wA(a), (3.17)

one gets

0 ≤ wA(0) =pmin
A = min wA ([0, a]) = min w0

A ([0, a]) = inf L∗∗ (
z0

A ((0, a]) , 0
)
≤ wA(·) (3.18)

& wA(·) ≤ wA(a) = pmax
A = L∗∗ (A, 0) = max wA ([0, a]) . (3.19)

Defining now

b := max { t ∈ [0, a] : wA(t) = wA(0) } (b ∈ [0, a]) (3.20)

a′ := min { t ∈ [0, a] : wA(t) = wA(a) } (b < a′ ∈ [0, a]), (3.21)

notice first that we indeed have b < a′ because, excluding the trivial case pmin
A = pmax

A in which we just pick
uA(·) ≡ A as our minimizer to (2.2) and (1.1), we assume, in this proof,

pmin
A < pmax

A . (3.22)

Note then that

wA(·) ≡ pmin
A on [0, b], wA ((b, a′)) =

(
pmin

A , pmax
A

)
& wA(·) ≡ pmax

A on [ a′, a ] , (3.23)

set
Σ<

A :=
{

S ∈ R
m : pmin

A ≤ L∗∗ (S, 0) < pmax
A

}
(3.24)

and, using the notation (1.14), define the vector orthogonal to the level sets and pointing downwards :

VA : Σ<
A → R

m, VA (S) := − ∂ 0 L∗∗ (S, 0) . (3.25)

Since we are assuming (1.13),

∂ 0 L∗∗ (A, 0) exists and is = 0 (see (1.14), (3.22) & (3.19)). (3.26)

Therefore, by (1.2), (3.26) and e.g. [4], there exists a unique solution, in W 1,2 ((0,∞), R
m), to the ordinary

differential equation

σ ′
A(τ) = VA (σA(τ)) for a.e. τ ∈

[
0, τ0

A

]
& σA(0) = A, (3.27)
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with
τ0
A := min

{
τ ∈ (0,∞) : L∗∗ (σA(τ), 0) = pmin

A

}
; (3.28)

so that, setting
pA :

[
0, τ0

A

]
→

[
pmin

A , pmax
A

]
, pA(τ) := L∗∗ (σA(τ), 0) , (3.29)

we get:
− p ′

A(τ) =
∣∣ ∂ 0 L∗∗ (σA(τ), 0)

∣∣2 = |VA (σA(τ)) |2 > 0 a.e. on
[
0, τ0

A

]
, (3.30)

pA(·) is decreasing convex (since p ′
A(·) increases), (3.31)

pA(0) = pmax
A & pA

(
τ0
A

)
= pmin

A , (3.32)

L∗∗ (
σA

(
τ0
A

)
, 0

)
= pmin

A = wA(0) = w0
A(0) (see also (3.18)). (3.33)

In particular, by (3.27) and (3.30), |σ ′
A(·) | =|VA (σA(·)) | = | p ′

A(·) |1/2 decreases, hence

|σ ′
A(·) | ≤ | p ′

A(0) |1/2 =
∣∣ ∂ 0 L∗∗ (A, 0)

∣∣ < ∞ and σA(·) is Lipschitz. (3.34)

(To check that
τ0
A(·) ∈ (0,∞) is well-defined by (3.28), (3.35)

recall (3.22) and notice that since, by (3.30) & (1.15), p ′
A(τ) ≤ −μ2

L on
(
0, τ0

A

)
, we would have pA(τ) < 0 ≤ pmin

A

whenever τ > pmax
A μ−2

L < ∞).
Obviously pA(·) has, due to (3.35), (3.29) and (3.30), continuous inverse

τA :
[
pmin

A , pmax
A

]
⊂ [0,∞) →

[
0, τ0

A

]
⊂ [0,∞), τ = τA(p) ⇔ p = pA(τ); (3.36)

and clearly

− 1
μ2

L

≤ τ ′
A(p) =

1
p ′

A (τA(p))
=

−1

|∂ 0 L∗∗ (σA (τA(p)) , 0) |2
< 0, (3.37)

τA

(
pmin

A

)
= τ0

A & τA (pmax
A ) = 0, (3.38)

τ ′
A(·) increases and τA(·) is Lipschitz convex decreasing, (3.39)

a simple specific instance of (3.36), (3.31) & (3.39) being e.g.

