A REMARK ON THE COMPACTNESS FOR THE CAHN-HILLIARD FUNCTIONAL

Giovanni Leoni ${ }^{1}$

Abstract

In this note we prove compactness for the Cahn-Hilliard functional without assuming coercivity of the multi-well potential.

Mathematics Subject Classification. 49J45, 26B30.
Received July 29, 2013.
Published online March 27, 2014.

1. Introduction

The purpose of this note is to prove compactness for the Cahn-Hilliard functional (see [5, 8, 9]) without assuming coercivity of the multi-well potential W. Precisely, for $\varepsilon>0$ consider the functional

$$
F_{\varepsilon}: W^{1,2}\left(\Omega ; \mathbb{R}^{d}\right) \rightarrow[0, \infty]
$$

defined by

$$
F_{\varepsilon}(u):=\int_{\Omega}\left(\frac{1}{\varepsilon} W(u)+\varepsilon|\nabla u|^{2}\right) \mathrm{d} x
$$

where $d \geq 1$ and the potential W satisfies the following hypotheses:
$\left(H_{1}\right) W: \mathbb{R}^{d} \rightarrow[0, \infty)$ is continuous, $W(z)=0$ if and only if $z \in\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ for some $\alpha_{i} \in \mathbb{R}^{d}, i=1, \ldots, \ell$, with $\alpha_{i} \neq \alpha_{j}$ for $i \neq j$.
$\left(H_{2}\right)$ There exists $L>0$ such that

$$
\inf _{|z| \geq L} W(z)>0 .
$$

Then the following result holds.
Theorem 1.1. Let $\Omega \subset \mathbb{R}^{N}, N \geq 2$, be an open bounded connected set with Lipschitz boundary. Assume that the multi-well potential W satisfies conditions $\left(H_{1}\right)$ and $\left(H_{2}\right)$. Let $\varepsilon_{n} \rightarrow 0^{+}$and let $\left\{u_{n}\right\} \subset W^{1,2}\left(\Omega ; \mathbb{R}^{d}\right)$ be such that

$$
\begin{equation*}
M:=\sup _{n} F_{\varepsilon_{n}}\left(u_{n}\right)<\infty \tag{1.1}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\frac{1}{|\Omega|} \int_{\Omega} u_{n}(x) \mathrm{d} x=m \quad \text { for all } n \in \mathbb{N} \tag{1.2}
\end{equation*}
$$

\]

and for some $m \in \mathbb{R}^{d}$. Then there exist $u \in B V\left(\Omega ;\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}\right)$ and a subsequence $\left\{u_{n_{k}}\right\}$ of $\left\{u_{n}\right\}$ such that

$$
u_{n_{k}} \rightarrow u \text { in } L^{1}\left(\Omega ; \mathbb{R}^{d}\right)
$$

For a two-well potential $(\ell=2)$, Theorem 1.1 has been proved in the scalar case $d=1$ by Modica [8] under the assumption

$$
\frac{1}{C}|z|^{p} \leq W(z) \leq C|z|^{p}
$$

for all $|z|$ large and for some $p>2$, and by Sternberg $[9]$ for $p \geq 2$; while in the vectorial case $d \geq 2$, it has been proved by Fonseca and Tartar [4] under the assumption

$$
\frac{1}{C}|z| \leq W(z)
$$

for all $|z|$ large. The case of a multi-well potential $\ell \geq 3$ has been studied by Baldo (see Props. 4.1 and 4.2 in [2]), who proved compactness of a sequence of minimizers bounded in $L^{\infty}(\Omega)$.

An example of a double-well potential satisfying $\left(H_{1}\right)$ and $\left(H_{2}\right)$ with $d=1$ but not coercive is

$$
W(z)=\arctan \left[(z-\alpha)^{2}(z-\beta)^{2}\right]
$$

while an example of a potential satisfying $\left(H_{1}\right)$ but not $\left(H_{2}\right)$ is

$$
W(z)=(z-\alpha)^{2}(z-\beta)^{2} \mathrm{e}^{-|z|^{2}}
$$

In the one dimensional case $N=1$, the hypothesis (1.2) is not needed. Indeed, we have the following elementary result.

