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ADAPTIVE STABILIZATION OF COUPLED PDE–ODE SYSTEMS
WITH MULTIPLE UNCERTAINTIES ∗

Jian Li1,2 and Yungang Liu1

Abstract. The adaptive stabilization is investigated for a class of coupled PDE-ODE systems with
multiple uncertainties. The presence of the multiple uncertainties and the interaction between the sub-
systems makes the systems to be considered more general and representative, and moreover it may result
in the ineffectiveness of the conventional methods on this topic. Motivated by the existing literature,
an infinite-dimensional backsteppping transformation with new kernel functions is first introduced
to change the original system into a target system, from which the control design and performance
analysis of the original system will become quite convenient. Then, by certainty equivalence principle
and Lyapunov method, an adaptive stabilizing controller is successfully constructed, which guarantees
that all the closed-loop system states are bounded while the original system states converging to zero.
A simulation example is provided to validate the proposed method.
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1. Introduction

The present paper is about the controls of ordinary differential equations (ODEs) with infinite-dimensional
actuator dynamics governed by partial differential equations (PDEs). Such problems have attracted a lot of
attention recently (see e.g., [1–6] and the references therein), and particularly, the stabilization of ODEs with
diffusion-dominated actuator dynamics has been investigated in [4–6]. It is worth pointing out that the systems
investigated in [4–6] are limited by the basic hypothesis that there only exists the action from dynamic actuator
(i.e., PDE sub-system) to plant (i.e., ODE sub-system). However, in some cases, the opposing action from plant
to dynamic actuator is a bit intense and cannot be ignored, which makes the systems strongly coupled and more
complex, and consequently, if no additional treatments are carried out, the system performance would become
unacceptable.

Keywords and phrases. Coupled PDE-ODE systems, spatially varying coefficient, adaptive stabilization, infinite-dimensional
backstepping.
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As a matter of fact, the controls of coupled PDE-ODE systems have received continuous investigation over the
last decades (see e.g., [7–17] and the references therein). Recently, the stabilization of ODE systems coupled by a
parabolic PDE has been investigated in [7,8], but the systems considered are required to be precisely known, i.e.,
no uncertainties/unknowns exist in the systems. However, the accurate model of the controlled systems is usually
difficult to obtain in practice, even impossible. Moreover, the presence of the uncertainties/unknowns will make
the methods and ideas used in the literature inapplicable to stabilize the uncertain systems. Consequently, how
to stabilize the coupled PDE-ODE systems with uncertainties becomes a much practical and challenge problem,
and to the best of our knowledge, no research has been found on this topic.

This paper is devoted to the stabilization of a class of strongly coupled PDE-ODE systems with multiple
uncertainties, where the PDE sub-system is a diffusion equation with unknown diffusion coefficient and the
ODE sub-system is a linear time-invariant system with system matrix and input matrix being parameterized by
an unknown vector. A distinguished feature of the systems under discussion is that in PDE sub-system, there
exists intense action from the ODE sub-system, and the action possesses an unknown spatially varying coeffi-
cient (called influence function). Mainly due to the presence of the strong coupling and multiple uncertainties,
the systems in present paper are more general than those in the related literature [5–7]. Specifically, in [5, 6],
there is only the action from the PDE sub-system to the ODE one and no opposing action, and moreover,
only the diffusion coefficient permits perturbations or uncertainties. In [7], although both the action from the
PDE sub-system to the ODE one and the opposing action are considered, all the system parameters (e.g.,
diffusion coefficient) are precisely known. In order to stabilize the systems under discussion, it is necessary to
effectively reject the unexpected effects caused by the coupling and uncertainties. For this, infinite-dimensional
backstepping method, adaptive technique and certainty equivalence principle are adopted to construct an adap-
tive state-feedback controller which guarantees that the original system states converge to zero while the other
closed-loop system states keeping bounded.

For clarity, the main contributions of the paper are highlighted as follows:

(i) The action from the ODE sub-system to the PDE one is intense and cannot be ignored, which does not
exist in the closely related works [5, 6]. The presence of such action makes the system under discussion
strongly coupled and more complicated than those of [5, 6], and hence makes the kernel functions of the
infinite-dimensional backstepping transformation more difficult to derive.

(ii) Unlike [5–7], multiple uncertainties are involved in the systems under discussion. This renders the system
under discussion more general and representative. On the other hand, to cope with these uncertainties,
additional dynamic compensations should be made, which will make the design of desired controller more
difficult, specially, the derivation of the desirable target system.

The remainder of the paper is organized as follows. Section 2 formulates the system model and the control
objective. Section 3 presents the adaptive control design. Section 4 provides the rigorous proof for the stability
of the closed-loop system. Section 5 gives a numerical example to illustrate the effectiveness of the proposed
method. Section 6 addresses some concluding remarks. The paper ends with an appendix that collects the proofs
of some important propositions and several useful inequalities.

Notations. Throughout the paper, ‖ · ‖ denotes the Euclidean norm for column vectors or the corresponding
induced norm for matrices. I denotes the identity matrix with appropriate dimension. λmin(P ) denotes the
minimal eigenvalue of square matrix P . Let SK = supθ∈Ω ‖K(θ)‖ for continuous matrix function K(θ) defined

on the set Ω concerned in present paper. The projector operator in ˙̂
ζ(t) = Proj[ζ, ζ]{τ} is defined as

Proj[ζ, ζ]{τ} =

⎧⎪⎨
⎪⎩

0, ζ̂ = ζ and τ < 0,
0, ζ̂ = ζ and τ > 0,
τ, else.

(1.1)
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2. Problem formulation

In this paper, we consider the following coupled system consisting of an ODE and a PDE:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ẋ(t) = A(θ)X(t) + B(θ)u(0, t),
ut(x, t) = εuxx(x, t) + λ(x)CX(t),
ux(0, t) = 0,

u(D, t) = U(t),

(2.1)

where X(t) ∈ Rn with initial value X(0) = X0 is the vector state of the ODE sub-system and u(x, t) with initial
value u(x, 0) = u0(x) is the scalar state of the PDE sub-system; U(t) is the scale input to the entire system;
ut = ∂u

∂t , ux = ∂u
∂x and uxx = ∂2u

∂x2 ; ε is an unknown positive constant, called diffusion coefficient; λ(x) is an
unknown continuous function defined on [0, D], called influence function; D is an arbitrary positive constant
which denotes the length of the PDE domain; C ∈ R1×n is a known constant matrix, A(θ) and B(θ) are linearly
parameterized with unknown constant vector θ = [θ1, . . . , θp]T, i.e.,

A(θ) = A0 +
p∑

i=1

θiAi, B(θ) = B0 +
p∑

i=1

θiBi, (2.2)

where p is a positive integer, θi’s are unknown constants, Ai ∈ Rn×n, i = 0, . . . , p and Bi ∈ R1×n, i = 0, . . . , p
are known constant matrices.

The main objective of the paper is to design an adaptive state-feedback controller such that all the states of
closed-loop system are bounded while the states of system (2.1) converging to zero. To make this feasible, the
following assumptions are made on system (2.1):

Assumption 2.1. There exist known constants θi, θi(i = 1, . . . , p), ε, λ and λ such that⎧⎪⎨
⎪⎩

θi ≤ θi ≤ θi, i = 1, . . . , p,

ε ≥ ε > 0,

λ ≤ λ(x) ≤ λ, ∀x ∈ [0, D].

Assumption 2.2. For any θ ∈ Ω = [θ1, θ1] × · · · × [θp, θp], the pair (A(θ), B(θ)) is controllable, and there
exist continuous matrix function Q(θ) = Q(θ)T > 0 and continuously differentiable matrix functions K(θ),
P (θ) = P (θ)T > 0 such that

(A(θ) + B(θ)K(θ))TP (θ) + P (θ)(A(θ) + B(θ)K(θ)) = −Q(θ).

Moreover, SP (i.e., supθ∈Ω ‖P (θ)‖), infθ∈Ω λmin(Q(θ)) and infθ∈Ω λmin(P (θ)) exist and are known.

We make a remark on system (2.1) to end this section.

Remark 2.3. Although the ODE subsystem in (2.1) is the same as that in [2], the actuator dynamics in (2.1)
are described by a diffusion equation, rather than a first-order hyperbolic PDEs in [2]. Moreover, in the present
paper, the actuator and the controlled system are mutually coupled, whereas in [2], there is only action from
the actuator to the controlled system. These make the control design in our paper more difficult than that of [2].

3. Adaptive control design

This section is to design adaptive state-feedback controller for system (2.1). First, an infinite-dimensional
backstepping transformation is introduced to transform the original system (2.1) into a new one (called target
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system). Then, it is proven that the stability of the target system implies the desirable stability of the orig-
inal system under the same controller. Finally, an adaptive controller is successfully constructed by certainty
equivalence principle and related adaptive techniques.

Let θ̂i(t), i = 1, . . . , p, ε̂(t) and λ̂(x, t) denote the dynamic compensations to the unknown parameters θi, i =
1, . . . , p, ε and λ(x), respectively, and satisfy for any t ≥ 0,⎧⎪⎨

⎪⎩
θi ≤ θ̂i(t) ≤ θi, i = 1, . . . , p,

ε̂(t) ≥ ε > 0,

λ ≤ λ̂(x, t) ≤ λ, ∀x ∈ [0, D].

The dynamic updating laws that θ̂i(t), i = 1, . . . , p, ε̂(t) and λ̂(x, t) obey will be determined later. We then
define ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
γ0(x, t) = K(θ̂) − 1

ε̂(t)

∫ x

0

∫ η

0 λ̂(ξ, t)C dξ dη,

γi+1(x, t) = 1
ε̂(t)

∫ x

0

∫ η

0
γi(ξ, t)A(θ̂) dξ dη

+ 1
2ε̂(t)2

∫ x

0

∫ x−y

0
(x − y − ξ)2γi(ξ, t)B(θ̂) dξλ̂(y, t)C dy, i = 0, 1, 2, . . .

(3.1)

where θ̂(t) = [θ̂1(t), · · · , θ̂p(t)]T, K(θ̂) ∈ R1×n is chosen such that A(θ̂) + B(θ̂)K(θ̂) is Hurwitz for each θ̂ ∈ Ω.
Thus, for system (2.1), we introduce the following infinite-dimensional backstepping transformation:

w(x, t) = u(x, t) −
∫ x

0

k(x, y, t)u(y, t) dy − γ(x, t)X(t), (3.2)

where ⎧⎨
⎩

γ(x, t) =
∑+∞

i=0 γi(x, t),

k(x, y, t) = 1
ε̂(t)

∫ x−y

0 γ(ξ, t)B(θ̂) dξ.
(3.3)

From (3.3), one can see that kernel functions k(·) and γ(·) of backstepping transformation (3.2) are different
from those of [5–7]. Specifically, due to the presence of the dynamic compensations to the unknown parameters,
the kernel functions in (3.2) are time-varying and hence essentially different from the time-invariant case of [5,7].
Moreover, multiple uncertainties and strong coupling in system (2.1) make the kernel functions of (3.2) more
complicated than those of [6] where single uncertainty is considered and no coupling exists between sub-systems.

