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Abstract. In this article, given a reference feasible trajectory of an optimal control problem, we
say that the quadratic growth property for bounded strong solutions holds if the cost function of the
problem has a quadratic growth over the set of feasible trajectories with a bounded control and with
a state variable sufficiently close to the reference state variable. Our sufficient second-order optimality
conditions in Pontryagin form ensure this property and ensure a fortiori that the reference trajectory
is a bounded strong solution. Our proof relies on a decomposition principle, which is a particular
second-order expansion of the Lagrangian of the problem.
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1. Introduction

In this paper, we consider an optimal control problem with final-state constraints, pure state constraints, and
mixed control-state constraints. Given a feasible control ū and its associated state variable ȳ, we give second-
order conditions ensuring that for all R > ‖ū‖∞, there exist ε > 0 and α > 0 such that for all feasible trajectory
(u, y) with ‖u‖∞ ≤ R and ‖y − ȳ‖∞ ≤ ε,

J(u, y) − J(ū, ȳ) ≥ α
(
‖u − ū‖2

2 + |y0 − ȳ0|2
)
, (1.1)

where J(u, y) is the cost function to minimize. We call this property quadratic growth for bounded strong
solutions. Its specificity lies in the fact that the quadratic growth is ensured for controls which may be far from
ū in L∞ norm.

Our approach is based on the theory of second-order optimality conditions for optimization problems in
Banach spaces [7,13,15]. A local optimal solution satisfies first- and second-order necessary conditions; denoting
by Ω the Hessian of the Lagrangian, theses conditions state that under the extended polyhedricity condition [6],
Section 3.2, the supremum of Ω over the set of Lagrange multipliers is nonnegative for all critical directions.
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If the supremum of Ω is positive for nonzero critical directions, we say that the second-order sufficient
optimality conditions hold and under some assumptions, a quadratic growth property is then satisfied. This
approach can be used for optimal control problems with constraints of any kind. For example, Stefani and
Zezza [22] dealt with problems with mixed control-state equality constraints and Bonnans and Hermant [4] with
problems with pure state and mixed control-state constraints. However, the quadratic growth property which
is then satisfied holds for controls which are sufficiently close to ū in uniform norm and only ensures that (ū, ȳ)
is a weak solution.

For Pontryagin minima, that is to say minima locally optimal in a L1 neighborhood of ū, the necessary
conditions can be strengthened. The first-order conditions are nothing but the well-known Pontryagin’s principle,
historically formulated in [21] and extended to problems with various constraints by many authors, such as
Hestenes for problems with mixed control-state constraints [11], Dubovitskii and Milyutin for problems with
pure state and mixed control-state constraints in early Russian references [9,10], as highlighted by Dmitruk [8].
We refer to the survey by Hartl et al. for more references on this principle.

We say that the second-order necessary conditions are in Pontryagin form if the supremum of Ω is taken
over the set of Pontryagin multipliers, these multipliers being the Lagrange multipliers for which Pontryagin’s
principle holds; under some hypotheses, these conditions are satisfied for Pontryagin minima. The sufficient
conditions in Pontryagin form are as follows: the supremum of Ω over Pontryagin multipliers only is positive
for nonzero critical directions and for all bounded neighborhood of ū, there exists a Pontryagin multiplier which
is such the Hamiltonian has itself a quadratic growth; if these conditions hold, then the quadratic growth for
bounded strong solutions holds.

Osmolovskii proved the necessary conditions in [17] and gave sufficient conditions for the quadratic growth
for bounded strong solutions in [18], for problems with final-state constraints, mixed constraints and possibly
discontinuous optimal controls. These results had been announced in [16]. The quadratic growth property
which is established in [18] is more general than ours: it involves the so-called violation function (which is
equal to the difference of cost for a feasible variation) and a general class of cost functionals for the growth
property. A simplified version of this article was published by the same author, in which the optimal control
is continuous [19]. In [20], Maurer and Osmolovskii considered the simpler case of final-state constraints and
mixed equality constraints.

For problems with pure and mixed inequality constraints, we proved the second-order necessary conditions in
Pontryagin form [2]; in the present paper, we prove that the sufficient conditions in Pontryagin form ensure the
quadratic growth property for bounded strong solutions. Our proof is based on an extension of the decomposition
principle of Bonnans and Osmolovskii [5] to the constrained case. This principle is a particular second-order
expansion of the Lagrangian, which takes into account the fact that the control may have large perturbations
in uniform norm. Note that the difficulties arising in the extension of the principle and the proof of quadratic
growth are mainly due to the presence of mixed control-state constraints.

In this article, we do not need the independence of the gradients of active mixed constraints, an assumption
needed in the aforementioned papers, instead, we only use the inward condition. We also use the strengthened
Legendre condition, which holds if the Hessian of the augmented Hamiltonian with respect to the control is uni-
formly positive. This is a strong assumption; when there are mixed constraints (or simply control constraints),
this assumption cannot be considered as a natural strengthening of the necessary conditions. However, it simpli-
fies considerably the proof of quadratic growth. Note that it is not required in the decomposition principle. Note
also that Osmolovskii proved the quadratic growth without this assumption in [18] and used instead estimates
of the distance to the critical cone which were obtained with generalizations of Hoffman’s lemma.

The outline of the paper is as follows. In Section 2, we set our optimal control problem. Section 3 is devoted to
technical aspects related to the reduction of state constraints. We prove the decomposition principle in Section 4
(Thm. 4.2) and prove the quadratic growth property for bounded strong solutions in Section 5 (Thm. 5.4). In
Section 6, we prove that under technical assumptions, the sufficient conditions are not only sufficient but also
necessary to ensure the quadratic growth property (Thm. 6.3).
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Notations.
For a function h that depends only on time t, we denote by ht its value at time t, by hi,t the value of its ith
component if h is vector-valued, and by ḣ its derivative. For a function h that depends on (t, x), we denote by
Dth and Dxh its partial derivatives. We use the symbol D without any subscript for the differentiation w.r.t.
all variables except t, e.g. Dh = D(u,y)h for a function h that depends on (t, u, y). We use the same convention
for higher order derivatives.

We identify the dual space of R
n with the space R

n∗ of n-dimensional horizontal vectors. Generally, we denote
by X∗ the dual space of a topological vector space X . Given a convex subset K of X and a point x of K, we
denote by TK(x) and NK(x) the tangent and normal cone to K at x, respectively; see ([6], Sect. 2.2.4) for their
definition.

We denote by | · | both the Euclidean norm on finite-dimensional vector spaces and the cardinal of finite
sets, and by ‖ · ‖s and ‖ · ‖q,s the standard norms on the Lesbesgue spaces Ls and the Sobolev spaces W q,s,
respectively.

We denote by BV ([0, T ]) the space of functions of bounded variation on the closed interval [0, T ]. Any
h ∈ BV ([0, T ]) has a derivative dh which is a finite Radon measure on [0, T ] and h0 (resp. hT ) is defined
by h0 := h0+ − dh(0) (resp. hT := hT− + dh(T )). Thus BV ([0, T ]) is endowed with the following norm:
‖h‖BV := ‖dh‖M + |hT |. See ([1], Sect. 3.2) for a rigorous presentation of BV .

All vector-valued inequalities have to be understood coordinate-wise.

2. Setting

2.1. The optimal control problem

We formulate in this section the optimal control problem under study and we use the same framework as
in [2]. We refer to this article for supplementary comments on the different assumptions made. Consider the
state equation

ẏt = f(t, ut, yt) for a.a. t ∈ (0, T ). (2.1)

Here, u is a control which belongs to U , y is a state which belongs to Y, where

U := L∞(0, T ; Rm), Y := W 1,∞(0, T ; Rn), (2.2)

and f : [0, T ] × R
m × R

n → R
n is the dynamics. Given y0 ∈ R

n and u ∈ U , we denote by y[u, y0] the solution
to (2.1) with the initial condition y0 = y0. Consider constraints of various types on the system: the mixed
control-state constraints, or mixed constraints

c(t, ut, yt) ≤ 0 for a.a. t ∈ (0, T ), (2.3)

the pure state constraints, or state constraints

g(t, yt) ≤ 0 for a.a. t ∈ (0, T ), (2.4)

and the initial-final state constraints {
ΦE(y0, yT ) = 0,

ΦI(y0, yT ) ≤ 0.
(2.5)

Here c : [0, T ]× R
m × R

n → R
nc , g : [0, T ]× R

n → R
ng , ΦE : R

n × R
n → R

n
ΦE , ΦI : R

n × R
n → R

n
ΦI . Finally,

consider the cost function φ : R
n × R

n → R. The optimal control problem is then

min
(u,y)∈U×Y

φ(y0, yT ) subject to (2.1)–(2.5). (P )

We call a trajectory any pair (u, y) ∈ U × Y such that (2.1) holds. We say that a trajectory is feasible for
problem (P ) if it satisfies constraints (2.3)−(2.5), and denote by F (P ) the set of feasible trajectories. From now
on, we fix a feasible trajectory (ū, ȳ).
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Similarly to ([22], Def. 2.1), we introduce the following Carathéodory-type regularity notion:

Definition 2.1. We say that ϕ : [0, T ]× R
m × R

n → R
s is uniformly quasi-Ck iff

(i) for a.a. t, (u, y) �→ ϕ(t, u, y) is of class Ck, and the modulus of continuity of (u, y) �→ Dkϕ(t, u, y) on any
compact of R

m × R
n is uniform w.r.t. t.