pA : [ 0, 1 ] → [ 2, 5 ] , pA(τ) := 1 + (τ − 2)2 = p ⇔ τ = τA(p) = 2 −
√

p − 1. (3.40)

Our next step consists in using these tools in order to define new and useful functions, as follows. First take

gA :
[
pmin

A , pmax
A

]
→ (0,∞) , gA(p) :=

1
| ∂ 0 L∗∗ (σA (τA(p)) , 0)| (3.41)

for p > pmin
A , with gA

(
pmin

A

)
:= 1/μL, so that

gA(p)2 = − τ ′
A(p) & gA(·) decreases,

0 < 1
| ∂ 0 L∗∗( A,0) | ≤ gA(p) = | τ ′

A(p) |1/2 ≤ 1
μL

< ∞ (due to (1.15)),
(3.42)
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gA(·) is bounded away from 0 & ∞, (3.43)

τA(·) and pA(·) are both Lipschitz. (3.44)

Then define

QA :
[
pmin

A , pmax
A

]
→ R

m, QA(p) := σA (τA(p)) (see (3.27) & (3.36)) (3.45)

�∗∗A :
[
pmin

A , pmax
A

]
×R → [0,∞], �∗∗A (p, λ) := L∗∗ (QA(p), λ) . (3.46)

Finally, the next function will become our new desired minimizer to (2.8):

zA(t) := QA (wA(t)) (using (3.14) & (3.45)). (3.47)

(The reader may at this point wish to pause, recall our starting point (3.12) and preview our destination (3.75).

Clearly
QA (·) is Lipschitz & zA (·) ∈ W 1,1 ([0, a], R

m) , (3.48)

by (3.45), (3.34), (3.44), (3.47) and (3.16); while by (3.47), (3.45), (3.29) & (3.36),

L∗∗ (zA(t), 0) = L∗∗ (σA (τA (wA(t))) , 0) = pA (τA (wA(t))) = wA(t) (3.49)

so that, by (3.49), (3.15), (3.13) & (1.2),

L∗∗ (zA(·), 0) = wA(·) ≤ w0
A(·) = L∗∗ (

z0
A(·), 0

)
≤ L∗∗ (

z0
A(·),

∣∣ z0 ′
A (·)

∣∣ ρ(·)
)

on (0, a ]; (3.50)

and, by (3.47), (3.45), (3.27), (3.37), (3.41) and (3.25),

z ′
A(t) = − VA (zA(t))

|VA (zA(t)) | gA (wA(t)) w ′
A(t) a.e. on (b, a′) (3.51)

hence

| z ′
A(t) | = gA ( wA(t)) w ′

A(t) & w ′
A(t) = | z ′

A(t) | .
∣∣ ∂ 0 L∗∗ ( zA(t), 0)

∣∣ a.e. on ( b, a′) . (3.52)

Moreover, by (3.46), (3.45), (3.29) and (3.36), for any p ∈
[
pmin

A , pmax
A

]
,

�∗∗A (p, 0) := L∗∗ (QA(p), 0) = pA (τA(p)) = p. (3.53)

By (3.15), (3.16), (3.12), (2.13), (3.48), (3.20) and (3.21) one may define the set

T+ :=
{

t ∈ (b, a′) : ∃w ′
A(t) > 0, ∃w0 ′

A (t), ∃ z0 ′
A (t) & ∃ z ′

A(t)
}

, (3.54)

whose crucial properties are condensed in the next claim, the main technical result of this paper:
Claim 1. Extending the definitions in (3.13) and (3.14) by

wA(t) = w0
A(t) := pmin

A , t < 0 & wA(t) = w0
A(t) := pmax

A , t > a, (3.55)

then each one of the following fifteen numbered statements, (3.56) to (3.70), holds true:

L∗∗ (
z0

A(t), 0
)

= w0
A(t) = wA(t) = L∗∗ (zA(t), 0) ∀ t ∈ T+ (3.56)
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w0
A(t) < w0

A(t + h) ∀ t ∈ T+ ∀h > 0 (3.57)

wA(t) < wA(t + h) ∀ t ∈ T+ ∀h > 0 (3.58)

∀ t ∈ T+ ∃ (hk) ↘ 0 : wA(t + hk) = w0
A(t + hk) (3.59)

0 < w ′
A(t) = w0 ′

A (t) = | z ′
A(t) | .

