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A REMARK ON THE COMPACTNESS FOR THE CAHN–HILLIARD
FUNCTIONAL
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Abstract. In this note we prove compactness for the Cahn–Hilliard functional without assuming
coercivity of the multi-well potential.
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1. Introduction

The purpose of this note is to prove compactness for the Cahn–Hilliard functional (see [5, 8, 9]) without
assuming coercivity of the multi-well potential W . Precisely, for ε > 0 consider the functional

Fε : W 1,2
(
Ω; Rd

) → [0,∞]

defined by

Fε (u) :=
∫

Ω

(
1
ε
W (u) + ε|∇u|2

)
dx,

where d ≥ 1 and the potential W satisfies the following hypotheses:

(H1) W : R
d → [0,∞) is continuous, W (z) = 0 if and only if z ∈ {α1, . . . , α�} for some αi ∈ R

d, i = 1, . . . , �,
with αi �= αj for i �= j.

(H2) There exists L > 0 such that
inf

|z|≥L
W (z) > 0.

Then the following result holds.

Theorem 1.1. Let Ω ⊂ R
N , N ≥ 2, be an open bounded connected set with Lipschitz boundary. Assume that

the multi-well potential W satisfies conditions (H1) and (H2). Let εn → 0+ and let {un} ⊂ W 1,2
(
Ω; Rd

)
be

such that
M := sup

n
Fεn (un) < ∞ (1.1)
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and
1
|Ω|

∫
Ω

un (x) dx = m for all n ∈ N (1.2)

and for some m ∈ R
d. Then there exist u ∈ BV (Ω; {α1, . . . , α�}) and a subsequence {unk

} of {un} such that

unk
→ u in L1

(
Ω; Rd

)
.

For a two-well potential (� = 2), Theorem 1.1 has been proved in the scalar case d = 1 by Modica [8] under
the assumption

1
C

|z|p ≤ W (z) ≤ C |z|p

for all |z| large and for some p > 2, and by Sternberg [9] for p ≥ 2; while in the vectorial case d ≥ 2, it has been
proved by Fonseca and Tartar [4] under the assumption

1
C

|z| ≤ W (z)

for all |z| large. The case of a multi-well potential � ≥ 3 has been studied by Baldo (see Props. 4.1 and 4.2
in [2]), who proved compactness of a sequence of minimizers bounded in L∞ (Ω).

An example of a double-well potential satisfying (H1) and (H2) with d = 1 but not coercive is

W (z) = arctan
[
(z − α)2 (z − β)2

]
,

while an example of a potential satisfying (H1) but not (H2) is

W (z) = (z − α)2 (z − β)2 e−|z|2 .

In the one dimensional case N = 1, the hypothesis (1.2) is not needed. Indeed, we have the following
elementary result.

Theorem 1.2. Assume that the multi-well potential W satisfies conditions (H1) and (H2). Let εn → 0+ and
let {un} ⊂ W 1,2

(
(a, b) ; Rd

)
be such that (1.1) holds. Then there exist u ∈ BV ((a, b) ; {α1, . . . , α�}) and a

subsequence {unk
} of {un} such that

unk
→ u in L1

(
(a, b) ; Rd

)
.

On the other hand, when (1.2) holds, then condition (H2) can be weakened to:

(H3)
∫ ∞

0

√
V (s) ds = ∞, where for every s ≥ 0,

V (s) := min
|z|=s

W (z) . (1.3)

Note that (H2) implies that
√

V (s) ≥ inf |z|≥L

√
W (z) > 0 for all s ≥ L, and so (H3) is satisfied. On the

other hand, if
W (z) ∼ c

|z|q
as |z| → ∞ for some c > 0 and 0 < q ≤ 2, then (H3) holds but not (H1).

Theorem 1.3. Assume that the multi-well potential W satisfies conditions (H1) and (H3). Let εn → 0+ and
let {un} ⊂ W 1,2

(
(a, b) ; Rd

)
be such that (1.1) and (1.2) hold. Then there exist u ∈ BV ((a, b) ; {α1, . . . , α�})

and a subsequence {unk
} of {un} and such that

unk
→ u in L1

(
(a, b) ; Rd

)
.

