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ON THE FATTORINI CRITERION FOR APPROXIMATE CONTROLLABILITY
AND STABILIZABILITY OF PARABOLIC SYSTEMS

Mehdi Badra1 and Takéo Takahashi2

Abstract. In this paper, we consider the well-known Fattorini’s criterion for approximate controlla-
bility of infinite dimensional linear systems of type y′ = Ay + Bu. We precise the result proved by
Fattorini in [H.O. Fattorini, SIAM J. Control 4 (1966) 686–694.] for bounded input B, in the case
where B can be unbounded or in the case of finite-dimensional controls. More precisely, we prove that
if Fattorini’s criterion is satisfied and if the set of geometric multiplicities of A is bounded then ap-
proximate controllability can be achieved with finite dimensional controls. An important consequence
of this result consists in using the Fattorini’s criterion to obtain the feedback stabilizability of linear
and nonlinear parabolic systems with feedback controls in a finite dimensional space. In particular, for
systems described by partial differential equations, such a criterion reduces to a unique continuation
theorem for a stationary system. We illustrate such a method by tackling some coupled Navier−Stokes
type equations (MHD system and micropolar fluid system) and we sketch a systematic procedure re-
lying on Fattorini’s criterion for checking stabilizability of such nonlinear systems. In that case, the
unique continuation theorems rely on local Carleman inequalities for stationary Stokes type systems.
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1. Introduction

In this article, we consider some spectral criteria for the approximate controllability and for the exponential
stabilizability of the linear system

y′ = Ay +Bu, (1.1)

where A is the infinitesimal generator of an analytic semigroup (etA) on a complex Hilbert space H and where
B : U → D(A∗)′ is a linear bounded operator defined on a complex Hilbert space U .
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A well-known criterion for approximate controllability was obtained by Fattorini in [18] in the case B ∈
L(U,H) and without the hypothesis that (etA) is an analytic semigroup:

∀ε ∈ D(A∗), ∀λ ∈ C, A∗ε = λε and B∗ε = 0 =⇒ ε = 0. (UC)

In the above criterion, A∗ and B∗ denote the adjoints of A and B, respectively. Condition (UC) is an infinite
dimensional version of the classical Hautus test introduced in [28] (see [44] for a stronger version for exact
controllability). Our aim is to consider similar criteria for approximate controllability and also for stabilizability,
and to consider the case B ∈ L(U,D(A∗)′). (Here and in what follows, L(X,Y ) is the set of linear bounded
mappings from X to Y .)

More precisely, let us fix μ0 > supj∈N �λj so that fractional powers of (μ0−A∗) and (μ0−A) are well defined
and for α ∈ R we introduce the spaces:

Hα
def=
{D((μ0 −A)α) if α ≥ 0
D((μ0 −A∗)−α)′ if α < 0 and H∗

α
def=
{D((μ0 −A∗)α) if α ≥ 0
D((μ0 −A)−α)′ if α < 0, (1.2)

where for a Hilbert space V ⊂ H such that V is dense in H , V ′ stands for the dual space of V with respect to
the pivot space H .

In what follows, we assume the following hypotheses

(H1) The spectrum of A consists of isolated eigenvalues (λj) with finite algebraic multiplicity Nj .
(H2) The family of root vectors of A is complete in H .
(H3) The semigroup (etA) is analytic.
(H4) The following interpolation equalities are satisfied: D((μ0 −A)α) = [H,D(A)]α for all α ∈ [0, 1].
(H5) There exists γ ∈ [0, 1) such that B ∈ L(U,H−γ).

The hypothesis (H1) means that the spectrum of A is composed with complex eigenvalues λj for j ∈ N and
that for all j ∈ N the projection operator:

R−1(λj) =
1

2πı

∫
|λ−λj |=δ

(λ −A)−1dλ, (1.3)

has finite dimensional range. In (1.3) the value δ > 0 is chosen small enough so that the circle {λ ∈ C | |λ−λj | =
δ} does not enclose other point of the spectrum than λj . It is well-known that there exists some n ∈ N∗ such
that Ran(R−1(λj)) = ker(λj − A)n (see [33]) and we denote by m(λj) ∈ N∗ the smallest of such n. The finite
dimensional subspace ker(λj − A)m(λj) = Ran(R−1(λj)) is called the generalized eigenspace of A associated
to λj , its dimension Nj ∈ N∗ is called the algebraic multiplicity of λj and an element of ker(λj − A)m(λj) is
called a root vector of A. We also recall that the subspace ker(λj − A) is called the (proper) eigenspace of A
associated to λj and its dimension �j ∈ N∗ is called the geometric multiplicity of λj (recall that �j ≤ Nj).

Using the hypotheses (H3), (H4) and (H5) and applying classical results on parabolic systems, we deduce
that for any u ∈ L2((0, τ);U) and for any y0 ∈ H1/2−γ there exists a unique solution y of (1.1) satisfying
y(0) = y0 and such that

y ∈ H1((0, τ);H−γ) ∩ L2((0, τ);H1−γ) ∩ C([0, τ ];H1/2−γ). (1.4)

In the hypothesis (H4), [·, ·]α denotes the complex interpolation method (see [45]). Concerning operators
satisfying the above interpolation equality we refer to Section II.1.6 from [12] (for instance, it is satisfied if A
is dissipative). The hypothesis (H4) is only a technical assumption that simplifies the study and the notation.
Without such an hypothesis the space H1/2−γ should be replace by (μ0 −A)γ([H,D(A)]1/2).

Definition 1.1. System (1.1) is said to be approximately controllable if for any y0, y1 ∈ H1/2−γ and for any
ε > 0, there exists u ∈ L2(0, τ ;U) such that the solution y of (1.1) with y(0) = y0 satisfies ‖y(τ)−y1‖H1/2−γ < ε.
If the above u can be chosen in a K-dimensional subspace UK ⊂ U then (1.1) is said to be approximately
controllable by K-dimensional control.

Since we assume (H3), the time τ > 0 in the above definition can be chosen arbitrary.
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A problem related to the approximate controllability of (1.1) consists in considering controls of the form

u =
∑
l∈N

ulvl, (1.5)

where v def= (vj)j∈N is a family to be chosen and where ū = (uj)j∈N is only depending on time and is the new
control. Here we are looking for families v def= (vj)j∈N ∈ �2(N;U) such that the corresponding system is still
approximately controllable.

Let us introduce for all v ∈ �2(N, U) the operator

V (v) : �2(N) −→ H−γ , V (v)w̄ def=
∑
l∈N

wlBvl where w̄ = (wl)l∈N. (1.6)

Here �2(N) def= �2(N,C) denotes the space of square-summable complex sequences. The system considered here
and which is deduced from (1.1) can be written as

y′ +Ay = V (v)ū. (1.7)

Definition 1.2. We say that v is admissible if the system (1.7) is approximately controllable.

A particular important case of the above class of problem is when the family v is finite i.e. v = (vj)j=1,...,K ∈
UK for some integer K. Obviously, if there exists such a finite admissible family then (1.1) is approximately
controllable by K-dimensional control.

Let us consider εk(λj), k = 1, . . . , �j, a basis of ker(λj −A∗) and let us define

E def=
⊕
j∈N

ker(λj −A∗)
H∗
γ

= spanC {εk(λj) | j ∈ N, k = 1, . . . , �j}H
∗
γ
.

Moreover, for a given family v = (vj)j∈N ∈ �2(N;U) we introduce the bounded linear operator

Wj(v) : C�j → �2(N), x �→
⎛⎝ �j∑
k=1

xk(vl|B∗εk(λ̄j))U

⎞⎠
l∈N

, (1.8)

and for a finite family v = (vj)j=1,...,K of UK we use the same notation for the following matrix of order K× �j:

Wj(v)
def=
(

(vl | B∗εk(λ̄j))U

)
1≤l≤K, 1≤k≤�j

. (1.9)

We are now in position to state the result on approximate controllability.

Theorem 1.3. Assume (H1), (H2), (H3), (H4) and (H5) and let K ∈ N∗. Then the following results hold.

1. System (1.1) is approximately controllable if and only if (UC) is satisfied.
2. System (1.1) is approximately controllable by a K-dimensional control if and only if (UC) is satisfied and

sup
j∈N

�j ≤ K. (1.10)

3. A family v is admissible in the sense of Definition 1.2 if and only if

rankWj (v) = �j ∀j ∈ N. (1.11)
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4. Assume that (UC) is true. Then the set of admissible families of �2(N, U) forms a residual set of �2(N, U).
Moreover, if v ∈ �2(N, U) is admissible then its orthogonal projection onto �2(N, B∗E) is admissible.

5. Assume that (UC) and (1.10) are true. Then the set of admissible families of UK forms a residual set of
UK . Moreover, if v ∈ UK is admissible then its orthogonal projection onto (B∗E)K is admissible.

Recall that a residual set of a topological space X is the intersection of countable open and dense subsets
of X. In particular, it is a dense subset of X if X is a Banach space.

Remark 1.4. Let us make some remarks on the above result: the point 1. in the above theorem is the Fattorini
result in the case B ∈ L(U,H−γ). Since we assume (H3), even for γ = 0, there is a small change: the set{
y(τ) ; u ∈ L2((0, τ);U)

}
is dense in H1/2 which implies that it is also dense in H .