Theorem 1.2. Assume that the multi-well potential W satisfies conditions $\left(H_{1}\right)$ and $\left(H_{2}\right)$. Let $\varepsilon_{n} \rightarrow 0^{+}$and let $\left\{u_{n}\right\} \subset W^{1,2}\left((a, b) ; \mathbb{R}^{d}\right)$ be such that (1.1) holds. Then there exist $u \in B V\left((a, b) ;\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}\right)$ and a subsequence $\left\{u_{n_{k}}\right\}$ of $\left\{u_{n}\right\}$ such that

$$
u_{n_{k}} \rightarrow u \text { in } L^{1}\left((a, b) ; \mathbb{R}^{d}\right)
$$

On the other hand, when (1.2) holds, then condition $\left(H_{2}\right)$ can be weakened to:
$\left(H_{3}\right) \int_{0}^{\infty} \sqrt{V(s)} \mathrm{d} s=\infty$, where for every $s \geq 0$,

$$
\begin{equation*}
V(s):=\min _{|z|=s} W(z) \tag{1.3}
\end{equation*}
$$

Note that $\left(H_{2}\right)$ implies that $\sqrt{V(s)} \geq \inf _{|z| \geq L} \sqrt{W(z)}>0$ for all $s \geq L$, and so $\left(H_{3}\right)$ is satisfied. On the other hand, if

$$
W(z) \sim \frac{c}{|z|^{q}}
$$

as $|z| \rightarrow \infty$ for some $c>0$ and $0<q \leq 2$, then $\left(H_{3}\right)$ holds but not $\left(H_{1}\right)$.
Theorem 1.3. Assume that the multi-well potential W satisfies conditions $\left(H_{1}\right)$ and $\left(H_{3}\right)$. Let $\varepsilon_{n} \rightarrow 0^{+}$and let $\left\{u_{n}\right\} \subset W^{1,2}\left((a, b) ; \mathbb{R}^{d}\right)$ be such that (1.1) and (1.2) hold. Then there exist $u \in B V\left((a, b) ;\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}\right)$ and a subsequence $\left\{u_{n_{k}}\right\}$ of $\left\{u_{n}\right\}$ and such that

$$
u_{n_{k}} \rightarrow u \text { in } L^{1}\left((a, b) ; \mathbb{R}^{d}\right)
$$

The next simple example shows that compactness fails without (1.2) or $\left(H_{2}\right)$.

Example 1.4. If condition $\left(H_{2}\right)$ does not hold, then there exists $\left\{z_{n}\right\} \subset \mathbb{R}^{d}$ such that $\left|z_{n}\right| \rightarrow \infty$ and

$$
\lim _{n \rightarrow \infty} W\left(z_{n}\right)=0
$$

Find a sequence $\varepsilon_{n} \rightarrow 0$ such that

$$
\frac{1}{\varepsilon_{n}} W\left(z_{n}\right) \rightarrow 0
$$

(e.g. $\left.\varepsilon_{n}:=\sqrt{W\left(z_{n}\right)}\right)$ and consider the sequence of functions $u_{n}(x): \equiv z_{n}$. Then

$$
F_{\varepsilon_{n}}\left(u_{n}\right)=\frac{1}{\varepsilon_{n}} W\left(z_{n}\right)(b-a) \rightarrow 0
$$

but no subsequence of $\left\{u_{n}\right\}$ converge in $L^{1}((a, b))$.
Remark 1.5. I have not been able to determine if Theorems 1.2 and 1.3 hold in dimension $N \geq 2$ or if $\left(H_{3}\right)$ is needed in Theorem 1.3.

2. Proof of Theorems 1.1 and 1.2

The proof of Theorem 1.1 will make use of the following auxiliary results. For a proof of the following theorem see, e.g., Proposition 16.21 in [6].

