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MINIMISING CONVEX COMBINATIONS OF LOW EIGENVALUES ∗
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Abstract. We consider the variational problem

inf{αλ1(Ω) + βλ2(Ω) + (1 − α − β)λ3(Ω) | Ω open in R
n, |Ω| ≤ 1},

for α, β ∈ [0, 1], α + β ≤ 1, where λk(Ω) is the kth eigenvalue of the Dirichlet Laplacian acting in
L2(Ω) and |Ω| is the Lebesgue measure of Ω. We investigate for which values of α, β every minimiser
is connected.
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1. Introduction

Let Ω ⊂ R
n be an open set with finite Lebesgue measure |Ω| and {(λk(Ω), uk(Ω))}k≥1 denote respectively

the eigenvalues and the eigenfunctions of the Dirichlet Laplacian acting in L2(Ω) counted with their multiplicity,
satisfying {−Δuk = λk(Ω)uk in Ω

uk = 0 on ∂Ω.

The following min-max formula holds for eigenvalues ([12], Sect. 1.3),

λk(Ω) = min
Ek⊂H1

0(Ω)

k−dimensional subspace

max
u∈Ek

‖Du‖2
L2(Ω)

‖u‖2
L2(Ω)

, k ∈ N, (1.1)

with the above ratio called the Rayleigh quotient. For general references about eigenvalues of Dirichlet Laplacian
see for example [11, 12].

In this paper we are interested in the following variational problem:

inf{F(Ω) := αλ1(Ω) + βλ2(Ω) + (1 − α− β)λ3(Ω) | Ω open in R
n, |Ω| ≤ 1}, (1.2)
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for α, β ∈ [0, 1] such that α+β ≤ 1. We recall that the following scaling properties hold for an open set Ω ⊂ R
n:

|tΩ| = tn|Ω|, ∀t > 0 and λk(tΩ) = t−2λk(Ω) for all k ∈ N, (1.3)

hence it is clear that the unit measure in the constraint |Ω| ≤ 1 is for convenience only; everything works in the
same way for any other positive constant. Moreover, thanks to (1.3), an optimal set must satisfy the equality in
the measure constraint. The existence of a quasi-open minimiser for (1.2) follows from Theorem A of the recent
paper [13].

The aim of this paper is to show that any minimiser for (1.2) is connected for a range of values of α, β, and
to discuss the remaining cases.

When α = 1 and β = 0, problem (1.2) reduces to the minimisation of the first eigenvalue, which is a
very interesting topic studied first by Lord Rayleigh in the 19th century. Faber and Krahn proved (see [12],
Thm. 3.2.1) that:

λ1(Ω) ≥ λ1(B)
( |B|
|Ω|

)2/n

, (1.4)

where B is the ball of unit measure in R
n, and with equality if and only if Ω is any ball (up to sets of capacity

zero). Hence in this case there is an unique minimiser – the ball – which is connected in every dimension. On
the other hand, if we consider the case of α = 0 and β = 1, which means that we are minimising the second
eigenvalue, the Krahn−Szegö inequality (see [12], Thm. 4.1.1) asserts that

λ2(Ω) ≥ 22/nλ1(B)
( |B|
|Ω|

)2/n

, (1.5)

with equality if and only if Ω is any disjoint union of two balls of equal measure. Thus in this case the minimiser
-two disjoint equal balls- is disconnected in each dimension. We will denote the union of two disjoint balls each
of half measure by Θ.

Very little is known about the other cases: Wolf and Keller in [16] proved that in dimension n = 2, 3 any
minimiser for λ3(Ω) (which corresponds to α = β = 0 in (1.2)) is connected, by showing that the ball has lower
third eigenvalue than any disconnected set of the same measure. Moreover they conjectured the ball to be the
minimiser for λ3(Ω) in R

2. Connectedness of minimisers for individual eigenvalues is studied in [5].
Before stating the main results, we define some constants which will be useful in the following.
Throughout this paper let αn satisfy

αn =
λ2(B) − 22/nλ1(B)
λ2(B) − λ1(B)

for n = 2, 3, 4, and be the infimum of the numbers that satisfies

α

⎡⎣((1 − α

α

)n/(n+2)

+ 1

)2/n

− 1

⎤⎦+ (1 − α)

⎡⎣(( α

1 − α

)n/(n+2)

+ 1

)2/n

− λ2(B)
λ1(B)

⎤⎦ > 0,

for n ≥ 5. Let β2 = 2 − λ2(B)
2λ1(B) , β3 be the supremum of the numbers in the range

(
1
3 ,

22/3

1+22/3

)
, satisfying

β

[
22/5

(
1 − β

β

)3/5

+ 1

]2/3

+ 22/3(1 − β)

[
2−2/5

(
β

1 − β

)3/5

+ 1

]2/3

− λ2(B)
λ1(B)

> 0,

and let βn = 0 for n ≥ 4. Finally let γ2 = γ3 = 0 and let γn for n ≥ 4 be the infimum of the numbers satisfying

γ

⎡⎣(1 +
(
λ1(B)
λ2(B)

)n/2
)2/n

− 1

⎤⎦+ (1 − γ)
[
32/n − λ2(B)

λ1(B)

]
> 0.
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The appoximate values for n = 2, 3, 4 are:

n αn βn γn

2 0.350 0.730 0
3 0.439 0.476 0
4 0.479 0 0.311

We are now in position to state the main theorems, the first one in general dimension, with the second giving
additional information about the two dimensional case.

Theorem 1.1. Any minimiser of (1.2) is connected for each of the cases

(i) α+ β = 1, α > 0;
(ii) αn < α ≤ 1;
(iii) 0 < β < βn(1 − α);
(iv) β = 0, γn < α ≤ 1.

Remark 1.2. For n = 2, Theorem 1.1 states that every minimiser for (1.2) is connected in each of the cases:

(i) α+ β = 1, α > 0;
(ii) 0.350 ≈ α2 < α ≤ 1;
(iii) 0 ≤ β < β2(1 − α) ≈ 0.730(1− α),

Theorem 1.3. Let n = 2.

(a) Any disconnected minimiser of (1.2) satisfies λ1(Ω) = λ2(Ω) and has exactly two components.
(b) If any minimiser of (1.2) is connected for α = 0 and each β ∈ [0, 1), then any minimiser is connected unless

β = 1.

From Remark 1.2 and Theorem 1.3 it is quite natural to make the following conjecture.

Conjecture 1.4. Let n = 2; a minimiser for the problem (1.2) can not be disconnected unless β = 1.