To be more precise, the point 1. in the above theorem (the Fattorini theorem) does not need the hypotheses
(H3), but here we are mainly interested in parabolic systems and with the possibility to use only finite dimen-
sional controls. Without the hypothesis (H3), one has to replace H1/2−γ by H−β , with suitable β ≤ γ such that
y ∈ C([0, τ ];H−β), and the definition of approximate controllability has to be relaxed as follows: system (1.1)
is said to be approximately controllable if ∪τ>0 RanΦτ is dense in H−β where

Φτ (u) def=
∫ τ

0

eA(τ−s)Bu(s) ds.

It can be checked that system (1.1) is approximately controllable, if and only if, for any y1 ∈ H−β and for any
ε > 0, there exists u ∈ L2(0,+∞;U) such that the solution y of (1.1) with y(0) = 0 satisfies ‖y(τ)− y1‖H−β < ε
for some τ , depending in general on y1 and ε.

The condition (UC) is also a criterion for stabilizability property. We say that (A,B) is stabilizable if there
exist F ∈ L(H,U) and constants C > 0, ε > 0 such that the solutions of (1.1) with u = Fy obey ‖y(t)‖H ≤
Ce−εt‖y(0)‖H for all t ≥ 0. Note that for a given σ > 0 it is easily seen that (A + σ,B) is stabilizable if and
only if there exist F ∈ L(H,U) and C > 0, ε > 0 such that the solutions of (1.1) with u = Fy satisfy

‖y(t)‖H ≤ Ce−(σ+ε)t‖y(0)‖H (t ≥ 0). (1.12)

Definition 1.5. We say that (A,B) is stabilizable by K-dimensional control if there exists a K-dimensional
subspace UK ⊂ U such that (A,B|UK ) is stabilizable. A linearly independent family (vj)j=1,...,K of UK gener-
ating such a UK (i.e. UK = spanC{vj , j = 1, . . . ,K}) is said to be admissible for stabilizability of (A,B).

If (vj)j=1,...,K of UK is admissible for stabilizability, then the stabilizing finite rank feedback law F ∈ L(H,U)
can be represented as follows:

Fy(t) =
K∑
j=1

(y(t), ε̂j)Hvj . (1.13)

Note that above definitions are consistent since, by combining (H3), (H5), and F ∈ L(H,U) with a per-
turbation argument, we have that A + BF generates an analytic semigroup on H and in particular that
y(t) ∈ C([0,∞);H).

In the case of stabilization, the condition (UC) is replaced by

∀ε ∈ D(A∗), ∀λ ∈ C, �λ ≥ −σ A∗ε = λε and B∗ε = 0 =⇒ ε = 0. (UCσ)

The space E used in Theorem 1.3 can be replaced by the following space depending on σ > 0:

Eσ def=
⊕

�λj≥−σ
ker(λj −A∗) = spanC{εk(λj ) | �λj ≥ −σ, k = 1, . . . , �j}. (1.14)

We also consider the hypothesis that completes (H1)
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(H6) The spectrum of A has no finite cluster point.

Note that a sufficient condition for (H6) is that A has compact resolvent.
The main result for the stabilization of (1.1) is

Theorem 1.6. Assume (H1), (H3), (H5) and (H6). Let K ∈ N∗ and σ > 0. Then the following results hold.

1. The pair (A + σ,B) is stabilizable if and only if (UCσ) is satisfied.
2. The pair (A + σ,B) is stabilizable by a K-dimensional control if and only if (UCσ) is satisfied and

sup
�λj≥−σ

�j ≤ K. (1.15)

3. A family v = (vj)j=1,...,K of UK is admissible for stabilizability of (A + σ,B) (in the sense of Def. 1.5) if
and only if

rankWj (v) = �j ∀λj , �λj ≥ −σ. (1.16)

4. Assume that (UCσ) and (1.15) are true. Then the set of admissible families for stabilizability of (A+ σ,B)
forms a residual set of UK . Moreover, if v is admissible for stabilizability of (A + σ,B) then its orthogonal
projection onto (B∗Eσ)K is admissible for stabilizability of (A+ σ,B).

Remark 1.7. Using the above result, one can deduce the stabilization of a class of nonlinear parabolic systems
(see Thms. 3.3 and 3.4).

Let us also underline that in many practical examples, the system (1.1) is originally defined on a real Hilbert
space for control functions with values in a real control space. Thus above approximate controllability and
stabilization results are also stated in the real case (see Thms. 2.4 and 3.5 below). We emphasize that, even in
the real case, the minimal value of K is the maximum of the geometric multiplicities �j . It is independent of
algebraic multiplicities and of real or complex nature of the eigenvalues as it is suggested in [8], Remark 3.9.

Remark 1.8. The stabilizing feedback control u = Fy given by Theorem 1.6 is constructed from a finite
dimensional projected system and, as a consequence, it is infinitely time differentiable:

∀n ∈ N, u = Fy ∈ Hn(U). (1.17)

Actually, the construction given by Section 3.1 shows that in (1.13) the family {ε̂j | j = 1, . . . ,K} can be chosen
in the set Eσ defined by (1.14). Then F can be extended as an operator from [D((A∗)n)]′ onto U for all n ∈ N.
In particular, from F ∈ L([D(A∗)]′, U) and y′ ∈ L2([D(A∗)]′) we first deduce that u = Fy belongs to H1(U),
and thus (1.17) follows from an inductive argument by successively differentiating equation (1.1).

Using the Theorem 1.6 and Remark 1.7, we can deal with several nonlinear parabolic real systems such as
systems of heat equations or Navier–Stokes type systems. For instance, we show in Section 4 how to obtain the
local stabilizability around a stationary state (wS , θS) of the magnetohydrodynamic (MHD) system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt −Δw + (w · ∇)w − (curl θ) × θ + ∇r = fS + 1ωu1 in Q,
θt + curl(curl θ) − curl(w × θ) = 1ωũ2 in Q,

divw = div θ = 0 in Q,

w = wS , θ · n = θS · n on Σ,

(curl θ − w × θ) × n = (curl θS − wS × θS) × n on Σ,

w(0) = wS + y0, θ(0) = θS + ϑ0 in Ω,

(1.18)

with a control ũ2 in the magnetic field equation that satisfies:

div (1ωũ2) = 0 in Q,

(1ωũ2) · n = 0 on Σ. (1.19)
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In above settings, Ω is a bounded and simply connected domain of R3, ω is a nonempty open subset of Ω,
Q

def= (0,+∞) ×Ω, Σ def= (0,+∞) × ∂Ω, 1ω is the extension operator defined on (L2(ω))3 by 1ω(y)(x) = y(x) if
x ∈ ω and 1ω(y)(x) = 0 else, and u1, ũ2 are control functions in (L2((0, T ) × ω; R))3. This result extends (and
also improves) the 2d stabilization result [36]. In Section 4, we also prove a boundary stabilization result for a
nonlinear micropolar fluid system for which controllability issue has been considered in [20]. Those stabilization
results are both based on the proof of the unique continuation property (UC) and require the use of local
Carleman inequalities for coupled Stokes-type equations. These inequalities are proved in the Appendix.

The first works dealing with approximate controllability of infinite dimensional linear systems are due to
Fattorini in the pioneer papers [18,19]. While [19] focus on the particular case of self-adjoint generators, general
semigroup generators are considered in [18] where the above mentioned infinite dimensional Hautus test (UC)
is proposed. Very surprisingly, the last quoted work has been published three years earlier than Hautus famous
paper [28]. It is also suggested in [18] that one can find a finite rank input operator such that approximate
controllability holds provided that the rank is greater or equal than the maximum of the geometric multiplicities
of A. However, nothing is said about the way of constructing such a finite rank input operator. Since Fattorini’s
paper is almost 50 years old, it is of course expected that there has been additional work on the subject, dealing
in particular with finite dimensional controls. However, most of the results available in the literature concern
self-adjoint or diagonal operators and are stated in a much less general way than Fattorini’s result. For instance,
in [47] Triggiani provide a generalization of the Kalman rank condition which reduced to (1.11) in the case
of normal operator with compact resolvent, and permits to characterize admissible finite dimensional control
subspaces (see [47], Eq. (3.5)). About stabilizability problems, the idea of using finite dimensional feedback law
stabilizing linear parabolic systems goes back to [46,48] and the rank conditions (1.16) arise as a stabilizability
criterion in the case of self-adjoint operators with compact resolvent (see [46], Eq. (7.2)). This spectral rank
criterion can also be found in the modern literature but still for self-adjoint, or at least diagonal, operators. We
refer for instance to the book of Curtain and Zwart where the rank condition is stated for self-adjoint or diagonal
operator having simple spectrum as well as a Riesz basis of eigenvectors (see [14], Thms. 4.2.1 and 4.3.2), or
to the book of Bensoussan, Da Prato, Delfour and Mitter still for diagonal operators (see [12], Thm. 4.2).
However, in numerous applications the operator A may not be diagonal or may not have a Riesz basis (for a
simple example of non selfadjoint operator whose eigenvectors are complete but do not form a Riesz basis see for
instance [16]). As a consequence, we present here the finite dimensional control version of Fattorini’s theorem
written in full generality: see Theorem 1.3 and Remark 1.4.