∣∣ ∂ 0 L∗∗ (zA(t), 0)
∣∣ ∀ t ∈ T+ (3.60)

∀ t ∈ T+ ∃ δ > 0 : w0
A(t − h) < w0

A(t) ∀h ∈ (0, δ) (3.61)

wA(t − h) < wA(t) ∀ t ∈ T+ ∀h > 0 (3.62)

t ∈ T+ ⇒ 0 < w ′
A(t) = w0 ′

A (t) = | z ′
A(t) | .

∣∣ ∂ 0 L∗∗ ( zA(t), 0)
∣∣ ≤

≤
∣∣ z0 ′

A (t)
∣∣ .

∣∣ ∂ 0 L∗∗ (
z0

A(t), 0
) ∣∣ ≤

∣∣ z0 ′
A (t)

∣∣ .
∣∣ ∂ 0 L∗∗ (A, 0)

∣∣ (3.63)

0 < | z ′
A(t) | ≤

∣∣ z0 ′
A (t)

∣∣ ∀ t ∈ T+ (3.64)

L∗∗ (zA(t), | z ′
A(t) | ρ(t)) ≤ L∗∗ (

z0
A(t),

∣∣ z0 ′
A (t)

∣∣ ρ(t)
)

∀ t ∈ T+ (3.65)

0 = w ′
A(t) = | z ′

A(t) | ≤
∣∣ z0 ′

A (t)
∣∣ a.e. on [ 0, a ] \ T+ (3.66)

L∗∗ (
z0

A(t), 0
)

= w0
A(t) = wA(t) = L∗∗ (zA(t), 0) ∀ t ∈ [0, a] (3.67)

L∗∗ (
z0

A(t),
∣∣ z0 ′

A (t)
∣∣ ρ(t)

)
= L∗∗ (zA(t), | z ′

A(t) | ρ(t)) a.e. on [ 0, a ] (3.68)

L∗∗ (
z0

A(t),
∣∣ z0 ′

A (t)
∣∣ ρ(t)

)
= L∗∗ (

z0
A(t), 0

)
a.e. on [ 0, a ] \ T+ (3.69)

L∗∗ (S, λ) > L∗∗ (S, 0) ∀S ∈ Σ<
A ∀λ > 0 ⇒

∣∣ z0 ′
A (·)

∣∣ = 0 a.e. on [ 0, a ] \ T+. (3.70)

The proof of this long chain of statements − the main one being the crucial inequality (3.65) – follows the
next corresponding chain of reasonings. To begin with, by (3.50), the denial of (3.56), i.e. w0

A(t) > wA(t), would
imply, by (3.14) and (3.15),

∃ δ > 0 : wA(t) = wA(t + h) = wA(t + δ) = w0
A(t + δ) ∀h ∈ (0, δ) (3.71)
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hence t ∈ T+, by (3.54), thus proving (3.56), by (3.50). On the other hand, denying (3.57) we would get,
by (3.56), (3.15) and (3.50),

∃ δ > 0 : wA(t) = w0
A(t) ≥ w0

A(t + δ) ≥ wA(t + δ) ≥ wA(t)

so that these coincide and again (3.71) holds and t ∈ T+, which proves (3.57); while (3.58) is still easier to prove.
Since denying (3.59) would yield, by (3.15),

∃ δ1 > 0 : wA(t + h) < w0
A(t + h) ∀h ∈ (0, δ1),

then by (3.14) ∃ δ ≥ δ1 > 0 for which again (3.71) holds and t ∈ T+ . Thus also (3.59) is proved. Moreover,
since, for t ∈ T+ , by (3.54), (3.56) and (3.59),

0 < w ′
A(t) = lim

wA (t + hk) − wA(t)
hk

= lim
w0

A (t + hk) − w0
A(t)

hk
= w0 ′

A (t);

which, by (3.52), proves (3.60). On the other hand, denial of (3.61) would imply the existence of some sequence

(hk) ↘ 0 : w0
A(t) − w0

A (t − hk) ≤ 0

so that, by (3.60), we would reach the contradicting inequalities

0 < w ′
A(t) = w0 ′

A (t) = lim
w0

A(t) − w0
A (t − hk)

hk
≤ 0.

Such absurd proves (3.61). As to (3.62), it is still easier to prove.
In order to prove (3.63) consider now the inequality associated to the fact of ∂ 0 L∗∗ (

z0
A(t), 0

)
being in the

subdifferential of L∗∗(·, 0) at z0
A(t) (recall (1.14)), namely

L∗∗ (
z0

A (t − h) , 0
)
≥ L∗∗ (

z0
A(t), 0

)
+

〈
∂ 0 L∗∗ (

z0
A(t), 0

)
, z0

A ( t − h) − z0
A(t)

〉
.