Theorem 2.1. Let $u \in W^{1,1}\left(\mathbb{R}^{N}\right), N \geq 2$. Then

$$
\sup _{s>0} s\left[\mathcal{L}^{N}\left(\left\{x \in \mathbb{R}^{N}:|u(x)| \geq s\right\}\right)\right]^{\frac{N-1}{N}} \leq \frac{1}{\alpha_{N}^{1 / N}} \int_{\mathbb{R}^{N}}|\nabla u(x)| \mathrm{d} x
$$

For a proof of the next theorem, see Lemma 2.6 in [1].
Theorem 2.2. Let $A, \Omega \subset \mathbb{R}^{N}$ be open sets and let $1 \leq p<\infty$. Assume that A is bounded and that Ω is connected and has Lipschitz boundary at each point of $\partial \Omega \cap \bar{A}$. Then there exists a linear and continuous operator $T: W^{1, p}(\Omega) \rightarrow W^{1, p}(A)$ such that, for every $u \in W^{1, p}(\Omega)$,

$$
\begin{aligned}
T(u)(x) & =u(x) \quad \text { for } \mathcal{L}^{N} \text { a.e. } x \in \Omega \cap A \\
\int_{A}|T(u)(x)|^{p} \mathrm{~d} x & \leq C \int_{\Omega}|u(x)|^{p} \mathrm{~d} x \\
\int_{A}|\nabla T(u)(x)|^{p} \mathrm{~d} x & \leq C \int_{\Omega}|\nabla u(x)|^{p} \mathrm{~d} x
\end{aligned}
$$

where $C>0$ depends only on N, p, A, and Ω.
We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. In view of (1.1) and $\left(H_{2}\right)$ for every $n \in \mathbb{N}$, we have

$$
\begin{align*}
M & \geq \frac{1}{2} \int_{\Omega} \sqrt{W\left(u_{n}(x)\right)}\left|\nabla u_{n}(x)\right| \mathrm{d} x \tag{2.1}\\
& \geq c \int_{\left\{\left|u_{n}\right| \geq L\right\}}\left|\nabla u_{n}(x)\right| \mathrm{d} x
\end{align*}
$$

where $c:=\frac{1}{2} \inf _{|z| \geq L} \sqrt{W(z)}>0$. Construct a C^{1} function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $f(z)=z$ if $|z| \geq 2 L$ and $f(z)=0$ if $|z|<L$. By the chain rule, for every $n \in \mathbb{N}$ the function $v_{n}:=f \circ u_{n}$ belongs to $W^{1,2}\left(\Omega ; \mathbb{R}^{d}\right)$ and for all $i=1, \ldots, N$ and for \mathcal{L}^{N}-a.e. $x \in \Omega$,

$$
\frac{\partial v_{n}}{\partial x_{i}}(x)=\sum_{j=1}^{d} \frac{\partial f}{\partial z^{(j)}}\left(u_{n}(x)\right) \frac{\partial\left(u_{n}\right)^{(j)}}{\partial x_{i}}(x),
$$

where we write $z=\left(z^{(1)}, \ldots, z^{(d)}\right)$. Since $\frac{\partial f}{\partial z^{(j)}}(z)=0$ if $|z|<L$, it follows that

$$
\begin{align*}
\int_{\Omega}\left|\nabla v_{n}(x)\right| \mathrm{d} x & =\int_{\left\{\left|u_{n}\right| \geq L\right\}}\left|\nabla v_{n}(x)\right| \mathrm{d} x \tag{2.2}\\
& \leq \operatorname{Lip} f \int_{\left\{\left|u_{n}\right| \geq L\right\}}\left|\nabla u_{n}(x)\right| \mathrm{d} x \leq c^{-1} M \operatorname{Lip} f .
\end{align*}
$$

Let $r>0$ be so large that $\bar{\Omega} \subset B(0, r)$ and set $A:=B(0,2 r)$. By Theorem 2.2 we may extend each function v_{n} to a function in $W^{1,1}\left(A ; \mathbb{R}^{d}\right)$, still denoted v_{n}, in such a way that

$$
\begin{align*}
\int_{A}\left|v_{n}(x)\right| \mathrm{d} x & \leq C \int_{\Omega}\left|v_{n}(x)\right| \mathrm{d} x \tag{2.3}\\
\int_{A}\left|\nabla v_{n}(x)\right| \mathrm{d} x & \leq C \int_{\Omega}\left|\nabla v_{n}(x)\right| \mathrm{d} x \leq C c^{-1} M \operatorname{Lip} f \tag{2.4}
\end{align*}
$$