The second reason motivating the writing down of Theorem 1.3 is the connected stabilization issues that are
stated in Theorem 1.6. Indeed, we must underline that the fact that (UCσ) (or its rank conditions version (1.16))
can be used as a general criterion for the stabilizability of parabolic systems went unnoticed in many recent
works about stabilization of fluid-flow systems. We can quote for instance the papers of Barbu, Lasiecka and
Triggiani [9–11] where, to obtain the stabilizability of the linearized Navier−Stokes equations, the authors make
the useless additional assumption that the projected operator AN is diagonal (and even postulate that it is
also necessary for exact controllability of the projected system, see [10], Rems. 3.6.2 and 3.6.4). Or the work
of Raymond and Thevenet [43] where the exact controllability of the finite dimensional unstable projected
system is deduced from the stabilizability by infinite dimensional control proved in [42], itself relying on the
null controllability of the Oseen equations [21]. We must also mention the series of works of Fursikov [22–24]
where stabilization of the Oseen equations and of the Navier−Stokes equations is achieved through a subtle
combination of an extension of the domain procedure with a spectral decomposition. Up to our knowledge, it is
the first work that reduces the PDE stabilizability question to a unique continuation property on an eigenvalue
problem (see Fabre and Lebeau’s type theorem proved in [24], Thm. 4.2), and for a non necessarily diagonal
underlying linear operator. There, B∗ correspond to an internal observation and this permits to deduce the
linear independence of the whole family {B∗εk(λj) | �λj ≥ −σ, k = 1, . . . , �j} which is at the basis of the
construction of a key extension operator. Note that such a linear independence property is also used in [8]
to construct finite dimensional distributed control. However, it is stronger than (UCσ) and proper to internal
observation since linear independence of {B∗εk(λj) | �λj ≥ −σ, k = 1, . . . , �j} is false for boundary control in
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some simple geometrical situations (see the end of the introduction of [5]). Note also that in the above quoted
works the question of finding the minimal number K for which the stabilizability holds is not addressed or only
partially.

The major interest of the Fattorini criterion is that proving (UC) is an easy alternative to obtain the finite
cost condition needed to construct stabilizing feedback law from well-posed optimal quadratic problem, see [3],
Remark 2. For instance, boundary feedback stabilizability of the Navier−Stokes system can be simply reduced to
a uniqueness result of type [17] and avoid more sophisticate approaches for the nonstationary system as in [21,31]
or [23, 24]. Moreover, a systematic generalization of the last quoted works to other analogous more complex
systems such as coupled Stokes type systems or fluid-structure systems is not straightforward. Here, with two
examples of flow systems described by coupled Stokes type equations, we sketch a systematic procedure relying
on (UC) for checking the stabilizability of nonlinear system. We prove local Carleman estimates that permit to
check (UC) for general coupled Navier−Stokes systems and we deduce feedback and dynamical stabilization of
nonlinear MHD and micropolar systems (see Cor. A.2, Thms. 4.1 and 4.4). Concerning the use of Fattorini’s
criterion for feedback stabilization of fluid-structure system we refer to [6, 7]. Finally, let us underline that a
stabilizability property can also be used to tackle some controllability issues: we refer for instance to the work [13]
where the authors prove the global controllability to steady trajectories of a 1d nonlinear heat equation by using
a stabilization procedure involving only the unstable modes.

The rest of the paper is organized as follows. Section 2 is dedicated to approximate controllability issue. We
prove Theorem 1.3 in Section 2.1, we make some comments in Sections 2.2 and 2.3 is dedicated to the real
version of Theorem 1.3. Thus, we consider a simple example involving a system of coupled heat equations in
Section 2.4. Section 3 is dedicated to stabilizability issue. We prove Theorem 1.6 in Section 3.1, Section 3.2
is dedicated to nonlinear stabilization theorems and Section 3.3 concerns the real case. Thus, as a simple
example of application, we consider the minimal rank stabilizing feedback law issue for the heat equation in a
rectangular domain. Section 4 is concerned with two applications to the stabilization of incompressible coupled
Navier−Stokes type systems. Section 4.1 is concerned with the MHD system (1.18) and Section 4.2 deals with
the boundary feedback stabilizability of a micropolar fluid system. Finally, the appendix is dedicated to the
proof of local Carleman inequalities for the Stokes equations and on their applications to obtain uniqueness
theorem that permits to check (UC) related to MHD and micropolar fluid stabilization problems.

2. Approximate controllability

2.1. Proof of Theorem 1.3

First, let us recall that the solution y of (1.1) such that y(0) = y0 can be written as y(t) = eAty0 + Φt(u)
with

Φτ (u) =
∫ τ

0

eA(τ−s)Bu(s) ds. (2.1)

More precisely, using (H3), one can check that Φτ ∈ L(L2((0,∞);U);H1/2−γ) and that

RanΦτ
H1/2−γ = H1/2−γ ⇔ kerΦ∗

τ = {0},
where the adjoint of Φτ is given by:

∀ε ∈ H∗
γ−1/2, (Φ∗

τ ε)(t) =
{
B∗eA

∗(τ−t)ε for t ∈ [0, τ ],
0 for t > τ.

(2.2)

Therefore, approximate controllability of (1.1) is equivalent to the following condition

∀ε ∈ H∗
γ−1/2, B∗eA

∗tε = 0 (t ∈ (0, τ)) =⇒ ε = 0. (2.3)

Moreover, since the semigroup is analytic, this condition is equivalent to

∀ε ∈ H∗
γ−1/2, B∗eA

∗tε = 0 (t ∈ (0,+∞)) =⇒ ε = 0. (2.4)
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Proof of 1. Let us first prove that (UC) implies (2.4). For that, assume ε ∈ H∗
γ−1/2 satisfies

B∗eA
∗tε = 0 (t ∈ (0,+∞)). (2.5)

The Laplace transform of (2.5) (see [50], Thm. 4.3.7) first yields:

B∗(λ −A∗)−1ε =
∫ ∞

0

e−λtB∗eA
∗tε dt = 0 for �λ ≥ μ0 > sup

j∈N

�λj

and next B∗(λ−A∗)−1ε = 0 for all for all λ ∈ ρ(A∗) by analytic continuation. Now define

R∗
−n(λ̄j) =

1
2πı

∫
|λ−λ̄j |=δ

(λ− λ̄j)n−1(λ −A∗)−1dλ, n ∈ {1, . . . ,m(λj)}

where δ > 0 is the same as in (1.3). Since B∗(λ−A∗)−1ε = 0 for all λ ∈ ρ(A∗) we deduce that

B∗R∗
−n(λ̄j)ε = 0 ∀n ∈ {1, . . . ,m(λj)}. (2.6)

Moreover, by easy computations we verify that

R∗
−n−1(λ̄j) + (λ̄j −A∗)R∗

−n(λ̄j) = 0 ∀n ∈ {1, . . . ,m(λj) − 1}. (2.7)

Finally, let us prove that (UC) with an inductive argument using (2.6), (2.7) yields

R∗
−1(λ̄j)ε = 0. (2.8)

By (2.7) we haveR∗
−m(λj)

(λ̄j) = (A∗−λ̄j)m(λj)−1R∗−1(λ̄j), and since Ran(R−1(λj)) = ker(λj−A)m(λj) we deduce
that R∗

−m(λj)
(λ̄j)ε ∈ ker(λ̄j−A∗). Then (2.6) with n = m(λj) combined with (UC) first gives R∗

−m(λj)
(λ̄j)ε = 0.

As a consequence, (2.7) with n = m(λj) − 1 yields R∗
−m(λj)+1(λ̄j)ε ∈ ker(λ̄j − A∗), and (2.6) with n =

m(λj) − 1 combined with (UC) then gives R∗
−m(λj)+1(λ̄j)ε = 0. By reiterating the argument we successively

obtain R∗
−n(λ̄j)ε = 0 from n = m(λj) until n = 1. Finally, since (2.8) holds, we have ε ∈ Ran(R−1(λj))⊥ for all

j ∈ N, and with assumption (H2) we get ε = 0.
Conversely, let us now prove that (2.4) implies (UC). Suppose that (UC) is false: there exist j0 ∈ N and an

eigenvector ε(λj0) �= 0 (associated with the eigenvalue λj0) such that B∗ε(λj0) = 0. Moreover, since we have
(see [41], Chap. 2)

eA
∗tε(λj0) = eλ̄j tε(λj0),

then B∗eA
∗tε(λj0) = 0 for all t ∈ (0,+∞) and (2.4) is false.

Proof of point 3. Let us consider v ∈ �2(N, U). System (1.7) is approximately controllable if and only if the
corresponding condition (UC) holds i.e.

∀ε ∈ D(A∗), ∀λ ∈ C, A∗ε = λε and V (v)∗ε = 0 =⇒ ε = 0. (2.9)

It can be checked that the adjoint operator of V (v) is given by

V (v)∗ : H∗
γ −→ �2(N), V (v)∗ε = ((vl|B∗ε)U )l∈N, (2.10)

and it is clear that (2.9) is equivalent to (1.11). We deduce that v is admissible if an only if (1.11) is satisfied.
Proof of point 4. Let us prove that the set of families v ∈ �2(N, U) satisfying (1.11) is the intersection of a
countable family of open and dense subsets of �2(N, U).