In a recent paper by Osting and Kao [14], there are numerical results that support Conjecture 1.4: the numerically
computed optimal domain for problem (1.2) has one connected component unless α = 0 and β = 1. Moreover
the numerical computations also suggest that in the region {(α, β) : α+ β ≤ 1} the optimal solution is a ball,
while for all the other (α, β)-values (except of course (α, β) = (0, 1)) the first four eigenvalues of the optimal
domain are each simple. It is interesting to note that this last numerical result, together with Theorem 1.3 (a)
supports Conjecture 1.4, too.

This paper is organised as follows. In Section 2 we recall the values for the eigenvalues of the ball and prove
that a disjoint union of two balls can not be optimal for (1.2) unless β = 1. Section 3 contains the proof
of Theorem 1.1, while in Section 4 we focus on the two dimensional case: after showing that a disconnected
minimiser has at most two connected components and must have multiple eigenvalues, we prove Theorem 1.3.

2. Preliminaries

First of all we recall the value of the eigenvalues for the unit ball B, which we will use many times for
calculations: λ1(B) = ω

2/n
n j2n/2−1, and λ2(B) = . . . = λn+1(B) = ω

2/n
n j2n/2, where ωn denotes the volume of

the ball of unit radius in R
n, and jν is the first positive zero of the Bessel function Jν . The approximate values

of the zeros of Bessel functions can be found in [1]; we will always consider only three decimal digits. In R
2

we have λ1(B) ≈ 18.168 and λ2(B) = λ3(B) ≈ 46.125. Throughout the paper we will for convenience define
the value m0 = λ1(B)

λ2(B) , while the values of m1,m2 will denote, respectively, the lower and the upper bound for
the measure of a connected component. We will use in Section 4 a couple of fundamental results obtained by
Ashbaugh and Benguria in [2, 3]; we restate them here.
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Theorem 2.1. The ball maximises the ratio λ2/λ1, that is:

λ2(Ω)
λ1(Ω)

≤ λ2(B)
λ1(B)

for all open sets Ω ⊂ R
n. (2.1)

Moreover two equal disjoint balls maximise the ratio λ3/λ2, hence

λ3(Ω)
λ2(Ω)

≤ λ3(Θ)
λ2(Θ)

=
λ2(B)
λ1(B)

for all open sets Ω ⊂ R
n. (2.2)

In Sections 3 and 4 Ω it is used to denote an optimal disconnected candidate for a minimiser. Note that for
disconnected sets the eigenvalues are obtained by collecting and reordering the eigenvalues of the components
(see [12], Rem. 1.2.4). In view of that we give the following definition.

Definition 2.2. We say that the kth eigenfunction uk is supported on a component G of Ω when λk(Ω) = λi(G),
for some i ≤ k. Moreover we write that G supports l eigenvalues if it has l eigenvalues less than or equal to the
largest eigenvalue of Ω that we are minimising.

Note that a minimiser for (1.2) must have at least one of the first three eigenfunctions supported on each
component.

An important component in the proof of Theorem 1.1 is the following lemma.

Lemma 2.3. Let n ≥ 2. The disjoint union of two balls can be optimal for (1.2) only if β = 1.

Proof. The idea of the proof is that letting the two disjoint equal balls slightly overlap we obtain a better
candidate for a minimiser of (1.2), because the increase in the second eigenvalue is less than the decrease in the
first and the third. We divide the proof in two steps, treating first the case of two balls with equal measure,
then the case of balls with different size.

Step I. Let B(ε) = B(0, 1)∩ {x | x1 < 1− ε} and Ω(ε) = B(0, 1)∪B(2(1− ε)e1, 1), where x = (x1, x2, . . . , xn)
and e1 is the unit vector in the x1 direction. Moreover Ω̃(ε) = |Ω(ε)|− 1

nΩ(ε) is the set rescaled to unit measure.
It follows from Theorem 1 in [4] that

λ1(B(ε))|B(ε)|2/n = λ1(B)|B|2/n + o
(
ε(n+1)/2

)
. (2.3)

Since eigenvalues of Dirichlet Laplacian are monotone with respect to set inclusion, we have λ1(Ω(ε)) < λ1(B)
and λ3(Ω(ε)) < λ2(B). Thus taking scaling into account gives λ1(Ω̃(ε)) < λ1(Θ) − c1ε

(n+1)/2 and λ3(Ω̃(ε)) <
λ3(Θ) − c2ε

(n+1)/2, for some positive constants c1, c2, reminding that λ2(B) = λ3(B), λ1(Θ) = 22/nλ1(B)
and λ3(Θ) = 22/nλ2(B). By the min-max principle (1.1) we can obtain an upper bound for λ2(Ω(ε)) by
choosing the subspace E2 ⊂ H1

0 (Ω) spanned by the first eigenfunction of B(ε) and the first eigenfunction of
Ω(ε) ∩ {x | x1 > 1 − ε}. Hence λ2(Ω(ε)) ≤ λ1(B(ε)), so we can apply (2.3) and use the scaling (1.3) to obtain
λ2(Ω̃(ε)) ≤ λ2(Θ) + o(ε(n+1)/2).

For β < 1 and for sufficiently small ε > 0, this gives

αλ1(Ω̃(ε)) + βλ2(Ω̃(ε)) + (1 − α− β)λ3(Ω̃(ε))
< αλ1(Θ) + βλ2(Θ) + (1 − α− β)λ3(Θ).

Step II. Let r1 > r2 and Ω be the disjoint union of two balls with radii r1, r2 such that the first two eigenfunc-
tions are supported on different components. We write Ω̃ = |Ω|− 1

nΩ for the set rescaled to unit measure. Then
we define

Br1 = B(0, r1), Br2 = B

((
r1 + r2 − ε

2

(
1
r1

+
1
r2

))
e1, r2

)
, Ω(ε) = Br1 ∪Br2 ,

B1(ε) = Br1 ∩
{
x | x1 < r1 − ε

2r1

}
, B2(ε) = Br2 ∩

{
x | x1 > r2 − ε

2r2

}
·

Figure 1 represents a possible configuration of the sets above.
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x1

Br2Br1

x2

B2(ε)B1(ε)

r1 − ε
2r1

r1 + r2 − ε
2r1

− ε
2r2

Figure 1. The sets Br1 , Br2 , B1(ε) and B2(ε).

By monotonicity of Dirichlet eigenvalues with respect to set inclusion, we have λ1(Ω(ε)) < λ1(Br1) and
λ3(Ω(ε)) < λ2(Br1), and again taking account of the scaling we have λ1(Ω̃(ε)) < λ1(Ω̃) − c1ε

(n+1)/2 and
λ3(Ω̃(ε)) < λ3(Ω̃) − c2ε

(n+1)/2, for some positive constants c1, c2.
By the min-max principle (1.1), we can obtain an upper bound for λ2(Ω(ε)) by choosing E2 ⊂ H1

0 (Ω)
spanned by the first eigenfunction of Br2 and the first eigenfunction of Ω(ε) \ Br2 , and for ε small enough
we have λ1(Br2) ≤ λ1(Ω(ε) \ Br2). Hence λ2(Ω(ε)) ≤ λ1(Br2), and taking account of the scaling λ2(Ω̃(ε)) ≤
λ2(Ω̃)− c3ε(n+1)/2, for some positive c3. In conclusion, for β < 1 and ε small enough, Ω̃(ε) is a better candidate
than Ω̃ for problem (1.2). �

This last remark will be useful in Sections 3 and 4.

