ESAIM: COCV 20 (2014) 517–523 DOI: 10.1051/cocv/2013073

A REMARK ON THE COMPACTNESS FOR THE CAHN–HILLIARD FUNCTIONAL

Giovanni Leoni¹

Abstract. In this note we prove compactness for the Cahn–Hilliard functional without assuming coercivity of the multi-well potential.

Mathematics Subject Classification. 49J45, 26B30.

Received July 29, 2013. Published online March 27, 2014.

1. INTRODUCTION

The purpose of this note is to prove compactness for the Cahn-Hilliard functional (see [5, 8, 9]) without assuming coercivity of the multi-well potential W. Precisely, for $\varepsilon > 0$ consider the functional

$$F_{\varepsilon}: W^{1,2}\left(\Omega; \mathbb{R}^d\right) \to [0, \infty]$$

defined by

$$F_{\varepsilon}(u) := \int_{\Omega} \left(\frac{1}{\varepsilon} W(u) + \varepsilon |\nabla u|^2 \right) \, \mathrm{d}x,$$

where $d \ge 1$ and the potential W satisfies the following hypotheses:

- (H_1) $W : \mathbb{R}^d \to [0, \infty)$ is continuous, W(z) = 0 if and only if $z \in \{\alpha_1, \ldots, \alpha_\ell\}$ for some $\alpha_i \in \mathbb{R}^d$, $i = 1, \ldots, \ell$, with $\alpha_i \neq \alpha_j$ for $i \neq j$.
- (H_2) There exists L > 0 such that

$$\inf_{|z| \ge L} W(z) > 0.$$

Then the following result holds.

Theorem 1.1. Let $\Omega \subset \mathbb{R}^N$, $N \geq 2$, be an open bounded connected set with Lipschitz boundary. Assume that the multi-well potential W satisfies conditions (H_1) and (H_2) . Let $\varepsilon_n \to 0^+$ and let $\{u_n\} \subset W^{1,2}(\Omega; \mathbb{R}^d)$ be such that

$$M := \sup_{n} F_{\varepsilon_n} \left(u_n \right) < \infty \tag{1.1}$$

Keywords and phrases. Singular perturbations, gamma-convergence, compactness.

¹ Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, 15213 PA, USA. giovanni@andrew.cmu.edu

G. LEONI

and

518

$$\frac{1}{|\Omega|} \int_{\Omega} u_n(x) \, \mathrm{d}x = m \quad \text{for all } n \in \mathbb{N}$$
(1.2)

and for some $m \in \mathbb{R}^d$. Then there exist $u \in BV(\Omega; \{\alpha_1, \ldots, \alpha_\ell\})$ and a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ such that

 $u_{n_k} \to u \text{ in } L^1\left(\Omega; \mathbb{R}^d\right).$

For a two-well potential $(\ell = 2)$, Theorem 1.1 has been proved in the scalar case d = 1 by Modica [8] under the assumption

$$\frac{1}{C}\left|z\right|^{p} \le W\left(z\right) \le C\left|z\right|^{p}$$

for all |z| large and for some p > 2, and by Sternberg [9] for $p \ge 2$; while in the vectorial case $d \ge 2$, it has been proved by Fonseca and Tartar [4] under the assumption

$$\frac{1}{C}\left|z\right| \le W\left(z\right)$$

for all |z| large. The case of a multi-well potential $\ell \geq 3$ has been studied by Baldo (see Props. 4.1 and 4.2 in [2]), who proved compactness of a sequence of minimizers bounded in $L^{\infty}(\Omega)$.

An example of a double-well potential satisfying (H_1) and (H_2) with d = 1 but not coercive is

$$W(z) = \arctan\left[\left(z-\alpha\right)^2\left(z-\beta\right)^2\right],$$

while an example of a potential satisfying (H_1) but not (H_2) is

$$W(z) = (z - \alpha)^2 (z - \beta)^2 e^{-|z|^2}$$

In the one dimensional case N = 1, the hypothesis (1.2) is not needed. Indeed, we have the following elementary result.