From (3.1) and (3.3), it can be seen that γ(·) and k(·) respectively satisfy⎧⎪⎨
⎪⎩

ε̂(t)γxx(x, t) = −λ̂(x, t)C + γ(x, t)A(θ̂) + 1
ε̂(t)

∫ x

0

∫ x−y

0
γ(ξ, t)B(θ̂) dξλ̂(y, t)C dy,

γx(0, t) = 0,

γ(0, t) = K(θ̂),
(3.4)

and ⎧⎪⎨
⎪⎩

kxx(x, y, t) = kyy(x, y, t),
k(x, x, t) = 0,

ky(x, 0, t) = − 1
ε̂(t)γ(x, t)B(θ̂),

(3.5)

which will be used later in deriving of the desirable target system.
It is necessary to point out that, an inverse transformation exists for (3.2), which is described as follows:

u(x, t) = w(x, t) +
∫ x

0

l(x, y, t)w(y, t) dy + β(x, t)X(t), (3.6)
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

β(x, t) = K(θ̂) [I 0] exp

([
0 A(θ̂)+B(θ̂)K(θ̂)

ε̂(t)

I 0

]
x

)
[I 0]

T

+
∫ x

0

[
0 − λ̂(ξ,t)C

ε̂(t)

]
exp

([
0 A(θ̂)+B(θ̂)K(θ̂)

ε̂(t)

I 0

]
(x − ξ)

)[
I 0

]T
dξ,

l(x, y, t) = 1
ε̂(t)

∫ x−y

0 β(ξ, t)B(θ̂) dξ,

(3.7)

satisfy the following equations:

⎧⎪⎨
⎪⎩

ε̂(t)βxx(x, t) = −λ̂(x, t)C + β(x, t)(A(θ̂) + B(θ̂)K(θ̂)),
βx(0, t) = 0,

β(0, t) = K(θ̂),
(3.8)

and ⎧⎪⎨
⎪⎩

lxx(x, y, t) = lyy(x, y, t),
l(x, x, t) = 0,

ly(x, 0, t) = − 1
ε̂(t)β(x, t)B(θ̂).

(3.9)

For the kernel functions of the backstepping transformation (3.2) and its inverse transformation (3.6) defined
in (3.3) and (3.7), respectively, the following properties will be used in the subsequent adaptive control design
and stability analysis of the closed-loop system.

Proposition 3.1. The kernel functions k(x, y, t), γ(x, t) and l(x, y, t), β(x, t) defined in (3.3) and (3.7), re-
spectively, are bounded on their separate domains of definition, and so are their partial derivatives with respect
to x. Moreover, there hold the following equations:

{∫ x

y
k(x, ξ, t)l(ξ, y, t) dξ = l(x, y, t) − k(x, y, t),∫ x

0
k(x, y, t)β(y, t) dy = β(x, t) − γ(x, t).

(3.10)

Proof. See part A of Appendix in the paper. �

From the above proposition, we know that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sup0≤x≤D, t≥0 ‖γ(x, t)‖ ≤ M1, sup0≤y≤x≤D, t≥0 |k(x, y, t)| ≤ M1,

sup0≤x≤D, t≥0 ‖β(x, t)‖ ≤ M1, sup0≤y≤x≤D, t≥0 |l(x, y, t)| ≤ M1,

sup0≤x≤D, t≥0 ‖γx(x, t)‖ ≤ M1, sup0≤y≤x≤D, t≥0 |kx(x, y, t)| ≤ M1,

sup0≤x≤D, t≥0 ‖βx(x, t)‖ ≤ M1, sup0≤y≤x≤D, t≥0 |lx(x, y, t)| ≤ M1,

(3.11)

where M1 is a positive constant whose one suitable value is given in the proof of Proposition 3.1.
By transformation (3.2) and its inverse transformation (3.6), a new system (called target system) can be

obtained from original system (2.1), which is shown in the following proposition and will make the control
design and performance analysis of the original system become much convenient.
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Proposition 3.2. System (2.1) can be changed into the following target system under transformation (3.2) and
its inverse transformation (3.6):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ(t) = (A(θ̂) + B(θ̂)K(θ̂))X(t) + (Ã(θ̃) + B̃(θ̃)K(θ̂))X(t) + B(θ)w(0, t),

wt(x, t) = εwxx(x, t) +
∫ x

0
w(y, t)ϕ1(x, y, t)dy + ϕ2(x, t)X(t)

+
(
λ̃(x, t) −

∫ x

0 λ̃(y, t)k(x, y, t)dy
)
CX(t) + ε̃(t)ϕ3(x, t)

−γ(x, t)
(
B̃(θ̃)w(0, t) + (Ã(θ̃) + B̃(θ̃)K(θ̂))X(t)

)
,

wx(0, t) = 0,

w(D, t) = U(t) −
∫D

0
k(D, y, t)

(
w(y, t) +

∫ y

0
l(y, ξ, t)w(ξ, t)dξ

)
dy

−
( ∫D

0
k(D, y, t)β(y, t)dy + γ(D, t)

)
X(t).

(3.12)

where θ̃(t) = θ − θ̂(t), ε̃(t) = ε − ε̂(t), λ̃(x, t) = λ(x) − λ̂(x, t), Ã(θ̃) = A(θ) − A(θ̂), B̃(θ̃) = B(θ) − B(θ̂) and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ1(x, y, t) = −lt(x, y, t) +
∫ x

y k(x, ξ, t)lt(ξ, y, t)dξ,

ϕ2(x, t) = −βt(x, t) +
∫ x

0 k(x, y, t)βt(y, t)dy,

ϕ3(x, t) = 1
ε̂(t)γ(x, t)

(
(A(θ̂) + B(θ̂)K(θ̂))X(t) + B(θ̂)w(0, t)

)
+ 1

ε̂(t)

( ∫ x

0
k(x, y, t)λ̂(y, t)dy − λ̂(′x, t)

)
CX(t).

(3.13)

Proof. See part B of Appendix in the paper. �

In fact, it can be proven that once the target system is stabilized in certain sense by a controller, the original
system (2.1) would be stabilized in the desirable sense by the same one. This is rigorously claimed in the
following lemma.

Lemma 3.3. If there is a controller U(t), which satisfies limt→+∞ U(t) = 0 and renders the target system (3.12)
stable in the sense: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
sup
t≥0

∫ D

0

wx(x, t)2 dx < +∞,

lim
t→+∞

(∫ D

0

w(x, t)2 dx + ‖X(t)‖2

)
= 0,

(3.14)

then the original system (2.1) with the same controller U(t) in loop is stable in the sense:

lim
t→+∞

(
|u(x, t)| + ‖X(t)‖

)
= 0.

Proof. Since X(t) keeps unchanged under the transformation (3.2), we only need to prove limt→+∞ |u(x, t)| = 0
for the original system (2.1) with U(t) in the loop. For this, by Agmon’s inequality (see Lem. D.3 in part D of
Appendix in the paper) and noting u(D, t) = U(t), there would hold

u(x, t)2 ≤ U(t)2 + 2

√∫ D

0

u(x, t)2 dx

√∫ D

0

ux(x, t)2 dx.

Then, it suffices to show that

lim
t→+∞

∫ D

0

u(x, t)2 dx = 0, sup
t≥0

∫ D

0

ux(x, t)2 dx < +∞, (3.15)

which, together with the hypothesis limt→+∞ U(t) = 0, would imply that limt→+∞ |u(x, t)| = 0.
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First, we will prove the former of (3.15). From (3.6), by completing the square and Hölder’s inequality3, we
have

u(x, t)2 ≤ 3w(x, t)2 + 3
(∫ x

0

l(x, y, t)w(y, t) dy

)2

+ 3‖X(t)‖2‖β(x, t)‖2

≤ 3w(x, t)2 + 3
∫ x

0

l(x, y, t)2 dy

∫ x

0

w(y, t)2 dy + 3‖X(t)‖2‖β(x, t)‖2.

Integrating both sides of the above inequality over [0, D] yields

∫ D

0

u(x, t)2 dx ≤ 3
∫ D

0

w(x, t)2 dx + 3
∫ D

0

(∫ x

0

l(x, y, t)2 dy

∫ x

0

w(y, t)2 dy

)
dx

+ 3‖X(t)‖2

∫ D

0

‖β(x, t)‖2 dx.

By (3.11) and noting that 0 ≤ x ≤ D, it follows from the above inequality that

∫ D

0

u(x, t)2 dx ≤ 3
(
1 + D2M2

1

) ∫ D

0

w(x, t)2 dx + 3DM2
1‖X(t)‖2. (3.16)

This, together with (3.14), directly concludes limt→+∞
∫D

0
u(x, t)2 dx = 0.

Second, by computing ux(x, t) from (3.6) and in the similar way to the above, we can obtain

∫ D

0

ux(x, t)2 dx ≤ 3
∫ D

0

wx(x, t)2 dx + 3D2M2
1

∫ D

0

w(x, t)2 dx + 3DM2
1‖X(t)‖2, (3.17)

which, together with (3.14), immediately yields the latter of (3.15). �

By the above lemma, we conclude that, to stabilize system (2.1) in the desirable sense, it suffices to stabilize
target system (3.12) in the sense of (3.14). Thus, we turn to the design of the state-feedback controller for the
target system (3.12). In fact, suppose that θ, ε and λ(x) are known. By letting θ̂ = θ, ε̂ = ε and λ̂(x) = λ(x),
and motivated by [7], controller U(t) is chosen as:

U(t) =
∫ D

0

k(D, y)
(

w(y, t) +
∫ y

0

l(y, ξ)w(ξ, t) dξ

)
dy +

(∫ D

0

k(D, y)β(y) dy + γ(D)

)
X(t). (3.18)

In terms of the proof of Theorem 1 in [7], it can be proven that, the target system (3.12) under controller (3.18)

is exponentially stable in the sense of norm
(
‖X(t)‖2 +

∫ D

0 w(x, t)2 dx +
∫ D

0 wx(x, t)2 dx
) 1

2 .
However, since θ, ε and λ(x) are unknown in the paper, the above controller is not applicable. Inspired by

the existing works, the following dynamic compensations of the unknown parameters are founded to overcome
the unknowns/uncertainties:

⎧⎪⎨
⎪⎩

˙̂ε(t) = Proj[ε, +∞) {τε(t)} , ε̂(0) ≥ ε,

λ̂t(x, t) = Proj[λ, λ] {τλ(x, t)} , λ ≤ λ̂(x, 0) ≤ λ, ∀x ∈ [0, D],
˙̂
θi(t) = Proj[θi, θi]

{τθi(t)} , θi ≤ θ̂i(0) ≤ θi, i = 1, . . . , p,

(3.19)

3 For any functions f(·) and g(·) which are m-times and n-times integrable on [a, b], respectively, there holds
∫ b
a
|f(x)g(x)| dx ≤(∫ b

a
|f(x)|m dx

) 1
m ·

(∫ b
a
|g(x)|n dx

) 1
n

, where 1 < m, n < +∞ satisfy 1
m

+ 1
n

= 1.
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where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τε(t) = σ
∫

D
0 w(x,t)ϕ3(x,t) dx

W (t) ,

τλ(x, t) =
σ(w(x,t)−∫ D

x
w(y,t)k(y,x,t)dy)CX(t)

W (t) ,

τθi(t) = 2σX(t)TP (θ̂)(Ai+BiK(θ̂))X(t)
ρW (t) − σ

∫
D
0 w(x,t)γ(x,t)dx(Biw(0,t)+(Ai+BiK(θ̂))X(t))

W (t) , i = 1, . . . , p,

(3.20)

with σ and ρ being to-be-determined positive constants,

W (t) = 1 + 2X(t)TP (θ̂)X(t) + ρ

∫ D

0

w(x, t)2 dx, (3.21)

and P (θ̂) = P (θ̂)T > 0 being the solution of the following Lyapunov equation

(A(θ̂) + B(θ̂)K(θ̂))TP (θ̂) + P (θ̂)(A(θ̂) + B(θ̂)K(θ̂)) = −Q(θ̂), (3.22)

for some Q(θ̂) = Q(θ̂)T > 0.
Then, based on the certainty equivalence principle and the controller designed before (i.e., unknown param-

eters θ, ε and λ(x) in (3.18) are replaced by their dynamic estimates θ̂, ε̂ and λ̂(x), respectively), the desirable
adaptive state-feedback controller is chosen as:

U(t) =
∫ D

0

k(D, y, t)
(

w(y, t) +
∫ y

0

l(y, ξ, t)w(ξ, t) dξ

)
dy +

(∫ D

0

k(D, y, t)β(y, t) dy + γ(D, t)

)
X(t).(3.23)

The following two propositions respectively give the properties of the projection operator and the target
system, which will be used in the later stability analysis of the closed-loop system.

