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ON TORSIONAL RIGIDITY AND PRINCIPAL FREQUENCIES:
AN INVITATION TO THE KOHLER−JOBIN REARRANGEMENT TECHNIQUE

Lorenzo Brasco
1

Abstract. We generalize to the p-Laplacian Δp a spectral inequality proved by M.-T. Kohler−Jobin.
As a particular case of such a generalization, we obtain a sharp lower bound on the first Dirichlet
eigenvalue of Δp of a set in terms of its p-torsional rigidity. The result is valid in every space dimension,
for every 1 < p < ∞ and for every open set with finite measure. Moreover, it holds by replacing the
first eigenvalue with more general optimal Poincaré-Sobolev constants. The method of proof is based
on a generalization of the rearrangement technique introduced by Kohler−Jobin.
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1. Introduction

1.1. Background and motivations

Given an open set Ω ⊂ R
N with finite measure, we consider the following quantities

λ(Ω) = min
u∈W 1,2

0 (Ω)\{0}

∫
Ω

|∇u|2 dx∫
Ω

|u|2 dx
and T (Ω) = max

u∈W 1,2
0 (Ω)\{0}

(∫
Ω

|u| dx
)2

∫
Ω

|∇u|2 dx
·

The first one is called principal frequency of Ω and the second one is its torsional rigidity. Our terminology is
a little bit improper, since the usual definition of torsional rigidity differs from our by a multiplicative factor.
Since this factor will have no bearing in the whole discussion, we will forget about it. Another frequently used
terminology for λ(Ω) is first eigenvalue of the Dirichlet–Laplacian. Indeed λ(Ω) coincides with the smallest real
number λ such that the problem

−Δu = λu in Ω, u = 0, on ∂Ω,
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has a nontrivial solution2. In [24] Pólya and Szegő conjectured that the ball should have the following
isoperimetric-type property:

among sets with given torsional rigidity, balls minimize the principal frequency. (�)

In other words, by taking advantage of the fact that

λ(tΩ) = t−2 λ(Ω) and T (tΩ) = tN+2 T (Ω), t > 0,

they conjectured the validity of the following scaling invariant inequality

T (Ω)
2

N+2 λ(Ω) ≥ T (B)
2

N+2 λ(B), (1.1)

where B is any ball. We recall that among sets with given volume, balls were already known to minimize λ (the
celebrated Faber−Krahn inequality) and maximize T (the so-called Saint−Venant Theorem). This means that
the inequality conjectured by Pólya and Szegő was not a trivial consequence of existing inequalities. A proof
of (1.1) was finally given by Kohler−Jobin in [19, 20], by using a sophisticated new rearrangement technique.
The latter is indeed a general result which permits, given Ω and a smooth positive function u ∈ W 1,2

0 (Ω), to
construct a ball B having smaller torsional rigidity and a radially symmetric decreasing function u∗ ∈W 1,2

0 (B)
such that ∫

Ω

|∇u|2 dx =
∫
B

|∇u∗|2 dx and
∫
Ω

|u|q dx ≤
∫
B

|u∗|q dx,

for every q > 1. It is clear that once we have this result, the Pólya−Szegő conjecture is easily proven. Of
course this also shows that (�) is still true if we replace the principal frequency λ(Ω) by any other optimal
Poincaré−Sobolev constant. In other words, balls minimize the quantity

min
u∈W 1,2

0 (Ω)\{0}

∫
Ω

|∇u|2 dx(∫
Ω

|u|q dx
) 2

q

, where 1 < q < 2∗ =
2N
N − 2

, (1.2)

among sets with given torsional rigidity (see [18], Thm. 3). For some related studies on the quantities (1.2), we
also mention the recent paper [6].

1.2. Aim of the paper

Unfortunately, the Kohler−Jobin’s rearrangement technique seems not to be well-known, even among spe-
cialists. Then the goal of this paper is twofold: first of all, we try to revitalize interest in her methods and results.
Secondly, we will extend the Kohler−Jobin inequality to more general “principal frequencies” associated with
the nonlinear p-Laplace operator, defined by

Δpu = div (|∇u|p−2 ∇u),

and to some anisotropic variants of it (Sect. 6). The main difficulty of this extension lies in the lack of regularity
of solutions to equations involving Δp, indeed in general these are far from being analytic or C∞, as required
in [18–20]. We will show that the Kohler−Jobin technique can be extended to functions enjoying a mild regularity
property (see Def. 3.1), which is indeed satisfied by solutions to a wide class of quasilinear equations (see
Lem. 3.2). Also, we will simplify some arguments used in [18–20]. For example, in order to compare the Lq

norms of the original function and its rearrangement, we will sistematically use Cavalieri’s principle, as it is
natural. Finally, we will not require smoothness hypotheses on Ω, which is another difference with the work of
Kohler−Jobin.

2Here solutions are always understood in the energy sense, i.e. u ∈ W 1,2
0 (Ω) and is a weak (then classical if ∂Ω is smooth

enough) solution. It is well-known that by dropping the assumption u ∈ W 1,2
0 (Ω) strange phenomena can be observed, like for

example nontrivial harmonic functions being constantly 0 at the boundary ∂Ω.
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1.3. Notation

In order to clearly explain the contents of this work and the results here contained, we now proceed to
introduce some required notation.

By Ω ⊂ R
N we still denote an open set with finite measure, while W 1,p

0 (Ω) stands for the closure of C∞
0 (Ω)

with respect to the norm ‖∇u‖Lp(Ω). Throughout the whole paper we will always assume that 1 < p < ∞. In
this work we will consider the “first eigenvalues”

λp,q(Ω) = min
u∈W 1,p

0 (Ω)\{0}

∫
Ω

|∇u|p dx(∫
Ω

|u|q dx
) p

q

, (1.3)

where the exponent q is such that ⎧⎪⎨⎪⎩
1 < q <

N p

N − p
, if 1 < p < N,

1 < q <∞, if p ≥ N.

(1.4)

Then the quantity λp,q(Ω) is always well-defined, thanks to Sobolev embeddings. Sometimes we will also refer
to λp,q(Ω) as a principal frequency, in analogy with the linear case. Observe that a minimizer of the previous
Rayleigh quotient is a nontrivial solution of

−Δpu = λ ‖u‖p−qLq(Ω) |u|
q−2 u, in Ω u = 0, on ∂Ω, (1.5)

with λ = λp,q(Ω). The two terms on both sides of (1.5) have the same homogeneity, then if u is solution,
so is t u for every t ∈ R. Moreover, it is not difficult to see that if for a certain λ there exists a nontrivial
solutions of (1.5), then we must have λ ≥ λp,q(Ω). These considerations justify the name “first eigenvalue” for
the quantity λp,q(Ω) (see [14] for a comprehensive study of these nonlinear eigenvalue problems).

The principal frequency λp,q obeys the following scaling law

λp,q(tΩ) = tN−p− p
q N λp,q(Ω),

then the general form of the previously mentioned Faber−Krahn inequality is

|B|
p
N + p

q −1 λp,q(B) ≤ |Ω|
p
N + p

q −1 λp,q(Ω), (1.6)

with equality if and only if Ω is a ball. In other words, balls are the unique solutions to the problem

min{λp,q(Ω) : |Ω| ≤ c}.