Theorem 1.2. Assume that the multi-well potential W satisfies conditions (H_1) and (H_2) . Let $\varepsilon_n \to 0^+$ and let $\{u_n\} \subset W^{1,2}((a,b); \mathbb{R}^d)$ be such that (1.1) holds. Then there exist $u \in BV((a,b); \{\alpha_1, \ldots, \alpha_\ell\})$ and a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ such that

$$u_{n_k} \to u \text{ in } L^1\left((a,b); \mathbb{R}^d\right)$$

On the other hand, when (1.2) holds, then condition (H_2) can be weakened to:

(H₃) $\int_0^\infty \sqrt{V(s)} \, \mathrm{d}s = \infty$, where for every $s \ge 0$,

$$V(s) := \min_{|z|=s} W(z).$$
(1.3)

Note that (H_2) implies that $\sqrt{V(s)} \ge \inf_{|z|\ge L} \sqrt{W(z)} > 0$ for all $s \ge L$, and so (H_3) is satisfied. On the other hand, if

$$W\left(z\right) \sim \frac{c}{\left|z\right|^{q}}$$

as $|z| \to \infty$ for some c > 0 and $0 < q \le 2$, then (H_3) holds but not (H_1) .

Theorem 1.3. Assume that the multi-well potential W satisfies conditions (H_1) and (H_3) . Let $\varepsilon_n \to 0^+$ and let $\{u_n\} \subset W^{1,2}((a,b); \mathbb{R}^d)$ be such that (1.1) and (1.2) hold. Then there exist $u \in BV((a,b); \{\alpha_1, \ldots, \alpha_\ell\})$ and a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ and such that

$$u_{n_k} \to u \text{ in } L^1\left((a,b); \mathbb{R}^d\right).$$

The next simple example shows that compactness fails without (1.2) or (H_2) .

Example 1.4. If condition (H_2) does not hold, then there exists $\{z_n\} \subset \mathbb{R}^d$ such that $|z_n| \to \infty$ and

$$\lim_{n \to \infty} W\left(z_n\right) = 0.$$

Find a sequence $\varepsilon_n \to 0$ such that

$$\frac{1}{\varepsilon_n}W\left(z_n\right) \to 0,$$

 $(e.g. \ \varepsilon_n := \sqrt{W(z_n)})$ and consider the sequence of functions $u_n(x) :\equiv z_n$. Then

$$F_{\varepsilon_n}(u_n) = \frac{1}{\varepsilon_n} W(z_n) (b-a) \to 0$$

but no subsequence of $\{u_n\}$ converge in $L^1((a, b))$.

Remark 1.5. I have not been able to determine if Theorems 1.2 and 1.3 hold in dimension $N \ge 2$ or if (H_3) is needed in Theorem 1.3.

2. Proof of Theorems 1.1 and 1.2

The proof of Theorem 1.1 will make use of the following auxiliary results. For a proof of the following theorem see, *e.g.*, Proposition 16.21 in [6].

Theorem 2.1. Let $u \in W^{1,1}(\mathbb{R}^N)$, $N \ge 2$. Then

$$\sup_{s>0} s\left[\mathcal{L}^{N}\left(\left\{x \in \mathbb{R}^{N} : \left|u\left(x\right)\right| \ge s\right\}\right)\right]^{\frac{N-1}{N}} \le \frac{1}{\alpha_{N}^{1/N}} \int_{\mathbb{R}^{N}} \left|\nabla u\left(x\right)\right| \, \mathrm{d}x.$$

For a proof of the next theorem, see Lemma 2.6 in [1].

Theorem 2.2. Let $A, \Omega \subset \mathbb{R}^N$ be open sets and let $1 \leq p < \infty$. Assume that A is bounded and that Ω is connected and has Lipschitz boundary at each point of $\partial \Omega \cap \overline{A}$. Then there exists a linear and continuous operator $T: W^{1,p}(\Omega) \to W^{1,p}(A)$ such that, for every $u \in W^{1,p}(\Omega)$,

$$T(u)(x) = u(x) \quad \text{for } \mathcal{L}^N \ a.e. \ x \in \Omega \cap A,$$
$$\int_A |T(u)(x)|^p \ dx \le C \int_\Omega |u(x)|^p \ dx,$$
$$\int_A |\nabla T(u)(x)|^p \ dx \le C \int_\Omega |\nabla u(x)|^p \ dx,$$

where C > 0 depends only on N, p, A, and Ω .