The next simple example shows that compactness fails without (1.2) or (H2).
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Example 1.4. If condition (H2) does not hold, then there exists {zn} ⊂ R
d such that |zn| → ∞ and

lim
n→∞W (zn) = 0.

Find a sequence εn → 0 such that
1
εn

W (zn) → 0,

(e.g. εn :=
√

W (zn)) and consider the sequence of functions un (x) :≡ zn. Then

Fεn (un) =
1
εn

W (zn) (b − a) → 0

but no subsequence of {un} converge in L1 ((a, b)).

Remark 1.5. I have not been able to determine if Theorems 1.2 and 1.3 hold in dimension N ≥ 2 or if (H3)
is needed in Theorem 1.3.

2. Proof of Theorems 1.1 and 1.2

The proof of Theorem 1.1 will make use of the following auxiliary results. For a proof of the following theorem
see, e.g., Proposition 16.21 in [6].

Theorem 2.1. Let u ∈ W 1,1
(
R

N
)
, N ≥ 2. Then

sup
s>0

s
[LN

({
x ∈ R

N : |u (x)| ≥ s
})] N−1

N ≤ 1

α
1/N
N

∫
RN

|∇u (x)| dx.

For a proof of the next theorem, see Lemma 2.6 in [1].

Theorem 2.2. Let A, Ω ⊂ R
N be open sets and let 1 ≤ p < ∞. Assume that A is bounded and that Ω

is connected and has Lipschitz boundary at each point of ∂Ω ∩ A. Then there exists a linear and continuous
operator T : W 1,p (Ω) → W 1,p (A) such that, for every u ∈ W 1,p (Ω),

T (u) (x) = u (x) for LN a.e. x ∈ Ω ∩ A,∫
A

|T (u) (x)|p dx ≤ C

∫
Ω

|u (x)|p dx,∫
A

|∇T (u) (x)|p dx ≤ C

∫
Ω

|∇u (x)|p dx,

where C > 0 depends only on N , p, A, and Ω.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. In view of (1.1) and (H2) for every n ∈ N, we have

M ≥ 1
2

∫
Ω

√
W (un (x))|∇un (x) | dx (2.1)

≥ c

∫
{|un|≥L}

|∇un (x) | dx,
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where c := 1
2 inf |z|≥L

√
W (z) > 0. Construct a C1 function f : R

d → R
d such that f (z) = z if |z| ≥ 2L and

f (z) = 0 if |z| < L. By the chain rule, for every n ∈ N the function vn := f ◦ un belongs to W 1,2
(
Ω; Rd

)
and

for all i = 1, . . . , N and for LN -a.e. x ∈ Ω,

∂vn

∂xi
(x) =

d∑
j=1

∂f

∂z(j)
(un (x))

∂ (un)(j)

∂xi
(x) ,

where we write z =
(
z(1), . . . , z(d)

)
. Since ∂f

∂z(j) (z) = 0 if |z| < L, it follows that∫
Ω

|∇vn (x) | dx =
∫
{|un|≥L}

|∇vn (x) | dx (2.2)

≤ Lip f

∫
{|un|≥L}

|∇un (x) | dx ≤ c−1M Lip f.

Let r > 0 be so large that Ω ⊂ B (0, r) and set A := B (0, 2r). By Theorem 2.2 we may extend each function
vn to a function in W 1,1

(
A; Rd

)
, still denoted vn, in such a way that∫
A

|vn (x)| dx ≤ C

∫
Ω

|vn (x)| dx, (2.3)∫
A

|∇vn (x)| dx ≤ C

∫
Ω

|∇vn (x)| dx ≤ Cc−1M Lip f, (2.4)

where C depends only on r, N , and Ω. By the Poincaré inequality,∫
A

|vn (x) − cn| dx ≤ C

∫
A

|∇vn (x)| dx, (2.5)

where cn := 1
|Ω|

∫
Ω vn (x) dx and again C depends only on r, N , and Ω. Note that, since f (z) = z if |z| ≥ 2L,

|cn| =
1
|Ω|

∣∣∣∣
∫

Ω

f ◦ un dx

∣∣∣∣ =
1
|Ω|

∣∣∣∣∣
∫
{|un|>2L}

un dx +
∫
{|un|≤2L}

f ◦ un dx

∣∣∣∣∣
=

∣∣∣∣∣m +
1
|Ω|

∫
{|un|≤2L}

(f ◦ un − un) dx

∣∣∣∣∣ ≤ |m| + 4L.