Remark 2.4. Let n = 2, 3. A disconnected set Ω can never be optimal for (1.2) if λ2(Ω) ≥ λ2(B). Here the
ball is better, since λ1(B) < λ1(Ω) by the Faber−Krahn inequality and λ3(B) < λ3(Ω) by ([12], Cor. 5.2.2).

3. The general case

This section is completely devoted to the proof of Theorem 1.1. Before starting the proof we note that if a
connected component of the optimal disconnected set supports only one of the first three eigenfunctions, then
by the Faber−Krahn inequality it must be a ball of the same measure. We remind that we call (ui)i=1,2,3 the
eigenfunctions related to the eigenvalues (λi)i=1,2,3.

Proof of Theorem 1.1 (i). We deal with the case α + β = 1, that is, we consider the functional αλ1(·) + (1 −
α)λ2(·). Note that this result for R

2 is also discussed in ([15], Chap. 2), but the details of a proof are not given.
A disconnected minimiser Ω must by the Faber−Krahn inequality be the union of two disjoint balls, since we
are considering only the first two eigenvalues. Hence an immediate application of Lemma 2.3 rules out this
configuration in any dimension when α > 0, so we conclude. �

Proof of Theorem 1.1 (ii). We need a different argument from the one above, but start again from the case
α + β = 1. The case α = 1 was already solved by the Faber−Krahn inequality (1.4). Again a disconnected
minimiser Ω must be the union of two disjoint balls. Without loss of generality, we suppose that the ball
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supporting u1 has measure m ≤ 1, while the other one (supporting u2) has measure 1−m. Having in mind the
scaling of eigenvalues, it is clear that m ≥ 1/2 and we have

αλ1(Ω) + (1 − α)λ2(Ω) = λ1(B)
(

α

m2/n
+

1 − α

(1 −m)2/n

)
·

First of all we consider the case when α ∈ (1
2 , 1). By minimising in m in the previous expression to obtain a

lower bound and comparing with the value for the unit ball rules out this configuration if

αλ1(B)

[(
1 − α

α

)n/(n+2)

+ 1

]2/n

+ (1 − α)λ1(B)

[(
α

1 − α

)n/(n+2)

+ 1

]2/n

(3.1)

> αλ1(B) + (1 − α)λ2(B),

that is, when the function fn : (0, 1) → R,

fn(α) = α

⎧⎨⎩
[(

1 − α

α

) n
n+2

+ 1

] 2
n

− 1

⎫⎬⎭+ (1 − α)

⎧⎨⎩
[(

α

1 − α

) n
n+2

+ 1

] 2
n

− λ2(B)
λ1(B)

⎫⎬⎭ (3.2)

is positive. The following property of fn(α) is important for our analysis.
Claim A. For every n ∈ N, there exists αn ∈ (0, 1) such that

fn(α) < 0 if α ∈ (0, αn) and fn(α) > 0 if α ∈ (αn, 1).

Proof of Claim A. We introduce the increasing function ψ : [0, 1) → [0,∞):

ψ(α) =
α

1 − α
,

and φn : (0,∞) → R

φn(t) = t

⎧⎨⎩
[(

1
t

) n
n+2

+ 1

] 2
n

− 1

⎫⎬⎭+
{[
t

n
n+2 + 1

] 2
n − λ2(B)

λ1(B)

}
,

so that fn(α) = (1 − α)φn(ψ(α)), for α ∈ (0, 1). Hence the sign of fn in the interval (0, 1) is the same as that
of φn in the interval (0,∞). We note that φn is the sum of two functions, where the second one,

t → (
t

n
n+2 + 1

) 2
n − λ2(B)

λ1(B)
,

is strictly increasing. The first one,

t → t

⎧⎨⎩
[(

1
t

) n
n+2

+ 1

] 2
n

− 1

⎫⎬⎭ = φ1
n(t),

is also strictly increasing, since we have:

d
dt
φ1

n(t) =

⎧⎨⎩
[(

1
t

) n
n+2

+ 1

] 2
n

− 1

⎫⎬⎭− 2
n+ 2

t−
n

n+2

[(
1
t

) n
n+2

+ 1

] 2
n−1

,
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that is positive when

1 +
n

n+ 2
t−

n
n+2 >

[(
1
t

) n
n+2

+ 1

]1− 2
n

.

The above inequality holds, since t → t1−2/n is concave and thus[(
1
t

) n
n+2

+ 1

]1− 2
n

< 1 +
n− 2
n

(
1
t

) n
n+2

< 1 +
n

n+ 2

(
1
t

) n
n+2

,

where we used also the inequality (n− 2)/n < n/(n+ 2). So φn is the sum of two strictly increasing functions
and thus it has the same property. Hence φn can change sign only once in (0,∞). We note that

lim
t→0+

φn(t) = 1 − λ2(B)
λ1(B)

< 0 and lim
t→∞φn(t) = +∞,

so there exists an unique tn ∈ (0,∞) such that

φn(t) < 0 if t ∈ (0, tn) and φn(t) > 0 if t ∈ (tn,∞).

In conclusion the thesis follows setting αn = ψ−1(tn). �

Keep in mind that, for all n ≥ 2, fn(α) > 0 if and only if (3.1) holds for α. We can compute

f2

(
1
2

)
=

1
2

(
(1 + 1) − 1

)
+

1
2

[
(1 + 1) − λ2(B)

λ1(B)

]
≈ 0.230 > 0,

f3

(
1
2

)
=

1
2

(
(1 + 1)2/3 − 1

)
+

1
2

[
(1 + 1)2/3 − λ2(B)

λ1(B)

]
≈ 0.065 > 0,

f4

(
1
2

)
=

1
2

(
(1 + 1)1/2 − 1

)
+

1
2

[
(1 + 1)1/2 − λ2(B)

λ1(B)

]
≈ 0.016 > 0,

where we used that

λ2(B)
λ1(B)

≈

⎧⎪⎨⎪⎩
2.539 if n = 2,
2.044 if n = 3,
1.796 if n = 4.

Then, by Claim A, for n ≤ 4 we have that αn < 1/2, since fn(1/2) > 0. Hence fn(α) > 0 for all α ∈ (1/2, 1)
and thus (3.1) holds in that range.