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. In view of (1.1) and (H_2) for every $n \in \mathbb{N}$, we have

$$M \ge \frac{1}{2} \int_{\Omega} \sqrt{W(u_n(x))} |\nabla u_n(x)| \, \mathrm{d}x$$

$$\ge c \int_{\{|u_n|\ge L\}} |\nabla u_n(x)| \, \mathrm{d}x,$$
(2.1)

where $c := \frac{1}{2} \inf_{|z| \ge L} \sqrt{W(z)} > 0$. Construct a C^1 function $f : \mathbb{R}^d \to \mathbb{R}^d$ such that f(z) = z if $|z| \ge 2L$ and f(z) = 0 if |z| < L. By the chain rule, for every $n \in \mathbb{N}$ the function $v_n := f \circ u_n$ belongs to $W^{1,2}(\Omega; \mathbb{R}^d)$ and for all $i = 1, \ldots, N$ and for \mathcal{L}^N -a.e. $x \in \Omega$,

$$\frac{\partial v_n}{\partial x_i}(x) = \sum_{j=1}^d \frac{\partial f}{\partial z^{(j)}}(u_n(x)) \frac{\partial (u_n)^{(j)}}{\partial x_i}(x),$$

where we write $z = (z^{(1)}, \ldots, z^{(d)})$. Since $\frac{\partial f}{\partial z^{(j)}}(z) = 0$ if |z| < L, it follows that

$$\int_{\Omega} |\nabla v_n(x)| \, \mathrm{d}x = \int_{\{|u_n| \ge L\}} |\nabla v_n(x)| \, \mathrm{d}x$$

$$\leq \operatorname{Lip} f \int_{\{|u_n| \ge L\}} |\nabla u_n(x)| \, \mathrm{d}x \le c^{-1} M \operatorname{Lip} f.$$
(2.2)

Let r > 0 be so large that $\overline{\Omega} \subset B(0,r)$ and set A := B(0,2r). By Theorem 2.2 we may extend each function v_n to a function in $W^{1,1}(A; \mathbb{R}^d)$, still denoted v_n , in such a way that

$$\int_{A} |v_n(x)| \, \mathrm{d}x \le C \int_{\Omega} |v_n(x)| \, \mathrm{d}x,\tag{2.3}$$

$$\int_{A} |\nabla v_n(x)| \, \mathrm{d}x \le C \int_{\Omega} |\nabla v_n(x)| \, \mathrm{d}x \le C c^{-1} M \operatorname{Lip} f, \tag{2.4}$$

where C depends only on r, N, and Ω . By the Poincaré inequality,

$$\int_{A} |v_n(x) - c_n| \, \mathrm{d}x \le C \int_{A} |\nabla v_n(x)| \, \mathrm{d}x,\tag{2.5}$$

where $c_n := \frac{1}{|\Omega|} \int_{\Omega} v_n(x) \, dx$ and again C depends only on r, N, and Ω . Note that, since f(z) = z if $|z| \ge 2L$,

$$\begin{aligned} |c_n| &= \frac{1}{|\Omega|} \left| \int_{\Omega} f \circ u_n \, \mathrm{d}x \right| = \frac{1}{|\Omega|} \left| \int_{\{|u_n| > 2L\}} u_n \, \mathrm{d}x + \int_{\{|u_n| \le 2L\}} f \circ u_n \, \mathrm{d}x \right| \\ &= \left| m + \frac{1}{|\Omega|} \int_{\{|u_n| \le 2L\}} \left(f \circ u_n - u_n \right) \, \mathrm{d}x \right| \le |m| + 4L. \end{aligned}$$

Consider a cut-off function $\varphi \in C_c^{\infty}(A; [0, 1])$ such that $\varphi = 1$ in B(0, r) and define

$$w_n := \varphi \left(v_n - c_n \right)$$

Then $w_n \in W^{1,1}(\mathbb{R}^N)$ and by (2.5),

$$\int_{\mathbb{R}^{N}} |\nabla w_{n}(x)| \, \mathrm{d}x \leq \operatorname{Lip} \varphi \int_{A} |v_{n} - c_{n}| \, \mathrm{d}x + \int_{A} |\nabla v_{n}(x)| \, \mathrm{d}x \qquad (2.6)$$
$$\leq (C \operatorname{Lip} \varphi + 1) \int_{A} |\nabla v_{n}(x)| \, \mathrm{d}x.$$