Properly speaking, the name Faber−Krahn inequality is usually associated with the particular case of p = q
in (1.6). Since the proof is exactly the same for all range of admissible p and q, this small abuse is somehow
justified. The special limit case q = 1 deserves a distinguished notation, namely we will set

Tp(Ω) =
1

λp,1(Ω)
= max

v∈W 1,p
0 (Ω)\{0}

(∫
Ω

|v| dx
)p

∫
Ω

|∇v|p dx
·

In analogy with the case p = 2, we will call it the p-torsional rigidity of the set Ω. Of course, inequality (1.6)
can now be written as

|Ω|1−
p
N −p Tp(Ω) ≤ |B|1−

p
N −p Tp(B). (1.7)
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For ease of completeness, we mention that inequalities (1.6) and (1.7) have been recently improved in [4,15], by
means of a quantitative stability estimate. Roughly speaking, this not only says that balls are the unique sets
for which equality can hold, but also that sets “almost” achieving the equality are “almost” balls.

It is useful to recall that the proof of (1.6) and (1.7) is based on the use of the Schwarz symmetrization. The
latter consists in associating to each positive function u ∈ W 1,p

0 (Ω) a radially symmetric decreasing function
u# ∈ W 1,p

0 (Ω#), where Ω# is the ball centered at the origin such that |Ω#| = |Ω|. The function u# is
equimeasurable with u, that is

|{x : u(x) > t}| = |{x : u#(x) > t}|, for every t ≥ 0,

so that ‖u‖Lq = ‖u#‖Lq for every q ≥ 1. More important, by using the Coarea Formula and by exploiting the
convexity of t 	→ tp and the isoperimetric inequality, one can obtain the celebrated Pólya-Szegő principle∫

Ω#
|∇u#|p dx ≤

∫
Ω

|∇u|p dx.

The reader is referred to [16], Chapter 2 or [17], Chapters 1 and 2, for more details on the Schwarz symmetrization
and the Pólya–Szegő principle.

1.4. Main result

In order to describe the Kohler−Jobin technique and illustrate its range of applicability, in this paper we will
consider the following shape optimization problem

min{λp,q(Ω) : Tp(Ω) ≤ c}, (1.8)

in the same spirit as conjecture (�) recalled at the beginning. Again by taking into account the homogeneities
of the quantities involved, the previous problem is the same as

minTp(Ω)α(p,q,N) λp,q(Ω), where α(p, q,N) =

p

N
+
p

q
− 1

p

N
+ p− 1

·

We point out that the previous shape functional can be written as follows

Tp(Ω)α(p,q,N) λp,q(Ω) =
(
|Ω|1−

p
N −p Tp(Ω)

)α(p,q,N)

|Ω|
p
N + p

q −1 λp,q(Ω),

i.e. the product of two functionals which are maximized and minimized by balls, respectively.
By suitably extending the Kohler−Jobin technique, we prove the following inequality, which represents the

main result of this paper.

Theorem 1.1. Let 1 < p < ∞ and q be an exponent verifying (1.4). For every Ω ⊂ R
N open set with finite

measure, we have

Tp(Ω)α(p,q,N) λp,q(Ω) ≥ Tp(B)α(p,q,N) λp,q(B), (1.9)

where B is any ball. Equality can hold if and only if Ω itself is a ball.
In other words, the only solutions to the shape optimization problem (1.8) are given by balls having p-torsional

rigidity equal to c.
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Remark 1.2. We observe that the whole family of inequalities (1.6) can now be derived by using (1.7) and (1.9).
Indeed, we have

|Ω|
p
N + p

q −1 λp,q(Ω) =
(
|Ω|

p
N + p

q −1 Tp(Ω)−α(p,q,N)
) (

Tp(Ω)α(p,q,N) λp,q(Ω)
)

=
(
|Ω|1−

p
N −p Tp(Ω)

)−α(p,q,N) (
Tp(Ω)α(p,q,N) λp,q(Ω)

)
≥
(
|B|1−

p
N −p Tp(B)

)−α(p,q,N) (
Tp(B)α(p,q,N) λp,q(B)

)
= |B|

p
N + p

q −1 λp,q(B).

This implies that the Saint-Venant inequality (1.7) permits to improve the lower bounds on the principal
frequencies λp,q provided by the Faber−Krahn inequality, since we can now infer

λp,q(Ω) ≥
(
Tp(B)
Tp(Ω)

)α(p,q,N)

λp,q(B),

and the term (Tp(B)/Tp(Ω))α(p,q,N) is greater than (|B|/|Ω|)p/N+p/q−1 coming from (1.6). In the same spirit,
we also point out that (1.9) can be written as

|Ω|
p
N + p

q −1 λp,q(Ω)

|B|
p
N + p

q −1 λp,q(B)
− 1 ≥

(
Tp(B) |B|1− p

N −p

Tp(Ω) |Ω|1− p
N −p

)α(p,q,N)

− 1.

The previous inequality assures that in order to prove a quantitive stability estimate for (1.6), one only has
to consider the case q = 1, i.e. it is sufficient to prove a stability estimate for the p-torsional rigidity. For
inequalities (1.6) with p = 2, this idea has been crucially exploited in the recent paper [4].

1.5. Plan of the paper

In Section 2 we collect some basic facts we will need througout the whole paper. In the subsequent section
we introduce and characterize the modified torsional rigidity of a set, which will be the main tool needed to
define the Kohler−Jobin symmetrization technique. The latter is described in the crucial Proposition 4.1, which
occupies the whole Section 4 and represents the core of the paper. Finally, in Section 5 we give the proof of
Theorem 1.1 and draw some consequences. In particular, we will see that Theorem 1.1 is connected with a limit
case of functional inequalities of interpolation type. The paper is concluded by Section 6, where we discuss the
extension of the Kohler−Jobin procedure to general anisotropic Dirichlet integrals, i.e. to quantities like∫

Ω

‖∇u‖p dx, u ∈ W 1,p
0 (Ω),

where ‖ · ‖ is a strictly convex C1 norm. In this case as well we can prove the analogous of Theorem 1.1. For
ease of exposition, we preferred to treat this kind of generalization in a separate section, so to neatly present
the Kohler−Jobin rearrangement avoiding unnecessary technicalities.

2. Preliminaries

The first result we need is very simple, but quite useful in the sequel. It follows at once from Young’s inequality.

Lemma 2.1. Let A,B > 0 and p > 1, then we have

At−B
tp

p
≤ p− 1

p

(
Ap

B

) 1
p−1

, for every t ≥ 0, (2.1)
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and equality sign in (2.1) holds if and only if

t =
(
A

B

) 1
p−1

.

We define the strictly concave functional

Fp(u) =
∫
Ω

u dx− 1
p

∫
Ω

|∇u|p dx, u ∈W 1,p
0 (Ω),

and we denote by uΩ ∈W 1,p
0 (Ω) its unique maximizer. Observe that uΩ is the unique weak solution of

−Δpu = 1, in Ω, u = 0, on ∂Ω, (2.2)

i.e. uΩ verifies ∫
Ω

〈|∇uΩ|p−2 ∇uΩ,∇ϕ〉dx =
∫
Ω

ϕdx, for every ϕ ∈ W 1,p
0 (Ω),

The next result collects some equivalent definitions for the p-torsional rigidity. In what follows, we denote by
W−1,p′(Ω) the dual space of W 1,p

0 (Ω).

Proposition 2.2. Let Ω ⊂ R
N be an open set with finite measure. Let us denote by 1Ω the characteristic

function of Ω and set p′ = p/(p− 1). Then Tp(Ω) can be equivalently characterized as

Tp(Ω) = ‖1Ω‖pW−1,p′ (Ω)
, (2.3)

Tp(Ω) =
(∫

Ω

uΩ dx
)p−1

=

(
p′ max

u∈W 1,p
0 (Ω)

Fp(u)

)p−1

, (2.4)

and also

Tp(Ω) =
(

min
V ∈Lp′(Ω;RN )

{∫
Ω

|V |p′ dx : −divV = 1 in Ω
})p−1

. (2.5)

where the divergence constraint is intended in distributional sense, i.e.∫
Ω

〈V,∇ϕ〉dx =
∫
Ω

ϕdx for every ϕ ∈ W 1,p
0 (Ω).