where C depends only on r, N, and Ω. By the Poincaré inequality,

$$
\begin{equation*}
\int_{A}\left|v_{n}(x)-c_{n}\right| \mathrm{d} x \leq C \int_{A}\left|\nabla v_{n}(x)\right| \mathrm{d} x \tag{2.5}
\end{equation*}
$$

where $c_{n}:=\frac{1}{|\Omega|} \int_{\Omega} v_{n}(x) \mathrm{d} x$ and again C depends only on r, N, and Ω. Note that, since $f(z)=z$ if $|z| \geq 2 L$,

$$
\begin{aligned}
\left|c_{n}\right| & =\frac{1}{|\Omega|}\left|\int_{\Omega} f \circ u_{n} \mathrm{~d} x\right|=\frac{1}{|\Omega|}\left|\int_{\left\{\left|u_{n}\right|>2 L\right\}} u_{n} \mathrm{~d} x+\int_{\left\{\left|u_{n}\right| \leq 2 L\right\}} f \circ u_{n} \mathrm{~d} x\right| \\
& =\left|m+\frac{1}{|\Omega|} \int_{\left\{\left|u_{n}\right| \leq 2 L\right\}}\left(f \circ u_{n}-u_{n}\right) \mathrm{d} x\right| \leq|m|+4 L .
\end{aligned}
$$

Consider a cut-off function $\varphi \in C_{c}^{\infty}(A ;[0,1])$ such that $\varphi=1$ in $B(0, r)$ and define

$$
w_{n}:=\varphi\left(v_{n}-c_{n}\right) .
$$

Then $w_{n} \in W^{1,1}\left(\mathbb{R}^{N}\right)$ and by (2.5),

$$
\begin{align*}
\int_{\mathbb{R}^{N}}\left|\nabla w_{n}(x)\right| \mathrm{d} x & \leq \operatorname{Lip} \varphi \int_{A}\left|v_{n}-c_{n}\right| \mathrm{d} x+\int_{A}\left|\nabla v_{n}(x)\right| \mathrm{d} x \tag{2.6}\\
& \leq(C \operatorname{Lip} \varphi+1) \int_{A}\left|\nabla v_{n}(x)\right| \mathrm{d} x .
\end{align*}
$$

Applying Theorem 2.1 to $\left|w_{n}\right|$, we obtain

$$
\begin{aligned}
\sup _{s>0} s\left[\mathcal{L}^{N}\left(\left\{x \in \mathbb{R}^{N}:\left|w_{n}\right|(x) \geq s\right\}\right)\right]^{\frac{N-1}{N}} & \leq \frac{1}{\alpha_{N}^{1 / N}} \int_{\mathbb{R}^{N}}|\nabla| w_{n}|(x)| \mathrm{d} x \\
& \leq C_{1} \int_{\left\{\left|u_{n}\right| \geq L\right\}}\left|\nabla u_{n}(x)\right| \mathrm{d} x \leq C_{2},
\end{aligned}
$$

where we have used (2.2), (2.4), and (2.6).

Fix $s_{1}>2(|m|+4 L)+1$. Using the facts that $\varphi=1$ in $B(0, r)$, that $f(z)=z$ if $|z| \geq 2 L$, and that $\left|c_{n}\right| \leq|m|+4 L$, for $s \geq s_{1}$ we have

$$
\begin{aligned}
\left\{x \in \Omega:\left|u_{n}(x)\right| \geq s\right\} & =\left\{x \in \Omega:\left|v_{n}(x)\right| \geq s\right\} \subset\left\{x \in \Omega:\left|v_{n}(x)-c_{n}\right| \geq \frac{s}{2}\right\} \\
& \subset\left\{x \in \mathbb{R}^{N}:\left|w_{n}(x)\right| \geq s\right\}
\end{aligned}
$$

and so

$$
\mathcal{L}^{N}\left(\left\{x \in \Omega:\left|u_{n}(x)\right| \geq s\right\}\right) \leq \frac{C}{s^{\frac{N}{N-1}}}
$$