Proposition 3.4. (see [18]) For the projection operator defined in (1.1), there hold

(i)
∣∣Proj[ζ, ζ]{τ}

∣∣ ≤ |τ |;

(ii) For ζ̂(0) ∈ [ζ, ζ], the solution of ˙̂
ζ(t) = Proj[ζ, ζ]{τ} remains in [ζ, ζ];

(iii) If ζ̂ ∈ [ζ, ζ] and ζ ∈ [ζ, ζ], then −ζ̃ Proj[ζ, ζ]{τ} ≤ −ζ̃ τ , where ζ̃ = ζ − ζ̂.

Proposition 3.5. For the functions ϕ1(x, y, t), ϕ2(x, t) and ϕ3(x, t) defined in (3.13), there exists a positive
constant M such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∫D

0

∫ x

0
ϕ1(x, y, t)2dydx ≤ σ2M2

W (t)2

(∫D

0
w(x, t)2dx

(∫D

0
wx(x, t)2dx + ‖X(t)‖2

)
+ 1

ρ2 ‖X(t)‖4
)

,∫D

0 ‖ϕ2(x, t)‖2dx ≤ σ2M2

W (t)2

(∫D

0 w(x, t)2dx
(∫D

0 wx(x, t)2dx + ‖X(t)‖2
)

+ 1
ρ2 ‖X(t)‖4

)
,∫D

0
ϕ3(x, t)2dx ≤ M2

(∫D

0
wx(x, t)2dx + ‖X(t)‖2

)
.

(3.24)

Proof. See part C of Appendix in the paper. �

4. Stability analysis of the closed-loop system

In this section, we show that the closed-loop system is stable in the desirable sense. For this, the following
Lyapunov function is introduced:

V (t) =
1
2

log W (t) +
ρ

2σ
ε̃(t)2 +

ρ

2σ

∫ D

0

λ̃(x, t)2 dx +
ρ

2σ
θ̃(t)Tθ̃(t),

where σ and ρ are the same as in (3.20) and W (t) has been defined by (3.21).
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Substituting (3.23) into the fourth equation of (3.12) yields w(D, t) = 0. Then, computing the time derivative
of V (t) and using integration by parts, we have

V̇ (t) =
1

W (t)

(
Ẋ(t)TP (θ̂)X(t) + X(t)TP (θ̂)Ẋ(t) +

p∑
i=1

˙̂
θi(t)X(t)T

dP (θ̂)

dθ̂i

X(t) + ρ

∫ D

0

w(x, t)wt(x, t) dx

)

− ρ

σ
ε̃(t) ˙̂ε(t) − ρ

σ

∫ D

0

λ̃(x, t)λ̂t(x, t) dx − ρ

σ
θ̃(t)T ˙̂

θ(t)

=
1

W (t)

(
− X(t)TQ(θ̂)X(t) + 2X(t)TP (θ̂)B(θ)w(0, t) +

p∑
i=1

˙̂
θi(t)X(t)T

dP (θ̂)

dθ̂i

X(t)

+2X(t)TP (θ̂)(Ã(θ̃) + B̃(θ̃)K(θ̂))X(t) − ρε

∫ D

0

wx(x, t)2 dx + ρ

∫ D

0

w(x, t)ϕ2(x, t) dxX(t)

+ρ

∫ D

0

w(x, t)
∫ x

0

w(y, t)ϕ1(x, y, t) dy dx + ρ

∫ D

0

w(x, t)
(

λ̃(x, t) −
∫ x

0

λ̃(y, t)k(x, y, t) dy

)
dxCX(t)

+ρε̃(t)
∫ D

0

w(x, t)ϕ3(x, t) dx − ρ

∫ D

0

w(x, t)γ(x, t) dx
(
B̃(θ̃)w(0, t) + (Ã(θ̃) + B̃(θ̃)K(θ̂))X(t)

))

− ρ

σ
ε̃(t) ˙̂ε(t) − ρ

σ

∫ D

0

λ̃(x, t)l̂t(x, t) dx − ρ

σ
θ̃(t)T ˙̂

θ(t)

=
1

W (t)

(
− X(t)TQ(θ̂)X(t) + 2X(t)TP (θ̂)B(θ)w(0, t) +

p∑
i=1

˙̂
θi(t)X(t)T

dP (θ̂)
dθ̂i

X(t)

+2
p∑

i=1

θ̃i(t)X(t)TP (θ̂)(Ai + BiK(θ̂))X(t) − ρε

∫ D

0

wx(x, t)2 dx + ρ

∫ D

0

w(x, t)ϕ2(x, t) dxX(t)

+ρ

∫ D

0

w(x, t)
∫ x

0

w(y, t)ϕ1(x, y, t) dy dx + ρ

∫ D

0

w(x, t)
(

λ̃(x, t) −
∫ x

0

λ̃(y, t)k(x, y, t) dy

)
dxCX(t)

+ρε̃(t)
∫ D

0

w(x, t)ϕ3(x, t) dx − ρ

∫ D

0

w(x, t)γ(x, t) dx

p∑
i=1

θ̃i(t)
(
Biw(0, t) + (Ai + BiK(θ̂))X(t)

))

− ρ

σ
ε̃(t) ˙̂ε(t) − ρ

σ

∫ D

0

λ̃(x, t)λ̂t(x, t) dx − ρ

σ

p∑
i=1

θ̃i(t)
˙̂
θi(t). (4.1)

Changing the order of integration arrives at∫ D

0

w(x, t)
∫ x

0

λ̃(y, t)k(x, y, t) dy dx =
∫ D

0

λ̃(x, t)
∫ D

x

w(y, t)k(y, x, t) dy dx.

Substituting this and (3.20) into (4.1), and using claim (iii) of Proposition 3.4 and noting Assumption 2.1, we
arrive at

V̇ (t) =
1

W (t)

(
− X(t)TQ(θ̂)X(t) + 2X(t)TP (θ̂)

(
B0 +

p∑
i=1

θiBi

)
w(0, t) +

p∑
i=1

˙̂
θi(t)X(t)T

dP (θ̂)
dθ̂i

X(t)

− ρε

∫ D

0

wx(x, t)2 dx + ρ

∫ D

0

w(x, t)
∫ x

0

w(y, t)ϕ1(x, y, t) dy dx + ρ

∫ D

0

w(x, t)ϕ2(x, t) dxX(t)
)

+ ρε̃(t)
τε(t) − ˙̂ε(t)

σ
+ ρ

∫ D

0

λ̃(x, t)
τλ(x, t) − λ̂t(x, t)

σ
dx + ρ

p∑
i=1

θ̃i(t)
τθi(t) −

˙̂
θi(t)

σ

≤ 1
W (t)

(
− X(t)TQ(θ̂)X(t) + 2X(t)TP (θ̂)

(
B0 +

p∑
i=1

θiBi

)
w(0, t) +

p∑
i=1

˙̂
θi(t)X(t)T

dP (θ̂)

dθ̂i

X(t)

−ρε

∫ D

0

wx(x, t)2 dx + ρ

∫ D

0

w(x, t)
∫ x

0

w(y, t)ϕ1(x, y, t) dy dx + ρ

∫ D

0

w(x, t)ϕ2(x, t) dxX(t)
)

.



ADAPTIVE STABILIZATION OF COUPLED PDE–ODE SYSTEMS WITH MULTIPLE UNCERTAINTIES 497

Then by (C.13) and Lemma D.4, it follows that

V̇ (t) ≤ 1
W (t)

(
− λQ‖X(t)‖2 +

1
2
λQ‖X(t)‖2 +

2S2
P M2

B

λQ

w(0, t)2 +
p∑

i=1

˙̂
θi(t)X(t)T

dP (θ̂)

dθ̂i

X(t)

−ρε

∫ D

0

wx(x, t)2 dx + ρ

∫ D

0

w(x, t)
∫ x

0

w(y, t)ϕ1(x, y, t) dy dx + ρ

∫ D

0

w(x, t)ϕ2(x, t) dxX(t)
)

≤ 1
W (t)

(
− 1

2
λQ‖X(t)‖2 −

(
ρε − 8DS2

P M2
B

λQ

)∫ D

0

wx(x, t)2 dx +
p∑

i=1

˙̂
θi(t)X(t)T

dP (θ̂)

dθ̂i

X(t)

+ρ

∫ D

0

w(x, t)
∫ x

0

w(y, t)ϕ1(x, y, t) dy dx + ρ

∫ D

0

w(x, t)ϕ2(x, t) dxX(t)
)

, (4.2)

where MB = ‖B0‖ +
∑p

i=1 ‖Bi‖ · max{|θi|, |θi|}, λQ = inf θ̂∈Ω λmin(Q(θ̂)) (similarly, λP = inf θ̂∈Ω λmin(P (θ̂)) is
defined for later use).

Let ρ > 1. By (C.12), (C.21) and noting that λP ‖X(t)‖2 ≤ X(t)TP (θ̂)X(t) ≤ 1
2W (t), we have

p∑
i=1

˙̂
θi(t)X(t)T

dP (θ̂)
dθ̂i

X(t) ≤
p∑

i=1

sup
θi≤θi≤θi

∥∥∥∥∥dP (θ̂)
dθ̂i

∥∥∥∥∥ ‖X(t)‖2| ˙̂θi(t)|

≤ σ

W (t)

p∑
i=1

sup
θi≤θi≤θi

∥∥∥∥∥ dP (θ̂)

dθ̂i

∥∥∥∥∥ ‖X(t)‖2 ·
(

q1i

√∫ D

0

w(x, t)2 dx

√∫ D

0

wx(x, t)2 dx + ‖X(t)‖2 +
q2i

ρ
‖X(t)‖2

)

≤ σ

2λP

p∑
i=1

sup
θi≤θi≤θi

∥∥∥∥∥ dP (θ̂)
dθ̂i

∥∥∥∥∥
(

2Dq1i

(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)
+ q2i‖X(t)‖2

)

≤ σ

2λP

p∑
i=1

(2Dq1i + q2i) sup
θi≤θi≤θi

∥∥∥∥∥ dP (θ̂)

dθ̂i

∥∥∥∥∥
(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)

= σd1

(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)
, (4.3)

where d1 = 1
2λP

∑p
i=1(2Dq1i + q2i) supθi≤θi≤θi

∥∥∥dP (θ̂)

dθ̂i

∥∥∥.
By Hölder’s inequality, the first inequality of (3.24) and noting the general relation

√
a + b ≤

√
a +

√
b for

any positive real numbers a and b, we have

ρ

∫ D

0

w(x, t)
∫ x

0

w(y, t)ϕ1(x, y, t) dy dx

≤ ρ

∫ D

0

|w(x, t)|

√∫ x

0

ϕ1(x, y, t)2 dy dx

√∫ D

0

w(y, t)2 dy

≤ ρ

∫ D

0

w(x, t)2 dx

√∫ D

0

∫ x

0

ϕ1(x, y, t)2 dy dx

≤ ρσM

W (t)

∫ D

0

w(x, t)2 dx

√∫ D

0

w(x, t)2 dx

√∫ D

0

wx(x, t)2 dx + ‖X(t)‖2 +
σM

W (t)

∫ D

0

w(x, t)2 dx‖X(t)‖2.
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Then, by (C.12) and nothing that ρ
∫D

0 w(x, t)2 dx ≤ W (t) and λP ‖X(t)‖2 ≤ 1
2W (t), it follows that

ρ

∫ D

0

w(x, t)
∫ x

0

w(y, t)ϕ1(x, y, t) dy dx

≤ 2DσM

√∫ D

0

wx(x, t)2 dx

√∫ D

0

wx(x, t)2 dx + ‖X(t)‖2 +
σM

W (t)
4D2

∫ D

0

wx(x, t)2 dx
W (t)
2λP

≤ 2DσM
(
1 + D

λP

)(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)

= σd2

(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)
, (4.4)

where d2 = 2DM
(
1 + D

λP

)
. Similarly, by the second inequality of (3.24), we have

ρ

∫ D

0

w(x, t)ϕ2(x, t)X(t) dx

≤ ρ

√∫ D

0

w(x, t)2 dx

√∫ D

0

|ϕ2(x, t)X(t)|2 dx

≤ ρ

√∫ D

0

w(x, t)2 dx

√∫ D

0

‖ϕ2(x, t)‖2 dx‖X(t)‖

≤ ρσM

W (t)

∫ D

0

w(x, t)2 dx

√∫ D

0

wx(x, t)2 dx + ‖X(t)‖2 ‖X(t)‖ +
σM

W (t)

√∫ D

0

w(x, t)2 dx ‖X(t)‖3

≤ σM

(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)
+

DσM

λP

√∫ D

0

wx(x, t)2 dx ‖X(t)‖

≤ σM
(
1 + D

λP

)(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)

= σd3

(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)
, (4.5)

where d3 = M
(
1 + D

λP

)
.