(ii) for j = 0, . . . , k, for all (u, y), t �→ Djϕ(t, u, y) is essentially bounded.

Remark 2.2. If ϕ is uniformly quasi-Ck, then Djϕ for j = 0, . . . , k are essentially bounded on any compact,
and (u, y) �→ Djϕ(t, u, y) for j = 0, . . . , k − 1 are locally Lipschitz, uniformly w.r.t. t.

The regularity assumption that we need for the quadratic growth property is the following:

Assumption 1. The mappings f , c and g are uniformly quasi-C2, g is differentiable, Dtg is uniformly quasi-C1,
ΦE , ΦI , and φ are C2.

Note that this assumption will be strengthened in Section 6.

Definition 2.3. We say that the inward condition for the mixed constraints holds iff there exist γ > 0 and
v̄ ∈ U such that

c(t, ūt, ȳt) + Duc(t, ūt, ȳt)v̄t ≤ −γ, for a.a. t. (2.6)

In the sequel, we will always make the following assumption:

Assumption 2. The inward condition for the mixed constraints holds.

Assumption 2 ensures that the component of the Lagrange multipliers associated with the mixed constraints
belongs to L∞(0, T ; Rnc∗), see e.g. ([5], Thm. 3.1). This assumption will also play a role in the decomposition
principle.

2.2. Bounded strong optimality and quadratic growth

Let us introduce various notions of minima, following [16].

Definition 2.4. We say that (ū, ȳ) is a bounded strong minimum iff for any R > ‖ū‖∞, there exists ε > 0 such
that

φ(ȳ0, ȳT ) ≤ φ(y0, yT ), for all (u, y) ∈ F (P ) such that (2.7)
‖y − ȳ‖∞ ≤ ε and ‖u‖∞ ≤ R,

a Pontryagin minimum iff for any R > ‖ū‖∞, there exists ε > 0 such that

φ(ȳ0, ȳT ) ≤ φ(y0, yT ), for all (u, y) ∈ F (P ) such that (2.8)
‖u − ū‖1 + ‖y − ȳ‖∞ ≤ ε and ‖u‖∞ ≤ R,

a weak minimum iff there exists ε > 0 such that

φ(ȳ0, ȳT ) ≤ φ(y0, yT ), for all (u, y) ∈ F (P ) such that (2.9)
‖u − ū‖∞ + ‖y − ȳ‖∞ ≤ ε.

Obviously, (2.7) ⇒ (2.8) ⇒ (2.9).

Definition 2.5. We say that the quadratic growth property for bounded strong solutions holds at (ū, ȳ) iff for
all R > ‖ū‖∞, there exist εR > 0 and αR > 0 such that for all feasible trajectory (u, y) satisfying ‖u‖∞ ≤ R
and ‖y − ȳ‖∞ ≤ εR,

φ(y0, yT ) − φ(ȳ0, ȳT ) ≥ αR

(
|y0 − ȳ0|2 + ‖u − ū‖2

2

)
. (2.10)

The goal of the article is to characterize this property. If it holds at (ū, ȳ), then (ū, ȳ) is a bounded strong
solution to the problem.
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2.3. Multipliers

We define the Hamiltonian and the augmented Hamiltonian respectively by

H [p](t, u, y) := pf(t, u, y), Ha[p, ν](t, u, y) := pf(t, u, y) + νc(t, u, y), (2.11)

for (p, ν, t, u, y) ∈ R
n∗ × R

nc∗ × [0, T ]× R
m × R

n. We define the end points Lagrangian by

Φ[β, Ψ ](y0, yT ) := βφ(y0, yT ) + ΨΦ(y0, yT ), (2.12)

for (β, Ψ, y0, yT ) ∈ R × R
nΦ∗ × R

n × R
n, where nΦ = nΦE + nΦI and Φ =

(
ΦE

ΦI

)
.

We set
Kc := L∞(0, T ; Rnc

− ), Kg := C([0, T ]; Rng

− ), KΦ := {0}
R

n
ΦE × R

n
ΦI

− , (2.13)

so that the constraints (2.3)−(2.5) can be rewritten as

c(·, u, y) ∈ Kc, g(·, y) ∈ Kg, Φ(y0, yT ) ∈ KΦ. (2.14)

Recall that the dual space of C([0, T ]; Rng) is the space M([0, T ]; Rng∗) of finite vector-valued Radon measures.
We denote by M([0, T ]; Rng∗)+ the cone of positive measures in this dual space. Let

E := R × R
nΦ∗ × L∞(0, T ; Rnc∗) ×M([0, T ]; Rng∗). (2.15)

Let NKc(c(·, ū, ȳ)) be the set of elements in the normal cone to Kc at c(·, ū, ȳ) that belong to L∞(0, T ; Rnc∗),
i.e.

NKc(c(·, ū, ȳ)) :=
{
ν ∈ L∞(0, T ; Rnc∗

+ ) : νtc(t, ūt, ȳt) = 0 for a.a. t
}

. (2.16)

Let NKg (g(·, ȳ)) be the normal cone to Kg at g(·, ȳ), i.e.

NKg(g(·, ȳ)) :=

{
μ ∈ M([0, T ]; Rng∗)+ :

∫
[0,T ]

(dμtg(t, ȳt)) = 0

}
. (2.17)

Let NKΦ(Φ(ȳ0, ȳT )) be the normal cone to KΦ at Φ(ȳ0, ȳT ), i.e.

NKΦ(Φ(ȳ0, ȳT )) :=
{

Ψ ∈ R
nΦ∗ : Ψi ≥ 0

ΨiΦi(ȳ0, ȳT ) = 0 for nΦE < i ≤ nΦ

}
. (2.18)

Finally, let
N(ū, ȳ) := R+ × NKΦ(Φ(ȳ0, ȳT )) × NKc(c(·, ū, ȳ)) × NKg (g(·, ȳ)) ⊂ E. (2.19)

We define the costate space
P := BV ([0, T ]; Rn∗). (2.20)

Given λ = (β, Ψ, ν, μ) ∈ E, we consider the costate equation in P
{−dpt = DyHa[pt, νt](t, ūt, ȳt)dt + dμtDg(t, ȳt),

pT = DyT Φ[β, Ψ ](ȳ0, ȳT ).
(2.21)

Definition 2.6. Let λ = (β, Ψ, ν, μ) ∈ E. We say that the solution of the costate equation (2.21) pλ ∈ P is an
associated costate iff

−pλ
0 = Dy0Φ[β, Ψ ](ȳ0, ȳT ). (2.22)

Let Nπ(ū, ȳ) be the set of nonzero λ ∈ N(ū, ȳ) having an associated costate.
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We define the set-valued mapping U : [0, T ] ⇒ R
m by

U(t) := cl {u ∈ R
m : c(t, u, ȳt) < 0} for a.a. t, (2.23)

where cl denotes the closure in R
m. We can now define two different notions of multipliers.

Definition 2.7.

(i) We say that λ ∈ Nπ(ū, ȳ) is a generalized Lagrange multiplier iff

DuHa[pλ
t , νt](t, ūt, ȳt) = 0 for a.a. t. (2.24)

We denote by ΛL(ū, ȳ) the set of generalized Lagrange multipliers.
(ii) We say that λ ∈ ΛL(ū, ȳ) is a generalized Pontryagin multiplier iff

H [pλ
t ](t, ūt, ȳt) ≤ H [pλ

t ](t, u, ȳt) for all u ∈ U(t), for a.a. t. (2.25)

We denote by ΛP (ū, ȳ) the set of generalized Pontryagin multipliers.