When n ≥ 5, we define α̃n = inf {α ∈ (1/2, 1) | (3.1) holds} and Claim A assures that (3.1) is true for all
α ∈ (α̃n, 1).

Now we deal with the case when α ∈ (0, 1
2 ]. The constraint m ≥ 1/2 implies that the optimal disconnected

configuration consists in two disjoint balls of equal measure, since in this case we have

λ1(B)22/n = αλ1(Θ) + (1 − α)λ2(Θ) < λ1(B)
(

α

m2/n
+

1 − α

(1 −m)2/n

)
·

This is ruled out by comparison with the unit ball when

λ1(B)22/n > αλ1(B) + (1 − α)λ2(B), (3.3)

and we call, for n ≤ 4, α̂n = λ2(B)−2
2
n λ1(B)

λ2(B)−λ1(B) , so that if α ∈ (α̂n, 1/2], then (3.3) holds. On the other hand, if
n ≥ 5, (3.3) is never true.
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In conclusion, putting together the discussion for α ∈ (0, 1/2] and for α ∈ (1/2, 1), we have that

(a) For n ≤ 4 the ball is a better candidate for problem (1.2) than any disconnected minimiser if α ∈ (α̂n, 1/2]∪
(1/2, 1).

(b) For n ≥ 5 the ball is a better candidate for problem (1.2) than any disconnected minimiser if α ∈ (α̃n, 1).

Thus we define αn = α̃n if n ≥ 5 and αn = α̂n if n ≤ 4; hence we have that the ball is better than any
disconnected set for 1 ≥ α > αn.

Finally to extend beyond the situation α+ β = 1, just note that for 1 ≥ α > αn

αλ1(Ω) + βλ2(Ω) + (1 − α− β)λ3(Ω) ≥ αλ1(Ω) + (1 − α)λ2(Ω)
> αλ1(B) + (1 − α)λ2(B) = αλ1(B) + βλ2(B) + (1 − α− β)λ3(B),

using the fact that λ2(Ω) ≤ λ3(Ω) while λ2(B) = λ3(B), so we conclude. �

Proof of Theorem 1.1 (iii). The case α = 0. We first consider the case α = 0, that is, we deal with the functional
βλ2(·) + (1 − β)λ3(·). First of all we find out the best disconnected configuration.

Claim B. Let α = 0. A disconnected minimiser is made by a ball supporting u2 and another set supporting u1

and u3.

Proof of Claim B. At first, we consider the configuration made by a set supporting u1, u2 and a ball support-
ing u3. Since λ1 does not appear in the functional, it is better to have three balls by applying Krahn−Szegö in-
equality (1.5) to the set supporting u1 and u2. Note that the new set, made by three disjoint balls, is as in the
statement of the claim.

On the other hand an optimal configuration made by a ball supporting u1 and by another set supporting u2,
u3 should satisfy λ1(Ω) = λ2(Ω), since λ1 is not involved in the minimisation. Up to switch λ1 and λ2, we are
in a configuration made by a ball supporting u2 and another set supporting u1, u3 so the claim is proved. �

Thanks to Claim B, it remains only to rule out a disconnected minimiser made by a ball supporting u2, which
we suppose to have measure m (hence λ2(Ω) = λ1(B)

m2/n ) and a set supporting u1 and u3 (which must have
measure 1 −m). Unfortunately, we are able to find out informations only when n = 2, 3. First of all we note
that m ≤ 1/2, otherwise, by the Faber−Krahn inequality, λ1(Ω) > λ2(Ω). Moreover, using Remark 2.4, it must
happen that λ2(B) > λ2(Ω), which implies

λ1(B)
m2/n

< λ2(B), that is, m >

(
λ1(B)
λ2(B)

)n/2

, (3.4)

that assures m ≥ 1/3 for n = 2, 3. For β ∈ [0, 1), the Krahn−Szegö inequality gives the lower bound

βλ2(Ω) + (1 − β)λ3(Ω) ≥ λ1(B)
(

β

m2/n
+

22/n(1 − β)
(1 −m)2/n

)
· (3.5)

We are interested in minimising the left hand side of (3.5) with respect to m, in order to improve the lower
bound. We define

m(β) =

[
22/(n+2)

(
1 − β

β

)n/(n+2)

+ 1

]−1

,

and note that the right hand side of (3.5) is decreasing in (0,m(β)) and increasing in (m(β),∞). Moreover, we
have that

m(β) ≤ 1
3

if β ∈
[
0,

1
3

]
and m(β) ≥ 1

2
if β ∈

[
2

2
n

1 + 2
2
n

, 1

)
,
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so that (from the constraints on m) in this two ranges the right hand side of (3.5) is minimal for m = 1/3 and

m = 1/2 respectively. On the other hand, when β ∈
(

1
3 ,

2
2
n

1+2
2
n

)
, the right hand side of (3.5) is minimal for

m = m(β).
We are now in position to compare the lower bound for βλ2(Ω)+(1−β)λ3(Ω) with βλ2(B)+(1−β)λ3(B) =

λ2(B).
For β ∈ [0, 1/3] we have

λ2(B) < 3
2
nλ1(B) ≤ βλ2(Ω) + (1 − β)λ3(Ω),

hence in this range, for n = 2, 3, the ball is a better candidate than any disconnected set for problem (1.2).
Now we deal with the case when β ∈

(
1
3 ,

22/n

1+22/n

)
. Substituting the optimal values for m in (3.5) and

comparing with βλ2(B) + (1 − β)λ3(B) = λ2(B) gives connectedness for the whole range when n = 2, since

λ2(B) < λ1(B)

[
β

(√
2(1 − β)

β
+ 1

)
+ 2(1 − β)

(√
β

2(1 − β)
+ 1

)]
∀β ∈

(
1
3
,
2
3

)
·

On the other hand, for n = 3, we have connectedness when

λ2(B) < λ1(B)

⎧⎨⎩β
[
22/5

(
1 − β

β

)3/5

+ 1

]2/3

+ 22/3(1 − β)

[
2−2/5

(
β

1 − β

)3/5

+ 1

]2/3
⎫⎬⎭ . (3.6)

In order to study this situation, we start by considering the function g : (0, 1) → R

g(β) = β

[
22/5

(
1 − β

β

)3/5

+ 1

]2/3

+ 22/3(1 − β)

[
2−2/5

(
β

1 − β

)3/5

+ 1

]2/3

− λ2(B)
λ1(B)

,

and note that (3.6) holds for a β ∈
(

1
3 ,

22/3

1+22/3

)
if and only if g(β) > 0. The function g is concave in its whole

domain (0, 1), since it is possible to compute

g′′(β) = −
(

29/5

25
β−11/5(1 − β)−2/5

)[
22/5

(
1 − β

β

)3/5

+ 1

]−4/3

− 29/5

25

(
β−3/5(1 − β)−7/5 + β−8/5(1 − β)−2/5

)[
22/5

(
1 − β

β

)3/5

+ 1

]−1/3

− 213/15

25
β−4/5(1 − β)−11/5

[
2−2/5

(
β

1 − β

)3/5

+ 1

]−4/3

− 234/15

25

(
β−2/5(1 − β)−8/5 + β−7/5(1 − β)−3/5

)[
2−2/5

(
β

1 − β

)3/5

+ 1

]−1/3

< 0.