Together with (3.61) and (3.13), such inequality yields some δ > 0 for which

0 < w0
A(t) − w0

A (t − h) ≤
〈
∂ 0 L∗∗ (

z0
A(t), 0

)
, z0

A(t) − z0
A (t − h)

〉
≤

∣∣ ∂ 0 L∗∗ (
z0

A(t), 0
)∣∣ .

∣∣ z0
A(t) − z0

A (t − h)
∣∣ ∀h ∈ (0, δ),

so that (3.54) and (3.60) implies (3.63). Moreover, by (3.56) and (1.16),∣∣ ∂ 0 L∗∗ (zA(·), 0)
∣∣ =

∣∣ ∂ 0 L∗∗ (
z0

A(·), 0
) ∣∣ on T+ (3.72)

L∗∗ (zA(·), | z ′
A(·) | ρ(·)) = L∗∗ (

z0
A(·), | z ′

A(·) | ρ(·)
)

on T+ (3.73)

i.e., by (3.72) and (3.63), we have proved (3.64). On the other hand, by (3.64), (3.73) and (1.2), we get (3.65).
Finally, a.e. on [0, a] \ (b, a′) we have, by (3.23) and (3.47), w ′

A(·) = 0 = | z ′
A(·) | ; while on (b, a′) \ T+, by (3.54)

and (3.52), ∃w ′
A(t) = 0 = | z ′

A(t) |, proving (3.66). Thus claim 1 is proved, except for (3.67) to (3.70) which will
be proved below (in (3.77)).

Claim 2.
(3.9) ⇒ (3.4). (3.74)

Before proceeding to prove this claim, we briefly remind the reader − after such lengthy preliminaries and
proof of Claim 1 − of what has been achieved up to this point and of what is the meaning of (3.74). Namely,
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having assumed (3.9), i.e. having taken, in (3.12), a z0
A(·) minimizing (2.8); and having constructed from it a

new zA(·) by the formula (3.47) (using z0
A(·) through (3.13) and (3.14)), we now claim (3.4), namely that this

zA(·) minimizes both (2.8) & (2.9). (3.75)

Thus Claim 2 will be proved as soon as one checks (3.75). To begin with clearly, by (3.48),
(3.49), (3.16), (3.19), (3.45), (3.38), (3.27), (2.14) and (2.13),

zA(·) ∈ Z0,a
A↗ ⊂ Z0,a

A . (3.76)

On the other hand, by (3.66) and (3.50),∫
[0,a]\T+

L∗∗ (zA(t), | z ′
A(t) | ρ(t)) dt =

∫
[0,a]\T+

L∗∗ (zA(t), 0) dt

=
∫

[0,a]\T+

wA(t) dt ≤
∫

[0,a]\T+

w0
A(t) dt =

∫
[0,a]\T+

L∗∗ (
z0

A(t), 0
)

dt

≤
∫

[0,a]\T+

L∗∗ (
z0

A(t),
∣∣ z0 ′

A (t)
∣∣ ρ(t)

)
dt;

and adding this inequality to the inequality (3.65), by (3.12) and (3.76) the proof of (3.75), hence of (3.74),
claim 2 and (3.11), is complete.

Now we just need to fix a pending matter, before proceeding to the final steps of the proof. Indeed, stepping
back to the final comment before (3.74), let us return for a moment to the statements (3.67) to (3.70). To begin
with, by (3.50) and (3.56) the proof of (3.67) reduces to showing that

w0
A(t) ≤ wA(t) ∀ t ∈ [0, a] \ T+; (3.77)

but denial of (3.77) would yield wA(·) < w0
A(·) along a nonempty open interval ⊂ (0, a] \ T+, hence the first

inequality after (3.76) would be strict, in contradiction with (3.12) and (3.76). Exactly the same would happen
if we did not have (3.68), by (3.65) together with, by (3.66) and (3.67),

L∗∗ (zA(t), |z ′
A(t)| ρ(t)) = L∗∗ (

z0
A(t), 0

)
≤ L∗∗ (

z0
A(t),

∣∣z0 ′
A (t)

∣∣ ρ(t)
)

a.e. on [0, a] \ T+. (3.78)

But the same reasoning also proves (3.69), hence (3.70), thus finally completing the proof of claim 1.