Note that ΛL(ū, ȳ) and ΛP (ū, ȳ) are convex cones.

Remark 2.8. The set-valued mapping U(t) describes the feasible controls for the mixed constraints, for the
state variable ȳ. Note that by continuity, for a.a. t, the inclusion

U(t) ⊂ {u ∈ R
m : c(t, u, ȳt) ≤ 0} (2.26)

holds but may be strict. In ([2], Appendix), we give an example where this inclusion is strict and where for
a.a. t, ūt minimizes u �→ H [pλ

t ](t, u, ȳt) over U(t) but not over the r.h.s. of (2.26) (the Lagrange multiplier λ
being unique in this example).

Remark 2.9. As a consequence of the inward condition (Assumption 2), we get that

ūt ∈ U(t), for a.a. t. (2.27)

2.4. Reducible touch points

Let us first recall the definition of the order of a state constraint. For 1 ≤ i ≤ ng, assuming that gi is
sufficiently regular, we define by induction g

(j)
i : [0, T ]× R

m × R
n → R, j ∈ N, by

g
(j+1)
i (t, u, y) := Dtg

(j)
i (t, u, y) + Dyg

(j)
i (t, u, y)f(t, u, y), g

(0)
i := gi. (2.28)

Definition 2.10. If gi and f are Cqi , we say that the state constraint gi is of order qi ∈ N iff

Dug
(j)
i ≡ 0 for 0 ≤ j ≤ qi − 1, Dug

(qi)
i �≡ 0. (2.29)

If gi is of order qi, then for all j < qi, g
(j)
i is independent of u and we do not mention this dependence

anymore. Moreover, the mapping t �→ gi(t, ȳt) belongs to W qi,∞(0, T ) and

dj

dtj
gi(t, ȳt) = g

(j)
i (t, ȳt) for 0 ≤ j < qi, (2.30)

dj

dtj
gi(t, ȳt) = g

(j)
i (t, ūt, ȳt) for j = qi. (2.31)
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Definition 2.11. We say that τ ∈ [0, T ] is a touch point for the constraint gi iff it is a contact point for gi, i.e.
gi(τ, ȳτ ) = 0, and τ is isolated in {t : gi(t, ȳt) = 0}. We say that a touch point τ for gi is reducible iff τ ∈ (0, T ),
d2

dt2 gi(t, ȳt) is defined for t close to τ , continuous at τ , and

d2

dt2
gi(t, ȳt)|t=τ < 0. (2.32)

For 1 ≤ i ≤ ng, let us define

Tg,i :=

{
∅ if gi is of order 1,

{touch points for gi} otherwise.
(2.33)

Note that for the moment, we only need to distinguish the constraints of order 1 from the other constraints,
for which the order may be undefined if gi or f is not regular enough.

Assumption 3. For 1 ≤ i ≤ ng, the set Tg,i – if nonempty – is finite and only contains reducible touch points.

Note that we do not need supplementary assumptions of the structure of {t : gi(t, ȳt) = 0}, in particular,
there may be an infinite number of boundary arcs.

2.5. Tools for the second-order analysis

We define now the linearizations of the system, the critical cone, and the Hessian of the Lagrangian. Let us
set

V2 := L2(0, T ; Rm), Z1 := W 1,1(0, T ; Rn), and Z2 := W 1,2(0, T ; Rn). (2.34)

Given v ∈ V2, we consider the linearized state equation in Z2

żt = Df(t, ūt, ȳt)(vt, zt) for a.a. t ∈ (0, T ). (2.35)

We call linerarized trajectory any (v, z) ∈ V2 × Z2 such that (2.35) holds. For any (v, z0) ∈ V2 × R
n, there

exists a unique z ∈ Z2 such that (2.35) holds and z0 = z0; we denote it by z = z[v, z0]. We also consider the
second-order linearized state equation in Z1, defined by

ζ̇t = Dyf(t, ūt, ȳt)ζt + D2f(t, ūt, ȳt)
(
vt, zt

[
v, z0

])2
for a.a. t ∈ (0, T ). (2.36)

We denote by z2[v, z0] the unique ζ ∈ Z1 such that (2.36) holds and such that ζ0 = 0.
The critical cone in L2 is defined by

C2(ū, ȳ) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(v, z) ∈ V2 ×Z2 : z = z[v, z0]

Dφ(ȳ0, ȳT )(z0, zT ) ≤ 0

DΦ(ȳ0, ȳT )(z0, zT ) ∈ TKΦ(Φ(ȳ0, ȳT ))

Dc(·, ū, ȳ)(v, z) ∈ TKc(c(·, ū, ȳ))
Dg(·, ȳ)z ∈ TKg(g(·, ȳ))

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.37)

Note that by ([6], Examples 2.63 and 2.64), the tangent cones TKg (g(·, ȳ)) and TKc(c(·, ū, ȳ)) are resp. de-
scribed by

TKg = {ζ ∈ C([0, T ]; Rn) : ∀i, ∀t, gi(t, ȳt) = 0 =⇒ ζi,t ≤ 0}, (2.38)
TKc = {w ∈ L2(0, T ; Rm) : ∀i, for a.a. t, ci(t, ūt, ȳt) = 0 =⇒ wi,t ≤ 0} (2.39)
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Finally, for any λ = (β, Ψ, ν, μ) ∈ E, we define a quadratic form, the Hessian of Lagrangian, Ω[λ] : V2×Z2 →
R by

Ω[λ](v, z) :=
∫ T

0

D2Ha[pλ
t , νt](t, ūt, ȳt)(vt, zt)2dt + D2Φ[β, Ψ ](ȳ0, ȳT )(z0, zT )2

+
∫

[0,T ]

(
dμtD

2g(t, ȳt)(zt)2
)
−

∑
τ∈Tg,i

1≤i≤ng

μi(τ)

(
Dg

(1)
i (τ, ȳτ )zτ

)2

g
(2)
i (τ, ūτ , ȳτ )

, (2.40)

where μi(τ) is the measure of the singleton {τ}. We justify the terms involving the touch points in Tg,i in the
following section.

3. Reduction of touch points

We recall in this section the main idea of the reduction technique used for the touch points of state constraints
of order greater or equal than 2. Let us mention that this approach was described in ([12], Sect. 3) and used
in ([14], Sect. 4), in the case of optimal control problems. As shown in [3], the reduction allows to derive no-gap
necessary and sufficient second-order optimality conditions, i.e., the Hessian of the Lagrangian of the reduced
problem corresponds to the quadratic form of the necessary conditions. We also prove a strict differentiability
property for the mapping associated with the reduction, that will be used in the decomposition principle. Recall
that for all 1 ≤ i ≤ ng, all touch points of Tg,i are supposed to be reducible (Assumption 3).

Let ε > 0 be sufficiently small so that for all 1 ≤ i ≤ ng, for all τ ∈ Tg,i, the time function

t ∈ [τ − ε, τ + ε] �→ g(t, ȳt) (3.1)

is C2 and is such that for some β > 0, d2

dt2 gi(t, ȳt) ≤ −β, for all t in [τ − ε, τ + ε]. From now on, we set for all i
and for all τ ∈ Tg,i

Δε
τ = [τ − ε, τ + ε] and Δε

i = [0, T ]\
{
∪τ∈Tg,i Δε

τ

}
, (3.2)

and we consider the mapping Θε
τ : U × R

n → R defined by

Θε
τ (u, y0) := max {gi(t, yt) : y = y[u, y0], t ∈ Δε

τ}. (3.3)

We define the reduced pure constraints as follows:

for all i ∈ {1, . . . , ng},
{

gi(t, yt) ≤ 0, for all t ∈ Δε
i , (i)

Θε
τ (u, y0) ≤ 0, for all τ ∈ Tg,i. (ii)

(3.4)

Finally, we consider the following reduced problem, which is an equivalent reformulation of problem (P ), in which
the pure constraints are replaced by constraint (3.4):

min
(u,y)∈U×Y

φ(y0, yT ) subject to (2.1), (2.3), (2.5), and (3.4). (P ′)

Now, for all 1 ≤ i ≤ ng, consider the mapping ρi defined by

ρi : μ ∈ M([0, T ]; R+) �→
(
μ|Δε

i
, (μ(τ))τ∈Tg,i

)
∈ M(Δε

i ; R+) × R
|Tg,i|. (3.5)