Substituting (4.3), (4.4) and (4.5) into (4.2) concludes that

V̇ (t) ≤ 1
W (t)

(
−
(

1
2λQ − σ(d1 + d2 + d3)

)
‖X(t)‖2 −

(
ρε − 8DS2

P M2
B

λQ
− σ(d1 + d2 + d3)

)∫ D

0

wx(x, t)2 dx

)
.

Then, by choosing the design parameters ρ and σ as follows:⎧⎨
⎩

ρ > max
{

8DS2
P M2

B

ελQ
, 1
}

,

0 < σ < min
{

1
2λQ, ρε − 8DS2

P M2
B

λQ

}
· 1

d1+d2+d3
,

(4.6)

we arrive at

V̇ (t) ≤ − c

W (t)

(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)
, (4.7)

where c = min
{

1
2λQ − σ(d1 + d2 + d3), ρε − 8DS2

P M2
B

λQ
− σ(d1 + d2 + d3)

}
.
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We are now in a position to address the main results of the paper, which are summarized in the following
theorem.

Theorem 4.1. Consider system (2.1) satisfying Assumptions 2.1 and 2.2, and the initial value u(x, 0) = u0(x)
such that

∫ D

0
u0(x)2 dx < +∞ and

∫D

0

(du0(x)
dx

)2 dx < +∞, if ρ and σ are chosen to satisfy (4.6), then the
adaptive controller consisting of (3.2), (3.19) and (3.23) guarantees that all the resulting closed-loop system
states are bounded, and furthermore, X(t) and u(x, t) satisfy

lim
t→+∞ X(t) = 0, lim

t→+∞ u(x, t) = 0.

Proof. By Lemma 3.3, it suffices to show target system (3.12) under controller (3.23) satisfies limt→+∞ U(t) = 0,
supt≥0

∫ D

0
wx(x, t)2 dx < +∞ and limt→+∞(

∫ D

0
w(x, t)2 dx + ‖X(t)‖2) = 0.

In order to prove the desirable stability of the closed-loop target system, the integrability of ‖X(t)‖2 and∫ D

0
wx(x, t)2 dx are need to show. For this, by (3.2) and (3.11) and in the similar way to derive (3.16) and (3.17),

we have

⎧⎨
⎩
∫D

0 w(x, t)2 dx ≤ 3
(
1 + D2M2

1

) ∫D

0 u(x, t)2 dx + 3DM2
1‖X(t)‖2,∫D

0 wx(x, t)2 dx ≤ 3
∫D

0 ux(x, t)2 dx + 3D2M2
1

∫ D

0 u(x, t)2 dx + 3DM2
1 ‖X(t)‖2.

Letting t = 0 in above inequalities and noting that
∫ D

0 u0(x)2 dx < +∞ and
∫D

0

( du0(x)
dx

)2 dx < +∞, we obtain
that

∫ D

0
w(x, 0)2 dx and

∫D

0
wx(x, 0)2 dx are bounded, and hence V (0) is bounded.

Integrating (4.7) over [0, t] and [0, +∞), respectively, we have

V (t) ≤ V (0),
∫ +∞

0

‖X(t)‖2 +
∫D

0
wx(x, t)2 dx

W (t)
dt ≤ V (0)

c
,

which together with the definition of V (t) imply that θ̃i(t), θ̂i(t), ε̃(t), ε̂(t),
∫D

0 λ̃(x, t)2 dx,
∫D

0 λ̂(x, t)2 dx, ‖X(t)‖
and

∫ D

0
w(x, t)2 dx are bounded on [0, +∞), and hence ‖X(t)‖2 and

∫D

0
wx(x, t)2 dx are integrable on [0, +∞).

By (3.12), integration by parts and noting that w(D, t) = 0 under control (3.23), we have

1
2

d
dt

∫ D

0

wx(x, t)2 dx =
∫ D

0

wx(x, t)wxt(x, t) dx

= −ε

∫ D

0

wxx(x, t)2 dx −
∫ D

0

wxx(x, t)
∫ x

0

w(y, t)ϕ1(x, y, t) dy dx

−
∫ D

0

wxx(x, t)ϕ2(x, t)X(t) dx − ε̃(t)
∫ D

0

wxx(x, t)ϕ3(x, t) dx

−
∫ D

0

wxx(x, t)
(

λ̃(x, t) −
∫ x

0

λ̃(y, t)k(x, y, t) dy

)
CX(t) dx

+
∫ D

0

wxx(x, t)γ(x, t) dx
(
B̃(θ̃)w(0, t) + (Ã(θ̃) + B̃(θ̃)K(θ̂))X(t)

)
. (4.8)

To show the boundedness of
∫D

0 wx(x, t)2 dx on [0, +∞), the last five terms on the right-hand side of the above
equations will be further handled.
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First, by Young’s inequality, Hölder’s inequality and the first inequality of (3.24), the second term on the
right-hand side of the above equation satisfies:

−
∫ D

0

wxx(x, t)
∫ x

0

w(y, t)ϕ1(x, y, t) dy dx

≤ ε

5

∫ D

0

wxx(x, t)2 dx +
5
4ε

∫ D

0

(∫ x

0

w(y, t)ϕ1(x, y, t) dy

)2

dx

≤ ε

5

∫ D

0

wxx(x, t)2 dx +
5
4ε

∫ D

0

∫ x

0

ϕ1(x, y, t)2 dy dx

∫ D

0

w(x, t)2 dx

≤ ε

5

∫ D

0

wxx(x, t)2 dx +
5σ2M2

4εW (t)2

(∫ D

0

w(x, t)2 dx

)2(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)

+
5σ2M2

4ερ2W (t)2

∫ D

0

w(x, t)2 dx‖X(t)‖4

≤ ε

5

∫ D

0

wxx(x, t)2 dx +
5σ2M2

4ρ2ε

(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)
+

5σ2M2

8ερ3λP

‖X(t)‖2, (4.9)

where λP ‖X(t)‖2 ≤ 1
2W (t) and ρ

∫D

0 w(x, t)2 dx ≤ W (t) have been used. Similarly, by the second inequality
of (3.24), the third term on the right-hand side of (4.8) satisfies:

−
∫ D

0

wxx(x, t)ϕ2(x, t)X(t) dx

≤ ε

5

∫ D

0

wxx(x, t)2 dx +
5
4ε

∫ D

0

|ϕ2(x, t)X(t)|2 dx

≤ ε

5

∫ D

0

wxx(x, t)2 dx +
5
4ε

∫ D

0

‖ϕ2(x, t)‖2 dx‖X(t)‖2

≤ ε

5

∫ D

0

wxx(x, t)2 dx +
5σ2M2

4ερ2W (t)2
‖X(t)‖6

+
5σ2M2

4εW (t)2

∫ D

0

w(x, t)2 dx

(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)
‖X(t)‖2

≤ ε

5

∫ D

0

wxx(x, t)2 dx +
5σ2M2

16ερ2λ2
P

‖X(t)‖2

+
5σ2M2

8ερλP

(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)
, (4.10)

and the fourth term on the right-hand side of (4.8) satisfies:

−ε̃(t)
∫ D

0

wxx(x, t)ϕ3(x, t) dx

≤ ε

5

∫ D

0

wxx(x, t)2 dx +
5
4ε

∫ D

0

ϕ3(x, t)2 dx sup
t≥0

ε̃(t)2

≤ ε

5

∫ D

0

wxx(x, t)2 dx +
5M2

4ε

(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)
sup
t≥0

ε̃(t)2. (4.11)
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Then, by (3.11) and Young’s inequality, the fifth term on the right-hand side of (4.8) satisfies:

−
∫ D

0

wxx(x, t)
(

λ̃(x, t) −
∫ x

0

λ̃(y, t)k(x, y, t) dy

)
CX(t) dx

≤ ε

5

∫ D

0

wxx(x, t)2 dx +
5
4ε

∫ D

0

∣∣∣∣
(

λ̃(x, t) −
∫ x

0

λ̃(y)k(x, y, t) dy

)
CX(t)

∣∣∣∣
2

dx

≤ ε

5

∫ D

0

wxx(x, t)2 dx +
5
2ε

∫ D

0

(
λ̃(x, t)2 +

∫ x

0

λ̃(y, t)2 dy

∫ x

0

k(x, y, t)2 dy

)
dx‖C‖2‖X(t)‖2

≤ ε

5

∫ D

0

wxx(x, t)2 dx +
5
2ε

∫ D

0

λ̃(x, t)2 dx

(
1 +

∫ D

0

∫ x

0

k(x, y, t)2 dy dx

)
‖C‖2‖X(t)‖2

≤ ε

5

∫ D

0

wxx(x, t)2 dx + μ1‖X(t)‖2, (4.12)

where μ1 = 5
2ε

(
1 + D2M2

1

)
‖C‖2 · supt≥0

∫ D

0 λ̃(x, t)2 dx.
Finally, by Young’s inequality and (C.13), the sixth term on the right-hand side of (4.8) should satisfy∫ D

0

wxx(x, t)γ(x, t) dx
(
B̃(θ̃)w(0, t) + (Ã(θ̃) + B̃(θ̃)K(θ̂))X(t)

)
≤ ε

5

∫ D

0

wxx(x, t)2 dx +
5
2ε

∫ D

0

|γ(x, t)B̃(θ̃)|2 dxw(0, t)2

+
5
2ε

∫ D

0

|γ(x, t)(Ã(θ̃) + B̃(θ̃)K(θ̂))X(t)|2 dx

≤ ε

5

∫ D

0

wxx(x, t)2 dx +
10
ε

D2M2
1

(
p∑

i=1

‖Bi‖ sup
t≥0

|θ̃i(t)|
)2 ∫ D

0

wx(x, t)2 dx

+
5
2ε

DM2
1

(
p∑

i=1

(‖Ai‖ + ‖Bi‖SK) sup
t≥0

|θ̃i(t)|
)2

‖X(t)‖2

≤ ε

5

∫ D

0

wxx(x, t)2 dx + μ2

(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)
, (4.13)

where μ2 = 10
ε D2M2

1

(∑p
i=1 ‖Bi‖ supt≥0 |θ̃i(t)|

)2

+ 5
2εDM2

1

(∑p
i=1(‖Ai‖ + ‖Bi‖SK) supt≥0 |θ̃i(t)|

)2

.
Substituting (4.9)–(4.13) into (4.8) yields

1
2

d
dt

∫ D

0

wx(x, t)2 dx ≤ μ3

(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)
,

where μ3 = 5σ2M2

4ρε

(
1 + 1

2ρλP

)(
1
ρ + 1

2λP

)
+ 5M2

4ε supt≥0 ε̃(t)2 + μ1 + μ2. Integrating the above inequality over
[0, t] concludes that