Moreover we have that

g(1/3) ≈ 0.036 > 0, while g

(
22/3

1 + 22/3

)
≈ −0.094 < 0,

hence we define β3 = sup
{
β ∈

(
1
3 ,

22/3

1+22/3

)
| g(β) > 0

}
and notice that the set{

β ∈
(

1
3
,

22/3

1 + 22/3

)
| (3.6) holds

}
= (1/3, β3)

is a nonempty interval.
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At last, we consider also the case when β ∈
[

22/n

1+22/n , 1
)
. As we pointed out above, here we obtain the

minimum in the right hand side of (3.5) for m = 1/2. Comparing again with the functional for the ball, in the
two dimensional case, we have connectedness when 2/3 ≤ β < β2, since we have

λ2(B) < 2(2 − β)λ1(B).

On the other hand, unfortunately, we do not obtain additional informations when n = 3.
Putting all the above information together, we conclude connectedness for:

n = 2 : β ∈ [0, β2) ≈ [0, 0.730),
n = 3 : β ∈ [0, β3) ≈ [0, 0.476).

The case 0 < β < βn(1 − α). Recall from the above (case α = 0) that

ηλ2(Ω) + (1 − η)λ3(Ω) > ηλ2(B) + (1 − η)λ3(B),

for η ∈ [0, βn). This implies, with the choice η = β
1−α ,

β

1 − α
λ2(Ω) +

(1 − α− β)
1 − α

λ3(Ω) >
β

1 − α
λ2(B) +

(1 − α− β)
1 − α

λ3(B),

for β
1−α ∈ [0, βn), and so

βλ2(Ω) + (1 − α− β)λ3(Ω) > βλ2(B) + (1 − α− β)λ3(B),

for β ∈ [0, βn(1 − α)). Together with λ1(Ω) ≥ λ1(B) this concludes the proof of Theorem 1.1 (iii). �

Proof of Theorem 1.1 (iv): the case β = 0. We finally consider the case β = 0, that is, we deal with the func-
tional αλ1(·) + (1 − α)λ3(·). To prove connectedness we first look for the best disconnected set.

Claim C. Let β = 0. A disconnected minimiser is made by a ball supporting u3 and another set supporting
u1, u2.

Proof of Claim C. First of all we note that a configuration with a ball supporting the first eigenfunction and a
set supporting the others would be three balls using the Krahn−Szegö inequality (1.5) on this last set. A set
made by three balls is as required in the claim.

On the other hand an optimal configuration with a ball supporting the second eigenvalue would have λ2(Ω) =
λ3(Ω), as scaling down the ball to obtain this does not effect λ1(Ω), λ3(Ω). Up to switch λ2 and λ3 we are in a
configuration with a ball supporting u3 and another set supporting u1, u2. So the claim is proved. �

We can now focus on a disconnected set made by a ball with measure m supporting u3 and a set (with
measure 1 −m) supporting u1, u2; we aim to rule it out. This is done by obtaining lower bounds for the first
and third eigenvalues and using comparison with a ball. By the scaling (1.3), we have λ3(Ω) = λ1(B)

m2/n , while the
Faber−Krahn and the Krahn−Szegö inequalities respectively give

λ1(Ω) ≥ λ1(B)
(1 −m)2/n

and
λ1(B)
m2/n

= λ3(Ω) ≥ λ2(Ω) ≥ 22/n λ1(B)
(1 −m)2/n

, (3.7)

which implies 1
m ≥ 3, and so m ≤ 1

3 . By [12], Corollary 5.2.2 we have that, since Ω is disconnected, for n = 2, 3

λ3(B) = λ2(B) ≤ λ3(Ω).

By the Faber−Krahn inequality, the ball strictly lowers the first eigenvalue, so we rule out this configuration
for all α ∈ [0, 1] when n = 2, 3.
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For n ≥ 4 we must be more precise and obtain only partial estimates. If λ3(Ω) = λ1(B)

m2/n ≥ λ2(B)

(1−m)2/n , then as
we assume β = 0, the set supporting the first two eigenvalues should be a ball B1. This would contradict the
optimality of Ω, as we would have λ3(B1) = λ2(B1) ≤ λ3(Ω) and |B1| < 1. So we conclude λ1(B)

m2/n < λ2(B)
(1−m)2/n ,

hence m >
m

n/2
0

1+m
n/2
0

, which gives the bound

1
1 −m

> 1 +m
n/2
0 . (3.8)

Taking into account (3.7), (3.8) and the estimate m ≥ 1/3, we obtain

αλ1(Ω) + (1 − α)λ3(Ω) ≥ αλ1(B)
(
1 +m

n/2
0

)2/n

+ (1 − α)λ1(B)32/n. (3.9)

By comparing the lower bound (3.9) with αλ1(B) + (1 − α)λ3(B) we deduce that a minimiser is connected
when γn < α ≤ 1 and the Proof of Theorem 1.1 (iv) is concluded. We have connectedness, for example, in the
following ranges:

n = 2 : α ∈ [0, 1];
n = 3 : α ∈ [0, 1];
n = 4 : α ∈ (γ4, 1] ≈ (0.311, 1];
n = 5 : α ∈ (γ5, 1] ≈ (0.467, 1];
n = 6 : α ∈ (γ6, 1] ≈ (0.547, 1]. �

4. The two dimensional case

We start this section with a lemma which rules out a minimiser for problem (1.2) with three connected
components when n = 2. We remind that we call F(·) = αλ1(·) + βλ2(·) + (1−α− β)λ3(·), while G is the same
functional for α = 0, in order to avoid confusion.

Lemma 4.1. Let n = 2. Any disconnected minimiser of (1.2) has at most two connected components.

Proof. For the case α + β = 1, which corresponds to the functional αλ1(·) + (1 − α)λ2(·), it is clear that a
minimiser has at most two components since only the first two eigenvalues are into play. For α + β < 1 the
Faber−Krahn inequality implies that a disconnected minimiser with three components would be the union
of three disjoint balls. If α > 0, it is possible to apply Lemma 2.3 to the union of the balls supporting the
second and the third eigenfunctions, thus ruling out this configuration. For α = 0 (that is, for the functional
βλ2(·) + (1 − β)λ3(·)) this argument does not work, since we can lower only λ1 which is not into play, while
neither λ2 nor λ3 are lowered. Hence we rule out the configuration with three connected components only for
n = 2, by comparing it with B and Θ.