Lemma 3.1. The mapping Θε
τ is twice Fréchet-differentiable at (ū, ȳ0) with derivatives

DΘε
τ (ū, ȳ0)(v, z0) = Dgi(τ, ȳτ )zτ [v, z0], (3.6)

D2Θε
τ (ū, ȳ0)(v, z0)2 = D2gi(τ, ȳτ )(zτ [v, z0])2 + Dgi(τ, ȳτ )z2

τ [v, z0] −

(
Dg

(1)
i (τ, ȳτ )zτ

)2

g
(2)
i (τ, ūτ , ȳτ )

· (3.7)
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and the following mappings define a bijection between ΛL(ū, ȳ) and the Lagrange multipliers of problem (P ′),
resp. between ΛP (ū, ȳ) and the Pontryagin multipliers of problem (P ′):

λ =
(
β, Ψ, ν, μ

)
∈ ΛL(ū, ȳ) �→

(
β, Ψ, ν, (ρi(μi))1≤i≤ng

)
(3.8)

λ =
(
β, Ψ, ν, μ

)
∈ ΛP (ū, ȳ) �→

(
β, Ψ, ν, (ρi(μi))1≤i≤ng

)
. (3.9)

See ([3], Lem. 26) for a proof of this result. Note that the restriction of μi to Δε
i is associated with constraint

(3.4(i)) and (μi(τ))τ∈Tg,i with constraint (3.4(ii)). The expression of the Hessian of Θε
τ justifies the quadratic

form Ω defined in (2.40). Note also that in the sequel, we will work with problem P ′ and with the original
description of the multipliers, using implicitly the bijections (3.8) and (3.9).

Now, let us fix i and τ ∈ Tg,i. The following lemma is a differentiability property for the mapping Θε
τ , related

to the one of strict differentiability, that will be used to prove the decomposition theorem.

Lemma 3.2. There exists ε > 0 such that for all u1 and u2 in U , for all y0 in R
n, if

‖u1 − ū‖1 ≤ ε, ‖u2 − ū‖1 ≤ ε, and |y0 − ȳ0| ≤ ε, (3.10)

then

Θε
τ (u2, y0) − Θε

τ (u1, y0) = g(τ, yτ [u2, y0]) − g(τ, yτ [u1, y0])

+ O
(
‖u2 − u1‖1(‖u1 − ū‖1 + ‖u2 − ū‖1 + |y0 − ȳ0|)

)
. (3.11)

An intermediate lemma is needed to prove this result. Consider the mapping χ defined as follows:

χ : x ∈ W 2,∞(Δε
τ ) �→ sup

t∈[τ−ε,τ+ε]

xt ∈ R. (3.12)

Let us set x0 = gi(·, ȳ)|Δε
τ
. Note that ẋ0

τ = 0.

Lemma 3.3. There exists α′ > 0 such that for all x1 and x2 in W 2,∞(Δτ ), if ‖ẋ1−ẋ0‖∞ ≤ α′ and ‖ẋ2−ẋ0‖∞ ≤
α′, then

χ(x2) − χ(x1) = x2(τ) − x1(τ) + O
(
‖ẋ2 − ẋ1‖∞(‖ẋ1 − ẋ0‖∞ + ‖ẋ2 − ẋ0‖∞)

)
. (3.13)

Proof. Let 0 < α′ < βε and x1, x2 in W 2,∞(Δτ ) satisfy the assumption of the lemma. Denote by τ1 (resp. τ2)
a (possibly non-unique) maximizer of χ(x1) (resp. χ(x2)). Since

ẋ1
τ−ε ≥ ẋ0

τ−ε − α′ ≥ βε − α′ > 0 and ẋ1
τ+ε ≤ ẋ0

τ+ε + α ≤ −βε + α < 0, (3.14)

we obtain that τ1 ∈ (τ − ε, τ + ε) and therefore that ẋ1
τ1

= 0. Therefore,

β|τ1 − τ | ≤ |ẋ0
τ1

− ẋ0
τ | = |ẋ1

τ1
− ẋ0

τ1
| ≤ ‖ẋ1 − ẋ0‖∞ (3.15)

and then, |τ1 − τ | ≤ ‖ẋ1 − ẋ0‖∞/β. Similarly, |τ2 − τ | ≤ ‖ẋ2 − ẋ0‖∞/β. Then, by (3.15),

χ(x2) ≥ x1(τ1) + (x2(τ1) − x1(τ1))
= χ(x1) + (x2(τ) − x1(τ)) + O(‖ẋ2 − ẋ1‖∞|τ1 − τ |) (3.16)

and therefore, the l.h.s. of (3.13) is greater than the r.h.s. and by symmetry, the converse inequality holds. The
lemma is proved. �
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Proof of Lemma 3.2. Consider the mapping

Gτ : (u, y0) ∈ (U × R
n) �→

(
t ∈ Δτ �→ gi(t, yt[u, y0])

)
∈ W 2,∞(Δτ ). (3.17)

Since gi is not of order 1 and by Assumption 1, the mapping Gτ is Lipschitz in the following sense: there exists
K > 0 such that for all (u1, y0,1) and (u2, y0,2),

‖Gτ (u1, y0,1) − Gτ (u2, y0,2)‖1,∞ ≤ K(‖u2 − u1‖1 + |y0,2 − y0,1|). (3.18)

Set α = α′/(2K). Let u1 and u2 in U , let y0 in R
n be such that (3.10) holds. Then by Lemma 3.3 and by (3.18),

Θε
τ (u2, y0) − Θε

τ (u1, y0) = χ(Gτ (u2, y0)) − χ(Gτ (u1, y0))
= g(yτ [u2, y0]) − g(yτ [u1, y0])

+ O
(
‖u2 − u1‖1(‖u2 − ū‖1 + ‖u1 − ū‖1 + |y0 − ȳ0|)

)
, (3.19)

as was to be proved. �

4. A decomposition principle

We follow a classical approach by contradiction to prove the quadratic growth property for bounded strong
solutions. We assume the existence of a sequence of feasible trajectories (uk, yk)k which is such that uk is
bounded and such that ‖yk − ȳ‖∞ → 0 and for which the quadratic growth property does not hold. The
Lagrangian function first provides a lower estimate of the cost function φ(yk

0 , yk
T ). The difficulty here is to

linearize the Lagrangian, since we must consider large perturbations of the control in L∞ norm. To that purpose,
we extend the decomposition principle of ([5], Sect. 2.4) to our more general framework with pure and mixed
constraints. This principle is a partial expansion of the Lagrangian, which is decomposed into two terms:
Ω[λ](vA,k, z[vA,k, yk

0 − ȳ0]), where vA,k stands for the small perturbations of the optimal control, and a difference
of Hamiltonians where the large perturbations occur.

4.1. Notations and first estimates

Let R > ‖ū‖∞, let (uk, yk)k be a sequence of feasible trajectories such that

∀k, ‖uk‖∞ ≤ R, |yk
0 − ȳ0| → 0, and ‖uk − ū‖2 → 0. (4.1)

This sequence will appear in the proof of the quadratic growth property. Note that the convergence of controls
and initial values of the state implies that ‖yk − ȳ‖∞ → 0. We need to build two auxiliary controls ũk and uA,k.
The first one, ũk, is such that {

c(t, ũk
t , yk

t ) ≤ 0, for a.a. t ∈ [0, T ],
‖ũk − ū‖∞ = O(‖yk − ȳ‖∞).

(4.2)

The following lemma proves the existence of such a control.

Lemma 4.1. There exist ε > 0 and α ≥ 0 such that for all y ∈ Y with ‖y − ȳ‖∞ ≤ ε, there exists u ∈ U
satisfying

‖u − ū‖∞ ≤ α‖y − ȳ‖∞ and c(t, ut, yt) ≤ 0, for a.a. t. (4.3)

Proof. For all y ∈ Y, consider the mapping Cy defined by

u ∈ U �→ Cy(u) =
(
t �→ c(t, ut, yt)

)
∈ L∞(0, T ; Rnc). (4.4)

The inward condition (Assumption 2) corresponds to Robinson’s constraint qualification for Cȳ at ū with respect
to L∞(0, T ; Rnc

− ). Thus, by the Robinson–Ursescu stability Theorem ([6], Thm. 2.87), there exists ε > 0 such
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that for all y ∈ Y with ‖y − ȳ‖∞ ≤ ε, Cy is metric regular at ū with respect to L∞(0, T ; Rnc
− ). Therefore, for all

y ∈ Y with ‖y − ȳ‖∞ ≤ ε, there exists a control u such that, for almost all t, c(t, ut, yt) ≤ 0 and

‖u − ū‖∞ = O
(
dist(Cy(ū), L∞(0, T ; Rnc

− ))
)

= O(‖y − ȳ‖∞).