Consider a cut-off function ϕ ∈ C∞
c (A; [0, 1]) such that ϕ = 1 in B (0, r) and define

wn := ϕ (vn − cn) .

Then wn ∈ W 1,1
(
R

N
)

and by (2.5),∫
RN

|∇wn (x)| dx ≤ Lip ϕ

∫
A

|vn − cn| dx +
∫

A

|∇vn (x)| dx (2.6)

≤ (C Lip ϕ + 1)
∫

A

|∇vn (x)| dx.

Applying Theorem 2.1 to |wn|, we obtain

sup
s>0

s
[LN

({
x ∈ R

N : |wn| (x) ≥ s
})] N−1

N ≤ 1

α
1/N
N

∫
RN

|∇ |wn| (x)| dx

≤ C1

∫
{|un|≥L}

|∇un (x) | dx ≤ C2,

where we have used (2.2), (2.4), and (2.6).
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Fix s1 > 2 (|m| + 4L) + 1. Using the facts that ϕ = 1 in B (0, r), that f (z) = z if |z| ≥ 2L, and that
|cn| ≤ |m| + 4L, for s ≥ s1 we have

{x ∈ Ω : |un(x)| ≥ s} = {x ∈ Ω : |vn(x)| ≥ s} ⊂
{

x ∈ Ω : |vn(x) − cn| ≥ s

2

}
⊂ {

x ∈ R
N : |wn(x)| ≥ s

}
,

and so
LN ({x ∈ Ω : |un (x)| ≥ s}) ≤ C

s
N

N−1

for all s ≥ s1. Hence, ∫
{|un|>s1}

|un (x) | dx =
∫ ∞

s1

LN {x ∈ Ω : |un(x)| ≥ s} ds

≤ C

∫ ∞

s1

1

s
N

N−1
ds =

N − 1

s(1)

1
N−1

,

which shows that {un} is bounded in L1
(
Ω; Rd

)
and equi-integrable.

In view of Vitali’s convergence theorem, it remains to show that a subsequence converges in measure to some
function u ∈ BV (Ω; {α1, . . . , α�}). This is classical (see e.g. [2] or [4]). �
Remark 2.3. Theorem 1.1 continues to hold if in place of (1.2) we assume that

un = g on ∂Ω (2.7)

for all n ∈ N and for some function g ∈ L1 (∂Ω; {α1, . . . , α�}). In this case, by Gagliardo’s trace theorem (see,
e.g. Thm. 15.10 in [6]) there exists a function w ∈ W 1,1

(
R

N \ Ω; Rd
)

such that w = g on ∂Ω. Extend each un

to be w outside Ω. We can now apply Theorem 2.1 directly to f ◦ un ∈ W 1,1
(
R

N ; Rd
)

without introducing the
constants cn, the function ϕ, and without using Theorem 2.2.

We now turn to the Proof of Theorem 1.2. The following argument is likely well-known. We present it here
for the convenience of the reader.

Proof of Theorem 1.2. Without loss of generality, we can assume that each function un is absolutely continuous.
Since the set An := {x ∈ (a, b) : |un (x)| > L} is open, we may write it as

An =
⋃
k

(ak,n, bk,n) .

Moreover, by (1.1) and (H2), for every n ∈ N, we have

Mεn ≥
∫ b

a

W (un (x)) dx ≥ |An| inf
|z|≥L

W (z) ,

and so its complement (a, b) \ An is nonempty for all n sufficiently large. Fix any such n. If An is empty, then
|un (x)| ≤ L for all x ∈ (a, b). Otherwise, let x ∈ (ak,n, bk,n). Then at least one of the endpoints, say ak,n, is not
an endpoint of (a, b) and so |un (ak,n)| = L. By the fundamental theorem of calculus,

un (x) = un (ak,n) +
∫ x

ak,n

u′ (t) dt.