∫ D

0

wx(x, t)2 dx ≤
∫ D

0

wx(x, 0)2 dx + 2μ3

∫ t

0

(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)
dt

≤
∫ D

0

wx(x, 0)2 dx + 2μ3

∫ +∞

0

(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)
dt,

which shows that
∫D

0 wx(x, t)2 dx is bounded on [0, +∞) since
∫D

0 wx(x, 0)2 dx < +∞ and ‖X(t)‖2 and∫ D

0 wx(x, t)2 dx are integrable on [0, +∞).
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We now turn to proving the convergence of
∫D

0 w(x, t)2 dx. For this, by (3.12) and integration by parts, we
have

1
2

d
dt

∫ D

0

w(x, t)2 dx =
∫ D

0

w(x, t)wt(x, t) dx

= −ε

∫ D

0

wx(x, t)2 dx +
∫ D

0

w(x, t)
∫ x

0

w(y, t)ϕ1(x, y, t) dy dx +
∫ D

0

w(x, t)ϕ2(x, t)X(t) dx

+ε̃(t)
∫ D

0

w(x, t)ϕ3(x, t) dx +
∫ D

0

w(x, t)
(

λ̃(x, t) −
∫ x

0

λ̃(y, t)k(x, y, t) dy

)
CX(t) dx

−
∫ D

0

w(x, t)γ(x, t) dx
(
B̃(θ̃)w(0, t) + (Ã(θ̃) + B̃(θ̃)K(θ̂))X(t)

)
. (4.14)

In the similar way to derive (4.11), (4.12) and (4.13), the last three terms on the right-hand side of (4.14) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣ε̃(t) ∫ D

0 w(x, t)ϕ3(x, t) dx
∣∣∣ ≤ ε

5

∫D

0 w(x, t)2 dx + 5M2

4ε

(∫D

0 wx(x, t)2 dx + ‖X(t)‖2
)

supt≥0 ε̃(t)2,∣∣∣∫ D

0
w(x, t)

(
λ̃(x, t) −

∫ x

0
λ̃(y, t)k(x, y, t) dy

)
CX(t) dx

∣∣∣ ≤ ε
5

∫ D

0
w(x, t)2 dx + μ1‖X(t)‖2,∣∣∣∫ D

0
w(x, t)γ(x, t) dx

(
B̃(θ̃)w(0, t) + (Ã(θ̃) + B̃(θ̃)K(θ̂))X(t)

)∣∣∣
≤ ε

5

∫ D

0 w(x, t)2 dx + μ2

(∫ D

0 wx(x, t)2 dx + ‖X(t)‖2
)

,

by which, (4.4) and (4.5), it follows from (4.14) that

1
2

∣∣∣∣∣ d
dt

∫ D

0

w(x, t)2 dx

∣∣∣∣∣ ≤ 3ε

5

∫ D

0

w(x, t)2 dx +
(

ε + μ1 + μ2 +
5M2

4ε
sup
t≥0

ε̃(t)2

+
σ(d2 + d3)

ρ

)(
‖X(t)‖2 +

∫ D

0

wx(x, t)2 dx

)
,

which implies that
∣∣∣ d

dt

∫D

0 w(x, t)2 dx
∣∣∣ is bounded on [0, +∞) since all the terms on the right-hand side of the

above inequality are bounded on [0, +∞), and hence
∫D

0 w(x, t)2 dx is uniformly continuous on [0, +∞).
Noting that w(D, t) = 0, by Poincaré’s inequality, we have∫ +∞

0

∫ D

0

w(x, t)2 dx ≤ 4D2

∫ +∞

0

∫ D

0

wx(x, t)2 dx < +∞,

which shows that
∫ D

0
w(x, t)2 dx is integrable on [0, +∞). This, together with the proven uniform continuity of∫ D

0
w(x, t)2 dx and the well known Barbălat’s Lemma, directly yields limt→+∞

∫D

0
w(x, t)2 dx = 0.

For the convergence of X(t), by (3.12), (C.13) and Lemma D.4, there holds∣∣∣∣ d
dt

‖X(t)‖2

∣∣∣∣
= 2

∣∣∣X(t)T(A(θ̂) + B(θ̂)K(θ̂))X(t)
∣∣∣+ 2|X(t)T(Ã(θ̃) + B̃(θ̃)K(θ̂))X(t)| + 2|X(t)TB(θ)w(0, t)|

≤ 2SA+BK‖X(t)‖2 + 2
p∑

i=1

(‖Ai‖ + ‖Bi‖SK) sup
t≥0

|θ̃i(t)| · ‖X(t)‖2 + ‖X(t)‖2 + 4DM2
B

∫ D

0

wx(x, t)2 dx,

which shows that d
dt‖X(t)‖2 is bounded on [0, +∞) due to the boundedness of ‖X(t)‖ and

∫D

0
wx(x, t)2 dx on

[0, +∞), and hence ‖X(t)‖ is uniformly continuous on [0, +∞). Then, noting that ‖X(t)‖2 has been proven to
be integrable on [0, +∞), by Barbălat’s Lemma, limt→+∞ X(t) = 0 is directly obtained.
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Finally, we prove limt→+∞ U(t) = 0. By (3.11), (3.23) Hölder’s inequality and Lemma D.1, we have

|U(t)| ≤ ‖X(t)‖
(
‖γ(D, t)‖ + n

∫D

0
‖k(D, y, t)β(y, t)‖ dy

)
+
√∫D

0 w(x, t)2 dx

(√∫D

0 k(D, y, t)2 dy +

√∫D

0

(∫D

y k(D, ξ, t)l(ξ, y, t) dξ
)2

dy

)

≤ M1(1 + nDM1)‖X(t)‖ +
√

DM1(1 + DM1)
√∫D

0 w(x, t)2 dx,

which, together with the proven fact that limt→+∞ X(t) = 0 and limt→+∞
∫ D

0 w(x, t)2 dx = 0, directly concludes
limt→+∞ U(t) = 0.

This completes the proof. �

5. Simulation results

In this section, numerical results are given to illustrate the effectiveness of the theoretical results for the
following system: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Ẋ(t) = θX(t) + u(0, t),
ut(x, t) = εuxx(x, t) + λ(x)X(t),
ux(0, t) = 0,

u(1, t) = U(t),

with scale initial condition X0 = X(0) = 20 and u0(x) = u(x, 0) = 50 sin(2πx). The unknown system parameters
are supposed to be θ = 3, ε = 10, λ(x) = x

2 with θ = 1, θ = 4, ε = 1, λ = 0 and λ = 1.
Letting K(θ̂) = −θ̂ − 2 and Q(θ̂) = 4θ̂2 + 4, we obtain P (θ̂) = θ̂2 + 1 by solving Lyapunov equation (3.22).

Moreover, by (4.6), we find suitable design parameters ρ = 300 and σ = 1.5 × 10−5. The initial values of the
parameters updating laws are chosen as θ̂(0) = 2, ε̂(0) = 4 and λ̂0(x) = x

4 . It is necessary to point out that we do
not calculate the series in (3.7) since the compact form of the sum of the infinite series is difficult to derive even
for simple nonconstant parameter λ(x) and more importantly, appropriate truncation of the series is sufficient
for the practical implementation. Therefore, we replace γ(x, t) by γ(x, t) =

∑50
i=0 γi(x, t) as its approximation

in the controller. Hence, k̄(x, y, t) = 1
ε̂(t)

∫ x−y

0
γ̄(ξ, t) dξ. Then, by (3.2), (3.19) and (3.23), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(x, t) = u(x, t) −
∫ x

0
k̄(x, y, t)u(y, t) dy − γ̄(x, t)X(t),

U(t) =
∫ 1

0 k̄(1, y, t)u(y, t) dy + γ̄(1, t)X(t),

˙̂ε(t) = Proj[1, +∞)

{
1.5 × 10−5

∫ 1
0 w(x,t)

(
γ̄(x,t)(w(0,t)−2X(t))+(

∫
x
0 k̄(x,y,t)λ̂(y,t)dy−λ̂(x,t))X(t)

)
dx

ε̂(t)(1+2(1+θ̂(t)2)X(t)2+300
∫ 1
0 w(x,t)2 dx)

}
,

λ̂t(x, t) = Proj[0, 1]

{
1.5 × 10−5 (w(x,t)−∫ 1

x
w(y,t)k̄(y,x,t)dy)X(t)

1+2(1+θ̂(t)2)X(t)2+300
∫ 1
0 w(x,t)2 dx

}
,

˙̂
θ(t) = Proj[1, 4]

{
1.5 × 10−5

1
150 (1+θ̂(t)2)X(t)2−∫ 1

0 w(x,t)γ̄(x,t)X(t)dx

1+2(1+θ̂(t)2)X(t)2+300
∫ 1
0 w(x,t)2 dx

}
.

Using the explicit forward Euler method (see, e.g., P. 406 of [19]) with 20-step discretization in space,
five simulation figures are obtained for the closed-loop system signals. Specifically, Figures 1 and 2 show that
closed-loop system states u(x, t) and X(t) ultimately converge to zero; Figure 3 shows that the parameter
estimate ε̂(t) is always larger than ε and ultimately converges to a constant, Figure 4 shows that the parameter
estimate θ̂(t) always belong to interval [θ, θ], and ultimately converges to a constant, Figure 5 shows that

‖λ̂(x)‖ =
( ∫ 1

0 λ̂(x, t)2 dx
) 1

2 ultimately converges to a constant.
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Figure 1. Trajectory of u(x, t).

0 5 10 15 20
−20

−10

0

10

20

30

40

50

t/s

X

Figure 2. Trajectory of X(t).
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Figure 3. Trajectory of ε̂(t).
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Figure 4. Trajectory of θ̂(t).

6. Concluding remarks

In this paper, adaptive stabilizing controller has been designed for a class of coupled PDE-ODE systems
with multiple uncertainties. The essential difference between this paper and the existing related works is the
the presence of the strong coupling and serious uncertainties. This makes the system under discussion more
general and representative, and certainly more difficult to be stabilized. In the paper, a state-feedback adaptive
stabilizing controller has been successfully constructed by utilizing infinite-dimensional backstepping method,
adaptive techniques and certainty equivalence principle, and has been proven that the desirable control objective
is surely established for the closed-loop system. It is worth pointing out that, the basic assumptions on the
uncertainties are somewhat restrictive from a theoretical perspective, for instance θi’s in Assumption 2.1 are
required to belong to a known interval. Therefore, how to relax these assumptions is quite meaningful and
deserves further investigation.
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Figure 5. Trajectory of ‖λ̂(x)‖.

A. Proof of Proposition 3.1

To show the boundedness of the kernel functions and their partial derivatives with respect to x, we first
estimate ‖γ(x, t)‖ by induction, and then estimate others, such as |k(x, y, t)|, ‖γx(x, t)‖ and |kx(x, y, t)|.

For i = 0, noting that 0 ≤ x ≤ D, θ̂(t) ∈ Ω, ε ≤ ε̂(t) and max0≤x≤D, t≥0 |λ̂(x, t)| ≤ λa = max{|λ|, |λ|}, we
have

‖γ0(x, t)‖ ≤ ‖K(θ̂)‖ +
∥∥∥∥ 1

ε̂(t)

∫ x

0

∫ η

0

λ̂(ξ, t)C dξ dη

∥∥∥∥
≤ ‖K(θ̂)‖ +

1
ε

∫ x

0

∫ η

0

|λ̂(ξ, t)| · ‖C‖ dξ dη

≤ SK +
1
ε
D2λa‖C‖ = a0.