This proves the lemma. �

Now, let us introduce the second auxiliary control uA,k. We say that a partition (A, B) of the interval [0, T ]
is measurable iff A and B are measurable subset of [0, T ]. Let us consider a sequence of measurable partitions
(Ak, Bk)k of [0, T ]. We define uA,k as follows:

uA,k
t = ūt1{t∈Bk} + uk

t 1{t∈Ak}. (4.5)

The idea is to separate, in the perturbation uk − ū, the small and large perturbations in uniform norm. In
the sequel, the letter A will refer to the small perturbations and the letter B to the large ones. The large
perturbations will occur on the subset Bk.

For the sake of clarity, we suppose from now that the following holds:⎧⎪⎨
⎪⎩

(Ak, Bk)k is a sequence of measurable partitions of [0, T ],
|yk

0 − ȳ0| + ‖uA,k − ū‖∞ → 0,

|Bk| → 0,

(4.6)

where |Bk| is the Lebesgue measure of Bk. We set

vA,k := uA,k − ū and vB,k := uk − uA,k (4.7)

and we define
δyk := yk − ȳ, yA,k := y[uA,k, yk

0 ], and zA,k := z[vA,k, δyk
0 ]. (4.8)

Let us introduce some useful notations for the future estimates:

R1,k := ‖uk − ū‖1 + |δyk
0 |, R2,k := ‖uk − ū‖2 + |δyk

0 |,
R1,A,k := ‖vA,k‖1 + |δyk

0 |, R2,A,k := ‖vA,k‖2 + |δyk
0 |,

R1,B,k := ‖vB,k‖1, R2,B,k := ‖vB,k‖2.
(4.9)

Combining the Cauchy−Schwarz inequality and assumption (4.6), we obtain that

R1,B,k ≤ R2,B,k|Bk|1/2 = o(R2,B,k). (4.10)

Note that by Gronwall’s lemma,

‖δyk‖∞ = O(R1,k) = O(R2,k) and ‖zA,k‖∞ = O(R1,A,k) = O(R2,k). (4.11)

Note also that
‖δyk − (yA,k − ȳ)‖∞ = O(R1,B,k) = o(R2,k) (4.12)

and since ‖yA,k − (ȳ + zA,k)‖∞ = O(R2
2,k),

‖δyk − zA,k‖∞ = o(R2,k). (4.13)
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4.2. Result

We can now state the decomposition principle.

Theorem 4.2. Suppose that Assumptions 1, 2, and 3 hold. Let R > ‖ū‖∞, let (uk, yk)k be a sequence of feasible
controls satisfying (4.1) and (Ak, Bk)k satisfy (4.6). Then, for all λ = (β, Ψ, ν, μ) ∈ ΛL(ū, ȳ),

β(φ(yk
0 , yk

T ) − φ(ȳ0, ȳT )) ≥ 1
2Ω[λ](vA,k, zA,k) +

∫
Bk

[
H [pλ

t ](t, uk
t , ȳt) − H [pλ

t ](t, ũk
t , ȳt)

]
dt + o(R2

2,k), (4.14)

where Ω is defined by (2.40).

The proof is given at the end of the section, Lemma 4.4. The basic idea to obtain a lower estimate of
β(φ(y0, yT )− φ(ȳ0, ȳT )) is classical: we dualize the constraints and expand up to the second order the obtained
Lagrangian. However, the dualization of the mixed constraint is particular here, in so far as the nonpositive
added term is the following:∫

Ak

νt(c(t, u
A,k
t , yk

t ) − c(t, ūt, ȳt)) dt +
∫

Bk

νt(c(t, ũk
t , yk

t ) − c(t, ūt, ȳt)) dt, (4.15)

where ũk and uA,k are defined by (4.2) and (4.5). In some sense, we do not dualize the mixed constraint
when there are large perturbations of the control. By doing so, we prove that the contribution of the large
perturbations is of the same order as the difference of Hamiltonians appearing in (4.14). If we dualized the
mixed constraint with the following term:∫ T

0

νt(c(t, uk
t , yk

t ) − c(t, ūt, ȳt)) dt, (4.16)

we would obtain for the contribution of large perturbations a difference of augmented Hamiltonians.
Let us fix λ ∈ ΛL(ū, ȳ) and let us consider the following two terms:

Ik
1 =

∫ T

0

−Ha
y [pλ

t , νt](t, ūt, ȳt)δyk
t dt

+
∫

Ak

(Ha[pλ
t , νt](t, u

A,k
t , yk

t ) − Ha[pλ
t , νt](t, ūt, ȳt)) dt (4.17a)

+
∫

Bk

(Ha[pλ
t , νt](t, ũk

t , yk
t ) − Ha[pλ

t , νt](t, ūt, ȳt)) dt (4.17b)

+
∫

Bk

(H [pλ
t ](t, uk

t , yk
t ) − H [pλ

t ](t, ũk
t , yk

t )) dt (4.17c)

and

Ik
2 = −

∫
[0,T ]

(dμtDg(t, ȳt)δyk
t ) +

ng∑
i=1

∫
Δε

i

(gi(t, yk
t ) − gi(t, ȳt)) dμi,t (4.18a)

+
∑

τ∈Tg,i

1≤i≤ng

μi(τ)(Θε
τ (uk, yk

0 ) − Θε
τ (ū, ȳ0)). (4.18b)

Lemma 4.3. Let R > ‖ū‖∞, let (uk, yk)k be a sequence of feasible trajectories satisfying (4.1), and let (Ak, Bk)k

satisfy (4.6). Then, for all λ ∈ ΛL(ū, ȳ), the following lower estimate holds:

β(φ(yk
0 , yk

T ) − φ(ȳ0, ȳT )) ≥ 1
2D2Φ[β, Ψ ](ȳ0, ȳT )(zA,k

0 , zA,k
T )2 + Ik

1 + Ik
2 + o(R2

2,k). (4.19)
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Proof. Let λ ∈ ΛL(ū, ȳ). In view of sign conditions for constraints and multipliers, we first obtain that

β(φ(yk
0 , yk

T ) − φ(ȳ0, ȳT )) ≥ Φ[β, Ψ ](yk
0 , yk

T ) − Φ[β, Ψ ](ȳ0, ȳT )

+
ng∑
i=1

∫
Δε

i

(gi(t, yk
t ) − gi(t, ȳt)) dμi,t +

∑
τ∈Tg,i

1≤i≤ng

μi(τ)(Θε
τ (uk, yk

0 ) − Θε
τ (ū, ȳ0))

+
∫

Ak

νt(c(t, u
A,k
t , yk

t ) − c(t, ūt, ȳt)) dt +
∫

Bk

νt(c(t, ũk
t , yk

t ) − c(t, ūt, ȳt)) dt. (4.20)

Expanding the end-point Lagrangian up to the second order, and using (4.13), we obtain that

Φ[β, Ψ ](yk
0 , yk

T ) − Φ[β, Ψ ](ȳ0, ȳT ) = DΦ[β, Ψ ](ȳ0, ȳT )
(
δyk

0 , δyk
T

)
+ 1

2D2Φ[β, Ψ ](ȳ0, ȳT )
(
δyk

0 , δyk
T

)2 + o(R2
2,k)

=
(
pλ

T δyk
T − pλ

0δyk
0

)
+ 1

2D2Φ[λ] (ȳ0, ȳT )
(
zA,k
0 , zA,k

T

)2

+ o(R2
2,k). (4.21)

Integrating by parts (see [3], Lem. 32), we obtain that

pλ
T δyk

T − pλ
0δyk

0 =
∫

[0,T ]

(
dpλ

t δyk
t + pλ

t δ̇y
k

t dt
)

=
∫ T

0

(
−DyHa[pλ

t , νt](t, ūt, ȳt)δyk
t + H [pλ

t ](t, uk
t , yk

t ) − H [pλ
t ](t, ūt, ȳt)

)
dt

−
∫

[0,T ]

(
dμtDg(t, ȳt)δyk

t

)
. (4.22)

The lemma follows from (4.20), (4.21), and (4.22). �

The following lemma is also a lower estimate of β(φ(yk
T , yk

0 ) − φ(ȳT , ȳ0)). It will be used in the proof of the
quadratic growth property. Note that the sequence of feasible trajectories which is involved in the lemma does
not satisfy (4.1).