for all $s \geq s_{1}$. Hence,

$$
\begin{aligned}
\int_{\left\{\left|u_{n}\right|>s_{1}\right\}}\left|u_{n}(x)\right| \mathrm{d} x & =\int_{s_{1}}^{\infty} \mathcal{L}^{N}\left\{x \in \Omega:\left|u_{n}(x)\right| \geq s\right\} \mathrm{d} s \\
& \leq C \int_{s_{1}}^{\infty} \frac{1}{s^{\frac{N}{N-1}}} \mathrm{~d} s=\frac{N-1}{s_{(1)} \frac{1}{N-1}}
\end{aligned}
$$

which shows that $\left\{u_{n}\right\}$ is bounded in $L^{1}\left(\Omega ; \mathbb{R}^{d}\right)$ and equi-integrable.
In view of Vitali's convergence theorem, it remains to show that a subsequence converges in measure to some function $u \in B V\left(\Omega ;\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}\right)$. This is classical (see e.g. [2] or [4]).
Remark 2.3. Theorem 1.1 continues to hold if in place of (1.2) we assume that

$$
\begin{equation*}
u_{n}=g \quad \text { on } \partial \Omega \tag{2.7}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and for some function $g \in L^{1}\left(\partial \Omega ;\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}\right)$. In this case, by Gagliardo's trace theorem (see, e.g. Thm. 15.10 in [6]) there exists a function $w \in W^{1,1}\left(\mathbb{R}^{N} \backslash \Omega ; \mathbb{R}^{d}\right)$ such that $w=g$ on $\partial \Omega$. Extend each u_{n} to be w outside Ω. We can now apply Theorem 2.1 directly to $f \circ u_{n} \in W^{1,1}\left(\mathbb{R}^{N} ; \mathbb{R}^{d}\right)$ without introducing the constants c_{n}, the function φ, and without using Theorem 2.2 .

We now turn to the Proof of Theorem 1.2. The following argument is likely well-known. We present it here for the convenience of the reader.

Proof of Theorem 1.2. Without loss of generality, we can assume that each function u_{n} is absolutely continuous.
Since the set $A_{n}:=\left\{x \in(a, b):\left|u_{n}(x)\right|>L\right\}$ is open, we may write it as

$$
A_{n}=\bigcup_{k}\left(a_{k, n}, b_{k, n}\right)
$$

Moreover, by (1.1) and $\left(H_{2}\right)$, for every $n \in \mathbb{N}$, we have

$$
M \varepsilon_{n} \geq \int_{a}^{b} W\left(u_{n}(x)\right) \mathrm{d} x \geq\left|A_{n}\right| \inf _{|z| \geq L} W(z)
$$

and so its complement $(a, b) \backslash A_{n}$ is nonempty for all n sufficiently large. Fix any such n. If A_{n} is empty, then $\left|u_{n}(x)\right| \leq L$ for all $x \in(a, b)$. Otherwise, let $x \in\left(a_{k, n}, b_{k, n}\right)$. Then at least one of the endpoints, say $a_{k, n}$, is not an endpoint of (a, b) and so $\left|u_{n}\left(a_{k, n}\right)\right|=L$. By the fundamental theorem of calculus,

$$
u_{n}(x)=u_{n}\left(a_{k, n}\right)+\int_{a_{k, n}}^{x} u^{\prime}(t) \mathrm{d} t
$$

Hence,

$$
\sup _{x \in\left(a_{k, n}, b_{k, n}\right)}\left|u_{n}(x)\right| \leq L+\int_{\left\{\left|u_{n}\right| \geq L\right\}}\left|u_{n}^{\prime}(t)\right| \mathrm{d} t \leq L+c^{-1} M
$$

where we have used (2.1). This shows that $\left\{u_{n}\right\}$ is bounded in $L^{\infty}\left((a, b) ; \mathbb{R}^{d}\right)$. We can now continue as in Lemma 6.2 in [3].

Finally, we prove Theorem 1.3.