Hence,

sup
x∈(ak,n,bk,n)

|un (x)| ≤ L +
∫
{|un|≥L}

|u′
n (t) | dt ≤ L + c−1M,

where we have used (2.1). This shows that {un} is bounded in L∞ (
(a, b) ; Rd

)
. We can now continue as in

Lemma 6.2 in [3]. �
Finally, we prove Theorem 1.3.
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Proof of Theorem 1.3. Without loss of generality, we can assume that each function un is absolutely continuous.
In view of (1.1) and (1.3), for every n ∈ N we have

M ≥ 1
2

∫ b

a

√
W (un (x))|u′

n (x) | dx ≥ 1
2

∫ b

a

√
V (|un| (x))| |un|′ (x) | dx.

Using the area formula for absolutely continuous functions (see, e.g., Thm. 3.65 in [6]), we obtain

M ≥ 1
2

∫ b

a

√
V (|un| (x))| |un|′ (x) | dx =

1
2

∫
R

√
V (s) card |un|−1 ({s}) ds

≥ 1
2

∫ max|un|

min|un|

√
V (s) ds,

where card is the cardinality and |un|−1 ({s}) = {x ∈ (a, b : |un (x)| = s)}. By (1.2) and the intermediate value
theorem, there exists xn ∈ (a, b) such that

un (xn) =
1

b − a

∫ b

a

un (x) dx =
m

b − a
·

Hence, |un (xn)| = |m|
b−a , which implies that

M ≥ 1
2

∫ max|un|

|m|
b−a

√
V (s) ds.

By (H3) there exists R > 0 such that
∫ R

|m|
b−a

√
V (s) ds > 2M . In turn, |un (x)| < R for all x ∈ (a, b) and all

n ∈ N. This shows that {un} is bounded in L∞ (
(a, b) ; Rd

)
. �

Remark 2.4. Observe that in Theorems 1.2 and 1.3 we can replace (H1) with the weaker hypothesis

(H4) W : R
d → [0,∞) is continuous and for every r > 0 the set

{z ∈ B (0, r) : W (z) = 0}
has finitely many elements.

Indeed, if {un} ⊂ W 1,2
(
(a, b) ; Rd

)
is such that (1.1) holds, then by Theorem 1.2 or 1.3, there exists R > 0 such

that |un (x)| < R for all x ∈ (a, b) and all n ∈ N. Find S ∈ (R, 2R) such that V (S) > 0. Note that such S exists,
since otherwise we would have V (s) = 0 for all s ∈ (R, 2R), which would imply that {z ∈ B (0, 2R) : W (z) = 0}
has infinitely many elements and would contradict (H4). Define

W1 (z) :=

{
W (z) if |z| < S,

W
(

z
|z|S

)
if |z| ≥ S.

Since |un (x)| < R < S for all x ∈ (a, b) and all n ∈ N, we have that

M ≥ Fεn (un) =
∫ b

a

(
1
εn

W1(un) + εn|u′
n|2

)
dx.

The function W1 satisfies hypotheses (H1) and (H2). Hence, we may now apply Theorem 1.2 to find u ∈
BV ((a, b) ; {α1, . . . , α�}) and a subsequence {unk

} of {un} such that

unk
→ u in L1

(
(a, b) ; Rd

)
.

Here {α1, . . . , α�} are the zeros of W in B (0, s).
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In view of the previous remark, we can prove a compactness result for N = 1 and bounded domains for the
functional studied in the classical paper of Modica and Mortola [7].

Corollary 2.5. Let εn → 0+ and let {un} ⊂ W 1,2
(
(a, b) ; Rd

)
be such that

∫ b

a

(
1
εn

sin2 (πun) + εn|u′
n (x) |2

)
dx ≤ M

and (1.2) hold. Then there exist u ∈ BV ((a, b) ; {α1, . . . , α�}) and a subsequence {unk
} of {un} such that

unk
→ u in L1 (a, b) .

Here, {α1, . . . , α�} ⊂ Z.

Proof. It is enough to observe that the function W (z) = sin2 (πz) satisfies (H3) and (H4). �

Remark 2.6. I am not aware of any compactness result for N ≥ 2 for the functional∫
Ω

(
1
ε

sin2 (πu) + ε|∇u|2
)

dx,

when (1.2) holds. Note that W (z) = sin2 (πz) satisfies (H3) and (H4) but not (H1) and (H2).
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