Lemma 4.4. Let (uk, yk)k be a sequence of feasible trajectories. Then, for all λ ∈ ΛL(ū, ȳ), the following lower
estimate holds:

β(φ(yk
T , yk

0 ) − φ(ȳT , ȳ0)) ≥
∫ T

0

(
H [pλ

t ](t, uk
t , ȳt) − H [pλ

t ](t, ūt, ȳt)
)
dt + O(‖δyk‖∞). (4.23)

Proof. Similarly to the proof of Lemma 4.3, we have that

β(φ(yk
T , yk

0 ) − φ(ȳT , ȳ0)) ≥Φ[β, Ψ ](yk
0 , yk

T ) − Φ[β, Ψ ](ȳ0, ȳT )

≥ (pλ
T δyk

T − pλ
0δyk

0 ) + o(‖δyk‖∞) (4.24)

=
∫ T

0

(
− DyHa[pλ

t , νt](t, ūt, ȳt)δyk
t + H [pλ

t ](t, uk
t , yk

t ) − H [pλ
t ](t, ūt, ȳt)

)
dt

−
∫

[0,T ]

(
dμtDg(t, ȳt)δyk

t

)
+ o(‖δyk‖∞). (4.25)

The result follows. �

Proof of the decomposition principle. We prove Theorem 4.2 by estimating the two terms Ik
1 and Ik

2 obtained
in Lemma 4.3.
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� Estimation of Ik
1 .

Let show that

Ik
1 =

1
2

∫ T

0

D2Ha[pλ
t , νt](t, ūt, ȳt)(v

A,k
t , zA,k

t )2 dt +
∫

Bk

(H [pλ
t ](t, uk

t , ȳt) − H [pλ
t ](t, ũk

t , ȳt)) dt + o(R2
2,k). (4.26)

Using (4.13) and the stationarity of the augmented Hamiltonian, we obtain that term (4.17a) is equal to∫
Ak

DyHa[pλ
t , νt](t, ūt, ȳt)δyk

t dt +
1
2

∫
Ak

D2Ha[pλ
t , νt](t, ūt, ȳt)(v

A,k
t , zA,k

t )2dt + o(R2
2,k). (4.27)

Term (4.17b) is negligible compared to R2
2,k. Since∫

Bk

(H [pλ
t ](t, uk

t , yk
t ) − H [pλ

t ](t, ũk
t , yk

t )) dt −
∫

Bk

(H [pλ
t ](t, uk

t , ȳt) − H [pλ
t ](t, ũk

t , ȳt)) dt = O(|Bk|R2
1,k) = o(R2

2,k),

(4.28)
term (4.17c) is equal to ∫

Bk

(H [pλ
t ](t, uk

t , ȳt) − H [pλ
t ](t, ũk

t , ȳt)) dt + o(R2
2,k). (4.29)

The following term is also negligible:∫
Bk

D2Ha[pλ
t ](t, ūt, ȳt)(v

A,k
t , zA,k

t )2dt = o(R2
2,k). (4.30)

Finally, combining (4.17), (4.27), (4.29), and (4.30), we obtain (4.26).

� Estimation of Ik
2 .

Let us show that

Ik
2 =

1
2

∫
[0,T ]

(
dμtD

2g(t, ȳt)(z
A,k
t )2

)
− 1

2

∑
τ∈Tg,i

1≤i≤ng

μi(τ)
(Dg

(1)
i (τ, ȳτ )zA,k

τ )2

g
(2)
i (τ, ūτ , ȳτ )

· (4.31)

Using (4.13), we obtain the following estimate of term (4.18a):

−
∑

τ∈Tg,i

1≤i≤ng

∫
Δε

τ

Dgi(t, ȳt)δyk
t dμi,t +

1
2

ng∑
i=1

∫
Δε

i

D2gi(t, ȳt)(z
A,k
t )2dμt + o(R2

2,k). (4.32)

Remember that z2[vA,k, δyk
0 ] denotes the second-order linearization (2.36) and that the following holds:

‖yA,k − (ȳ + z[vA,k, δyk
0 ] + z2[vA,k, δyk

0 ])‖∞ = o(R2
2,k). (4.33)

Using Lemma 3.2 and estimate (4.13), we obtain that for all i, for all τ ∈ Tg,i,

Θε
τ (uk, yk

0 ) − Θε
τ (uA,k, yk

0 ) = gi(τ, yk
τ ) − gi(τ, yA,k

τ ) + O(R1,B,k(R1,B,k + R1,k))

= Dgi(τ, ȳτ )(yk
τ − yA,k

τ ) + o(R2
2,k)

= Dgi(τ, ȳτ )(δyk
τ − zA,k

τ − z2
τ [vA,k, δyk

0 ]) + o(R2
2,k). (4.34)

By Lemma 3.1,

Θε
τ (uA,k, yk

0 ) − Θε
τ (ū, ȳ0) = Dgi(τ, ȳτ )(zA,k

τ + z2
τ [vA,k, δyk

0 ])

+
1
2
D2gi(τ, ȳτ )(zA,k

τ )2 − 1
2

(Dyg
(1)
i (τ, ȳτ )zA,k

τ )2)

g
(2)
i (τ, ūτ , ȳτ )

+ o(R2
2,k). (4.35)
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Recall that the restriction of μi to Δε
τ is a Dirac measure at τ . Summing (4.34) and (4.35), we obtain the

following estimate for (4.18b):

∑
τ∈Tg,i

1≤i≤ng

[∫
Δε

τ

(
Dgi(t, ȳt)δyk

t +
1
2
D2gi(t, ȳt)(z

A,k
t )2

)
dμi,t −

1
2

(Dg
(1)
i (τ, ȳτ )zA,k

τ )2)

g
(2)
i (τ, ūτ , ȳτ )

]
+ o(R2

2,k). (4.36)

Combining (4.32) and (4.36), we obtain (4.31). Combining (4.26) and (4.31), we obtain the result. �

5. Quadratic growth for bounded strong solutions

We give in this section sufficient second-order optimality conditions in Pontryagin form ensuring the quadratic
growth property for bounded strong solutions. Our main result, Theorem 5.4, is proved with a classical approach
by contradiction.

Assumption 4. There exists ε > 0 such that for all feasible trajectories (u, y) in (U × Y) with ‖y − ȳ‖ ≤ ε, if
(u, y) satisfies the mixed constraints, then there exists û such that

ût ∈ U(t), for a.a. t and ‖u − û‖∞ = O(‖y − ȳ‖∞). (5.1)

Remark 5.1. This assumption is a metric regularity property, global in u and local in y. Note that the required
property is different from the property required for ũk (4.2).

Definition 5.2. A quadratic form Q on a Hilbert space X is said to be a Legendre form iff it is weakly lower
semi-continuous and if it satisfies the following property: if xk ⇀ x weakly in X and Q(xk) → Q(x), then
xk → x strongly in X .

Assumption 5. For all λ ∈ ΛP (ū, ȳ), Ω[λ] is a Legendre form.

Remark 5.3. By ([3], Lem. 21), this assumption is satisfied if for all λ ∈ ΛP (ū, ȳ), there exists γ > 0 such that
for almost all t,

γI ≤ D2
uuHa[pλ

t , νt](t, ūt, ȳt), (5.2)

where I is the identity matrix of R
m×m. In particular, in the absence of mixed and control constraints, the

quadratic growth of the Hamiltonian (5.4) implies (5.2).

For all R > ‖ū‖∞, we define

ΛR
P (ū, ȳ) =

{
λ ∈ ΛL(ū, ȳ) : for a.a. t, for all u ∈ U(t) with |u| ≤ R,

H [pλ
t ](t, u, ȳt) − H [pλ

t ](t, ūt, ȳt) ≥ 0
}
. (5.3)

Note that ΛP (ū, ȳ) = ∩R>‖ū‖∞ΛR
P (ū, ȳ). Remember that C2(ū, ȳ) is the critical cone in L2, defined by (2.37).