Proof. For the first characterization, we just observe that by definition of dual norm we have

‖1Ω‖W−1,p′ (Ω) = sup
v∈W 1,p

0 (Ω)

{∫
Ω

v dx : ‖v‖W 1,p
0 (Ω) = 1

}
,

which immediately gives (2.3), since

max
v∈W 1,p

0 (Ω)\{0}

∣∣∣∣∫
Ω

v dx
∣∣∣∣p∫

Ω

|∇v|p dx
= max
v∈W 1,p

0 (Ω)\{0}

(∫
Ω

|v| dx
)p

∫
Ω

|∇v|p dx
= Tp(Ω).

By testing the equation (2.2) with ϕ = uΩ, we obtain∫
Ω

|∇uΩ|p dx =
∫
Ω

uΩ dx,
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so that the maximal value of Fp is given by

max
u∈W 1,p

0 (Ω)
Fp(u) =

∫
Ω

uΩ dx− 1
p

∫
Ω

|∇uΩ|p dx =
p− 1
p

∫
Ω

uΩ dx.

We now prove that the last quantity coincides with Tp(Ω). Let v0 ∈ W 1,p
0 (Ω) be a function achieving the

supremum in the definition of Tp(Ω), i.e.

Tp(Ω) =

(∫
Ω

|v0| dx
)p

∫
Ω

|∇v0|p dx
·

We notice that v0 can be taken to be positive. It is not difficult to see that if we set

λ0 =

⎡⎢⎢⎣
∫
Ω

v0 dx∫
Ω

|∇v0|p dx

⎤⎥⎥⎦
1

p−1

.

then the function w0 = λ0 v0 ∈ W 1,p
0 (Ω) maximizes Fp. Indeed, by using Lemma 2.1 and the definition of

p-torsional rigidity, for every v ∈W 1,p
0 (Ω) we get∫

Ω

v dx− 1
p

∫
Ω

|∇v|p dx ≤ max
λ≥0

[
λ

∫
Ω

|v| dx− λp

p

∫
Ω

|∇v|p dx
]

=
p− 1
p

⎡⎢⎢⎣
(∫

Ω

|v| dx
)p

∫
Ω

|∇v|p dx

⎤⎥⎥⎦
1

p−1

≤ p− 1
p

Tp(Ω)
1

p−1 ,

and equality holds in the previous chain of inequalities if v = λ0 v0. This finally shows that

Tp(Ω) =

(
p

p− 1
max

u∈W 1,p
0 (Ω)

Fp(u)

)p−1

=
(∫

Ω

uΩ dx
)p−1

,

thus concluding the proof of (2.4).
The characterization (2.5) is a consequence of the equality

max
u∈W 1,p

0 (Ω)

{∫
Ω

u dx− 1
p

∫
Ω

|∇u|p dx
}

= min
V ∈Lp′(Ω;RN )

{∫
Ω

|V |p′ dx : −divV = 1 in Ω
}
,

which in turn follows from a standard duality result in Convex Analysis, for which the reader is referred to [8],
Proposition 5, page 89. We also recall that the unique vector field VΩ minimizing the problem on the right-hand
side has the form VΩ = |∇uΩ|p−2 ∇uΩ. �
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Remark 2.3 (torsional rigidity of a ball). For a ball BR(x0) having radius R and center x0, one can verify that

uBR(x0)(x) =

(
R

p
p−1 − |x− x0|

p
p−1

)
+

βN,p
, where βN,p =

p

p− 1
N

1
p−1 ,

is the unique solution of (2.2). Then we get

Tp(BR(x0)) =

(∫
BR(x0)

uBR(x0) dx

)p−1

=
[
ωN
βN,p

p

N(p− 1) + p

]p−1

RN(p−1)+p, (2.6)

where ωN is the measure of the N -dimensional unit ball. In what follows, we will set for simplicity

γN,p =
[
ωN
βN,p

p

N(p− 1) + p

]p−1

, (2.7)

which just coincides with the p-torsional rigidity of the unit ball in R
N .

We recall some regularity properties of our eigenfunctions, i.e. functions achieving the minimal value λp,q(Ω).
These are collected below.

Proposition 2.4. Let Ω ⊂ R
N be an open set with finite measure. Let u ∈ W 1,p

0 (Ω) be a first eigenfunction
relative to λp,q(Ω), i.e. a nontrivial solution to

−Δpu = λp,q(Ω) ‖u‖p−qLq(Ω) |u|
q−2 u. (2.8)

Then we have u ∈ C1(Ω) ∩ L∞(Ω).

Proof. Observe that since the equation is (p− 1)-homogeneous, we can always scale a solution u in such a way
that ‖u‖Lq(Ω) = 1. Then the L∞ bound follows in a standard way by means of a Moser’s iteration argument.
The C1 result is a consequence of the by now classical results in [7]. Of course should the boundary of Ω be
smooth enough, then this result would be global (see [21]). �

At last, we will need the following particular version of the one-dimensional area formula.

Lemma 2.5. Let A > 0 and ψ ∈ Liploc([0, A)) such that ψ′(t) > 0 for almost every t ∈ [0, A]. We also set
sup[0,A] ψ = M . Let ϕ = ψ−1 be its inverse function, then we have the change of variable formula∫ M

ψ(0)

F (ϕ(t))ϕ′(t) dt =
∫ A

0

F (s) ds,

for any non-negative Borel function F .

Proof. The statement is known to be true if ψ ∈ Lip([0, A]), see [1], Example 3.4.5 and Theorem 3.4.6. To
prove it under our slightly weaker hypotheses, we just have to use an approximation argument. For every ε > 0
sufficiently small, we have ∫ ψ(A−ε)

ψ(0)

F (ϕ(t))ϕ′(t) dt =
∫ A−ε

0

F (s) ds,

since ψ ∈ Lip([0, A− ε]) and ψ′ > 0 almost everywhere. It is now sufficient to let ε go to 0 and observe that all
the functions involved are positive. �
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3. The modified torsional rigidity

Definition 3.1. Given an open set Ω ⊂ R
N having finite measure, we will say that u ∈ W 1,p

0 (Ω) ∩ L∞(Ω) is
a reference function for Ω if u ≥ 0 in Ω and

t 	→ μ(t)∫
{u=t}

|∇u|p−1 dHN−1
∈ L∞([0,M ]), (3.1)

where M = ‖u‖L∞(Ω) and μ denotes the distribution function of u, i.e. the function defined by

μ(t) = |{x ∈ Ω : u(x) > t}|, t ∈ [0,M ].

We will denote by Ap(Ω) the set of all reference functions for Ω, i.e.

Ap(Ω) =
{
u ∈ W 1,p

0 (Ω) ∩ L∞(Ω) : u ≥ 0 and (3.1) holds
}
.

We will see in a while the importance of condition (3.1). Firstly, let us consider a particular class of functions
which verify it. The next result is somehow classical, related computations can be found in [26].

Lemma 3.2. Let u ∈W 1,p
0 (Ω) ∩ L∞(Ω) be a positive function such that

−Δpu = f(x, u), in Ω,

in a weak sense, where f : Ω × [0,∞) → [0,∞) verifies:

(i) t 	→ f(x, t) is increasing, for almost every x ∈ Ω;
(ii) for every t ≥ 0, there exists L = L(t) such that we have sup

x∈Ω
f(x, t) ≤ L;

(iii) for every t > 0, we have inf
x∈Ω

f(x, t) > 0.