Applying Theorem 2.1 to $|w_n|$, we obtain

$$\sup_{s>0} s \left[\mathcal{L}^{N} \left(\left\{ x \in \mathbb{R}^{N} : \left| w_{n} \right| (x) \geq s \right\} \right) \right]^{\frac{N-1}{N}} \leq \frac{1}{\alpha_{N}^{1/N}} \int_{\mathbb{R}^{N}} \left| \nabla \left| w_{n} \right| (x) \right| \, \mathrm{d}x$$
$$\leq C_{1} \int_{\{ \left| u_{n} \right| \geq L \}} \left| \nabla u_{n} (x) \right| \, \mathrm{d}x \leq C_{2},$$

where we have used (2.2), (2.4), and (2.6).

520

Fix $s_1 > 2(|m|+4L) + 1$. Using the facts that $\varphi = 1$ in B(0,r), that f(z) = z if $|z| \ge 2L$, and that $|c_n| \le |m|+4L$, for $s \ge s_1$ we have

$$\{x \in \Omega : |u_n(x)| \ge s\} = \{x \in \Omega : |v_n(x)| \ge s\} \subset \left\{x \in \Omega : |v_n(x) - c_n| \ge \frac{s}{2}\right\}$$
$$\subset \left\{x \in \mathbb{R}^N : |w_n(x)| \ge s\right\},$$

and so

$$\mathcal{L}^{N}\left(\left\{x \in \Omega : \left|u_{n}\left(x\right)\right| \ge s\right\}\right) \le \frac{C}{s^{\frac{N}{N-1}}}$$

for all $s \geq s_1$. Hence,

$$\int_{\{|u_n| > s_1\}} |u_n(x)| \, \mathrm{d}x = \int_{s_1}^{\infty} \mathcal{L}^N \left\{ x \in \Omega : |u_n(x)| \ge s \right\} \, \mathrm{d}s$$
$$\leq C \int_{s_1}^{\infty} \frac{1}{s^{\frac{N}{N-1}}} \, \mathrm{d}s = \frac{N-1}{s_{(1)}^{\frac{1}{N-1}}},$$

which shows that $\{u_n\}$ is bounded in $L^1(\Omega; \mathbb{R}^d)$ and equi-integrable.

In view of Vitali's convergence theorem, it remains to show that a subsequence converges in measure to some function $u \in BV(\Omega; \{\alpha_1, \ldots, \alpha_\ell\})$. This is classical (see *e.g.* [2] or [4]).

Remark 2.3. Theorem 1.1 continues to hold if in place of (1.2) we assume that

$$u_n = g \quad \text{on } \partial \Omega \tag{2.7}$$

for all $n \in \mathbb{N}$ and for some function $g \in L^1(\partial \Omega; \{\alpha_1, \ldots, \alpha_\ell\})$. In this case, by Gagliardo's trace theorem (see, *e.g.* Thm. 15.10 in [6]) there exists a function $w \in W^{1,1}(\mathbb{R}^N \setminus \Omega; \mathbb{R}^d)$ such that w = g on $\partial \Omega$. Extend each u_n to be w outside Ω . We can now apply Theorem 2.1 directly to $f \circ u_n \in W^{1,1}(\mathbb{R}^N; \mathbb{R}^d)$ without introducing the constants c_n , the function φ , and without using Theorem 2.2.

We now turn to the Proof of Theorem 1.2. The following argument is likely well-known. We present it here for the convenience of the reader.