Let G(·) = βλ2(·) + (1− β)λ3(·), and write Ωi, i = 1, 2, 3, for the three components of Ω. Assuming λi(Ω) =
λ1(Ωi) for i = 1, 2, 3 gives |Ω1| ≥ |Ω2| ≥ |Ω3|. We write m = |Ω1| and note that |Ω2| = m, as for |Ω1| > |Ω2|
we could enlarge Ω2 and shrink Ω1, lowering the functional. Thus |Ω3| = 1− 2m, and the following constraints
on m hold:

1) Remark 2.4 implies λ2(B) > λ2(Ω) = λ1(Ω2) = λ1(B)
m , so m > λ1(B)

λ2(B) = m1 ≈ 0.394.

2) We must have λ2(B)
m = λ2(Ω1) ≥ λ1(Ω3) = λ1(B)

1−2m , as otherwise we can reduce to only two components. This
inequality implies

m ≤ λ2(B)
λ1(B) + 2λ2(B)

= m2 ≈ 0.418.
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Coming back to the study of G, we can use the scaling properties of eigenvalues and the bounds above to obtain

G(Ω) = βλ2(Ω) + (1 − β)λ3(Ω) =
{
β

m
+

(1 − β)
(1 − 2m)

}
λ1(B) ≥

{
β

m2
+

(1 − β)
(1 − 2m1)

}
λ1(B). (4.1)

Now we look for those β for which the unit ball B gives a lower value of G than this lower bound. In particular
we are looking for those β that satisfy

G(B) − G(Ω) ≤ λ2(B) −
{
β

m2
+

(1 − β)
(1 − 2m1)

}
λ1(B) < 0,

i.e.

β <

1
(1−2m1)

− 1
m1{

1
(1−2m1)

− 1
m2

} ≈ 0.936.

For this range of β three balls can not be optimal when minimising G.
The remaining β are ruled out by comparing Ω with Θ. Using (4.1), three connected components can not be
optimal when

G(Θ) − G(Ω) ≤ 2βλ1(B) + 2(1 − β)λ2(B) −
{
β

m2
+

(1 − β)
(1 − 2m1)

}
λ1(B) < 0,

i.e. when

β >
2λ2(B) − λ1(B)

1−2m1

2λ2(B) −
(
2 + 1

1−2m1
− 1

m2

)
λ1(B)

≈ 0.479.

Since the two ranges we obtained on β cover all cases, a minimiser for (1.2) can never have three components
in R

2. �

We prove now an important lemma, which asserts that a disconnected minimiser must have multiple eigenval-
ues. The idea of the proof is that if every eigenvalue is simple, then small variations of the connected components
(in the sense of shrinking one and enlarging the other) contradict the optimality of such a disconnected set. For
simplicity we will often write λi = λi(Ω), γ = 1 − α− β, and as before define m0 = λ1(B)

λ2(B) ≈ 0.394.

Lemma 4.2. A disconnected minimiser Ω for (1.2) in R
2 can not have both λ1(Ω) �= λ2(Ω) and λ2(Ω) �= λ3(Ω).

Proof. Note that we only need to consider the cases for problem (1.2) that are not covered by Remark 1.2.
Additionally, the case of three components is ruled out by Lemma 4.1. The analysis of the remaining cases is
divided into three steps.

Step I. We consider the case of a set Ω = Ω1 ∪Ω2, with Ω1 supporting u1, while Ω2 supports u2 and u3. From
the hypotheses of the Step, λ1 = λ1(Ω1), λ2 = λ1(Ω2) and λ3 = λ2(Ω2), and by Faber−Krahn Ω1 is a ball. We
define m = |Ω1|, so 1 −m = |Ω2|. The following constraints on m hold:

1) m > λ1(B)
λ2(B) = m1 ≈ 0.394, since λ1(B)

m = λ1(Ω1) ≤ λ1(Ω2) = λ2 < λ2(B) (see Rem. 2.4).

2) λ2(B)
m = λ2(Ω1) ≥ λ2(Ω2) >

λ2(Θ)
(1−m) = 2λ1(B)

(1−m) , so m < λ2(B)
2λ1(B)+λ2(B) = m2 ≈ 0.559.

Now we can shrink Ω1 and enlarge Ω2, in order to obtain two new sets of the same shape Ω̃1, Ω̃2, such that
|Ω̃1| = m− ε, while |Ω̃2| = 1 −m+ ε. Writing λ̃i for the eigenvalues of Ω̃1 ∪ Ω̃2 we obtain the following ratios
(for ε << 1):

λ̃1

λ1
=

m

m− ε
≈ 1 +

ε

m
;

λ̃2

λ2
=
λ̃3

λ3
=

(1 −m)
1 −m+ ε

≈ 1 − ε

1 −m
·
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The optimality of Ω implies F(Ω) ≤ F(Ω̃1 ∪ Ω̃2), that means(
αλ1

m
− βλ2 + γλ3

1 −m

)
ε+ o(ε) ≥ 0.

Taking either ε > 0 or ε < 0 (this is possible since we are supposing that the eigenvalues are simple) gives that
the expression in the brackets must be zero, hence αλ1

m = βλ2+γλ3
1−m .

In order to conclude this first step it suffices to consider ε > 0. Since λ̃3 ≤ λ3, we have a contradiction if
F(Ω̃1 ∪ Ω̃2) < F(Ω), i.e. when

αλ̃1 + βλ̃2 < αλ1 + βλ2. (4.2)

Equation (4.2) holds if and only if

βλ2

(
1 − λ̃2

λ2

)
> αλ1

(
λ̃1

λ1
− 1

)
⇐⇒ β > α

(
λ1

λ2

)(
1 −m

m

)
·

Using λ1
λ2

≤ λ1(B)
m

1−m
λ2(Θ) = 1−m

2m and the above constraints on m gives 1−m
m ≤ 1−m1

m1
. So if β > α

2

(
1−m1

m1

)2

≈
1.18α, the set Ω = Ω1 ∪ Ω2 can not be optimal. The case β ≤ 1.18α was treated in Remark 1.2, and so this
concludes Step I.

Step II. We now consider the case of a set Ω = Ω1 ∪ Ω2, with Ω1 supporting u1 and u3, while Ω2 supports
u2. Clearly λ1 = λ1(Ω1), λ2 = λ1(Ω2) and λ3 = λ2(Ω1), and again it is better to take Ω2 to be a ball. Write
m = |Ω1| and 1 −m = |Ω2|. The following constraints on m hold:

1) λ1(B)
m < λ1(Ω1) ≤ λ1(Ω2) = λ1(B)

(1−m) , so m > 1/2 = m1.