Having thus proved Claim 1 and Claim 2 (essentially (3.68) and (3.74)) we now complete the proof of the
equivalences (3.5) − i.e. of Theorem 3.1 − by complementing the chain (3.11) of implications with a few more:

(3.4) ⇒ (3.3) ⇒ (3.2) ⇒ (3.1). (3.79)

To begin with, obviously (3.4) ⇒ (3.3): taking a minimizer zA(·) to both (2.8) and (2.9), then zA(·) ∈ Z0,a
A↗;

and setting UA(r) := zA

(
γ−1(r)

)
one gets (since γ−1(·) is Lipschitz increasing, see (3.10)) UA(·) ∈ U0,a

A↗ ⊂ U0,a
A

(recall (2.14), (2.4), (2.7) & [1, (95)]); while UA(·) minimizes (2.5), by the comment after (3.10), so that it also
minimizes (2.6).

Similarly (3.3) ⇒ (3.2): taking a minimizer UA(·) to both (2.5) and (2.6) then UA(·) ∈ U0,a
A↗; while setting

uA(x) := UA (|x|) one gets uA(·) ∈ W
1,1

A↗ (see (2.3) and (2.4)); so that (recalling what is stated just after (3.10))
such uA(·) has to minimize (1.1) hence (2.2) also.

Trivially (3.2) ⇒ (3.1): existence of a minimizer to (1.1) implies at least existence of minimum to (1.1).
This proves (3.79), hence, by (3.11), also (3.5) i.e. Theorem 3.1. �
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4. Reducing a m × d-dim problem to a 1 × 1-dim problem

Clearly Theorem 3.1 yields a nice simplification: we have thus reduced the question of minimizing the multiple
integral (1.1), among vectorial functions of vectorial variable in competition, to an equivalent minimization
problem involving any one of four new single integrals − those in (2.5) to (2.9) − among vectorial functions of
scalar variable in competition.

However, we aim higher hence present now a further huge simplification, this one never achieved by previous
authors, to our knowledge: we reduce such vectorial m × d- or m × 1-dimensional minimizations to a new
scalar 1× 1-dim problem, of minimizing an adequate single integral among scalar functions of scalar variable in
competition.

Indeed, considering the functions gA (·) & �∗∗A (·) defined above – in (3.41) and (3.46) – and recalling the space
Z0,a

A defined in (2.13), we now define a third pair of single integrals:

αd

∫ a

0

�∗∗A (w(t), gA (w(t)) |w ′(t) | ρ(t)) dt on W0,a
A (4.1)

αd

∫ a

0

�∗∗A (w(t), gA (w(t)) |w ′(t) | ρ(t)) dt on W0,a
A↗, (4.2)

W0,a
A :=

{
w(·) ∈ W

1,1

loc ( (0, a]) : ∃ z(·) ∈ Z0,a
A : w(·) = L∗∗ (z(·), 0) & w ′(·) γ(·)d−1 ∈ L

1
(0, a)

}
, (4.3)

W0,a
A↗ :=

{
w(·) ∈ W

1,1
( [0, a]) : w(·) increases & w(a) = L∗∗ (A, 0)

}
. (4.4)

Theorem 4.1. Assume (1.2), (1.3), (1.9), (1.13), (1.15) and (1.16) together with: either (3.1) or else

∃ minimum to (4.1). (4.5)

Then, besides (3.2) to (3.4),

∃ wA(t) minimizing both (4.1) & (4.2). (4.6)

Moreover: the minimum value to all these integrals is the same; the equivalences (3.5) are complemented by

(3.1) ⇔ (4.5) ⇔ (4.6) ⇔ (3.2); (4.7)

and − recalling γ−1(·) & QA(·) from (2.12) and (3.45) − all these minimizers are related by the equalities:

uA(x) = UA (|x|) = zA

(
γ−1 (|x|)

)
& wA(t) = L∗∗ (zA(t), 0) (4.8)

zA(t) = QA (wA(t)) & UA(r) = QA

(
wA

(
γ−1(r)

))
. (4.9)

Proof. Here, besides what has already been proved in (3.5), we will − at (4.12), (4.23) and (4.29) − establish
the further implications

(3.4) ⇔ (4.6) (4.10)