Proof of Theorem 1.2. Without loss of generality, we can assume that each function u_n is absolutely continuous. Since the set $A_n := \{x \in (a, b) : |u_n(x)| > L\}$ is open, we may write it as

$$A_n = \bigcup_k \left(a_{k,n}, b_{k,n} \right).$$

Moreover, by (1.1) and (H_2) , for every $n \in \mathbb{N}$, we have

$$M\varepsilon_n \ge \int_a^b W(u_n(x)) \, \mathrm{d}x \ge |A_n| \inf_{|z|\ge L} W(z),$$

and so its complement $(a, b) \setminus A_n$ is nonempty for all n sufficiently large. Fix any such n. If A_n is empty, then $|u_n(x)| \leq L$ for all $x \in (a, b)$. Otherwise, let $x \in (a_{k,n}, b_{k,n})$. Then at least one of the endpoints, say $a_{k,n}$, is not an endpoint of (a, b) and so $|u_n(a_{k,n})| = L$. By the fundamental theorem of calculus,

$$u_n(x) = u_n(a_{k,n}) + \int_{a_{k,n}}^x u'(t) dt.$$

Hence,

$$\sup_{x \in (a_{k,n}, b_{k,n})} |u_n(x)| \le L + \int_{\{|u_n| \ge L\}} |u'_n(t)| \, \mathrm{d}t \le L + c^{-1}M,$$

where we have used (2.1). This shows that $\{u_n\}$ is bounded in $L^{\infty}((a,b);\mathbb{R}^d)$. We can now continue as in Lemma 6.2 in [3].

Finally, we prove Theorem 1.3.

G. LEONI

Proof of Theorem 1.3. Without loss of generality, we can assume that each function u_n is absolutely continuous. In view of (1.1) and (1.3), for every $n \in \mathbb{N}$ we have

$$M \ge \frac{1}{2} \int_{a}^{b} \sqrt{W(u_{n}(x))} |u_{n}'(x)| \, \mathrm{d}x \ge \frac{1}{2} \int_{a}^{b} \sqrt{V(|u_{n}|(x))|} |u_{n}|'(x)| \, \mathrm{d}x.$$

Using the area formula for absolutely continuous functions (see, e.g., Thm. 3.65 in [6]), we obtain

$$M \ge \frac{1}{2} \int_{a}^{b} \sqrt{V(|u_{n}|(x))|} |u_{n}|'(x)| dx = \frac{1}{2} \int_{\mathbb{R}} \sqrt{V(s)} \operatorname{card} |u_{n}|^{-1}(\{s\}) ds$$
$$\ge \frac{1}{2} \int_{\min|u_{n}|}^{\max|u_{n}|} \sqrt{V(s)} ds,$$

where card is the cardinality and $|u_n|^{-1}(\{s\}) = \{x \in (a, b : |u_n(x)| = s)\}$. By (1.2) and the intermediate value theorem, there exists $x_n \in (a, b)$ such that

$$u_n(x_n) = \frac{1}{b-a} \int_a^b u_n(x) \, \mathrm{d}x = \frac{m}{b-a}$$

Hence, $|u_n(x_n)| = \frac{|m|}{b-a}$, which implies that

$$M \ge \frac{1}{2} \int_{\frac{|m|}{b-a}}^{\max|u_n|} \sqrt{V(s)} \,\mathrm{d}s.$$

By (H_3) there exists R > 0 such that $\int_{\frac{|m|}{b-a}}^{R} \sqrt{V(s)} \, \mathrm{d}s > 2M$. In turn, $|u_n(x)| < R$ for all $x \in (a, b)$ and all $n \in \mathbb{N}$. This shows that $\{u_n\}$ is bounded in $L^{\infty}((a, b); \mathbb{R}^d)$.

Remark 2.4. Observe that in Theorems 1.2 and 1.3 we can replace (H_1) with the weaker hypothesis

 (H_4) $W: \mathbb{R}^d \to [0,\infty)$ is continuous and for every r > 0 the set

$$\{z \in B(0,r) : W(z) = 0\}$$

has finitely many elements.