Proof of Theorem 1.3. Without loss of generality, we can assume that each function u_{n} is absolutely continuous. In view of (1.1) and (1.3), for every $n \in \mathbb{N}$ we have

$$
\left.M \geq \frac{1}{2} \int_{a}^{b} \sqrt{W\left(u_{n}(x)\right)}\left|u_{n}^{\prime}(x)\right| \mathrm{d} x \geq\left.\frac{1}{2} \int_{a}^{b} \sqrt{V\left(\left|u_{n}\right|(x)\right)}| | u_{n}\right|^{\prime}(x) \right\rvert\, \mathrm{d} x
$$

Using the area formula for absolutely continuous functions (see, e.g., Thm. 3.65 in [6]), we obtain

$$
\begin{aligned}
M & \geq\left.\left.\frac{1}{2} \int_{a}^{b} \sqrt{V\left(\left|u_{n}\right|(x)\right)}| | u_{n}\right|^{\prime}(x)\left|\mathrm{d} x=\frac{1}{2} \int_{\mathbb{R}} \sqrt{V(s)} \operatorname{card}\right| u_{n}\right|^{-1}(\{s\}) \mathrm{d} s \\
& \geq \frac{1}{2} \int_{\min \left|u_{n}\right|}^{\max \left|u_{n}\right|} \sqrt{V(s)} \mathrm{d} s
\end{aligned}
$$

where card is the cardinality and $\left|u_{n}\right|^{-1}(\{s\})=\left\{x \in\left(a, b:\left|u_{n}(x)\right|=s\right)\right\}$. By (1.2) and the intermediate value theorem, there exists $x_{n} \in(a, b)$ such that

$$
u_{n}\left(x_{n}\right)=\frac{1}{b-a} \int_{a}^{b} u_{n}(x) \mathrm{d} x=\frac{m}{b-a}
$$

Hence, $\left|u_{n}\left(x_{n}\right)\right|=\frac{|m|}{b-a}$, which implies that

$$
M \geq \frac{1}{2} \int_{\frac{|m|}{b-a}}^{\max \left|u_{n}\right|} \sqrt{V(s)} \mathrm{d} s
$$

By $\left(H_{3}\right)$ there exists $R>0$ such that $\int_{\frac{|m|}{b-a}}^{R} \sqrt{V(s)} \mathrm{d} s>2 M$. In turn, $\left|u_{n}(x)\right|<R$ for all $x \in(a, b)$ and all $n \in \mathbb{N}$. This shows that $\left\{u_{n}\right\}$ is bounded in $L^{\infty}\left((a, b) ; \mathbb{R}^{d}\right)$.
Remark 2.4. Observe that in Theorems 1.2 and 1.3 we can replace $\left(H_{1}\right)$ with the weaker hypothesis
$\left(H_{4}\right) W: \mathbb{R}^{d} \rightarrow[0, \infty)$ is continuous and for every $r>0$ the set

$$
\{z \in B(0, r): W(z)=0\}
$$

has finitely many elements.
Indeed, if $\left\{u_{n}\right\} \subset W^{1,2}\left((a, b) ; \mathbb{R}^{d}\right)$ is such that (1.1) holds, then by Theorem 1.2 or 1.3 , there exists $R>0$ such that $\left|u_{n}(x)\right|<R$ for all $x \in(a, b)$ and all $n \in \mathbb{N}$. Find $S \in(R, 2 R)$ such that $V(S)>0$. Note that such S exists, since otherwise we would have $V(s)=0$ for all $s \in(R, 2 R)$, which would imply that $\{z \in B(0,2 R): W(z)=0\}$ has infinitely many elements and would contradict $\left(H_{4}\right)$. Define

$$
W_{1}(z):= \begin{cases}W(z) & \text { if }|z|<S \\ W\left(\frac{z}{|z|} S\right) & \text { if }|z| \geq S\end{cases}
$$

Since $\left|u_{n}(x)\right|<R<S$ for all $x \in(a, b)$ and all $n \in \mathbb{N}$, we have that

$$
M \geq F_{\varepsilon_{n}}\left(u_{n}\right)=\int_{a}^{b}\left(\frac{1}{\varepsilon_{n}} W_{1}\left(u_{n}\right)+\varepsilon_{n}\left|u_{n}^{\prime}\right|^{2}\right) \mathrm{d} x
$$