(4.5) ⇒ (4.6); (4.11)

hence the equivalences in (4.7), thus proving Theorem 4.1.
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Let us begin by proving the implication (3.4) ⇒ (4.6) in (4.10), through showing that our wA(·), as in (3.49),
satisfies

wA(·) ∈ W0,a
A↗ ⊂ W0,a

A (4.12)

and wA(·) minimizes both (4.1) & (4.2). (4.13)

Indeed, to begin with, by (4.3), (4.4), (3.16), (3.76), (3.19) and (3.49), obviously wA(·) belongs to both spaces
in (4.12); while, on the other hand, picking any generic w1(·) in W0,a

A↗ then exactly the same arguments as
above (namely in (3.47) to (3.76), with wA(·) replaced by this w1(·)) yield a corresponding z1(·) := QA ( w1(·))
in Z0,a

A↗ ⊂ Z0,a
A (see (3.47) and (3.76)), thus showing that such generic w1(·) also belongs to W0,a

A , see (4.3),
hence proving the general inclusion in (4.12).

To complete the proof of (4.13) assume, by contradiction, the existence of some

w0
0(·) ∈ W0,a

A for which (recalling (3.41) & (3.46)) (4.14)

∫ a

0

�∗∗A

(
w0

0(t), gA

(
w0

0(t)
)

w0 ′
0 (t) ρ(t)

)
dt <

∫ a

0

�∗∗A (wA(t), gA (wA(t)) w ′
A(t) ρ(t)) dt. (4.15)

Then, redefining (recall (4.3) and (3.13))

w0
0(0) to become := inf w0

0 ((0, a]) (4.16)

and setting (recall (3.14) and (3.47))

w0(t) := min w0
0 ([t, a]) for t ∈ [0, a] (4.17)

z0(t) := QA (w0(t)) for t ∈ [0, a], (4.18)

one, by using the same arguments as above, would reach (similarly to (3.76), (3.52) and (3.15))

z0(·) ∈ Z0,a
A↗ ⊂ Z0,a

A (4.19)

| z ′
0(t)| = gA (w0(t)) w ′

0(t) & w0
0(t) ≤ w0(t). (4.20)

Moreover, reasoning as after (3.76) but now with zA(·), wA(·), w0
A(·) & z0

A(·) replaced by z0(·), w0(·), w0
0(·)

& z0
0(·), one reaches, by (3.56), (3.60), (3.66), (3.53) and (4.20), the inequality:

∫ a

0

�∗∗A (w0(t), gA (w0(t)) w ′
0(t) ρ(t)) dt ≤

∫ a

0

�∗∗A

(
w0

0(t), gA

(
w0

0(t)
)

w0 ′
0 (t) ρ(t)

)
dt. (4.21)

Therefore, by (4.18), (4.20), (3.46) and (4.15),∫ a

0

L∗∗ (z0(t), | z ′
0(t) | ρ(t)) dt =

∫ a

0

L∗∗ (QA (w0(t)) , gA (w0(t)) w ′
0(t) ρ(t)) dt

=
∫ a

0

�∗∗A (w0(t), gA (w0(t)) w ′
0(t) ρ(t)) dt ≤

∫ a

0

�∗∗A

(
w0

0(t), gA

(
w0

0(t)
)

w0 ′
0 (t) ρ(t)

)
dt

<

∫ a

0

�∗∗A (wA(t), gA (wA(t)) w ′
A(t) ρ(t)) dt =

∫ a

0

L∗∗ (zA(t), | z ′
A(t) | ρ(t)) dt, (4.22)
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by a new application of (3.46), (3.47) and (3.52), thus contradicting (3.75), by (4.19). Such absurd denies the
possibility of existence of a w0

0(·) as in (4.14) and (4.15) and proves (4.13), due to (4.12), hence the right-wing
implication in (4.10) aimed at just before (4.12).

To complete the proof of (4.10) we now prove the remaining implication

(3.4) ⇐ (4.6). (4.23)

Namely, taking a
wA(t) ∈ W0,a

A↗ minimizer to both (4.1) & (4.2) (4.24)

and setting zA(t) := QA (wA(t)), as in (3.47), we now claim that zA(·) ∈ Z0,a
A↗ ⊂ Z0,a

A , i.e. ( see (2.13) and
(2.14))

zA(·) ∈ W 1,1 ([0, a], R
m) , zA(a) = A & L∗∗ (zA(·), 0) increases. (4.25)

Indeed, since wA(·) ∈ W 1,1 ([0, a]), wA(·) increases and wA(a) = L∗∗ (A, 0), by (4.4); and since, by (3.48), QA(·)
in (3.45) is Lipschitz, we have zA(·) ∈ W 1,1 ( [0, a], R

m). On the other hand, by (3.17), (3.45), (3.38) and (3.27),
zA(a) = QA (wA(a)) = σA (τA (pmax

A )) = σA(0) = A; and, by (3.49), L∗∗ (zA(·), 0) = L∗∗ (QA (wA(·)) , 0) =
wA(·) increases.