Theorem 5.4. Suppose that Assumptions 1−5 hold. If the following second-order sufficient conditions hold:
for all R > ‖ū‖∞,

1. there exist α > 0 and λ∗ ∈ ΛR
P (ū, ȳ) such that{

for a.a. t, for all u ∈ U(t) with |u| ≤ R,

H [pλ∗
t ](t, u, ȳt) − H [pλ∗

t ](t, ūt, ȳt) ≥ α|u − ūt|2,
(5.4)

2. for all (v, z) ∈ C2\{0}, there exists λ ∈ ΛR
P (ū, ȳ) such that Ω[λ](v, z) > 0,

then the quadratic growth property for bounded strong solutions holds at (ū, ȳ).
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Proof. We prove this theorem by contradiction. Let R > ‖ū‖∞, let R′ > R, let us suppose that there exists a
sequence (uk, yk)k of feasible trajectories such that ‖uk‖∞ ≤ R, ‖yk − ȳ‖∞ → 0 and

φ(yk
0 , yk

T ) − φ(ȳ0, ȳT ) ≤ o(‖uk − ū‖2
2 + |yk

0 − ȳ0|2). (5.5)

We use the notations introduced in (4.9). Let λ∗ = (β∗, Ψ∗, ν∗, μ∗) ∈ ΛR′
P (ū, ȳ) be such that (5.4) holds.

� First step: ‖uk − ū‖2 = R2,k → 0.
By Assumption 4, there exists a sequence of controls (ûk)k such that

ûk
t ∈ U(t), for a.a. t and ‖uk − ûk‖∞ = O(‖δyk‖∞) = O(R1,k). (5.6)

As a consequence of (4.23), we obtain that

β∗(φ(yk
0 , yk

T ) − φ(ȳ0, ȳT )) ≥
∫ T

0

(
H [pλ∗

t ](t, uk
t , ȳt) − H [pλ∗

t ](t, ûk
t , ȳt)

)
dt

+
∫ T

0

(
H [pλ∗

t ](t, ûk
t , ȳt) − H [pλ∗

t ](t, ūt, ȳt)
)
dt + o(1)

≥ α‖ûk − ū‖2
2 + o(1)

= α‖uk − ū‖2
2 + o(1).

Since β∗(φ(yk
0 , yk

T ) − φ(ȳ0, ȳT )) → 0, we obtain that ‖uk − ū‖2 → 0. Therefore, the sequence of trajectories
satisfy (4.1) and by the Cauchy−Schwarz inequality, R1,k → 0.

Now, we can build a sequence of partitions (Ak, Bk)k which satisfies (4.6). Let us define

Ak :=
{

t ∈ [0, T ], |uk
t − ūt| ≤ R

1/4
1,k

}
(5.7)

and Bk := [0, T ]\Ak. Then,

‖uk − ū‖1 ≥
∫

Bk

(‖uk − ū‖1 + |δyk
0 |)1/4dt ≥ |Bk|(‖uk − ū‖1)1/4. (5.8)

Thus, |Bk| ≤ (‖uk − ū‖1)3/4 → 0 and we can construct all the elements useful for the decomposition principle:
ũk, uA,k, vA,k, δyk, yA,k, and zA,k.

Let λ̄ ∈ ΛR′
P (ū, ȳ), σ ∈ [0, 1) and λ := σλ̄ + (1 − σ)λ∗. The Hamiltonian depending linearly on the dual

variable, the quadratic growth property (5.4) holds for λ (instead of λ∗) with the coefficient (1 − σ)α > 0
(instead of α).

� Second step: we show that R2,B,k = O(R2,A,k) and Ω[λ](vA,k, zA,k) ≤ o(R2
2,A,k).

By the decomposition principle (Thm. 4.2), we obtain that

Ω[λ](vA,k, zA,k)+
∫

Bk

[
H [pλ

t ](t, uk
t , ȳt)−H [pλ

t ](t, ũk
t , ȳt)

]
dt ≤ β(φ(yk

0 , yk
T )−φ(ȳ0, ȳT ))+o(R2

2,k) ≤ o(R2
2,k). (5.9)

We cannot use directly the quadratic growth of the Hamiltonian, since the control uk does not satisfy necessarily
the mixed constraint c(t, uk

t , ȳt) ≤ 0. Therefore, we decompose the difference of Hamiltonians as follows:

Δk =
∫

Bk

(
H [pλ

t ](t, uk
t , ȳt) − H [pλ

t ](t, ũk
t , ȳt)

)
dt = Δa

k + Δb
k + Δc

k, (5.10)
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with

Δa
k :=

∫
Bk

(
H [pλ

t ](t, uk
t , ȳt) − H [pλ

t ](t, ûk, ȳt)
)
dt,

Δb
k :=

∫
Bk

(
H [pλ

t ](t, ûk, ȳt) − H [pλ
t ](t, ūt, ȳt)

)
dt,

Δc
k :=

∫
Bk

(
H [pλ

t ](t, ūt, ȳt) − H [pλ
t ](t, ũt, ȳt)

)
dt.

Note that by (5.9), Δk ≤ O(R2
2,A,k) + o(R2

2,B,k). We set

R̂2,B,k =
[∫

Bk

|ûk
t − ūt|2 dt

]1/2

. (5.11)

By (5.6), for large values of k, ‖ûk‖∞ ≤ R′ and therefore, Δb
k ≥ 0. In order to prove that R2,B,k = O(R2,A,k),

we need the following two estimates:

|Δa
k| + |Δc

k| = o(Δb
k), (5.12)

|R2
2,B,k − R̂2

2,B,k| = o
(
R2

2,B,k

)
. (5.13)

Since the control is uniformly bounded, the Hamiltonian is Lipschitz with respect to u and we obtain that

|Δa
k| + |Δc

k| = O(|Bk|R1,k), (5.14)

while, as a consequence of the quadratic growth of the Hamiltonian,

Δb
k ≥ α(1 − σ)R̂2

2,B,k

≥ α(1 − σ)|Bk|
(
R

1/4
1,k + O(R1,k)

)2
≥ α(1 − σ)|Bk|R1/2

1,k

(
1 + O(R3/4

1,k )
)2

, (5.15)

which proves (5.12). Combined with (5.9) and Ω[λ](vA,k, zA,k) = O(R2
2,A,k), we obtain that

Δb
k = O(Δa

k + Δb
k + Δc

k) = O(Δk) = O(R2
2,A,k) + o(R2

2,B,k) (5.16)

and
R̂2

2,B,k ≤ 1
α(1 − σ)

Δb
k = O(Δk) ≤ O(R2

2,A,k) + o(R2
2,B,k). (5.17)

Let us prove (5.13). For all k, we have

∣∣∣R2
2,B,k − R̂2

2,B,k

∣∣∣ =
∣∣∣∣
∫

Bk

(
|uk

t − ūt|2 − |ûk
t − ū2

t |
)

dt

∣∣∣∣
≤

∫
Bk

|uk
t − ûk

t |
(
|uk

t − ûk| + 2|uk
t − ūt|

)
dt

≤ ‖uk − ûk‖∞
(∫

Bk

|uk
t − ûk

t | dt + 2
∫

Bk

|uk
t − ūt| dt

)
= O(R1,k)(O(|Bk|R1,k) + O(R1,B,k))
= o(R2

2,k)
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which proves (5.13), by using (5.15). Combined with (5.17), it follows that

R2
2,B,k = R̂2

2,B,k + o(R2
2,k) = O(R2

2,A,k) + o(R2
2,B,k) (5.18)

and finally that
R2

2,B,k = O(R2
2,A,k) and R2,k = O(R2,A,k). (5.19)

Moreover, since Δb
k ≥ 0 and by (5.12), (5.16), and (5.19),

Ω[λ](vA,k, zA,k) ≤ o(R2
2,k) − Δa

k − Δc
k ≤ o(R2

2,k) + o(Δk) ≤ o(R2
2,A,k). (5.20)

� Third step: contradiction.
Let us set

wk =
vA,k

R2,A,k
and xk =

zA,k

R2,A,k
= z[wk, δyk

0/R2,A,k]. (5.21)

The sequence (wk, xk
0)k being bounded in L2(0, T ; Rm) × R

n, it converges (up to a subsequence) for the weak
topology to a limit point, say (w, x0). Let us set x = z[w, x0]. Let us prove that (w, x) ∈ C2(ū, ȳ). It follows
from the continuity of the linear mapping

z : (v, z0) ∈ L2(0, T ; Rm) × R
n → z[v, z0] ∈ W 1,2(0, T ; Rn) (5.22)

and the compact imbedding of W 1,2(0, T ; Rn) into C([0, T ]; Rn) that extracting if necessary, (xk)k converges
uniformly to x. Using (4.13), we obtain that