We set M = ‖u‖L∞(Ω), then we have∫
{x :u(x)=t}

|∇u|p−1 dHN−1 =
∫
{x :u(x)>t}

f(x, u) dx, for a.e. t ∈ [0,M ]. (3.2)

In particular, we get u ∈ Ap(Ω), i.e. u verifies (3.1).

Proof. By using test functions of the form (u− s)+ in the equation solved by u, we get∫
{x :u(x)>s}

|∇u|p dx =
∫
Ω

〈|∇u|p−2 ∇u,∇(u− s)+〉dx

=
∫
Ω

f(x, u) (u− s)+ dx.

On the other hand, by Coarea Formula we have∫
{x : u(x)>s}

|∇u|p dx =
∫ M

s

(∫
{x :u(x)=τ}

|∇u|p−1 dHN−1

)
dτ.

By taking first s = t and then s = t+ h with h > 0 and subtracting, we then get

1
h

∫ t+h

t

(∫
{x :u(x)=τ}

|∇u|p−1 dHN−1

)
dτ =

∫
Ω

f(x, u)
(u− t)+ − (u − t− h)+

h
dx.

By passing to the limit on both sides, we conclude the proof of (3.2).
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To prove that u satisfies (3.1), it is sufficient to observe that∫
{x :u(x)>t}

f(x, u) dx ≥
(

inf
y∈Ω

f(y, t)
) ∫

{x :u(x)>t}
dx =

(
inf
y∈Ω

f(y, t)
)
μ(t),

thanks to the monotonicity of f , so that

0 ≤ μ(t)∫
{u=t}

|∇u|p−1 dHN−1
≤ 1

inf
y∈Ω

f(y, t)
,

which means that the quantity we are considering stays bounded whenever t is away from 0, for example if
t ≥M/2. On the other hand if t < M/2 we just notice that f ≥ 0 implies∫

{x :u(x)>t}
f(x, u) dx ≥

∫
{x :u(x)>M/2}

f(x, u) dx,

and then again we may proceed as before, to obtain that
∫
{u=t} |∇u|

p−1 is bounded from below by a strictly
positive constant, for t < M/2. This and the fact that μ(t) ≤ |Ω| allow to conclude. �
Remark 3.3. As an example of function f satisfying the hypotheses of the previous Lemma, we may consider
f(x, t) = g(x) tm, with m > 0 and g positive measurable function such that c2 ≥ g(x) ≥ c1 > 0, for almost
every x ∈ Ω.

The next counterexample shows that smooth functions may fail to verify (3.1).

Example 3.4. Let us take B = {x : |x| < 1} and a smooth radial function u such that

u(x) = (1 − |x|)α for |x| � 1,

where α > 1. We then have∫
{u=t}

|∇u|p−1 dHN−1 � t
(α−1) (p−1)

α (1 − t1/α)N−1, t � 0,

and
μ(t) = {x : (1 − |x|)α > t} = {x : |x| < 1 − t1/α} � (1 − t1/α)N , t � 0.

This implies that the ratio of the two quantities is unbounded for t approaching 0. Moreover, this ratio behaves
like t

(α−1) (1−p)
α , which may even fail to be merely integrable.

We introduce the following set of Lipschitz functions

L =
{
g ∈ Lip ([0,M ]) : g(0) = 0

}
,

then for every reference function u ∈ Ap(Ω), we clearly have g◦u ∈W 1,p
0 (Ω) whenever g ∈ L. Taking advantage

of the equivalent formulations of Tp(Ω) provided by Proposition 2.2, we define the modified p-torsional rigidity
of Ω according to u by

Tp,mod(Ω;u) :=
(

p

p− 1
sup
g∈L

Fp(g ◦ u)
)p−1

, (3.3)

and notice that since we restricted the class of admissible functions, we decreased the value of Tp(Ω), i.e.

Tp,mod(Ω;u) ≤ Tp(Ω).

The key point is that for every u ∈ Ap(Ω) the modified torsional rigidity is well-defined, i.e. the supremum is
attained in the class L. Moreover it can be fully characterized in terms of the distribution function of u and of
the Coarea factor

∫
{u=t} |∇u|

p−1.
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Proposition 3.5. Let u ∈ Ap(Ω) be a reference function for Ω. Then the function g0 defined by

g0(t) =
∫ t

0

⎛⎜⎜⎝ μ(τ)∫
{u=τ}

|∇u|p−1 dHN−1

⎞⎟⎟⎠
1

p−1

dτ, (3.4)

(uniquely) achieves the supremum in (3.3). The modified torsional rigidity is then given by

Tp,mod(Ω;u) =

⎡⎢⎢⎢⎢⎢⎣
∫ M

0

μ(t)
p

p−1(∫
{u=t}

|∇u|p−1 dHN−1

) 1
p−1

dt

⎤⎥⎥⎥⎥⎥⎦
p−1

. (3.5)

Proof. We first observe that the value of Tmod(Ω;u) remains unchanged if we restrict the optimization to positive
non-decreasing functions. Indeed, let g ∈ L be admissible and let us set

g̃(t) =
∫ t

0

|g′(τ)| dτ, t ∈ [0,M ],

then this is non-decreasing by construction and obviously g ∈ L. It satisfies∫
Ω

|∇g ◦ u(x)|p dx =
∫
Ω

|∇g̃ ◦ u(x)|p dx, since g̃′(t) = |g′(t)|, for a.e. t ∈ [0,M ].

We also notice that we have g̃(t) ≥ g(t), so that we can simply infer∫
Ω

g(u(x)) dx ≤
∫
Ω

g̃(u(x)) dx,

which finally implies
Fp(g ◦ u) ≤ Fp(g̃ ◦ u).

We then observe that for every positive non-decreasing g ∈ L, we have

Fp(g ◦ u) =
∫
Ω

g(u(x)) dx − 1
p

∫
Ω

g′(u(x))p |∇u(x)|p dx

=
∫ M

0

[
g′(t)μ(t) dt − g′(t)p

p

(∫
{u=t}

|∇u|p−1 dHN−1

)]
dt,

where we used Cavalieri’s principle in the first integral and Coarea Formula in the second one. By using again
Lemma 2.1, we then get

Fp(g ◦ u) ≤
∫ M

0

max
s≥0

[
s μ(t) − sp

p

(∫
{u=t}

|∇u|p−1 dHN−1

)]
dt

=
p− 1
p

∫ M

0

μ(t)
p

p−1(∫
{u=t}

|∇u|p−1 dHN−1

) 1
p−1

dt, (3.6)



326 L. BRASCO

and equality holds if and only if

g′(t) =

⎛⎜⎜⎝ μ(t)∫
{u=t}

|∇u|p−1 dHN−1

⎞⎟⎟⎠
1

p−1

, for a.e. t ∈ [0,M ].

Observe that the latter is an L∞ function on [0,M ], since u satisfies (3.1) by hypothesis. This means the function
g0 defined by

g0(t) =
∫ t

0

⎛⎜⎜⎝ μ(τ)∫
{u=τ}

|∇u|p−1 dHN−1

⎞⎟⎟⎠
1

p−1

dt,

belongs to L and is thus the unique maximizer of Fp. In particular(
p

p− 1
Fp(g0 ◦ u)

)p−1

= Tmod(Ω;u).

Finally, the previous equation and (3.6) show the validity of the expression (3.5). �
Remark 3.6. The previous result generalizes [19], Lemme 1. Observe that our proof runs similarly to that
in [19], but the use of Cavalieri’s principle and Lemma 2.1 permitted some simplifications.