Thus (4.25) is proved ; and we now claim that such

zA(·) minimizes both (2.8) & (2.9). (4.26)

Indeed assume, by contradiction, that

∃ z0
0(·) ∈ Z0,a

A for which (4.27)

∫ a

0

L∗∗ (
z0
0(t),

∣∣ z0 ′
0 (t)

∣∣ ρ(t)
)

dt <

∫ a

0

L∗∗ (zA(t), | z ′
A(t) | ρ(t)) dt. (4.28)

Then defining, as in (3.13),

w0
0(t) := L∗∗ (

z0
0(t), 0

)
for t ∈ (0, a] & w0

0(0) := inf L∗∗ (
z0
0 ((0, a]) , 0

)
,

obtain from w0
0(t) the new functions w0(·) & z0(·) as in (4.17) and (4.18), hence satisfying (4.19) & (4.20); so

that, by (3.46), (4.18), (4.20) & (4.28),∫ a

0

�∗∗A (w0(t), gA ( w0(t)) w ′
0(t) ρ(t)) dt =

∫ a

0

L∗∗ (QA (w0(t)) , gA (w0(t)) w ′
0(t) ρ(t)) dt

=
∫ a

0

L∗∗ (z0(t), | z ′
0(t) | ρ(t)) dt <

∫ a

0

L∗∗ (zA(t), | z ′
A(t) | ρ(t)) dt

=
∫ a

0

L∗∗ (QA (wA(t)) , gA (wA(t)) w ′
A(t) ρ(t)) dt =

∫ a

0

�∗∗A (wA(t), gA (wA(t)) w ′
A(t) ρ(t)) dt,

a contradiction to (4.24) showing that no such z0
0(·) as in (4.27) and (4.28) can be; and proving (4.26),

hence (4.23) and (4.10), due to (3.76).

To prove (4.11) assume (4.5) namely

∃ w0
A(·) ∈ W0,a

A minimizing (4.1). (4.29)
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Then since, by (4.3), ∃ z0
A(·) ∈ Z0,a

A with L∗∗ (
z0

A(·), 0
)

= w0
A(·), one may redefine w0

A(0) as in (3.13), and define
wA(·) & zA(·) as in (3.14) and (3.47). We claim that:

wA(·) ∈ W0,a
A↗ ⊂ W0,a

A (4.30)

0 ≤ wA(t) = w0
A(t) & 0 < w ′

A(t) = w0 ′
A (t), ∀ t ∈ T+ (4.31)

�∗∗A (wA(t), gA (wA(t)) w ′
A(t) ρ(t)) ≤ �∗∗A

(
w0

A(t), gA

(
w0

A(t)
)

w0 ′
A (t) ρ(t)

)
for a.e. t ∈ [0, a] \ T+ (4.32)

and
wA(t) minimizes both (4.1) & (4.2). (4.33)

Indeed, one may prove (4.30) as in (4.12); while (4.31) follows as in (3.56) and (3.63); and, finally, to prove
(4.32) (and noticing that the proof of (3.67) requires the use of (3.12), see (3.77)) we have, a.e. on [0, a] \ T+ :
0 = w ′

A(t) ≤
∣∣ w0 ′

A (t)
∣∣, by (3.66) hence, by (3.53) and (3.15),

�∗∗A (wA(t), gA (wA(t)) w ′
A(t) ρ(t)) = �∗∗A (wA(t), 0) = wA(t) ≤ w0

A(t) = �∗∗A

(
w0

A(t), 0
)
) ≤

≤ �∗∗A

(
w0

A(t), gA

(
w0

A(t)
)

w0 ′
A (t) ρ(t)

)
,

so that indeed (4.32) does hold true. Since the inequality in (4.32) also holds true (trivially) on T+, by (4.31),
we get (4.33), by (4.29) and (4.30), thus proving (4.11). �
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