For i ≥ 1, suppose that the following inequality holds

‖γi(x, t)‖ ≤ a0a
i
1

x2i

(2i)!
, (A.1)

with a1 = n2

ε

(
SA + D2λa

2ε SB‖C‖
)
. Then, by Lemmas D.1 and (3.1), we have

‖γi+1(x, t)‖ ≤
∥∥∥∥ 1

ε̂(t)

∫ x

0

∫ η

0

γi(ξ, t)A(θ̂) dξ dη

∥∥∥∥+
1
2

∥∥∥∥ 1
ε̂(t)2

∫ x

0

∫ x−y

0

(x − y − ξ)2γi(ξ, t)B(θ̂) dξλ̂(y, t)C dy

∥∥∥∥
≤ n2

ε

∫ x

0

∫ η

0

‖γi(ξ, t)A(θ̂)‖ dξ dη +
n2D2

2ε2

∫ x

0

∫ x−y

0

|γi(ξ, t)B(θ̂)| dξ|λ̂(y, t)| · ‖C‖ dy

≤ n2

ε
SAa0a

i
1

∫ x

0

∫ η

0

ξ2i

2i!
dξ dη +

n2D2

2ε2
SB‖C‖λaa0a

i
1

∫ x

0

∫ x−y

0

ξ2i

2i!
dξ dy

=
n2

ε
SAa0a

i
1

x2(i+1)

2(i + 1)!
+

n2D2

2ε2
SB‖C‖λaa0a

i
1

x2(i+1)

2(i + 1)!

=
n2

ε

(
SA +

D2λa

2ε
SB‖C‖

)
a0a

i
1

x2(i+1)

2(i + 1)!

= a0a
i+1
1

x2(i+1)

2(i + 1)!
,
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which implies the trueness of (A.1). Thus, by (3.3) and noting that 0 ≤ x ≤ D, there holds

‖γ(x, t)‖ ≤
+∞∑
i=0

‖γi(x, t)‖ ≤
+∞∑
i=0

a0
(D

√
a1)2i

(2i)!
≤ a0 exp(D

√
a1).

By this and the second equation of (3.3), we arrive at

|k(x, y, t)| ≤ 1
ε

∫ x−y

0

|γ(ξ, t)B(θ̂)| dξ ≤ 1
ε
a0 exp(D

√
a1)DSB,

and

|kx(x, y, t)| =
∣∣∣∣ 1
ε̂(t)

γ(x − y, t)B(θ̂)
∣∣∣∣ ≤ 1

ε
a0 exp(D

√
a1)SB.

By integrating both sides of the first equation of (3.4) over [0, x] and noting γx(0, t) = 0, we have

γx(x, t) = − 1
ε̂(t)

∫ x

0

λ̂(ξ, t)C dξ +
1

ε̂(t)

∫ x

0

γ(ξ, t)A(θ̂) dξ

+
1

ε̂(t)2

∫ x

0

∫ x−y

0

(x − y − ξ)γ(ξ, t)B(θ̂) dξλ̂(y, t)C dy.

Then, there holds

‖γx(x, t)‖ ≤ nD

ε

(
λa‖C‖ + a0 exp(D

√
a1)

(
SA +

nD2

ε
λaSB‖C‖

))
= a2.

Moreover, by the first equation of (3.7) and noting that 0 ≤ x ≤ D, ε ≤ ε̂(t) and max0≤x≤D, t≥0 |λ̂(x, t)| ≤ λa,
we have

‖β(x, t)‖ ≤ a3, ‖βx(x, t)‖ ≤ a3,

with a3 = exp
(
D max

{
1, SA+BK

ε

})(
SK + nDλa‖C‖

ε

)
, by which and the second equation of (3.7), it can be

concluded that

|l(x, y, t)| ≤ 1
ε

∫ x−y

0

|β(ξ, t)B(θ̂)| dξ ≤ Da3SB

ε
,

and

|lx(x, y, t)| =
∣∣∣∣ 1
ε̂(t)

β(x − y, t)B(θ̂)
∣∣∣∣ ≤ a3SB

ε
.

Thus, choose M1 = max
{

max{a3, a0 exp(D
√

a1)} · max{1, DSB

ε , SB

ε }, a2

}
, which can upper bound the kernel

functions on their separate domains of definition.
We next turn to show the trueness of (3.10). Substituting (3.6) into (3.2) yields

w(x, t) = w(x, t) +
∫ x

0

l(x, y, t)w(y, t) dy + β(x, t)X(t) − γ(x, t)X(t)

−
∫ x

0

k(x, y, t)
(

w(y, t) +
∫ y

0

l(y, ξ, t)w(ξ, t) dξ + β(y, t)X(t)
)

dy. (A.2)
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By changing the order of integration, we have∫ x

0

k(x, y, t)
∫ y

0

l(y, ξ, t)w(ξ, t) dξ dy =
∫ x

0

∫ x

y

k(x, ξ, t)l(ξ, y, t) dξw(y, t) dy.

Substituting this into (A.2) and taking some managements yield(
γ(x, t) − β(x, t) +

∫ x

0

k(x, y, t)β(y, t) dy

)
X(t)

=
∫ x

0

(
l(x, y, t) − k(x, y, t) −

∫ x

y

k(x, ξ, t)l(ξ, y, t) dξ

)
w(y, t) dy,

which implies (3.10) since the above equality holds for all X(t) and w(y, t). 	

B. Proof of Proposition 3.2

We will first show the first, third and fourth equations of (3.12), and then prove the third one.
Letting x = 0 in (3.2) and noting that γ(0, t) = K(θ̂), we have u(0, t) = w(0, t)+K(θ̂)X(t). Substituting this

into the first equation of (2.1) and noting that A(θ) = A(θ̂) + Ã(θ̃) and B(θ) = B(θ̂) + B̃(θ̃) yield

Ẋ(t) = A(θ)X(t) + B(θ)w(0, t) + B(θ)K(θ̂)X(t)
=
(
A(θ̂) + B(θ̂)K(θ̂)

)
X(t) +

(
Ã(θ̃) + B̃(θ̃)K(θ̂)

)
X(t) + B(θ)w(0, t),

which is the desired first equation of (3.12).
By computing wx(x, t) from (3.2) and letting x = 0, we have

wx(0, t) = ux(0, t) − k(0, 0, t)u(0, t)− γx(0, t)X(t).

Then, by (3.4), (3.5) and noting that ux(0, t) = 0, we obtain wx(0, t) = 0, namely, the third equation of (3.12).
Moreover, letting x = D in (3.2) and noting that u(D, t) = U(t), we have

w(D, t) = U(t) −
∫ D

0

k(D, y, t)u(y, t) dy − γ(D, t)X(t).

Substituting (3.6) into the above equation and taking some simple managements conclude the fourth equation
of (3.12).

We next turn to prove the second equation of (3.12). For this, we compute wt(x, t) from (3.2, that is,

wt(x, t) = ut(x, t) −
∫ x

0

k(x, y, t)ut(y, t) dy − γ(x, t)Ẋ(t) −
∫ x

0

kt(x, y, t)u(y, t) dy − γt(x, t)X(t). (B.3)

All the terms on the right-hand side of (B.3) are not desirable and should be further handled.
Substituting the first equation of (3.12) into the third term on the right-hand side of (B.3), we have

− γ(x, t)Ẋ(t) = −γ(x, t)B(θ)w(0, t) − γ(x, t)
(
A(θ̂) + B(θ̂)K(θ̂)

)
X(t)

−γ(x, t)
(
Ã(θ̃) + B̃(θ̃)K(θ̂)

)
X(t), (B.4)

which is the desirable form.
In order to obtain the desirable expression of ut(x, t), we compute ux(x, t) and uxx(x, t) from (3.6). First,

noting that l(x, x, t) = 0, we have

ux(x, t) = wx(x, t) +
∫ x

0

lx(x, y, t)w(y, t) dy + βx(x, t)X(t).
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By the second equation of (3.7) and noting β(0, t) = K(θ̂), we obtain lx(x, y, t)|y=x = 1
ε̂(t)K(θ̂)B(θ̂). Then,

by (3.8) and the above equation, we yield

uxx(x, t) = wxx(x, t) + lx(x, y, t)|y=xw(x, t) +
∫ x

0

lxx(x, y, t)w(y, t) dy + βxx(x, t)X(t)

= wxx(x, t) +
1

ε̂(t)
K(θ̂)B(θ̂)w(x, t) +

∫ x

0

lxx(x, y, t)w(y, t) dy

+
1

ε̂(t)
β(x, t)(A(θ̂) + B(θ̂)K(θ̂))X(t) − 1

ε̂(t)
λ̂(x, t)CX(t).

Substituting this into the second equation of (2.1) and after some managements, we have

ut(x, t) = εuxx(x, t) + λ(x)CX(t)

= εwxx(x, t) +
ε

ε̂(t)
K(θ̂)B(θ̂)w(x, t) + ε

∫ x

0

lxx(x, y, t)w(y, t) dy

+
ε

ε̂(t)
β(x, t)(A(θ̂) + B(θ̂)K(θ̂))X(t) +

(
λ(x) − ε

ε̂(t)
λ̂(x, t)

)
CX(t)

= εwxx(x, t) +
ε

ε̂(t)
K(θ̂)B(θ̂)w(x, t) + ε

∫ x

0

lxx(x, y, t)w(y, t) dy

+
ε

ε̂(t)
β(x, t)(A(θ̂) + B(θ̂)K(θ̂))X(t) + λ̃(x, t)CX(t) − ε̃(t)

ε̂(t)
λ̂(x, t)CX(t), (B.5)

which is the desirable expression of the first term on the right-hand side of (B.3).
Substituting (B.5) into the second term on the right-hand side of (B.3), we have

−
∫ x

0

k(x, y, t)ut(y, t) dy = −ε

∫ x

0

k(x, y, t)wyy(y, t) dy − ε

ε̂(t)

∫ x

0

k(x, y, t)K(θ̂)B(θ̂)w(y, t) dy

−ε

∫ x

0

k(x, y, t)
∫ y

0

lyy(y, ξ, t)w(ξ, t) dξ dy

− ε

ε̂(t)

∫ x

0

k(x, y, t)β(y, t) dy(A(θ̂) + B(θ̂)K(θ̂))X(t)

−
∫ x

0

k(x, y, t)λ̃(y, t) dyCX(t) +
ε̃(t)
ε̂(t)

∫ x

0

k(x, y, t)λ̂(y, t) dyCX(t). (B.6)

By the second equation of (3.3), we have ky(x, y, t)|y=x = − 1
ε̂(t)K(θ̂)B(θ̂) and ky(x, y, t)|y=0 = − 1

ε̂(t)γ(x, t)B(θ̂),
by which, (3.4), (3.5) and using integration by parts while noting the proven fact wx(0, t) = 0, the first term on
the right-hand side of (B.6) satisfies

−ε

∫ x

0

k(x, y, t)wyy(y, t) dy

= −εk(x, x, t)wx(x, t) + εk(x, 0, t)wy(0, t) + ε

∫ x

0

ky(x, y, t)wy(y, t) dy

= εky(x, y, t)|y=xw(x, t) − εky(x, y, t)|y=0w(0, t) − ε

∫ x

0

kyy(x, y, t)w(y, t) dy

= − ε

ε̂(t)
K(θ̂)B(θ̂)w(x, t) +

ε

ε̂(t)
γ(x, t)B(θ̂)w(0, t) − ε

∫ x

0

kyy(x, y, t)w(y, t) dy. (B.7)