For all n ∈ N, we denote by Rn the subset of L(Cn, �2(N)) composed by the linear bounded mapping of
rank n. It is well-known that Rn is an open and dense subset L(Cn, �2(N)).
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Let us recall that the linear mapping defined by (1.8)

Wj : �2(N, U) → L(C�j , �2(N))

is bounded. The set of families v ∈ �2(N, U) such that (1.11) holds for all j ∈ N can be written as

A =
⋂
j∈N

W−1
j

(R�j

)
.

In order to prove that this set is residual, we prove that for all j ∈ N, W−1
j (R�j ) is an open dense subset of

�2(N, U). Let us fix j ∈ N.
First, by using that Wj is a continuous mapping, we deduce that W−1

j (R�j ) is an open subset of �2(N, U).
To prove the density, we proceed as in [5]: let us consider v ∈ �2(N, U). Since (UC) holds, the family B∗εi(λ̄j)

for i = 1, . . . , �j is linearly independent and thus it can be seen that v ∈W−1
j (R�j ) if and only if the span of v

contains B∗εi(λ̄j) for i = 1, . . . , �j. In particular, if we decompose the first �j vectors of v as

vk = v̂k + ṽk, with v̂k ∈ span{B∗εi(λ̄j), i = 1, . . . , �j}, ṽk ∈ span{B∗εi(λ̄j), i = 1, . . . , �j}⊥,

then we see that v is admissible if (v̂1, . . . , v̂�j ) is a basis of span{B∗εi(λ̄j), i = 1, . . . , �j}. This is equivalent to
say that the matrix of (v̂1, . . . , v̂�j ) in the basis (B∗ε1(λ̄j), . . . , B∗ε�j (λ̄j)) is invertible. However such a matrix
can always be approximated by invertible matrices and thus any v can be approximated by vη ∈ �2(N, U) such
that (v̂η1 , . . . , v̂

η
�j

) is a basis of span{B∗εi(λ̄j), i = 1, . . . , �j}. Since such a vη is admissible this concludes the
proof.

Proof of point 5. The proof is completely similar to the Proof of point 4. Just, observe that K ≥ �j is clearly a
necessary condition for (1.11) with Wj(v) now defined by (1.9).

Proof of point 2. The fact that (UC) and (1.10) imply that (1.1) is approximately controllable follows from
point 5. To prove the converse implication one can use point 1 and the fact that if (1.10) does not hold, (1.11)
is false.

2.2. Remarks on Theorem 1.3 and on the hypotheses (H1)–(H5)

Remark 2.1. In Theorem 1.3, one can only suppose γ ≥ 0 in (H5) and replace the hypothesis (H3) by

RanΦτ ⊂ H−β, β ∈ [γ − 1, γ] (2.11)

for some τ (Φτ is defined by (2.1)). First let us remark in that case (2.11) holds for all τ > 0 and Φτ is bounded
from L2(0,+∞;U) into H−β for all τ > 0 (see [50], Prop. 4.2.2).

Let us note that in the quoted work, the result is obtained for γ = 1 and β = 0, but it can be extended to
γ ≥ 0 and β ∈ [γ − 1, γ] with the change of variable Φ̃τ

def= (μ0 − A)−βΦτ , because for such values γ, β we have
(μ0 −A)−βB : U → H−1 bounded.

However, because the expression of Φ∗
τ given by (2.2) is not necessarily valid for ε ∈ H∗

β, expressions (2.3)
or (2.4) must be slightly modified. Following [50], (Parts 4.3 and 4.4) we have

∀ε ∈ H∗
β , (Φ∗

τε)(t) =
{

(Ψε)(τ − t) for t ∈ [0, τ ]
0 for t > τ,

(2.12)

where Ψ denotes the uniquely determined extended output map Ψ : H∗
β → L2

loc([0,+∞);U) satisfying

(Ψε)(t) = B∗eA
∗tε ∀ε ∈ H∗

γ , t ≥ 0.
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About existence and uniqueness of such Ψ , (see [50], p. 123)5. Then from

∪τ>0RanΦτ
H = H ⇐⇒ ∩τ>0 kerΦ∗

τ = {0}

we also get that (1.1) is approximately controllable if and only if

∀ε ∈ H∗
β , (Ψε)(t) = 0 (t ∈ (0,∞)) =⇒ ε = 0. (2.13)

From this relation, one can follow the Proof of the point 1 of Theorem 1.3.

Remark 2.2. According to Keldy’s Theorem, assumption (H2) is satisfied by a class of perturbations of self-
adjoint operator: if A0 is a self-adjoint operator in H with compact resolvent, if A1 is an operator such that
A1(−A0)−α is bounded for some 0 ≤ α < 1, and if the eigenvalues (λj)j∈N of A0 satisfy for some 1 ≤ p < +∞:∑

j∈N

1
|λj |p < +∞, (2.14)

then A = A0 + A1 with domain D(A) = D(A0) is closed and its family of root vectors is complete in H
(see [26], Thm. 10.1, p. 276), or ([45], Thm. 5.6.1.3, p. 394), combined with ([45], Thm. 5.6.1.1, p. 392 and
Lem. 5.6.1.2, p. 395). Note that Weyl’s formula ensures that (2.14) is satisfied by regular self-adjoint elliptic
operator, (see [45], p. 395).

Remark 2.3. If −A is positive we can define its fractional powers (−A)α with 0 < α < 1, and we easily verify
that the set of eigenvectors of (−A)α and (−A∗)α coincide with the set of eigenvectors of A and A∗, respectively.
Then assumptions (H1), (H2) and (UC) holds for −(−A)α if they hold for A. Moreover, if (A,B) satisfies (H5)
for some γ ≥ 0 then (−(−A)α, B) satisfies (H5) for γ

α . Then under assumptions (H1), (H2), (H5) conclusions
of Theorems 1.3 are also true for −(−A)α with 0 < α < 1. This should be compared with the fact that the null
controllability of (A,B) does not imply the null controllability of (−(−A)α, B) for 0 < α < 1/2, see [40].

2.3. Approximate controllability of real systems

In many practical examples system (1.1) is originally defined on a real Hilbert space for control functions
with values in a real control space: A is originally defined as an unbounded operator on a real Hilbert space G
(i.e. A : D(A) ⊂ G→ G) and the input B is originally defined as a bounded operator from a real Hilbert space
W into the real space G−γ (defined as H−γ in (1.2) but now from real operators A, A∗). Then for y(0) ∈ G1/2−γ
and u ∈ L2(0,+∞;W ) the trajectories t �→ y(t) are continuous with values in the real Hilbert space G1/2−γ .
In such situation, (1.1) is referred as a real system and all the above definitions of approximate controllability
and admissibility can be stated for real spaces in the same manner as it has been done for complex spaces. It
follows that complex spaces H and U are simply the complexified spaces H = G+ ıG and U = W + ıW and to
recover the above complex framework it suffices to consider extensions of A and B to H and U , respectively.

It is clear that the approximate controllability of the complex system implies the approximate controllability
of the real system. This follows by remarking that the complex system (1.1) can be decompose in two uncoupled
real systems corresponding to real and imaginary parts of (1.1). The same argument yields that if (vj)j is
an admissible family of U for the complex system then (�vj ,�vj)j is an admissible family of W for the real
system. In particular, if the complex system is approximately controllable byK-dimensional control then the real
system is approximately controllable by 2K-dimensional control. However, (1.10) and (UC) are also sufficient
for approximate controllability by K-dimensional control of the real system. A slight modification of the Proof
of Theorem 1.3 permits to obtain a real version of Theorem 1.3 stated in Theorem 2.4 below.

5 Since the quoted work only applies for γ = 1 and β = 0 it can be used to justify the existence and the uniqueness of

Ψ̃ : H → L2
loc([0, +∞); U) satisfying (Ψ̃ ε)(t) = B∗(μ0 − A∗)−βeA∗tε for all ε ∈ H∗

1 , t ≥ 0, and we check that Ψ = Ψ̃(μ0 − A∗)β

obeys the desired property.
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Before stating this result, we need some additional notation. Recall that for each λj the family εk(λj),
k = 1, . . . , �j, denotes a basis of ker(λj − A∗) and we denote by F the subspace of G generated by real and
imaginary parts of εk(λj). Note that when λj = λj is real we can suppose εk(λj) ∈ G. Moreover, since A∗ is
real its spectrum is symetric with respect to the real line and non real eigenvalues are pairwise conjugate with
pairwise conjugate basis of eigenvectors, i.e. for all j ∈ N the complex value λj is also an eigenvalues of A∗ with
corresponding basis of eigenvector {εk(λj) | k = 1, . . . , �j}. Then with

J0
def= {j ∈ N | �λj = 0}, J+

def= {j ∈ N | �λj > 0} and J−
def= {j ∈ N | �λj < 0} (2.15)

the subspace F is also defined by:

F def= spanR{χk(λj) | j ∈ N, k = 1, . . . , �j}
G

where χk(λj)
def=

⎧⎨⎩
εk(λj) if j ∈ J0,
�εk(λj) if j ∈ J+,
�εk(λj) if j ∈ J−.