2) λ1(B)
(1−m) = λ2(Ω) < λ2(B) by Remark 2.4, so m < λ2(B)−λ1(B)

λ2(B) = 1 −m0 = m2 ≈ 0.606.

As in the previous case we shrink Ω1 to Ω̃1 and we enlarge Ω2 to Ω̃2, so that |Ω̃1| = m−ε, while |Ω̃2| = 1−m+ε.
With the same arguments of the previous Step, if Ω is optimal then F(Ω̃1 ∪ Ω̃2) ≥ F(Ω) and so(

αλ1 + γλ3

m
− βλ2

1 −m

)
ε+ o(ε) ≥ 0.

Taking again either ε > 0 or ε < 0 gives βλ2
1−m = αλ1+γλ3

m . Now, since Ω2 is a ball and thanks to the bounds
on m, we can rewrite the complete functional in a more interesting way

F(Ω) = αλ1 + βλ2 + γλ3 =
m

1 −m
βλ2 + βλ2 =

βλ2

1 −m
=

βλ1(B)
(1 −m)2

≥ βλ1(B)
(1 −m1)2

≥ 4βλ1(B).

Comparing this lower bound with the case of the ball gives a contradiction for β such that

F(B) −F(Ω) ≤ αλ1(B) + (1 − α)λ2(B) − 4βλ1(B) < 0,

i.e. for

β >
1

4m0
− α

4

(
1
m0

− 1
)

≈ 0.635 − 0.385α. (4.3)

In order to consider the cases that are not covered by Remark 1.2, we look at the equations α = α2, β =
1

4m0
− α

4

(
1

m0
− 1

)
, and β = β2(1−α). The remaining cases can be viewed as inside a small triangle in the α-β

plane, with vertices approximately given by A = (0.275; 0.529), B = (0.350; 0.500) and C = (0.350; 0.474) (See
Fig. 2).
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0

1

1

A

B

C

α

β

Figure 2. The small triangle in the α-β plane.

For these remaining points, it is possible to show that a ball is better than Ω, i.e. that F(B)−F(Ω) < 0. In
fact, the following relations hold between the eigenvalues of the ball and those of Ω (using m ∈ (m1,m2), the
Faber−Krahn and the Krahn−Szegö inequalities):

λ1(B) − λ1 ≤
(

1 − 1
m

)
λ1(B) ≤

(
1 − 1

m2

)
λ1(B),

λ2(B) − λ2 = λ2(B) − λ1(B)
1 −m

≤ λ2(B) − 2λ1(B),

λ3(B) − λ3 ≤ λ2(B) − 2λ1(B)
m

≤ λ2(B) − 2λ1(B)
m2

· (4.4)

From (4.4) we get

F(B) −F(Ω) ≤ αλ1(B)
(

1 − 1
m2

)
+ β (λ2(B) − 2λ1(B)) + (1 − α− β)

(
λ2(B) − 2λ1(B)

m2

)
·

Hence the ball is better than Ω if

β <
2λ1(B) −m2λ2(B)
2λ1(B) − 2m2λ1(B)

+ α
(−λ1(B) +m2(λ2(B) − λ1(B)))

2λ1(B) − 2m2λ1(B)
≈ 0.58 − 0.08α.

This inequality together with (4.3) concludes Step II.

Step III. We now consider the case of a set Ω = Ω1 ∪ Ω2, with Ω1 supporting u1 and u2, while Ω2 supports
u3. Clearly λ1 = λ1(Ω1), λ2 = λ2(Ω1) and λ3 = λ1(Ω2), and it is better to take Ω2 to be a ball. Let m = |Ω1|
and 1 −m = |Ω2|. Note that if λ3(Ω) = λ1(Ω2) ≥ mλ3(Ω1), then Ω can not be optimal. In fact in this case it
is better to take the connected set obtained by enlarging Ω1 till unit measure, since this lowers both λ1 and λ2

(by monotonicity), while also the third eigenvalue is lower, by hypothesis. The following constraints on m hold:

1) λ2(B) > λ2(Ω) = λ2(Ω1) ≥ 2λ1(B)
m (see Rem. 2.4), so m > 2m0 = m1 ≈ 0.788.
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2) In order to have Ω optimal, an upper bound on m follows from inequality mλ3(Ω1) > λ1(Ω2) explained
above and from the fact that λ2(Ω) < λ2(B) (see Rem. 2.4). Using also (2.2) from Theorem 2.1 gives

λ1(B)
(1 −m)

= λ1(Ω2) < mλ3(Ω1) ≤ m
λ2(B)
λ1(B)

λ2(Ω1) < m
λ2(B)2

λ1(B)
·

This means m2 −m+m2
0 < 0, which gives the upper bound

m <
λ2(B) +

√
λ2(B)2 − 4λ1(B)2

2λ2(B)
= m2 ≈ 0.808.

As in the previous steps we can enlarge Ω1 to Ω̃1 and we can shrink Ω2 to Ω̃2, in order that |Ω̃1| = m+ ε, while
|Ω̃2| = 1 −m− ε. The following ratios between the eigenvalues of Ω̃1 ∪ Ω̃2 and those of Ω hold (for ε << 1):

λ̃1

λ1
=
λ̃2

λ2
=

m

m+ ε
≈ 1 − ε

m
;

λ̃3

λ3
=

1 −m

1 −m− ε
≈ 1 +

ε

1 −m
·

In order to be optimal, Ω must satisfy

αλ̃1 + βλ̃2 + (1 − α− β)λ̃3 ≥ αλ1 + βλ2 + (1 − α− β)λ3.

An analogous argument to that in Step I and Step II gives a contradiction for β � 0.914− 0.948α. Actually we
can obtain a better result observing that Ω is worse than Ω1 enlarged to unit measure (which we will call Ω in
the following) if β is suitably large. We denote by {λi} the eigenvalues of Ω and we again write γ = 1 − α− β
for the sake of simplicity. The following relations between the eigenvalues hold: λ1 = mλ1, λ2 = mλ2 and
λ3 = mλ3(Ω1) ≤ m

m0
λ2, using (2.2) from Theorem 2.1 by Ashbaugh and Benguria. This gives

F(Ω) = αλ1 + βλ2 + γλ3 ≤ F(Ω) + α(m− 1)λ1 + β(m− 1)λ2 + γ

(
m

m1
− 1

)
λ2.

Clearly Ω can not be optimal when F(Ω) −F(Ω) < 0, which holds if

α(m− 1)λ1 +
[
β(m− 1) + γ

(
m

m0
− 1

)]
λ2 < 0.