By computing the second-order partial derivatives of the first equation of (3.10) with respect to y, it can be
concluded that ∫ x

y

k(x, ξ, t)lyy(ξ, y, t) dξ = lyy(x, y, t) − kyy(x, y, t) − 1
ε̂(t)

K(θ̂)B(θ̂)k(x, y, t),
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by which, (3.9) and changing the order of integration, the third term on the right-hand side of (B.6) satisfies

−ε

∫ x

0

k(x, y, t)
∫ y

0

lyy(y, ξ, t)w(ξ, t) dξ dy

= −ε

∫ x

0

w(y, t)
∫ x

y

k(x, ξ, t)lξξ(ξ, y, t) dξ dy

= −ε

∫ x

0

w(y, t)
∫ x

y

k(x, ξ, t)lyy(ξ, y, t) dξ dy

= −ε

∫ x

0

w(y, t)
(

lyy(x, y, t) − kyy(x, y, t) − 1
ε̂(t)

K(θ̂)B(θ̂)k(x, y, t)
)

dy. (B.8)

Moreover, substituting the second equation of (3.10) into the fourth term of the right-hand side of (B.6), we
yield

− ε

ε̂(t)

∫ x

0

k(x, y, t)β(y, t) dy(A(θ̂) + B(θ̂)K(θ̂))X(t) = − ε

ε̂(t)
(β(x, t) − γ(x, t)) (A(θ̂) + B(θ̂)K(θ̂))X(t).(B.9)

Hence, by substituting (B.7)–(B.9) into (B.6) and after some managements, we obtain the desirable form of the
second term on the right-hand side of (B.3), that is,

−
∫ x

0

k(x, y, t)ut(y, t) dy

= − ε

ε̂(t)
K(θ̂)B(θ̂)w(x, t) +

ε

ε̂(t)
γ(x, t)B(θ̂)w(0, t) − ε

∫ x

0

lyy(x, y, t)w(y, t) dy

− ε

ε̂(t)
(β(x, t) − γ(x, t)) (A(θ̂) + B(θ̂)K(θ̂))X(t) −

∫ x

0

k(x, y, t)λ̃(y, t) dyCX(t)

+
ε̃(t)
ε̂(t)

∫ x

0

k(x, y, t)λ̂(y, t) dyCX(t). (B.10)

Computing the partial derivative of (3.10) with respect to t yields

{
kt(x, y, t) +

∫ x

y kt(x, ξ, t)l(ξ, y, t) dξ = lt(x, y, t) −
∫ x

y k(x, ξ, t)lt(ξ, y, t) dξ,∫ x

0 kt(x, y, t)β(y, t) dy + γt(x, t) = βt(x, t) −
∫ x

0 k(x, y, t)βt(y, t) dy,

by which and (3.6), we obtain the desirable form of the last two terms on the right-hand side of (B.3)

−
∫ x

0

kt(x, y, t)u(y, t) dy − γt(x, t)X(t)

= −
∫ x

0

kt(x, y, t)
(
w(y, t) +

∫ y

0

l(y, ξ, t)w(ξ, t) dξ + β(y, t)X(t)
)

dy − γt(x, t)X(t)

= −
∫ x

0

w(y, t)
(
kt(x, y, t) +

∫ x

y

kt(x, ξ, t)l(ξ, y, t) dξ
)

dy −
(∫ x

0

kt(x, y, t)β(y, t) dy + γt(x, t)
)
X(t)

= −
∫ x

0

w(y, t)
(
lt(x, y, t) −

∫ x

y

k(x, ξ, t)lt(ξ, y, t) dξ
)

dy −
(
βt(x, t) −

∫ x

0

k(x, y, t)βt(y, t) dy
)
X(t)

=
∫ x

0

w(y, t)ϕ1(x, y, t) dy + ϕ2(x, t)X(t). (B.11)
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Substituting (B.4), (B.5), (B.10) and (B.11) into (B.3) and after some simple managements, we have

wt(x, t) = εwxx(x, t) +
∫ x

0

w(y, t)ϕ1(x, y, t) dy + ϕ2(x, t)X(t) +
(

λ̃(x, t) −
∫ x

0

λ̃(y, t)k(x, y, t) dy

)
CX(t)

+γ(x, t)
(

ε

ε̂(t)
B(θ̂) − B(θ)

)
w(0, t) − γ(x, t)(Ã(θ̃) + B̃(θ̃)K(θ̂))X(t)

+
ε̃(t)
ε̂(t)

γ(x, t)(A(θ̂) + B(θ̂)K(θ̂))X(t) +
ε̃(t)
ε̂(t)

(∫ x

0

k(x, y)λ̂(y, t) dy − λ̂(x, t)
)

CX(t)

= εwxx(x, t) +
∫ x

0

w(y, t)ϕ1(x, y, t) dy + ϕ2(x, t)X(t) +
(

λ̃(x, t) −
∫ x

0

λ̃(y, t)k(x, y, t) dy

)
CX(t)

−γ(x, t)
(
B̃(θ̃)w(0, t) + (Ã(θ̃) + B̃(θ̃)K(θ̂))X(t)

)
+ ε̃(t)ϕ3(x, t),

where ϕ3(·) has been defined in (3.13). Thus we derive the second equation of (3.12). 	

C. Proof of Proposition 3.5

We will first prove the third inequality of (3.24) and then prove the other two ones.
By controller (3.23), we obtain w(D, t) = 0. Then, by Poincaré’s inequality and Agmon’s inequality, we have∫ D

0

w(x, t)2 dx ≤ 4D2

∫ D

0

wx(x, t)2 dx, (C.12)

w(0, t)2 ≤ 2

√∫ D

0

w(x, t)2 dx

∫ D

0

wx(x, t)2 dx ≤ 4D

∫ D

0

wx(x, t)2 dx, (C.13)

by which and completing the square while noting that ε̂(t) ≥ ε, there holds

ϕ3(x, t)2 ≤ 2
ε2

(
‖ϕ4(x, t)‖2‖X(t)‖2 + |γ(x, t)B(θ̂)|2w(0, t)2

)

≤ 2
ε2

(
‖ϕ4(x, t)‖2‖X(t)‖2 + 4D|γ(x, t)B(θ̂)|2

∫ D

0

wx(x, t)2 dx

)
,

where ϕ4(x, t) = γ(x, t)(A(θ̂) + B(θ̂)K(θ̂)) +
∫ x

0 k(x, y, t)λ̂(y, t) dyC − λ̂(x, t)C. Integrating both sides of the
above inequality over [0, D], we have

∫ D

0

ϕ3(x, t)2 dx ≤ 2
ε2

(∫ D

0

‖ϕ4(x, t)‖2 dx‖X(t)‖2 + 4D

∫ D

0

|γ(x, t)B(θ̂)|2 dx

∫ D

0

wx(x, t)2 dx

)

≤ m1

(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)
, (C.14)

where m1 = 2D
ε2 max{(M1SA+BK + λa‖C‖(1 + DM1))2, 4DM2

1 S2
B}.

To prove the other two inequalities, the estimations of ‖βt(x, t)‖ and |lt(x, y, t)| are needed. We will realize

this by estimating | ˙̂ε(t)|,
∫ D

0 |λ̂t(x, t)| dx and | ˙̂θi(t)|. First, by claim (i) of Proposition 3.4, (3.20), (C.14) and
Hölder’s inequality, it follows from (3.19) that

| ˙̂ε(t)| ≤ σ

W (t)

∣∣∣∣∣
∫ D

0

w(x, t)ϕ3(x, t) dx

∣∣∣∣∣ ≤ σ

W (t)

√∫ D

0

w(x, t)2 dx

∫ D

0

ϕ3(x, t)2 dx

≤
σ
√

m1

W (t)

√∫ D

0

w(x, t)2 dx

√∫ D

0

wx(x, t)2 dx + ‖X(t)‖2. (C.15)
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Similarly, by (3.19) and noting that 0 ≤ x ≤ D, we conclude

∫ D

0

|λ̂t(x, t)| dx ≤ σ

W (t)

(∫ D

0

|w(x, t)| dx +
∫ D

0

∫ D

x

|w(y, t)k(y, x, t)| dy dx

)
|CX(t)|

≤ σ
√

D

W (t)

√∫ D

0

w(x, t)2 dx

⎛
⎝1 +

√∫ D

0

∫ D

x

k(y, x, t)2 dy dx

⎞
⎠ ‖C‖ · ‖X(t)‖

≤ σ

W (t)
m2

√∫ D

0

w(x, t)2 dx‖X(t)‖, (C.16)

where m2 =
√

D‖C‖ (1 + DM1). Moreover, by (3.19) and claim (i) of Proposition 3.4, for i = 1, . . . , p, ˙̂
θi(t)

satisfies

| ˙̂θi(t)| ≤
σ

W (t)

∣∣∣∣∣
∫ D

0

w(x, t)γ(x, t) dx(Biw(0, t) + (Ai + BiK(θ̂)))X(t)

∣∣∣∣∣
+

2σ

ρW (t)

∣∣∣X(t)TP (θ̂)(Ai + BiK(θ̂))X(t)
∣∣∣

≤ σ

W (t)

∫ D

0

|w(x, t)γ(x, t)Biw(0, t)| dx +
σ

W (t)

∫ D

0

|w(x, t)γ(x, t)(Ai + BiK(θ̂))X(t)| dx

+
2σ

ρW (t)

∣∣∣X(t)TP (θ̂)(Ai + BiK(θ̂))X(t)
∣∣∣ . (C.17)

By (3.11), (C.13) and Hölder’s inequality, we yield

∫ D

0

|w(x, t)γ(x, t)Biw(0, t)| dx ≤

√∫ D

0

w(x, t)2 dx

√∫ D

0

|γ(x, t)Bi|2 dx|w(0, t)|

≤ 2DM1‖Bi‖

√∫ D

0

w(x, t)2 dx

√∫ D

0

wx(x, t)2 dx. (C.18)

Similarly, there holds

∫ D

0

|w(x, t)γ(x, t)(Ai + BiK(θ̂))X(t)| dx ≤

√∫ D

0

w(x, t)2 dx

√∫ D

0

|γ(x, t)(Ai + BiK(θ̂))X(t)|2 dx

≤
√

DM1(‖Ai‖ + ‖Bi‖SK)

√∫ D

0

w(x, t)2 dx‖X(t)‖. (C.19)

Moreover, it can be verified that∣∣∣X(t)TP (θ̂)(Ai + BiK(θ̂))X(t)
∣∣∣ ≤ SP (‖Ai‖ + ‖Bi‖SK)‖X(t)‖2. (C.20)

Substituting (C.18)–(C.20) into (C.17) directly yields

| ˙̂θi(t)| ≤
σq1i

W (t)

√∫ D

0

w(x, t)2 dx

√∫ D

0

wx(x, t)2 dx + ‖X(t)‖2 +
σq2i

ρW (t)
‖X(t)‖2, (C.21)

where q1i =
√

DM1

(
2
√

D‖Bi‖ + ‖Ai‖ + ‖Bi‖SK

)
and q2i = 2SP (‖Ai‖ + ‖Bi‖SK), i = 1, . . . , p.
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Letting G(x, t) =
[

0 A(θ̂)+B(θ̂)K(θ̂)
ε̂(t)

I 0

]
and E(x, t) = exp(G(ε̂, θ̂)x). Then, it can be verified that

‖G(x, t)‖ ≤ max
{

1,
SA+BK

ε

}
, ‖E(x, t)‖ ≤ exp

(
D max

{
1,

SA+BK

ε

})
= EA+BK . (C.22)

Moreover, by (2.2), there holds

H(θ̂) =
d
dt

(A(θ̂) + B(θ̂)K(θ̂)) =
p∑

i=1

(
Ai + BiK(θ̂) + B(θ̂)

dK(θ̂)
dθ̂i

)
˙̂
θi(t).