Indeed, if $\{u_n\} \subset W^{1,2}((a,b); \mathbb{R}^d)$ is such that (1.1) holds, then by Theorem 1.2 or 1.3, there exists R > 0 such that $|u_n(x)| < R$ for all $x \in (a, b)$ and all $n \in \mathbb{N}$. Find $S \in (R, 2R)$ such that V(S) > 0. Note that such S exists, since otherwise we would have V(s) = 0 for all $s \in (R, 2R)$, which would imply that $\{z \in B(0, 2R) : W(z) = 0\}$ has infinitely many elements and would contradict (H_4) . Define

$$W_1(z) := \begin{cases} W(z) & \text{if } |z| < S, \\ W\left(\frac{z}{|z|}S\right) & \text{if } |z| \ge S. \end{cases}$$

Since $|u_n(x)| < R < S$ for all $x \in (a, b)$ and all $n \in \mathbb{N}$, we have that

$$M \ge F_{\varepsilon_n}(u_n) = \int_a^b \left(\frac{1}{\varepsilon_n} W_1(u_n) + \varepsilon_n |u'_n|^2\right) \,\mathrm{d}x.$$

The function W_1 satisfies hypotheses (H_1) and (H_2) . Hence, we may now apply Theorem 1.2 to find $u \in BV((a,b); \{\alpha_1, \ldots, \alpha_\ell\})$ and a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ such that

$$u_{n_k} \to u \text{ in } L^1\left((a,b); \mathbb{R}^d\right).$$

Here $\{\alpha_1, \ldots, \alpha_\ell\}$ are the zeros of W in B(0, s).

522

In view of the previous remark, we can prove a compactness result for N = 1 and bounded domains for the functional studied in the classical paper of Modica and Mortola [7].

Corollary 2.5. Let $\varepsilon_n \to 0^+$ and let $\{u_n\} \subset W^{1,2}((a,b); \mathbb{R}^d)$ be such that

$$\int_{a}^{b} \left(\frac{1}{\varepsilon_{n}} \sin^{2}\left(\pi u_{n}\right) + \varepsilon_{n} |u_{n}'\left(x\right)|^{2} \right) \, \mathrm{d}x \leq M$$

and (1.2) hold. Then there exist $u \in BV((a,b); \{\alpha_1, \ldots, \alpha_\ell\})$ and a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ such that

$$u_{n_k} \to u \text{ in } L^1(a,b).$$

Here, $\{\alpha_1, \ldots, \alpha_\ell\} \subset \mathbb{Z}$.

Proof. It is enough to observe that the function $W(z) = \sin^2(\pi z)$ satisfies (H_3) and (H_4) .

Remark 2.6. I am not aware of any compactness result for $N \ge 2$ for the functional

$$\int_{\Omega} \left(\frac{1}{\varepsilon} \sin^2 \left(\pi u \right) + \varepsilon |\nabla u|^2 \right) \, \mathrm{d}x,$$

when (1.2) holds. Note that $W(z) = \sin^2(\pi z)$ satisfies (H_3) and (H_4) but not (H_1) and (H_2) .

Acknowledgements. The research of G. Leoni was partially funded by the National Science Foundation under Grant No. DMS-1007989. G. Leoni also acknowledges the Center for Nonlinear Analysis (NSF Grant No. DMS-0635983, PIRE Grant No. OISE-0967140), where part of this research was carried out. The author wishes to thank Massimiliano Morini for useful conversations on the subject of this paper.

References

- E. Acerbi, V. Chiadò Piat, G. Dal Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains. *Nonlinear Anal.* 18 (1992) 481–496.
- S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids. Ann. Inst. Henri Poincaré Anal. Non Linéaire 7 (1990) 67–90.
- [3] A. Braides, Gamma-convergence for beginners, vol. 22 of Oxford Lect. Ser. Math. Appl. Oxford University Press, New York (2002).
- [4] I. Fonseca and L. Tartar, The gradient theory of phase transitions for systems with two potential wells. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 89–102.
- [5] M.E. Gurtin, Some results and conjectures in the gradient theory of phase transitions. IMA, preprint 156 (1985).
- [6] G. Leoni, A first course in Sobolev spaces, vol. 105 of Graduate Stud. Math. American Mathematical Society (AMS), Providence, RI (2009).
- [7] L. Modica and S. Mortola, Un esempio di Γ-convergenza. (Italian). Boll. Un. Mat. Ital. B 14 (1977) 285-299.
- [8] L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123-142.
- [9] P. Sternberg, The effect of a singular perturbation on nonconvex variational problems. Arch. Rational Mech. Anal. 101 (1988) 209-260.