Remark 3.7. If Ω ⊂ R
2 is a convex polygon and we take as reference function the distance dΩ from ∂Ω, the

corresponding modified p-torsional rigidity has been recently considered in [13], in connection with a conjecture
by Pólya and Szegő.

The following result is an isoperimetric inequality for the modified torsional rigidity. This fact will be crucially
exploited in the next section, in order to define our spherical rearrangement.

Proposition 3.8. Let Ω ⊂ R
N be an open set with finite measure and u ∈ Ap(Ω) be a reference function. If

B ⊂ R
N is a ball such that

Tp(B) = Tp,mod(Ω;u),

then we have
|B| ≤ |Ω|.

We have equality if and only if Ω is a ball and u coincides with a (translate of a) radially symmetric function.

Proof. We just observe that Tp(B) = Tp,mod(Ω;u) ≤ Tp(Ω), then by using (1.7) we get

1 ≤ Tp(Ω)
Tp(B)

≤
(
|Ω|
|B|

) p
N +p−1

,

which proves the first assertion.
As for equality cases, if |B| = |Ω| by appealing to the equality cases in (1.7) we can surely infer that Ω has

to be a ball. Moreover, in this case we also have

Tp,mod(Ω;u) = Tp(Ω).

We now recall that the function achieving the p-torsional rigidity is unique, up to a renormalization, and that
such a function has to be radial for a ball (see Rem. 2.3). This implies that for the optimal g0 achieving
Tp,mod(Ω;u), we must have that g0 ◦ u is radial as well which finally implies that u has to be radial.

On the other hand, it is easily seen that if Ω itself is a ball and u is radial, then Tp,mod(Ω;u) = Tp(Ω) and
the equality Tp(Ω) = Tp(B) implies |Ω| = |B|, since two balls have the same p-torsional rigidity if and only if
they share the same radius. �
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Remark 3.9. The previous result can be rewritten in scaling invariant form as

|B|1−
p
N −p Tp(B) ≥ |Ω|1−

p
N −p Tp,mod(Ω;u),

with equality if and only if Ω is a ball and u is a radial function. This result generalizes the first inequality3

appearing in [19], Lemme 2. See also [18], Corollary 1.

4. The Kohler−Jobin rearrangement technique

We are now going to describe the Kohler−Jobin rearrangement for W 1,p
0 functions that satisfy property (3.1).

We recalled that in the classical Schwarz symmetrization it is the measure of superlevel sets which plays the
leading role in the rearrangement procedure. Now, it is their p-torsional rigidity which will do the job. This
is natural, since we are dealing with a shape optimization problem with a constraint on the torsional rigidity,
rather than on the measure of admissible sets.

Proposition 4.1. Let 1 < p < ∞ and let Ω ⊂ R
N be an open set having finite measure. Given a reference

function u ∈ Ap(Ω), let B be the ball centered at the origin such that

Tp,mod(Ω;u) = Tp(B).

Then there exists a radially symmetric decreasing function u∗ ∈W 1,p
0 (B) such that∫

B

|∇u∗|p dx =
∫
Ω

|∇u|p dx and
∫
B

f(u∗) dx ≥
∫
Ω

f(u) dx, (4.1)

for every function f : [0,∞) → [0,∞) C1 strictly convex and such that f(0) = 0.

Proof. In order to simplify the notation, in the whole proof we will use the notation

T = Tp,mod(Ω;u).

For every t ∈ [0,M ], we will also set

Ωt = {x ∈ Ω : u(x) > t} and T (t) = Tp,mod(Ωt; (u− t)+),

i.e. the latter is the modified torsional rigidity of Ωt according to the function (u− t)+. Since we have

|{x : (u(x) − t)+ > s}| = μ(t+ s),

from (3.5) we can infer the explicit expression of this modified torsion, i.e.

T (t) =

⎡⎢⎣∫ M−t

0

μ(s+ t)
p

p−1(∫
{(u−t)+=s} |∇u|p−1 dHN−1

) 1
p−1

ds

⎤⎥⎦
p−1

=

⎡⎢⎣∫ M

t

μ(τ)
p

p−1(∫
{u=τ} |∇u|p−1 dHN−1

) 1
p−1

dτ

⎤⎥⎦
p−1

.

3The reader should notice that when p = 2, our definition of torsional rigidity differs from that in [19] by a multiplicative
factor 4.
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Observe that from the previous expression we obtain that T ∈ Liploc([0,M)), such that T ′(t) < 0 almost
everywhere on [0,M ], since we have

d
dt
T (t) = −(p− 1)

μ(t)
p

p−1(∫
{u=t}

|∇u|p−1 dHN−1

) 1
p−1

T (t)
p−2
p−1 , for a.e. t.

This is useful, since we are going to write the Lp norm of ∇u in terms of the “variable” T (t). More precisely,
we first observe that applying the Coarea Formula and then introducing a change of variable ϕ : [a, b] → [0,M ],
we have ∫

Ω

|∇u|p dx =
∫ b

a

ϕ′(τ)

(∫
{u=ϕ(τ)}

|∇u|p−1 HN−1

)
dτ. (4.2)

As function ϕ we just take ϕ : [0, T ] → [0,M ] defined by the inverse function

ϕ(τ) = T−1(τ), τ ∈ [0, T ],

then the derivative ϕ′(τ) is obviously given by

ϕ′(τ) = − 1
p− 1

(∫
{u=ϕ(τ)}

|∇u|p−1 dHN−1

) 1
p−1

μ(ϕ(τ))
p

p−1
τ

2−p
p−1 .

Also observe that ϕ satisfies the hypotheses of Lemma 2.5, then we finally obtain∫
Ω

|∇u|p dx = (p− 1)p−1

∫ T

0

τp−2 μ(ϕ(τ))p (−ϕ′(τ))p dτ. (4.3)

The finiteness of the integral in the left-hand side and the previous identity justify the convergence of the
right-hand side in (4.3), also for 1 < p < 2.

We now define a radially symmetric decreasing function u∗ ∈ W 1,p
0 (B). As before, the idea is to prescribe

the values of u∗ by using the torsional rigidity of its superlevel sets. For every τ ∈ [0, T ], let R(τ) be the unique
radius such that the ball BR(τ) = {x : |x| < R(τ)} ⊂ B has torsional rigidity τ , i.e. by using formula (2.6) we
have

R(τ) =
(

τ

γN,p

) 1
N(p−1)+p

, τ ∈ [0, T ],

where the constant γN,p is defined in (2.7). Then we introduce the change of variable ψ : [0, T ] → [0,+∞) and
we set

u∗(x) = ψ(τ), if |x| = R(τ).

In other words, u∗ attains the value ψ(τ) on the boundary of a ball whose torsional rigidity coincides with τ .
Of course, the function u∗ will be completely determined, once we will specify the function ψ.

We can write the Dirichlet integral of u∗ as before, that is using τ as variable. This yields∫
B

|∇u∗|p dx = −
∫ T

0

ψ′(τ)

(∫
{u∗=ψ(τ)}

|∇u∗|p−1 dHN−1

)
dτ.