The first part (2.1) of Theorem 2.1 gives that the result follows if[
α(m− 1)m0 + β(m− 1) + γ

(
m

m0
− 1

)]
λ2 < 0.

Since m ∈ (m1,m2) and the function in brackets is clearly increasing in m, Ω can not be optimal when

m2

m0
− 1 + α

(
(m2 − 1)m0 + 1 − m2

m0

)
+ β

(
m2 − m2

m0

)
< 0,

i.e. for

β >

(
m2
m0

− 1
)

+ α
(
(m2 − 1)m0 + 1 − m2

m0

)
m2
m0

−m2
≈ 0.845 − 0.906α. (4.5)

In conclusion we have an estimate that tells us that when β is suitably big, then Ω = Ω1 ∪ Ω2 can not be
optimal. Writing γ = 1 − α− β, we now finally show that Ω can not be optimal also when γ is not very small.
We use a technique very similar to the case β big. For this suppose Ω is optimal for the problem (1.2) and let
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|ε| << 1. Then if we enlarge Ω1 to Ω̃1 with measure m+ε and we shrink Ω2 to Ω̃2 with measure 1−m−ε, calling
λi the eigenvalues of Ω = Ω1∪Ω2, while λ̃i are the eigenvalues of Ω̃ = Ω̃1∪Ω̃2, we must have F(Ω)−F(Ω̃) ≤ 0.
On the other hand, with analogous computations to those in Step II,

F(Ω) −F(Ω̃) =
(

γλ3

1 −m
− αλ1 + βλ2

m

)
ε+ o(ε), (4.6)

and hence the expression in brackets must be zero, as otherwise taking ε > 0 or ε < 0 (this is possible since
we are treating only the case of simple eigenvalues) contradicts the optimality of Ω. So if Ω is optimal then
αλ1 + βλ2 = γλ3

m
1−m . Since m → 1

(1−m)2 is increasing we have the lower bound

F(Ω,α, β) = γλ3
m

1 −m
+ γλ3 ≥ γλ1(B)

1
(1 − 2m1)2

·

We can show that, for γ suitably big, comparing the functional for Θ with the lower bound above gives an
absurd. In fact, the functional for the two balls is given by

F(Θ,α, β) = (α + β)2λ1(B) + γ2λ2(B) = 2λ1(B) + γ(2λ2(B) − 2λ1(B)).

Hence F(Θ,α, β) < F(Ω,α, β) for γ > γ ≈ 0.104, in which case two balls are better than our set Ω. Combining
the cases in which either γ > γ or (4.5) holds concludes Step III and hence the proof of the lemma. �

4.1. Proof of Theorem 1.3 (a)

Proof of Theorem 1.3 (a). It is proved in Lemma 4.2 that any disconnected minimiser Ω has multiple eigenval-
ues. By Remark 1.2 every minimiser for inf{αλ1(Ω) + (1 − α)λ3(Ω) | Ω open in R

2, |Ω| ≤ 1} is connected for
all α ∈ [0, 1], and we call Ω̃ such a connected minimiser. The case λ2(Ω) = λ3(Ω) is then ruled out, as it would
give

αλ1(Ω) + βλ2(Ω) + (1 − α− β)λ3(Ω) = αλ1(Ω) + (1 − α)λ3(Ω) > αλ1(Ω̃) + (1 − α)λ3(Ω̃),

≥ αλ1(Ω̃) + βλ2(Ω̃) + (1 − α− β)λ3(Ω̃).

Therefore any disconnected minimiser must satisfy λ1(Ω) = λ2(Ω) and can be viewed as the union of a disk
supporting the first eigenvalue with a connected set supporting the second and third, since a minimiser with
three connected components was ruled out by Lemma 4.1. �

4.2. Proof of Theorem 1.3 (b)

Proof of Theorem 1.3 (b). Let α+ β < 1, and let Ω̃ be a connected minimiser for inf{(α+ β)λ2(Ω) + (1 − α−
β)λ3(Ω) | Ω open in R

2, |Ω| ≤ 1}, while there are no disconnected minimisers by hypotesis. Theorem 1.3 (a)
then gives λ1(Ω) = λ2(Ω) for a disconnected minimiser Ω for problem (1.2), whereby

αλ1(Ω) + βλ2(Ω)+(1 − α− β)λ3(Ω) = (α+ β)λ2(Ω) + (1 − α− β)λ3(Ω)

> (α+ β)λ2(Ω̃) + (1 − α− β)λ3(Ω̃),

≥ αλ1(Ω̃) + βλ2(Ω̃) + (1 − α− β)λ3(Ω̃),

which contradicts the minimality of Ω and thus the proof is concluded. �
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αx+ (1 − α)y = a

C

λ2

λ1

Figure 3. The set E .

5. Appendix

This appendix is devoted to a different proof of the connectedness of the minimisers for the problem

inf
{
αλ1(Ω) + (1 − α)λ2(Ω) | Ω ⊆ R

2, open, with |Ω| ≤ 1
}
, (5.1)

for α > 0. This corresponds to Remark 1.2 (i). It was proved in Section 3 that for problem (5.1) the unit ball
is better than every disconnected set if α ∈ (α2, 1], while when α ∈ (0, 1/2) the best disconnected set is the
disjoint union of two equal balls, say Θ. We aim to give a proof of the fact that Θ can not be optimal for (5.1)
unless α = 0, that does not rely on Lemma 2.3. We focus on the case α ∈ (0, 1/2).

We need to introduce the set

E =
{
(λ1(Ω), λ2(Ω)) | Ω ⊆ R

2 open, with |Ω| = 1
}
. (5.2)

For a description of many properties of this set and a numerical approximation of it we refer to [8] or to ([12],
Chap. 6.4). The property which interests us deals with the lower part of the boundary of E , the curve C that
joins the point A = (λ1(Θ), λ2(Θ)) and B = (λ1(B), λ2(B)) (see Fig. 3).

Wolf and Keller [16] proved that the curve C must be vertical at the point B by a perturbation argument
with nearly circular domains. They also suggested that C should be horizontal at A, and this was proved
recently by Brasco, Nitsch and Pratelli [6]. This is the crucial point of our proof, as a minimiser for the convex
combination αλ1(Ω) + (1 − α)λ2(Ω) is given by the set corresponding to the first point in which the straight
line αx + (1 − α)y = a touches E , by increasing a. In particular, for α = 0 this line is y = λ2(Θ) = 2λ1(B) by
the Krahn−Szegö inequality. On the other hand, for all α ∈ (0, 1/2), it is possible to find a set Ω̃ that is linked
to a line of the form αx+ (1 − α)y = aα, with aα < λ2(Θ) = 2λ1(B), since the curve C has horizontal tangent.
Hence Θ can not be the minimiser for (5.1) unless α = 0.
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