(2.16)

The following real version of Theorem 1.3 holds.

Theorem 2.4. Suppose that A and B are real operators defined on real Hilbert spaces, G and W , respectively.
Assume that the complexified of A and B satisfy (H1), (H2), (H3), (H4) and (H5) and let K ∈ N∗. Then the
following results hold.

1. Real system (1.1) is approximately controllable if and only if (UC) is satisfied.
2. Real system (1.1) is approximately controllable by a K-dimensional control if and only if (UC) and (1.10)

are satisfied.
3. A family v ∈ �2(N,W ) is admissible if and only if (1.11) is satisfied.
4. Assume that (UC) is true. Then the set of admissible families of �2(N,W ) forms a residual set of �2(N,W ).

Moreover, if v ∈ �2(N,W ) is admissible then its orthogonal projection onto �2(N, B∗F) is admissible.
5. Assume that (UC) and (1.10) are true. Then the set of admissible families of WK forms a residual set of
WK . Moreover, if v ∈WK is admissible then its orthogonal projection onto (B∗F)K is admissible.

Proof. The above statement is a consequence of Theorem 1.3. Let us only precise point 4. and in particular
that, under assumption (UC), the set of families v ∈ �2(N,W ) such that (1.11) holds form a residual set of
�2(N,W ). The proof of the fact that the set of admissible family v ∈ �2(N,W ) is the intersection of open subsets
of �2(N,W ) is similar to the Proof of Theorem 1.3, and we skip it. For the density the arguments in the Proof
of Theorem 1.3 must be adapted: we decompose the first �j vectors of v as

vk = v̂k + ṽk, with v̂k ∈ spanR{B∗χi(λ̄j), i = 1, . . . , �j}, ṽk ∈ spanR{B∗χi(λ̄j), i = 1, . . . , �j}⊥.
Then we notice that

spanC{B∗χi(λ̄j), i = 1, . . . , �j} = spanC{B∗εi(λ̄j), i = 1, . . . , �j}.
In particular, we see that v is admissible if (v̂1, . . . , v̂�j ) is a basis of spanC{B∗εi(λ̄j), i = 1, . . . , �j}. This
is equivalent to say that (v̂1, . . . , v̂�j ) is linearly independent or to say that the matrix of (v̂1, . . . , v̂�j ) in the
basis (B∗χ1(λ̄j), . . . , B∗χ�j (λ̄j)) is invertible. However such a matrix can always be approximated by invertible
real matrices and thus any v can be approximated by vη ∈ �2(N,W ) such that (v̂η1 , . . . , v̂

η
�j

) is a basis of
spanC{B∗εi(λ̄j), i = 1, . . . , �j}. Since such a vη is admissible this concludes the proof. �

2.4. Approximate controllability of some coupled heat equations

Here we give a simple example of non diagonalizable system which consists in two coupled heat equations:⎧⎪⎨⎪⎩
yt −Δy + z = 0 in (0, T )×Ω,
zt −Δz = 1ωh in (0, T )×Ω,
y = z = 0 on (0, T ) × ∂Ω,
y(0) = y0 and z(0) = z0 in Ω.

(2.17)
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Above, Ω is an open subset of Rd, d ≥ 1, (y0, z0) ∈ L2(Ω) × L2(Ω), ω is a non empty open subset of Ω, 1ω is
the characteristic function of ω and h ∈ L2((0, T )×Ω) is the control function.

The above system verify the hypotheses of the previous section and in particular, we have the following result

Proposition 2.5. System (2.17) is approximately controllable. It is approximately controllable by a
K-dimensional control if and only if

sup
j∈N

�̂j ≤ K, (2.18)

where �̂j are the geometric multiplicities of the operator −Δ : H2(Ω) ∩H1
0 (Ω) → L2(Ω).

On can also deduce the other consequences of Theorem 1.3 for system (2.17). Let us give here the main ideas
of the proof of Proposition 2.5. First, system (2.17) can be rewritten in the form (1.1) with

A =
(
Δ −I
0 Δ

)
and B =

(
0
1ω

)
.

It is clear that A with domain D(A) = (H2(Ω)∩H1
0 (Ω))×(H2(Ω)∩H1

0 (Ω)) satisfies (H1), (H2), (H3) and (H4)
with H = L2(Ω) × L2(Ω) and that B satisfies (H5) with U = L2(Ω) × L2(Ω) and γ = 0 (i.e. B is bounded).
Moreover, it is easily seen that

A∗ =
(
Δ 0
−I Δ

)
and D(A∗) = D(A).

Let denote by λj , j ∈ N, the Dirichlet Laplacian eigenvalues with geometric multiplicities �j and related basis
of eigenvectors {ξk(λj) | k = 1, . . . �j}. Simple computations show that the eigenvalues of A∗ are exactly the
λj ’s and that proper eigenspaces and generalized eigenspaces are given by

ker(λj −A∗) = span {εk(λj) | k = 1, . . . , �j}
ker(λj −A∗)2 = span {εk(λj), fk(λj) | k = 1, . . . , �j} ,

where

εk(λj)
def=
(

0
ξk(λj)

)
, fk(λj)

def=
(
ξk(λj)

0

)
.

Thus we are in the situation where m(λj) = 2 and where algebraic multiplicity of λj is Nj = 2�j while the
geometric multiplicity of λj is �j .

Finally, (UC) reduces to:⎧⎨⎩Δy = λy in Ω,
Δz − y = λz in Ω,
y = z = 0 on ∂Ω,

and z ≡ 0 in ω =⇒
{
y ≡ 0 in Ω,
z ≡ 0 in Ω. (2.19)

To prove (2.19), suppose that the left part of (2.19) is satisfied with λ = λj for some j (otherwise the conclusion
is obvious). Then t(y, z) ∈ ker(λj − A∗) which implies y = 0 and the conclusion follows from Holmgren’s
uniqueness Theorem, see for instance ([30], Thm. 8.6.5, p. 309). In conclusion, Theorem 1.3 applies and (2.17)
is approximately controllable in any time.

3. Stabilizability of parabolic systems

3.1. Proof of Theorem 1.6

For the following we suppose that assumptions (H1), (H3), (H5) and (H6) are satisfied and we first
rewrite (1.1) in two equations, one related to the “unstable” modes and the other to the “stable” modes.
Let N ∈ N∗ be such that:

�λ0 ≥ �λ1 ≥ . . . ≥ �λN ≥ −σ > �λN+1 ≥ . . . , (3.1)
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and set ΣN
def= {λk | k = 1, . . . , N}. Such an integer N exists because of conditions (H1), (H3) and (H6). Let

us note that condition (H3) yields that the spectrum of A is located in a sector of a left half-plane with an
opening angle strictly lower than π. Thus, we split (1.1) in two equations, one related to the “unstable” modes
ΣN and the other to the “stable” modes Σ\ΣN (see [33], Par. III.4, Thm. 6.17, p. 178). For that, we introduce
the projection operator defined by

PN
def=

1
2πı

∫
ΓN

(λ−A)−1dλ, (3.2)

where ΓN be a contour enclosing ΣN but no other point of the spectrum of A. Then the space H is the direct
sum of the two invariant subspaces HN = PNH and H−

N = (I − PN )H of A. We also introduce the adjoint of
PN which has the following expression:

P ∗
N =

1
2πı

∫
ΓN

(λ−A∗)−1dλ. (3.3)

Then, the solution y of (1.1), which can be rewritten y = yN + y−N with yN = PNy and y−N = (I − PN )y, is
solution to systems:

y′N = ANyN +BNpNu ∈ HN , (3.4)

y−
′

N = A−
Ny

−
N +B−

Np
−
Nu ∈ H−

N . (3.5)

In the above setting, AN and A−
N denote the restriction of A to HN and H−

N respectively, and BN = PNBp
∗
N ,

B−
N = (I − PN )Bp∗−N where pN : U → UN and p−N : U → U−

N are the orthogonal projection operators on

UN
def=
{
B∗ε | ε ∈ H∗

N
def= P ∗

NH
}

and U−
N

def=
{
B∗ε | ε ∈ H∗−

N
def= (I − P ∗

N )H
}
,

respectively. Note that their respective adjoints p∗N : UN → U and p−∗
N : U−

N → U are the inclusion maps. For a
detailed justification of the decomposition (3.4) and (3.5), see [5, 43].

Let us prove that (A+ σ,B) is stabilizable, if and only if, (UCσ) is satisfied.
The “only if” part is obtained by remarking that if for j ∈ {1, . . . , N} there exists ε(λj) ∈ ker(A∗ − λj)

obeying ε(λj) �= 0 and B∗ε(λj) = 0, then multiplying (1.1) by ε(λj) yields that every solution y of (1.1)
satisfies: (

y(t)|ε(λj)
)
H

= eλj t
(
y(0)|ε(λj)

)
H
.

Since the above equality is independent on u and since �λj ≥ −σ, then (1.12) is false for any initial datum not
orthogonal to ε(λj).