We then observe that for u∗ by construction we have

|∇u∗(x)| = (N(p− 1) + p) γN,p (−ψ′(τ))R(τ)N(p−1)+p−1, if |x| = R(τ),
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Ωt

R(τ)

Ω B

Figure 1. The construction of Proposition 4.1: the set Ωt has modified torsional rigidity equal
to τ . On the circle having torsional rigidity equal to τ , we set u∗ to be equal to the value ψ(τ)
defined through (4.5).

so that after some (tedious) computations we get∫
{u∗=ψ(τ)}

|∇u∗|p−1 dHN−1 = (p− 1)p−1 τp−2 μ∗(ψ(τ))p (−ψ′(τ))p,

i.e. we can infer again ∫
B

|∇u∗|p dx = (p− 1)p−1

∫ T

0

τp−2 μ∗(ψ(τ))p (−ψ′(τ))p dτ, (4.4)

where μ∗ is the distribution function of u∗.
We are finally ready to define ψ: we impose⎧⎨⎩ (−ψ′(τ))μ∗(ψ(τ)) = (−ϕ′(τ))μ(ϕ(τ))

ψ(T ) = 0.
(4.5)

By recalling that by construction we have

μ∗(ψ(τ)) = ωN R(τ)N = ωN

(
τ

γN,p

) N
N(p−1)+p

,

the change of variable ψ is explicitely given by

ψ(τ) =
γ

N
N(p−1)+p

N,p

ωN

∫ T

τ

(−ϕ′(s))μ(ϕ(s)) s−
N

N(p−1)+p ds, τ ∈ [0, T ].

By using the information (4.5) in (4.3) and (4.4), we immediately obtain∫
B

|∇u∗|p dx =
∫
Ω

|∇u|p dx,

as desired.
As for the integrals of u, first of all we observe that thanks to Proposition 3.8 we have

μ∗(ψ(τ)) ≤ μ(ϕ(τ)), for every τ ∈ [0,M ],
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since the torsional rigidity of the ball {x ∈ B : u∗(x) > ψ(τ)} is equal to the modified torsional rigidity of
{x ∈ Ω : u(x) > ϕ(τ)}. Then (4.5) implies

−ψ′(τ) ≥ −ϕ′(τ), for a.e. τ ∈ [0, T ],

thus integrating we get

ψ(τ) = −
∫ T

τ

ψ′(s) ds ≥ −
∫ T

τ

ϕ′(s) ds = ϕ(τ), τ ∈ [0, T ], (4.6)

since ψ(T ) = ϕ(T ) = 0. Once again Cavalieri’s principle and a change of variable gives∫
Ω

f(u) dx =
∫ M

0

f ′(t)μ(t) dt

=
∫ T

0

f ′(ϕ(τ)) (−ϕ′(τ))μ(ϕ(τ)) dτ

≤
∫ T

0

f ′(ψ(τ)) (−ψ′(τ))μ∗(ψ(τ)) dτ =
∫
B

f(u∗) dx,

where we exploited (4.5), (4.6) and the strict convexity of f . This finally concludes the proof. �

Remark 4.2 (equality cases). Observe that in the previous construction we have

μ∗(ψ(τ)) = μ(ϕ(τ)),

if and only if the superlevel set {x ∈ Ω : u(x) > ϕ(τ)} is a ball and (u−ϕ(τ))+ is radial, thanks to the equality
cases in Proposition 3.8. This implies that equality holds in (4.6) for almost every τ ∈ [0, T ] if and only if Ω is
a ball and u is a radial function. This finally gives that for f : [0,∞) → [0,∞) strictly convex and such that
f(0) = 0, we have ∫

Ω

f(u) dx =
∫
B

f(u∗) dx,

if and only if Ω is a ball and u is a radial function.

Remark 4.3 (assumptions on f). Observe that the strict convexity f is not really necessary for (4.1) to hold,
the argument still works with an f convex. But in this case the identification of equality cases is lost. On the
other hand, the condition f(0) = 0 is vital, since one has∫

Ω

f(u) dx ≤
∫
B

f(u∗) dx+ f(0)
[
|Ω| − |B|

]
,

and by construction we have |Ω| ≥ |B|. If f(0) > 0, the latter inequality does not permit to say that the integral∫
Ω f(u) dx is increased after the rearrangement.

5. Proof of Theorem 1.1

Let vΩ ∈ W 1,p
0 (Ω) be a function such that

‖∇vΩ‖pLp(Ω)

‖vΩ‖pLq(Ω)

= λp,q(Ω).

Since the value of the Rayleigh quotient on the left is unchanged if we replace a function vΩ by its modulus
|vΩ |, we can assume that vΩ ≥ 0. Moreover, the function vΩ solves equation (2.8), then by Proposition 2.4
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and Lemma 3.2, we get immediately that vΩ is a reference function for Ω, i.e. vΩ ∈ Ap(Ω). Accordingly, the
modified torsional rigidity Tp,mod(Ω; vΩ) is well-defined. Let us simply set for brevity

TΩ = Tp,mod(Ω; vΩ),

and recall that TΩ ≤ Tp(Ω). We then take B the ball centered at the origin such that

TΩ = Tp(B),

thanks to Proposition 4.1 we can construct v∗Ω ∈W 1,p
0 (B) such that∫

B

|v∗Ω |q dx ≥
∫
Ω

|vΩ|q dx and
∫
B

|∇v∗Ω|p dx =
∫
Ω

|∇vΩ|p dx.

Using this and the definition of λp,q(B), we then obtain

Tp(B)α(p,q,N) λp,q(B) ≤ T
α(p,q,N)
Ω

‖∇v∗Ω‖
p
Lp(B)

‖v∗Ω‖
p
Lq(B)

≤ T
α(p,q,N)
Ω

‖∇vΩ‖pLp(Ω)

‖vΩ‖pLq(Ω)

≤ Tp(Ω)α(p,q,N) λp,q(Ω), (5.1)

which concludes the proof of (1.9).
As for equality cases, we observe that if equality holds in (1.9), then equality holds everywhere in (5.1). In

particular we get ∫
B

|∇v∗Ω |p dx(∫
B

|v∗Ω|q dx
) p

q

=

∫
Ω

|∇vΩ|p dx(∫
Ω

|vΩ|q dx
) p

q

·

Thanks to Proposition 4.1 and Remark 4.2, we can finally conclude that Ω has to be a ball. This concludes the
Proof of Theorem 1.1.

Remark 5.1 (Moser–Trudinger sharp constant). In the conformal case p = N , one may wonder what can be
said for the best constant in the Moser–Trudinger inequality (see [23, 27]), such a constant being defined by

MTN(Ω) = sup
{∫

Ω

exp
(
cN |u| N

N−1

)
: ‖∇u‖W 1,N

0 (Ω) ≤ 1
}
, cN = N (N ωN)

1
N−1 .

It is immediate to see that this quantity is maximized by balls among sets having given volume, i.e.

MTN(Ω)
|Ω| ≤ MTN(B)

|B| , (5.2)

the proof consisting of a straightfoward application of the Schwarz rearrangement. This time, it is not clear that
balls still maximize with a constraint on the N−torsional rigidity. The reason lies in the fact that the function
f(t) = exp(cN tN

′
) verifies f(0) > 0. Then by taking an optimal function vΩ for MTN(Ω) (see [12, 22] for the

existence of such a function) and applying Proposition 4.1, we would obtain (see Rem. 4.3)

MTN(Ω) ≤MTN (BΩ) + |Ω| − |BΩ|,

where BΩ is a ball such that TN(BΩ) = TN,mod(Ω; vΩ). In particular BΩ is smaller than a ball B	 having the
same torsional rigidity as Ω. In order to show that the ball is still a maximizer, it would sufficies to verify that
for every set Ω there holds

MTN(BΩ) + |Ω| − |BΩ | ≤MTN(B	).



332 L. BRASCO

The previous is in turn equivalent to
|Ω| − |BΩ|
|B	| − |BΩ|

≤ MTN(B	)
|B	| ,

an estimate which seems difficult to check, since the measure of BΩ depends in an intricate way on Ω.

As a straightforward consequence of Theorem 1.1 we get the following functional inequality of interpolation
type, with sharp constant. In what follows we will denote by W 1,p

0 (RN ) the completion of C∞
0 (RN ) with respect

to the norm ‖∇u‖Lp.