‖δyk − R2,A,kx‖∞ = ‖zA,k − R2,A,kx‖∞ + o(R2,A,k)

= R2,A,k

(
‖xk − x‖∞ + o(1)

)
= o(R2,A,k). (5.23)

It follows that

φ(yk
0 , yk

T ) − φ(ȳ0, ȳT ) = R2,A,kDφ(ȳ0, ȳT )(x0, xT ) + o(R2,A,k), (5.24)

Φ(yk
0 , yk

T ) − Φ(ȳ0, ȳT ) = R2,A,kDφ(ȳ0, ȳT )(x0, xT ) + o(R2,A,k), (5.25)∥∥g(t, yk
t ) − g(t, ȳt) − R2,A,kDg(t, ȳt)xt

∥∥
∞ = o(R2,A,k). (5.26)

This proves that

Dφ(ȳ0, ȳT )(x0, xT ) = 0, (5.27)
DΦ(ȳ0, ȳT )(x0, xT ) ∈ TKΦ(φ(ȳ0, ȳT )), (5.28)
Dg(·, ȳ)x ∈ TKg(g(·, ȳ)). (5.29)

Let us set, for a.a. t,

c̄t = c(t, ūt, ȳt) and ck
t = c̄t1{t∈Bk} + c(t, uA,k, yk

t )1{t∈Ak}. (5.30)

We easily check that
‖ck

t − (c̄t + R2,A,kDc(t, ūt, ȳt)(wk
t , xk

t ))‖∞ = o(R2,A,k). (5.31)

Therefore,
ck − c̄

R2,A,k
⇀ Dc(t, ūt, ȳt)(wt, xt) (5.32)
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in L2(0, T ; Rnc). Moreover, ck
t ≤ 0, for almost all t, therefore the ratio in (5.32) belongs to TKc(c(·, ū, ȳ)). This

cone being closed and convex, it is weakly closed and we obtain finally that

Dc(t, ūt, ȳt)(wt, xt) ∈ TKc(c(·, ū, ȳ)). (5.33)

We have proved that (w, x) ∈ C2(ū, ȳ). By Assumption 5, Ω[λ] is weakly∗ lower semi-continuous, thus
from (5.20), we get that

Ω[λ](w, x) ≤ lim inf
k

Ω[λ](wk , xk) ≤ 0. (5.34)

Passing to the limit when σ → 1, we find that Ω[λ̄](w, x) ≤ 0. Since λ̄ was arbitrary in ΛR
P (ū, ȳ), it follows by

the sufficient conditions that (w, x0) = 0 and that for any λ for which the quadratic growth of the Hamiltonian
holds,

Ω[λ](w, x) = lim
k

Ω[λ](wk, xk). (5.35)

Since Ω[λ] is a Legendre form, we obtain that (wk, xk)k converges strongly to 0, in contradiction with the fact
that ‖wk‖2 + |xk

0 | = 1. This concludes the proof of the theorem. �

6. Characterization of quadratic growth

In this section, we prove that the second-order sufficient conditions are also necessary to ensure the quadratic
growth property. The proof relies on the necessary second-order optimality conditions in Pontryagin form that
we established in [2]. Let us first remember the assumptions required to use these necessary conditions.

Assumption 6. The mappings f and g are C∞, c is uniformly quasi-C2, Φ and φ are C2.

For δ′ > 0 and ε′ > 0, let us define

Δδ′
c,i := {t ∈ [0, T ] : ci(t, ūt, ȳt) ≥ −δ′}, (6.1)

Δ0
g,i := {t ∈ [0, T ] : gi(t, ȳt) = 0} \ Tg,i, (6.2)

Δε′
g,i := {t ∈ [0, T ] : dist(t, Δ0

g,i) ≤ ε′}. (6.3)

Assumption 7 is a geometrical assumption on the structure of the control. Assumption 8 is related to the
controllability of the system, see ([4], Lem. 2.3) for conditions ensuring this property.

Assumption 7. For 1 ≤ i ≤ ng, Δ0
g,i has finitely many connected components and gi is of finite order qi.

Assumption 8. There exist δ′, ε′ > 0 such that the linear mapping from V2 × R
n to

∏nc

i=1 L2(Δδ′
c,i) ×∏ng

i=1 W qi,2(Δε′
g,i) defined by

(v, z0) �→

⎛
⎜⎝
(
Dci(·, ū, ȳ)(v, z[v, z0])|Δδ′

c,i

)
1≤i≤nc(

Dgi(·, ȳ)z[v, z0]|Δε′
g,i

)
1≤i≤ng

⎞
⎟⎠ is onto. (6.4)

The second-order necessary conditions are satisfied on a subset of the critical cone called strict critical cone.
The following assumption ensures that the two cones are equal ([6], Prop. 3.10).

Assumption 9. There exists λ = (β̄, Ψ̄ , ν̄, μ̄) ∈ ΛL(ū, ȳ) such that

ν̄i(t) > 0 for a.a. t ∈ Δ0
c,i 1 ≤ i ≤ nc, (6.5)

supp(μ̄i) ∩ Δ0
g,i = Δ0

g,i 1 ≤ i ≤ ng. (6.6)
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The main result of [2] was the following necessary conditions in Pontryagin form:

Theorem 6.1. Let Assumptions 2, 3, and 6−9 hold. If (ū, ȳ) is a Pontryagin minimum of problem (P ), then
for any (v, z) ∈ C2(ū, ȳ), there exists λ ∈ ΛP (ū, ȳ) such that

Ω[λ](v, z) ≥ 0. (6.7)

Assumption 10. All Pontryagin multipliers λ = (β, Ψ, ν, μ) are non singular, that is to say, are such that
β > 0.

This assumption is satisfied if one of the usual qualification conditions holds since then, all Lagrange multipli-
ers are non singular. In ([2], Prop. A.13), we gave a weaker condition ensuring the non singularity of Pontryagin
multipliers.

Lemma 6.2. Let Assumptions 2, 3, and 6−10 hold. If the quadratic growth property for bounded strong solutions
holds at (ū, ȳ), then the sufficient second-order conditions are satisfied.

Proof. Let R > ‖ū‖∞, let α > 0 and ε > 0 be such that for all (u, y) ∈ F (P ) with ‖u‖∞ ≤ R and ‖y− ȳ‖∞ ≤ ε,

φ(y0, yT ) − φ(ȳ0, ȳT ) ≥ α(‖u − ū‖2
2 + |y0 − ȳ0|2). (6.8)

Then, (ū, ȳ) is a Pontryagin minimum to a new optimal control problem with cost

φ(y0, yT ) − α(|y0 − ȳ0|2 + ‖u − ū‖2
2) (6.9)

and with the additional constraint ‖u‖∞ ≤ R. The new Hamiltonian and the new Hessian of the Lagrangian
are now given by resp.

H [p](t, u, y)− αβ|u − ū|2 and Ω[λ](v, z) − αβ(‖v‖2
2 + |z0|2). (6.10)

It is easy to check that the costate equation is unchanged and that the set of Lagrange multipliers of both
problems are the same. The set of Pontryagin multipliers to the new problem is the set of Lagrange multipliers
λ for which for a.a. t, for all u ∈ U(t) with |u| ≤ R,

H [pλ
t ](t, u, ȳt) − H [pλ

t ](t, ūt, ȳt) ≥ αβ|u − ū|2, (6.11)

it is thus included into ΛR
P (ū, ȳ) (which was defined by (5.3)). Let (v, z) in C2(ū, ȳ)\{0}, then by Theorem 6.1,

there exists a Pontryagin multiplier (to the new problem), belonging to ΛR
P (ū, ȳ), which is such that

Ω[λ](v, z) ≥ αβ(|z0|2 + ‖v‖2
2) > 0. (6.12)

The sufficient second-order optimality conditions are satisfied. �

Finally, combining Theorem 5.4 and Lemma 6.2 we obtain a characterization of the quadratic growth property
for bounded strong solutions (under the Legendre–Clebsch assumption).

Theorem 6.3. Let Assumptions 2−10 hold. Then, the quadratic growth property for bounded strong solutions
holds at (ū, ȳ) if and only if the sufficient second-order conditions are satisfied.
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article.
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