Suppose now that (UCσ) is true and let us prove that (A + σ,B) is stabilizable. For that, let us first verify
that (3.4) is null controllable. Assumptions (H1), (H3) and (H4) are obviously satisfied for AN (because AN
is finite dimensional) and the fact that AN obeys (H2) is a direct consequence of the definition of HN and
of AN (the restriction of A to HN ). Moreover, since the spectrum of AN is exactly ΣN , then (UC) for AN is
exactly (UCσ). Then by Theorem 1.3 system (3.4) is approximately controllable, and since null controllability
and approximate controllability are equivalent notions for finite dimensional systems we deduce that (3.4) is
null controllable.

Then it follows that (AN + σ,BN ) is stabilizable: there exists FN ∈ L(HN , UN) such that the solution ŷN
to (3.4) with u = FN ŷN satisfies for some ε > 0:

‖ŷN(t)‖H ≤ Ce−(σ+ε)t‖PNy(0)‖H (t ≥ 0). (3.6)
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For instance, the finite dimensional feedback law FN can be constructed with a Riccati operator obtained from
a quadratic minimizing problem as in [5]. Moreover the solution ŷ−N of (3.5) with u = FN ŷN is given by:

ŷ−N(t) = eA
−
N t(I − PN )y(0) +

∫ t

0

eA
−
N (t−s)B−

Np
−
NFN ŷNds,

= eA
−
N t(I − PN )y(0) +

∫ t

0

(λ0 −A)γeA
−
N (t−s)(I − PN )(λ0 −A)−γBFN ŷNds.

The last above equality follows by remarking that (λ0−A−
N )−γ = (λ0−A)−γ(I−PN ). Then with (H5), with the

fact that (3.1) and (H3) guarantee that for ε′ > 0 such that −(σ+ ε′) > �λN+1 we have ‖eA−
N t‖H−

N
≤ Ce−(σ+ε′)t

and ‖(λ0 −A−
N )γeA

−
N (t−s)‖H−

N
≤ C(t− s)−γe−(σ+ε′)(t−s), and with (3.6) we deduce:

‖ŷ−N(t)‖H ≤ C

(
e−(σ+ε′)t + e−(σ+ε)t

∫ t

0

e(ε−ε′)(t−τ)

(t− τ)γ
dτ

)
‖y(0)‖H (t ≥ 0). (3.7)

Then if we choose ε < ε′ the above inequality means that the feedback control constructed from the unstable
part of system (1.1) does not destabilize the stable part of system (1.1). Then we have proved that the solution
of (1.1) with u = FNPNy obeys (1.12) which is to say that (A+ σ,B) is stabilizable.

Finally, points 2, 3 and 4 are a direct consequence of Theorem 1.3 applied to the projected system (3.4).

Remark 3.1. Note that (H2) is not required in Theorem 1.6. This comes from the fact that Theorem 1.6
is obtained by applying Theorem 1.3 to the projection of system (1.1) onto the finite dimensional subspace
generated by unstable root vectors of A (i.e. the unstable subspace). Then by definition the family of unstable
root vectors of A is complete in the unstable subspace and (H2) is always satisfied for the projected system.

Remark 3.2. From the applications point of view rank conditions (1.16) are of great interest since they are
practical criterions to construct admissible families of stabilizing actuators. For instance, a choice for v could be

v = (B∗εk(λ̄j))�λj≥−σ,k=1,...,�j .

Indeed, for such a v each matrix Wj contains the full rank block (B∗εk(λ̄j), B∗εl(λ̄j))0≤k,l≤�j .

3.2. Stabilizability of nonlinear parabolic systems

Here, by following the path sketched in [5] we recall how Theorem 1.6 can be used to prove the stabilizability
of nonlinear systems:

y′ = Ay +Bu+ N (y, u), (3.8)

where N (·, ·) is a nonlinear mapping satisfying adequate Lipschitz properties recalled below. For the following
we denote by F the bounded stabilizing feedback operator given by Theorem 1.6 and we define the closed loop
operator AF

def= A+BF with domain D(AF ) def= {y ∈ H | Ay +BFy ∈ H}. It is well known that the semigroup
generated by AF is analytic on H (see [5], Prop. 10). Moreover, we define:

HF,α
def= D((−AF )α) α ≥ 0. (3.9)

Here we assume hypothesis (H4), from which we deduce HF,α = [H,D(AF )]α for α ∈ [0, 1] (see [5] for details).
Next, we suppose that N (·, ·) obeys for s ∈ [0, 1]:

‖N (ξ, Fξ)‖H s−1
2

≤ C‖ξ‖HF, s2 ‖ξ‖HF, s+1
2

‖N (ξ, Fξ) −N (ζ, Fζ)‖H s−1
2

≤ C
(
‖ξ − ζ‖HF, s2

(
‖ξ‖H

F, s+1
2

+ ‖ζ‖H
F, s+1

2

))
+ ‖ξ − ζ‖H

F, s+1
2

(
‖ξ‖HF, s2 + ‖ζ‖HF, s2

)
. (3.10)
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Finally, to state the stabilization theorems for (3.8) we need to introduce some spaces of Hilbert valued func-
tions of t ≥ 0. For two Hilbert spaces X , Y we denote by L2(0, T ;X ), L∞(0, T ;X ), H1(0, T ;Y) usual Lebesgue
and Sobolev spaces, we set W (0, T ;X ,Y) def= L2(0, T ;X ) ∩ H1(0, T ;Y) and W (X ,Y) def= W (0,+∞;X ,Y), we
denote by L2

loc(X ), L∞
loc(X ) the spaces of functions belonging for all T > 0 to L2(0, T ;X ), L∞(0, T ;X ) respec-

tively, and for σ > 0 we denote by Wσ(X ,Y) the space of functions y such that eσ(·)y ∈ W (X ,Y). Finally, for
s ∈ [0, 1] we use the shorter expression:

W s
σ

def= Wσ

(
HF, s+1

2
, H s−1

2

)
.

Then the following theorem can be obtained analogously to Theorem 15 of [5].

Theorem 3.3. Assume (H1), (H3), (H4), (H5) and (H6), for σ > 0 assume (UCσ) and let F be the finite
rank feedback law given by Theorem 1.6. For s ∈ [0, 1] assume also that N satisfies (3.10) and y0 ∈ HF, s2

. There
exist ρ > 0 and μ > 0 such that if ‖y0‖HF, s2 < μ then system (3.8) with y(0) = y0 admits a solution y ∈ W s

σ

such that ‖y‖W s
σ
≤ ρ‖y0‖HF, s2 , which is unique within the class of functions in

L∞
loc(HF, s2

) ∩ L2
loc

(
HF, s+1

2

)
.

Moreover, there exists C > 0 such that for all t ≥ 0

‖y(t)‖HF, s2 ≤ Ce−σt‖y0‖HF, s2 . (3.11)

The main difficulty to apply Theorem 3.3 in concrete examples is that one has to identify HF,α for α ∈ [0, 1].
Indeed, assumption (3.10) is usually obtained from boundedness property of N (·, ·) in original spaces that are
not related to F . Moreover, Theorem 3.3 is only valid for y0 ∈ HF, s2

that can be too restrictive, see [1, 2].
An alternative to avoid such a difficulty and to obtain an exponential decrease in the norm of H s

2
is to use a

dynamical control. Consider a control function of the form:

u(t) =
K∑
j=1

uj(t)vj , u = (u1, . . . , uK) ∈ CK (3.12)

where (vj) is an admissible family for (1.1). First, we recall the notation (1.6)

V u
def=

K∑
j=1

ujBvj ,

so that systems (1.1), (3.12) with g def= u′ can be rewritten as the extended system:[
y
u

]′
= A

[
y
u

]
+ Vg, where A

def=
[
A V
0 0

]
, V

def=
[

0
Id

]
. (3.13)

In the above system, g plays the role of the control. To study this system, we introduce for θ ∈ [0, 1] the following
spaces

Hθ
def= {(y, u) ∈ H × CK | y + (μ0 −A)−1V u ∈ Hθ}.

We verify that H1 is the domain of A and that if (A, V ) satisfies (H1), (H3), (H5) and (H6) then (A,V)
satisfies (H1), (H3), (H5) and (H6) with γ = 0. Moreover, it is easily seen that if (A, V ) satisfies (UC) then so
does (A,V), which means that if v is admissible for stabilizability of (A,B) then (3.13) is stabilizable, see [5] for
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details. Then from Theorem 1.6 we have the existence of a linear finite rank operator F : CK ×H → CK ×CK

such that the solutions of (1.1), (3.12) with u satisfying

u′ = F (u, y), (3.14)

obey
‖y(t)‖H + |u(t)| ≤ C(‖y(0)‖H + |u(0)|)e−σt,

where | · | denotes the euclidian norm of CK . Note that (3.14) can be written as

u′ + Λu =
K∑
j=1

ej(ε̂j |y(t))H , (3.15)

where Λ is a complex matrix of sizeK×K representing the first component of F , where {ε̂j ∈ HN ; j = 1, . . . ,K}
is a family of kernels functions which represent the second component of F and where {ej ; j = 1, . . . ,K} denotes
a basis of CK .