Corollary 5.2. Let 1 < p <∞ and q be an exponent satisfying (1.4). We still denote

α(p, q,N) =

p

N
+
p

q
− 1

p

N
+ p− 1

,

and p′ = p/(p− 1), then for every u ∈W 1,p
0 (RN ) ∩ C(RN ) we have

‖u‖Lq ≤ KJ(p, q,N)
∥∥1{|u|>0}

∥∥α(p,q,N)

W−1,p′ ‖∇u‖Lp , (5.3)

where the sharp constant KJ(p, q,N) is given by

KJ(p, q,N) =
(
T (B1)α(p,q,N) λp,q(B1)

)− 1
p

,

and B1 is the N -dimensional unit ball centered at the origin. Equality in (5.3) holds if and only if u has the
form

u(x) = c U

(
x− x0

s

)
for some (x0, c, s) ∈ R

N × R × R
+,

where U ∈W 1,p
0 (B1) is the (unique) function solving⎧⎨⎩−ΔpU = λp,q(B1)U q−1, in B1,

‖U‖Lq = 1 and U > 0.

Proof. It is sufficient to observe that (1.9) implies

Tp(B1)α(p,q,N) λp,q(B1) ≤ Tp({|u| > 0})α(p,q,N)

∫
RN

|∇u|p dx(∫
RN

|u|q dx
) p

q

,

then we use the characterization (2.3) of the p-torsional rigidity. Equality cases easily follow from those
in (1.9). �

Remark 5.3. For simplicity, we stated the previous result for functions in W 1,p
0 (RN ) ∩ C(RN ). This assures

that {|u| > 0} is an open set. However, by appealing to the theory of quasi-open sets and of Sobolev spaces in
a capacitary sense (see [5]), one could state the previous inequality for general functions in W 1,p

0 (RN )

Remark 5.4. Observe that (5.3) is a limit case of the following family of interpolation inequalities

‖u‖Lq ≤ C ‖∇u‖ϑ+ 1−ϑ
s

Lp

∥∥|u|s−2 u
∥∥ 1−ϑ

s

W−1,p′ , (5.4)
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where 1 < s < q < p∗ and the parameter ϑ is such that

ϑ =
p∗

q

q − s

p∗ − s
·

Here p∗ denotes the usual Sobolev embedding exponent, i.e. p = Np/(N−p) (let us confine ourselves to the case
1 < p < N , for simplicity). The proof of (5.4) simply follows by combining the Gagliardo–Nirenberg–Sobolev
inequality

‖u‖Lq ≤ C ‖∇u‖ϑLp ‖u‖1−ϑ
Ls ,

and the estimate

‖u‖Ls =
(∫

|u|s dx
) 1

s

=
(∫

|u|s−2 u u dx
) 1

s

≤
∥∥|u|s−2 u

∥∥ 1
s

W−1,p′ ‖∇u‖
1
s

Lp,

which is a plain consequence of the definition of dual norm. By formally taking the limit for s converging to 1
in (5.4), one ends up with (5.3).

6. The case of general norms

In this last section, we will see how to adapt the Kohler−Jobin rearrangement to the case of anisotropic
principal frequencies and torsional rigidities. The reader could find useful to consult [25] for the basic facts
about convex bodies needed below.

Let 1 < p <∞ and q still satisfying (1.4), we consider the quantities

λKp,q(Ω) = min
u∈W 1,p

0 (Ω)\{0}

∫
Ω

‖∇u‖pK dx(∫
Ω

|u|q dx
) p

q

and TKp (Ω) = max
v∈W 1,p

0 (Ω)\{0}

(∫
Ω

|v| dx
)p

∫
Ω

‖∇v‖pK dx
,

where K is a C1 centro-symmetric4 bounded strictly convex set and

‖x‖K = min{λ ≥ 0 : x ∈ λK}, x ∈ R
N ,

i.e. ‖ · ‖K is the norm having K as unit ball. Of course by taking K = B the Euclidean ball, we are back to
the quantities considered in the previous sections. An interesting particular case of these anisotropic variants is
when K is the unit ball of the �p norm, in this case we have∫

Ω

‖∇u‖pK dx =
N∑
i=1

∫
Ω

|uxi |p dx.

The Faber−Krahn inequality for the corresponding first eigenvalue λKp,q(Ω) has been derived in [3], by using
the convex symmetrization introduced in [2]. The latter is just a variant of the Schwarz symmetrization, where
balls are replaced by rescaled copies of the polar body K∗ defined by

K∗ =
{
ξ ∈ R

N : sup
x∈K

〈ξ, x〉 ≤ 1
}
.

In other words, given a positive function u ∈W 1,p
0 (Ω), we can construct a new Sobolev function u# supported

on a scaled copy K̃∗ of K∗, such that

{x : u#(x) > t} is homothetic to K∗ for every t,

4This means that x ∈ K implies that −x ∈ K as well.
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and u and u# are equimeasurable. Moreover, for the convex symmetrization as well we have the Pólya–Szegő
principle, i.e. ∫

Ω

‖∇u‖pK dx ≥
∫
K̃∗

‖∇u#‖pK dx. (6.1)

We refer the reader to [2], Theorem 3.1 for the proof. The equality cases are investigated in [9], Theorem 5.1
and [10], Theorem 1.

We also recall the Wulff inequality

|Ω|−
N−1

N

∫
∂Ω

‖νΩ‖K dHN−1 ≥ |K∗|−
N−1

N

∫
∂K∗

‖νK∗‖K dHN−1, (6.2)

where νΩ is the outer normal versor5 to ∂Ω. Equality holds in the previous if and only if Ω = x0 + sK∗, for
some x0 ∈ R

N and s > 0. Inequality (6.2) is nothing but a generalization of the classical isoperimetric one and
it is of course an essential ingredient of (6.1). The boundary integral appearing in (6.2) is called anisotropic
perimeter and for K∗ we have the simple formula∫

∂K∗
‖νK∗‖K dHN−1 = N |K∗|, (6.3)

as in the Euclidean case. A good reference for (6.2) is the recent paper [11], where stability issues are addressed
as well.

By suitably adapting the rearrangement technique of Kohler−Jobin, one can obtain the following generaliza-
tion of Theorem 1.1.

Theorem 6.1. Let 1 < p <∞ and q satisfying (1.4). Then

TKp (Ω)α(p,q,N) λKp,q(Ω) ≥ TKp (K∗)α(p,q,N) λKp,q(K
∗), (6.4)

and equality holds if and only if Ω coincides with the polar body K∗, up to translations and dilations.

The proof is exactly the same as in the Euclidean case, it is sufficient to use Proposition 6.5 below, which
is nothing but the anisotropic counterpart of Proposition 4.1. In the remaining part of the section, we list the
main changes needed for the definition of the anisotropic Kohler−Jobin rearrangement and for the proof of its
properties.

First of all, we need the expression of the p-torsional rigidity of the “unit ball” K∗.

Lemma 6.2. The unique solution to the problem

max
u∈W 1,p

0 (K∗)

∫
K∗

u dx− 1
p

∫
K∗

‖∇u‖pK dx, (6.5)

is given by

uK∗(x) =
1 − ‖x‖

p
p−1
K∗

βN,p
, where βN,p =

p

p− 1
N

1
p−1 .