The function W_{1} satisfies hypotheses $\left(H_{1}\right)$ and $\left(H_{2}\right)$. Hence, we may now apply Theorem 1.2 to find $u \in$ $B V\left((a, b) ;\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}\right)$ and a subsequence $\left\{u_{n_{k}}\right\}$ of $\left\{u_{n}\right\}$ such that

$$
u_{n_{k}} \rightarrow u \text { in } L^{1}\left((a, b) ; \mathbb{R}^{d}\right)
$$

Here $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ are the zeros of W in $B(0, s)$.

In view of the previous remark, we can prove a compactness result for $N=1$ and bounded domains for the functional studied in the classical paper of Modica and Mortola [7].

Corollary 2.5. Let $\varepsilon_{n} \rightarrow 0^{+}$and let $\left\{u_{n}\right\} \subset W^{1,2}\left((a, b) ; \mathbb{R}^{d}\right)$ be such that

$$
\int_{a}^{b}\left(\frac{1}{\varepsilon_{n}} \sin ^{2}\left(\pi u_{n}\right)+\varepsilon_{n}\left|u_{n}^{\prime}(x)\right|^{2}\right) \mathrm{d} x \leq M
$$

and (1.2) hold. Then there exist $u \in B V\left((a, b) ;\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}\right)$ and a subsequence $\left\{u_{n_{k}}\right\}$ of $\left\{u_{n}\right\}$ such that

$$
u_{n_{k}} \rightarrow u \text { in } L^{1}(a, b) .
$$

Here, $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\} \subset \mathbb{Z}$.
Proof. It is enough to observe that the function $W(z)=\sin ^{2}(\pi z)$ satisfies $\left(H_{3}\right)$ and $\left(H_{4}\right)$.
Remark 2.6. I am not aware of any compactness result for $N \geq 2$ for the functional

$$
\int_{\Omega}\left(\frac{1}{\varepsilon} \sin ^{2}(\pi u)+\varepsilon|\nabla u|^{2}\right) \mathrm{d} x,
$$

when (1.2) holds. Note that $W(z)=\sin ^{2}(\pi z)$ satisfies $\left(H_{3}\right)$ and $\left(H_{4}\right)$ but not $\left(H_{1}\right)$ and $\left(H_{2}\right)$.

Acknowledgements. The research of G. Leoni was partially funded by the National Science Foundation under Grant No. DMS-1007989. G. Leoni also acknowledges the Center for Nonlinear Analysis (NSF Grant No. DMS-0635983, PIRE Grant No. OISE-0967140), where part of this research was carried out. The author wishes to thank Massimiliano Morini for useful conversations on the subject of this paper.

References

[1] E. Acerbi, V. Chiadò Piat, G. Dal Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains. Nonlinear Anal. 18 (1992) 481-496.
[2] S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids. Ann. Inst. Henri Poincaré Anal. Non Linéaire 7 (1990) 67-90.
[3] A. Braides, Gamma-convergence for beginners, vol. 22 of Oxford Lect. Ser. Math. Appl. Oxford University Press, New York (2002).
[4] I. Fonseca and L. Tartar, The gradient theory of phase transitions for systems with two potential wells. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 89-102.
[5] M.E. Gurtin, Some results and conjectures in the gradient theory of phase transitions. IMA, preprint 156 (1985).
[6] G. Leoni, A first course in Sobolev spaces, vol. 105 of Graduate Stud. Math. American Mathematical Society (AMS), Providence, RI (2009).
[7] L. Modica and S. Mortola, Un esempio di Γ-convergenza. (Italian). Boll. Un. Mat. Ital. B 14 (1977) $285-299$.
[8] L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123-142.
[9] P. Sternberg, The effect of a singular perturbation on nonconvex variational problems. Arch. Rational Mech. Anal. 101 (1988) 209-260.

[^0]: Keywords and phrases. Singular perturbations, gamma-convergence, compactness.
 1 Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, 15213 PA, USA. giovanni@andrew.cmu.edu