Finally, we suppose that for s ∈ [0, 1]:

‖N (ξ, u)‖H s−1
2

≤ C‖(ξ, u)‖H s
2
‖(ξ, u)‖H s+1

2

‖N (ξ, u) −N (ζ, w)‖H s−1
2

≤ C
(
‖(ξ, u) − (ζ, w)‖H s

2

(
‖(ξ, u)‖H s+1

2
+ ‖(ζ, w)‖H s+1

2

)
‖(ξ, u) − (ζ, w)‖H s+1

2

(
‖(ξ, u)‖H s

2
+ ‖(ζ, w)‖H s

2

))
,

(3.16)

where we have used the notations:

u =
K∑
j=1

ujvj , w(t) =
K∑
j=1

wjvj , u = (u1, . . . , uK), w = (w1, . . . , wK).

For s ∈ [0, 1] we define

Ws
σ =
{
(y, u) | (eσ(·)y, eσ(·)u) ∈ L2(H s+1

2
) ∩H1

(
H s−1

2
× CK
)}

.

Then the following theorem can be obtained analogously to Theorem 18 from [5].

Theorem 3.4. Assume that (A, V ) satisfies (H1), (H3), (H4), (H5), (H6) and (UCσ) for σ > 0. Let K ∈ N∗

be given by Theorem 1.6. For s ∈ [0, 1] assume also (3.16) and y0 ∈ H s
2
. There exist ρ > 0 and μ > 0 such

that if ‖y0‖H s
2
< μ then system (3.8)−(3.12)−(3.15) with y(0) = y0 and u(0) = 0 admits a solution (y, u) ∈

Ws
σ satisfying ‖(y, u)‖Ws

σ
≤ ρ‖y0‖H s

2
, which is unique within the class of functions in L∞

loc(H s
2
) ∩ L2

loc(H s+1
2

).
Moreover, there exists C > 0 such that for all t ≥ 0

‖(y(t), u(t))‖H s
2
≤ Ce−σt‖y0‖H s

2
.

3.3. Stabilization of real systems

We also have a real version of Theorem 1.6 stated in Theorem 3.5 below. If A and B are real operators
defined on real Hilbert spaces G and W respectively the pair (A,B) is referred as a real pair and the related
definitions of stabilizability introduced in Section 1 are the same as above by replacing the complex spaces H
and U by the real spaces G and W . In such case, a (real) K-dimensional feedback law is of the form

Fy(t) =
K∑
j=1

(y(t), χ̂j)Gvj , (3.17)
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where χ̂j ∈ G, j = 1, . . . ,K.
To state a real version of Theorem 1.6, we need to introduce the following subspace of W :

Fσ def= spanR{χk(λ̄j) | �λj ≥ −σ, k = 1, . . . , �j},

where family (χk(λ̄j)) is defined by (2.16). The following corollary of Theorem 2.4 holds.

Theorem 3.5. Suppose that A and B are real operators defined from respective real Hilbert spaces G and W ,
assume that the complexified of A and B satisfy (H1), (H3), (H5) and (H6) and let K ∈ N∗ and σ > 0. Then
the following results hold.

1. The real pair (A+ σ,B) is stabilizable if and only if (UCσ) holds.
2. The real pair (A + σ,B) is stabilizable by a K-dimensional control if and only if (UCσ) and (1.15) are

satisfied.
3. A family v = (vj)j=1,...,K of WK is admissible for stabilizability of (A+σ,B) if and only if (1.16) is satisfied.
4. Assume that (UCσ) and (1.15) are true. Then the set of admissible families for stabilizability of (A+ σ,B)

forms a residual set of WK . Moreover, if v is admissible for stabilizability of (A+ σ,B) then its orthogonal
projection onto (B∗Fσ)K is admissible for stabilizability of (A+ σ,B).

Remark 3.6. If F is the bounded stabilizing feedback operator (3.17) given by Theorem 3.5 then in a way
similar as for (3.9) we can define GF,α. Then the analogue of Theorems 3.3 and 3.4 hold for the real closed-loop
nonlinear system by replacing the complex spaces CK , HF,α, HF, s2

, H s
2
, etc. by the real spaces RK , GF,α, GF, s2 ,

G s
2
, etc.

Remark 3.7. Note that in [43] the authors choose the whole family of real and imaginary parts of generalized
eigenvectors as a stabilizing family. However, according to rank criterion (1.16) it is sufficient to choose the family
of real and imaginary parts of proper eigenvectors. The family v given below is admissible for stabilizability of
(A+ σ,B):

v = (B∗χk(λ̄j))�λj≥−σ,k=1,...,�j .

Indeed, if j ∈ J0 the above matrix contains the full rank block (B∗εk(λ̄j), B∗εl(λ̄j))0≤k,l≤�j , and if j /∈ J0 the
matrix Wj contains the �j-rank block [Rj , Ij ] where

Rj = (B∗�εk(λ̄j), B∗εl(λ̄j))0≤k,l≤�j and Ij = (B∗�εk(λ̄j), B∗εl(λ̄j))0≤k,l≤�j .

This last claim comes from the fact that eigenvectors associated to eigenvalues {λj | �λj ≥ −σ} are pairwise
conjugate.

3.4. Minimal number of actuators for the heat equation in a rectangular domain

Consider the d-dimensional controlled heat equation in a rectangle Ω =
∏d
i=1(0, ci) for d ≥ 2:⎧⎨⎩yt = Δy in (0, T ) ×Ω,

y = 1Γh on (0, T )× ∂Ω,
y(0) = y0 in Ω.

(3.18)

In the above setting, 1Γ is the characteristic function of a non empty open subset Γ ⊂ {0} ×∏di=2(0, ci) and
h ∈ L2((0, T ) × ∂Ω) is the control function.

The eigenvalues of the Dirichlet Laplacian are given by

λα = −π2
d∑
i=1

(
αi
ci

)2

, α = (α1, . . . , αd) ∈ N∗d,
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with related eigenvectors

ϕα(x) =
d∏
i=1

sin
(
π

ci
αixi

)
, x = (x1, . . . , xd) ∈ Ω.

It is classical that controlled system (3.18) can be written in the form (1.1) for linear operator A, B satisfying
(H1), (H2), (H3), (H4) and (H5) with γ > 3

4 . For this last, we refer to [34], Chapter 3, Section 3.1, as well as
references therein. Moreover, (UC) reduces to⎧⎪⎪⎪⎨⎪⎪⎪⎩

λϕ−Δϕ = 0 in Ω,

ϕ = 0 on ∂Ω,

∂ϕ

∂x1
= 0 on Γ,

=⇒ ϕ = 0 in Ω,

which is an easy consequence of Holmgren’s uniqueness Theorem (by using an extension of the domain proce-
dure). As a consequence, (3.18) is approximately controllable and stabilizable by finite dimensional control. A
remaining question is how many actuators are required for approximate controllability or stabilizability?

Suppose that 1/c2i , i = 1, . . . , d are Q-linearly independent. Then a straightforward calculation shows that
the mapping α �→ λα is one-to-one and then that the spectrum is simple (note that it is well-known that the
spectrum of the Dirichlet–Laplace operator is generically simple with respect to the domain see [39]). It implies
that (3.18) is approximately controllable, as well as stabilizable for all rate σ > 0, with a one dimensional
controller.

Suppose now that ci = π/c, i = 1, . . . , d for c > 0. Then the mapping α �→ λα = −(π/c)2|α|2, |α|2 def=
∑d

i=1 α
2
i ,

is no longer one-to-one. This means that (3.18) is no longer approximately controllable with a one dimensional
controller. In fact, the sequence of geometric multiplicities

md
α = �
{
β ∈ N∗d | λβ = λα

}
, α ∈ N∗d,

is unbounded. This follows from the fact that md
α = rd(|α|2) ≥ r2(α2

1+α2
2) where rd(n) denotes the total number

of the representation of n as a sum of d square of positive integers, and that for instance r2(52p) = p + 1 for
p ∈ N∗, (see [27], Thm. 278). It means that the geometric multiplicities of the Dirichlet Laplacian in the square
are not bounded and that the approximate controllability with finite dimensional controllers is not possible.
However, for σ > 0 one can prove that the maximum of the geometric multiplicities md

α corresponding to
eigenvalues λα ≥ −σ is bounded by (

√
π)d−1

(2c)d−1Γ ( d+1
2 )

σ
d−1
2 and then (3.18) is stabilizable for a rate σ > 0 by means

of a Kσ-dimensional control with

Kσ =

⌊
(
√
π)d−1

(2c)d−1Γ
(
d+1
2

)σ d−1
2

⌋
,

where �x� denotes the integer part of x. In order to prove the bound on the maximum of the geometric
multiplicities, we note that rd(n) is also the number of tuples of positive integers which are on the d-sphere of
ray

√
n we deduce first that rd(n) is bounded above by the number of tuples of positive integers in the d − 1

ball of ray
√
n and thus that rd(n) is bounded above by the volume occupied by the points of the d− 1 ball of

ray
√
n which have positive coordinates: rd(n) ≤ π

d−1
2

2d−1Γ ( d+1
2 )

n
d−1
2 . Then the conclusion follows from:

max
λα≥−σ

md
α = max

|α|2≤σ/c2
rd(|α|2).