Hence, we have

Gt(ε̂, θ̂) =

[
0 −A(θ̂)+B(θ̂)K(θ̂)

ε̂(t)2
˙̂ε(t) + 1

ε̂(t)H(θ̂)
0 0

]
,

by which,

‖Gt(ε̂, θ̂)‖ ≤ SA+BK

ε2
| ˙̂ε(t)| +

p∑
i=1

ri| ˙̂θi(t)|,

where ri = 1
ε

(
‖Ai‖ + ‖Bi‖SK + SB supθi≤θi≤θi

∥∥∥dK(θ̂)

dθ̂i

∥∥∥), i = 1, . . . , p. This, together with the above expression
of E(x, t), yields

‖Et(x, t)‖ ≤ D exp(D‖G(ε̂, θ̂)‖)‖Gt(ε̂, θ̂)‖

≤ D exp
(

D max
{

1,
SA+BK

ε

})(
SA+BK

ε2
| ˙̂ε(t)| +

p∑
i=1

ri| ˙̂θi(t)|
)

≤ m3

(
| ˙̂ε(t)| +

p∑
i=1

ri| ˙̂θi(t)|
)

, (C.23)

where m3 = DEA+BK max{SA+BK

ε2 , 1}.
With the above expression of E(x, t) in mind, we re-express β(x, t) as

β(x, t) = K(θ̂) [I 0]E(x, t) [I 0]T +
∫ x

0

[
0 − λ̂(ξ, t)C

ε̂(t)

]
E(x − ξ, t)

[
I 0

]T dξ.

Computing the partial derivative with respect to t yields

βt(x, t) =
p∑

i=1

dK(θ̂)
dθ̂i

˙̂
θi(t) [I 0]E(x, t) [I 0]T + K(θ̂) [I 0]Et(x, t) [I 0]T

+
∫ x

0

[
0

˙̂ε(t)λ̂(ξ, t)C
ε̂(t)2

]
E(x − ξ, t)

[
I 0

]T dξ +
∫ x

0

[
0 − λ̂t(ξ, t)C

ε̂(t)

]
E(x − ξ, t)

[
I 0

]T dξ

+
∫ x

0

[
0 − λ̂(ξ, t)C

ε̂(t)

]
Et(x − ξ, t)

[
I 0

]T dξ,
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by which, Lemma D.1 and (C.15), (C.16), (C.21), (C.22) and (C.23), we have

‖βt(x, t)‖ ≤
p∑

i=1

∥∥∥∥∥dK(θ̂)
dθ̂i

∥∥∥∥∥ · | ˙̂θi(t)| · ‖E(x, t)‖ + ‖K(θ̂)‖ · ‖Et(x, t)‖ +
1
ε2

nλa‖C‖ · | ˙̂ε(t)|
∫ x

0

‖E(x − ξ, t)‖ dξ

+
1
ε
n‖C‖ · sup

0≤ξ≤x, t≥0
‖E(x − ξ, t)‖

∫ D

0

|λ̂t(ξ, t)| dξ +
1
ε
nλa‖C‖

∫ x

0

‖Et(x − ξ, t)‖ dξ

≤ m4

(
| ˙̂ε(t)| +

∫ D

0

|λ̂t(x, t)| dx +
p∑

i=1

si| ˙̂θi(t)|
)

≤
σm4(

√
m1 + m2 +

∑p
i=1 q1isi)

W (t)

√∫ D

0

w(x, t)2 dx

√∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

+
σm4

ρW (t)

p∑
i=1

q2isi‖X(t)‖2

≤ σδ1

W (t)

√∫ D

0

w(x, t)2 dx

√∫ D

0

wx(x, t)2 dx + ‖X(t)‖2 +
σδ2

ρW (t)
‖X(t)‖2, (C.24)

where si = supθi≤θi≤θi

∥∥∥dK(θ̂)

dθ̂i

∥∥∥EA+BK + SKm3ri + n
ε λa‖C‖Dm3ri, i = 1, . . . , p, m4 = max

{
1, n

ε ‖C‖EA+BK ,

SKm3 + n
ε λa‖C‖D(EA+BK

ε + m3)
}
, δ1 = m4(

√
m1 + m2 +

∑p
i=1 q1isi) and δ2 = m4

∑p
i=1 q2isi.

Moreover, by computing the time derivative of the second equality of (3.7), we have

lt(x, y, t) = −
˙̂ε(t)

ε̂(t)2

∫ x−y

0

β(ξ, t)B(θ̂) dξ +
1

ε̂(t)

∫ x−y

0

βt(ξ, t)B(θ̂) dξ +
1

ε̂(t)

∫ x−y

0

β(ξ, t) dξ

p∑
i=1

Bi
˙̂
θi(t).

Then, by (3.11), (C.15), (C.21) and the second inequality of (C.24), there holds

|lt(x, y, t)| ≤ m7

(
| ˙̂ε(t)| +

∫ D

0

|λ̂t(x, t)| dx +
p∑

i=1

vi| ˙̂θi(t)|
)

≤ σm7(
√

m1 + m2 +
∑p

i=1 q1ivi)
W (t)

√∫ D

0

w(x, t)2 dx

√∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

+
σm7

ρW (t)

p∑
i=1

q2ivi‖X(t)‖2

≤ σδ3

W (t)

√∫ D

0

w(x, t)2 dx

√∫ D

0

wx(x, t)2 dx + ‖X(t)‖2 +
σδ4

ρW (t)
‖X(t)‖2, (C.25)

with vi = D
ε (SBm4si + M1‖Bi‖), i = 1, . . . , p, m7 = max

{
D
ε SB(M1

ε + m4), D
ε SBm4, 1

}
, δ3 = m7(

√
m1 + m2 +∑p

i=1 q1ivi) and δ4 = m7

∑p
i=1 q2ivi.

We are in a position to show the first two inequalities of (3.24). By (3.11) and completing the square, it
follows from the first equality of (3.13) that

ϕ1(x, y, t)2 ≤ 2lt(x, y, t)2 + 2
(∫ x

y

k(x, ξ, t)lt(ξ, y, t) dξ

)2

≤ 2lt(x, y, t)2 + 2D2 sup
0≤y≤ξ≤x

lt(ξ, y, t)2 · sup
0≤y≤ξ≤x

k(x, ξ, t)2

≤ 2

(
1 + D2 sup

0≤ξ≤x,t≥0
k(x, ξ, t)2

)
sup

0≤y≤x≤D
lt(x, y, t)2
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≤ 2
(
1 + D2M2

1

)
sup

0≤y≤x≤D
lt(x, y, t)2.

By (C.25) and integrating the above inequality over [0, x] with respect to y and then [0, D] with respect to x,
we yield∫ D

0

∫ x

0

ϕ1(x, y, t)2 dy dx ≤ 2D2(1 + D2M2
1 ) sup

0≤y≤x≤D
lt(x, y, t)2

≤ σ2m8

W (t)2

∫ D

0

w(x, t)2 dx

(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)
+

σ2m9

ρ2W (t)2
‖X(t)‖4,

where m8 = 4D2(1 + D2M2
1 )δ2

3 , m9 = 4D2(1 + D2M2
1 )δ2

4 .
Moreover, by (3.11), the second equality of (3.13) and Lemma D.1, we obtain

‖ϕ2(x, t)‖2 ≤ 2‖βt(x, t)‖2 + 2
∥∥∥∥
∫ x

0

k(x, y, t)βt(y, t) dy

∥∥∥∥
2

≤ 2‖βt(x, t)‖2 + 2n2D2 sup
0≤y≤x≤D

k(x, y, t)2 · sup
0≤y≤x≤D

‖βt(y, t)‖2

≤ 2
(

1 + n2D2 sup
0≤y≤x≤D

k(x, y, t)2
)

sup
0≤x≤D

‖βt(x, t)‖2

≤ 2
(
1 + n2D2M2

1

)
sup

0≤x≤D
‖βt(x, t)‖2.

Integrating the above inequality over [0, D] and using (C.24) yield∫ D

0

‖ϕ2(x, t)‖2 dx ≤ 2D(1 + n2D2M2
1 ) sup

0≤x≤D
‖βt(x, t)‖2

≤ σ2m10

W (t)2

∫ D

0

w(x, t)2 dx

(∫ D

0

wx(x, t)2 dx + ‖X(t)‖2

)
+

σ2m11

ρ2W (t)2
‖X(t)‖4,

where m10 = 4D(1 + n2D2M2
1 )δ2

1 , m11 = 4D(1 + n2D2M2
1 )δ2

2 .
Finally, choosing M =

√
max{m1, m8, m9, m10, m11} directly concludes (3.24). 	

D. Useful inequalities

Lemma D.1. For any matrix function A(x) = (aij(x)) : [0, D] → Rm×n which is continuous and integrable on
[0, D], the following inequality holds:∥∥∥∥∥

∫ D

0

A(x)dx

∥∥∥∥∥ ≤
√

m n

∫ D

0

‖A(x)‖dx.

Proof. Let ‖A(x)‖F =
√

tr (A(x)TA(x)). Then noting that λi(A(x)TA(x)) ≥ 0, i = 1, . . . , n, we have

‖A(x)‖ =
√

λmax(A(x)TA(x)) ≤
√∑n

i=1 λi(A(x)TA(x)) =
√

tr (A(x)TA(x)) = ‖A(x)‖F . (D.26)

Moreover,

‖A(x)‖F =
√∑n

i=1 λi(A(x)TA(x)) ≤
√

n λmax(A(x)TA(x)) =
√

n‖A(x)‖. (D.27)

Therefore by (D.26), we have∥∥ ∫D

0 A(x) dx
∥∥2 ≤

∥∥ ∫ D

0 A(x) dx
∥∥2

F
=
∑m

i=1

∑n
j=1

∣∣ ∫D

0 aij(x) dx
∣∣2,
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by which, and noting that |
∫D

0 aij(x) dx| ≤
∫D

0 |aij(x)| dx, after some direct calculations, we obtain

∥∥ ∫D

0
A(x) dx

∥∥2 ≤
∑m

i=1

∑n
j=1

(∫D

0
|aij(x)| dx

)2

≤
(∑m

i=1

∑n
j=1

∫D

0 |aij(x)| dx
)2

=
(∫ D

0

∑m
i=1

∑n
j=1 |aij(x)| dx

)2

≤ mn
(∫D

0

√∑m
i=1

∑n
j=1 |aij(x)|2 dx

)2

= mn
(∫D

0 ‖A(x)‖F dx
)2

.

Substituting (D.27) into the above inequality yields

∥∥ ∫D

0 A(x) dx
∥∥2 ≤ mn2

(∫D

0 ‖A(x)‖ dx
)2

,

which directly implies the desirable inequality. �

Lemma D.2. (see [20]) (Poincaré’s inequality) For any w ∈ C1[0, D], there hold{∫D

0
w(x)2dx ≤ 2Dw(0)2 + 4D2

∫D

0
wx(x)2dx,∫D

0
w(x)2dx ≤ 2Dw(D)2 + 4D2

∫D

0
wx(x)2dx.

Lemma D.3. (see [20]) (Agmon’s inequality) For any w ∈ C1[0, D], there hold⎧⎨
⎩w(x)2 ≤ w(0)2 + 2

√∫ D

0 w(x)2dx
∫ D

0 wx(x)2dx,

w(x)2 ≤ w(D)2 + 2
√∫D

0
w(x)2dx

∫ D

0
wx(x)2dx.

Lemma D.4. (see [21]) For any x, y ∈ Rn and any positive definite matrix P ∈ Rn×n, there holds

2xTy ≤ xTPx + yTP−1y.
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