In particular we have

TKp (K∗) =
[
|K∗|
βN,p

p

N(p− 1) + p

]p−1

. (6.6)

5Here we are a little bit vague about the smoothness assumptions on Ω, since we will not really need this result in what follows.
We just mention that (6.2) is naturally settled in the class of set having finite perimeter in the De Giorgi sense.
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Proof. The uniqueness of the solution for (6.5) simply follows by the strict concavity of the functional6. For
simplicity, let us now introduce the notation

H(x) = ‖x‖K and H∗(x) = ‖x‖K∗ ,

and observe that the Euler–Lagrange equation for problem (6.5) is∫
K∗

Hp−1(∇u) 〈∇H(∇u),∇ϕ〉dx =
∫
K∗

ϕdx, ϕ ∈W 1,p
0 (K∗).

By inserting the function uK∗ defined above and using the relations (see [25])

H(∇H∗(x)) = 1 and ∇H(∇H∗(x)) =
x

H∗(x)
, x ∈ K∗, (6.7)

we then obtain that uK∗ solves this equation and thus is the p-torsion function.
In order to compute the exact value of TKp (K∗) we can use the following trick. First of all, by using the

expression of uK∗ we have ∫
K∗

uK∗ dx =
|K∗|
βN,p

− 1
βN,p

∫
K∗

H∗(x)
p

p−1 dx.

On the other hand, by using uK∗ as a test function in the Euler-Lagrange equation and appealing to (6.7), we
obtain ∫

K∗
uK∗ dx =

∫
K∗

H(∇u)p dx =
(

p

p− 1
1

βN,p

)p ∫
K∗

H∗(x)
p

p−1 dx.

By comparing the two previous expressions we can compute the value of
∫
K∗H∗(x)

p
p−1 dx. This finally gives

the desired expression for TKp (K∗), since

TKp (K∗) =
(∫

K∗
uK∗ dx

)p−1

,

as in Proposition 2.2. �

We can still characterize the modified torsional rigidity in terms of the distribution function and of the
(anisotropic) Coarea factor. This is the content of the next result.

Proposition 6.3. Let u ∈ Ap(Ω) be a reference function for Ω. Then the modified torsional rigidity is given by

TKp,mod(Ω;u) =

⎡⎢⎢⎢⎢⎢⎣
∫ M

0

μ(t)
p

p−1(∫
{u=t}

‖∇u‖p−1
K

∥∥∥∥ ∇u
|∇u|

∥∥∥∥
K

dHN−1

) 1
p−1

dt

⎤⎥⎥⎥⎥⎥⎦
p−1

. (6.8)

Proof. It is sufficient to use the Coarea Formula in the following form∫
Ω

‖∇u‖pK dx =
∫ M

0

∫
{u=t}

‖∇u‖p−1
K

∥∥∥∥ ∇u
|∇u|

∥∥∥∥
K

dHN−1 dt.

6Here enters the assumption of strict convexity on K.
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Also observe that since in R
N all norms are equivalent, if u is a reference function we also have that

t 	→ μ(t)∫
{u=t}

‖∇u‖p−1
K

∥∥∥∥ ∇u
|∇u|

∥∥∥∥
K

dHN−1

∈ L∞([0,M ]).

These two modifications permit to conclude the proof as before. �

Proposition 6.4. Let Ω ⊂ R
N be an open set having finite measure and u ∈ Ap(Ω) a reference function. If

K̃∗ ⊂ R
N is a scaled copy of K∗ such that

TKp (K̃∗) = TKp,mod(Ω;u),

then we have
|K̃∗| ≤ |Ω|.

We have equality if and only if Ω is a translated and scaled copy of K∗ and u coincides with a (translate of a)
function of the form x 	→ h(‖x‖K∗).

Proof. This is a consequence of the Saint-Venant inequality for the anistropic torsional rigidity, i.e.

|Ω|1−
p
N −p TKp (Ω) ≤ |K∗|1−

p
N −p TKp (K∗),

which in turn follows from the Pólya-Szegő principle (6.1) for the convex rearrangement. Thanks to the result
of [9,10], equality is attained if and only if Ω = x+ sK∗, then the proof of the second part of the statement is
as in Proposition 3.8. �

Finally, we define the Kohler−Jobin rearrangement, which still keeps the Dirichlet integral fixed and increases
the Lq norms of a function. This permits to prove Theorem 6.1.

Proposition 6.5. Let 1 < p < ∞ and let Ω ⊂ R
N be an open set having finite measure. Given a reference

function u ∈ Ap(Ω), let K̃∗ be a scaled copy of the polar body K∗ such that

TKp,mod(Ω;u) = TKp (K̃∗).

Then there exists a function u∗ ∈W 1,p
0 (K̃∗) such that its superlevel sets are scaled copies of K∗ and∫

K̃∗
|∇u∗|p dx =

∫
Ω

|∇u|p dx and
∫
K̃∗

f(u∗) dx ≥
∫
Ω

f(u) dx, (6.9)

for every function f : [0,∞) → [0,∞) strictly convex and such that f(0) = 0.

Proof. The proof runs exactly as in Proposition 4.1, up to some relevant changes that we list below. First of
all, we observe that the modified torsional rigity of Ωt according to (u − t)+ is now given by

TK(t) =

⎡⎢⎢⎢⎢⎢⎣
∫ M

t

μ(τ)
p

p−1(∫
{u=t}

‖∇u‖p−1
K

∥∥∥∥ ∇u
|∇u|

∥∥∥∥
K

dHN−1

) 1
p−1

dτ

⎤⎥⎥⎥⎥⎥⎦
p−1

, t ∈ [0,M ].

Then we can infer again ∫
Ω

‖∇u‖p dx = (p− 1)p−1

∫ T

0

τp−2 μ(ϕ(τ))p (−ϕ′(τ))p dτ, (6.10)
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where now ϕ is the inverse function of TK . As before, we define the new “radial” function

u∗(x) = ψ(τ), if ‖x‖K∗ = R(τ),

where for every τ ∈ [0, T ] the “radius” R(τ) is such that

TKp (R(τ)K∗) = τ.

In other words R(τ)K∗ is the unique scaled copy of the polar body K∗ having torsional rigidity equal to τ .
Observe that from the previous we have the relation

R(τ) =
(

τ

TKp (K∗)

) 1
N (p−1)+p

,

and TKp (K)∗ is the constant depending only on K,N and p given by (6.6). By construction we get

‖∇u∗(x)‖K = (N(p− 1) + p)TKp (K∗) (−ψ′(τ))R(τ)N(p−1)+p−1, if ‖x‖K∗ = R(τ),

so that, with a small abuse of notation, we obtain∫
{u∗=ψ(τ)}

‖∇u‖p−1
K

∥∥∥∥ ∇u∗
|∇u∗|

∥∥∥∥
K

dHN−1 = ‖∇u∗(R(τ))‖p−1
K

∫
{u∗=ψ(τ)}

‖ν‖K dHN−1.

Here ν is the outer normal to the set {u∗ > ψ(τ)}, the latter being R(τ)K∗. Then the integral on the right-hand
side is nothing but the anisotropic perimeter of this set, which is homothetic to K∗. By (6.3) we can infer∫

{u∗=ψ(τ)}
‖ν‖K dHN−1 = N R(τ)N−1 |K∗|.

By keeping everything together, we get∫
{u∗=ψ(τ)}

‖∇u‖p−1
K

∥∥∥∥ ∇u∗
|∇u∗|

∥∥∥∥
K

dHN−1 = (N(p− 1) + p)p−1 TKp (K∗)p−1 (−ψ′(τ))p−1

× R(τ)(N+1)(p−1)2+N−1N |K∗|,

so that after some some simplifications we obtain∫
B

|∇u∗|p dx = (p− 1)p−1

∫ T

0

τp−2 μ∗(ψ(τ))p (−ψ′(τ))p dτ.

Then we can define once again ψ through (4.5). The resulting function u∗ has the desired properties, the proof
being exactly the same as in Proposition 4.1. �
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