Finally, let us underline that the strategy consisting in choosing as many controllers as the number of modes
corresponding to eigenvalues greater than −σ (which is the strategy of [43]) would lead to a number of controllers
Kσ
u = � (

√
π)d

(2c)dΓ ( d2 +1)
σ
d
2 �, and that the ratio Kσ

u/K
σ behaves as (d+1)

√
π
√
σ

4c as σ → ∞.
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4. Stabilizability of incompressible Navier−Stokes type systems

In this section, we illustrate the interest of Theorem 3.5 by applying it to some Navier−Stokes type systems.
More precisely, we show how a unique continuation results for stationary Stokes type system yields a result for
the stabilization of a nonlinear Navier−Stokes type system. The case of Navier−Stokes system was obtained
in [5], and here we deal with the feedback stabilizability of a magnetohydrodynamic system and of a micropolar
fluid system. The unique continuation theorems (to check criterion (UC)) are stated in the Appendix.

Notation. In what follows, d = 2 or d = 3 and for a nonempty open subset D of Rd we denote L2(D; R),
L2(D; C), H1(D; R), H1(D; C), etc. the usual Lebesgue and Sobolev spaces of functions with values in R or C.
For a scalar function π or a vector field z = t(z1, . . . , zd) ( t denotes the transpose) we consider the classical
notation: ∇π = t(∂x1π, . . . , ∂xdπ), ∇z = (∂xjzi)1≤i,j≤d,

t∇z = (∂xizj)1≤i,j≤d and we also set Dsz
def= ∇z+ t∇z

and Daz
def= ∇z − t∇z. We recall that the divergence of z is defined by div z =

∑d
j=1 ∂xjzj and the curl of z or

π is defined by

curl z = ∂x1z2 − ∂x2z1 and curlπ =
(
∂x2π
−∂x1π

)
if d = 2,

and

curl z =

⎛⎝ ∂x2z3 − ∂x3z2
∂x3z1 − ∂x1z3
∂x1z2 − ∂x2z1

⎞⎠ if d = 3.

4.1. Stabilizability of MHD system

Let Ω be a bounded open subset of R3 of class C2,1 and consider a stationary solution (wS , θS , rS) of the
following MHD system:⎧⎪⎨⎪⎩

−ΔwS + (wS · ∇)wS − (curl θS) × θS + ∇rS = fS in Ω,

curl(curl θS) − curl(wS × θS) = 0 in Ω,

divwS = div θS = 0 in Ω.

(4.1)

Here wS(x) ∈ R3 represents the velocity of the fluid, pS(x) ∈ R is the pressure, θS(x) is the magnetic field,
fS(x) is a given stationary body force, n denotes the unit exterior normal vector field defined on ∂Ω and ×
denotes the vector product. Let also underline that in (4.1), usual non-dimensional constants that characterize
the flow (Hartmann number, interaction parameter and magnetic Reynolds number) are supposed to be equal
to one for simplicity. Concerning the well-posedness of system (4.1) we refer to [38]. In the following, wS and θS

are supposed to be smooth enough: wS ∈ (H2(Ω; R))3 and θS ∈ (H2(Ω; R))3.
Our aim is to stabilize around a given solution of (4.1) by means of a distributed control localized in an open

subset ω ⊂⊂ Ω. More precisely, for (y0, ϑ0) ∈ (L2(Ω; R))3 × (L2(Ω; R))3 satisfying

div y0 = div ϑ0 = 0 in Ω and y0 · n = ϑ0 · n = 0 on ∂Ω, (4.2)

consider the following instationary MHD system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt −Δw + (w · ∇)w − (curl θ) × θ + ∇r = fS + 1ωu1 in Q,
θt + curl(curl θ) − curl(w × θ) = 1ωPωu2 in Q,

divw = div θ = 0 in Q,

w = wS , θ · n = θS · n on Σ,

(curl θ − w × θ) × n = (curl θS − wS × θS) × n on Σ,

w(0) = wS + y0, θ(0) = θS + ϑ0 in Ω,

(4.3)
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where Q def= (0,+∞) × Ω and Σ
def= (0,+∞) × ∂Ω. Here 1ω is the extension operator defined on (L2(ω))3 by

1ω(y)(x) = y(x) if x ∈ ω and 1ω(y)(x) = 0 else, u = (u1, u2) is a control function in (L2((0, T ) × ω; R))3 ×
(L2((0, T )×ω; R))3 and Pω is the classical Helmholtz projector related to ω (i.e. the orthogonal projection op-
erator from (L2(ω; R))3 onto the completion of {v ∈ (C∞

0 (ω; R))3 | div v = 0 in ω} for the norm of (L2(ω; R))3).
Note that here ũ2 = Pωu

2 satisfies (1.19). This guarantees that the right hand side of the magnetic field equation
is divergence free and then that it is compatible with the left hand side. This follows from the fact that the
orthogonal complement of the range of Pω is composed with ∇p ∈ (L2(ω; R))3 for p ∈ H1

loc(ω; R) (see [25],
Chap. III), which implies

∀p ∈ (H1
0 (Ω))3 〈div 1ωPωu2 , p〉(H−1(Ω))3,(H1

0 (Ω))3 = −
∫
Ω

1ωPωu2 · ∇p dx = −
∫
ω

Pωu
2 · ∇p dx = 0.

The idea of using such a type of control for the magnetic field equation is due to [36] for the two dimensional
version of system (4.3). If Ω is supposed to be only bounded in directions x1, x2 and invariant in direction x3,
if all functions only depend on x1, x2 and if each vector field has its third component equal to zero (and then
is identified to its two first components i.e. w(x) = t(w1(x1, x2), w2(x1, x2), 0) ≡ t(w1(x1, x2), w2(x1, x2)) etc.),
then we can identify Ω to its bounded two dimensional section and (4.3) reduces to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt −Δw + (w · ∇)w − (curl θ)θ⊥ + ∇r = fS + 1ωu1 in Q,

θt + curl(curl θ) + curl(w · θ⊥) = 1ωPωu2 in Q,
divw = div θ = 0 in Q,

w = wS , θ · n = θS · n on Σ

curl θ + w · θ⊥ = curl θS + wS · θS⊥ on Σ

w(0) = wS + y0, θ(0) = θS + ϑ0 in Ω,

(4.4)

where (y0, ϑ0) ∈ (L2(Ω; R))2 × (L2(Ω; R))2 satisfies (4.2) and u1, u2 both belong to (L2((0, T ) × ω; R))2. We
have used the notation t(a1, a2)⊥ = t(−a2, a1). In [36] the stabilizability of (4.4) is obtained for a stationary
pair (wS , θS) ∈ (W 2,∞(Ω))2 × (W 2,∞(Ω))2 satisfying homogeneous boundary conditions and for Ω simply
connected. The main step of the proof in [36] consists in checking the approximate controllability criterion (2.3)
related to the linear non stationary adjoint system associated to (4.4).

Here we extend such a stabilizability result to the three dimensional case and for stationary state only H2.
More precisely, we show the existence of finite dimensional control functions u1, u2 in feedback form, such that
for all (y0, ϑ0) sufficiently small the solution (w, θ) of (4.3) (or of (4.4)) satisfies (w(t), θ(t)) → (wS , θS) as
t → ∞, see Theorem 4.1 below. Note that our proof relies on a uniqueness theorem for a stationary system
which is simpler to handle (we prove (UC) instead of (2.3)). Moreover, we will see that assuming Ω to be simply
connected is essential for the stabilizability of the linear system obtained from (4.3) (or (4.4)) by linearizing
around (wS , θS), see Remark 4.3 below.

Our strategy consists in first rewriting (4.3) in the abstract form (3.8) with A, B, satisfying (H1), (H3), (H5),
(H6); second proving Fattorini’s criterion (UC) by using Corollary A.6 of the Appendix with the fact that Ω is
simply connected; third applying Theorem 3.3 (see Rem. 3.3). Note that is the strategy sketched in [5] for the
Navier−Stokes system and for which (UC) is obtained from the uniqueness result for the Oseen system recalled
in Theorem A.3. For sake of clarity, we only detail the calculations in the three dimensional case. Adaptation
to the 2D case is straightforward and is left to the reader.

Step 1. Abstract reformulation. With the following formulas of vectorial analysis:

(curl a) × a = (a · ∇)a−∇(|a|2/2) and curl(a× b) = (b · ∇)a− (a · ∇)b + (div b)a− (div a)b
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we first deduce that (y, ϑ, p) = (w − wS , θ − θS , r − rS + (|θ|2 − |θS |2)/2) obeys⎧⎪⎪⎪⎨⎪⎪⎪⎩
yt −Δy + (wS · ∇)y + (y · ∇)wS − (θS · ∇ϑ) − (ϑ · ∇θS) + ∇p = (ϑ · ∇ϑ) − (y · ∇y) + 1ωu1 in Q,

ϑt + curl(curlϑ) − curl(y × θS) − curl(wS × ϑ) = (ϑ · ∇)y − (y · ∇)ϑ+ 1ωPω u2 in Q,
div y = div ϑ = 0 in Q,

y(0) = y0, ϑ(0) = ϑ0 in Ω,
(4.5)

with boundary conditions

y = 0, ϑ · n = 0, (curlϑ− wS × ϑ) × n = 0 on Σ.

Note that with (wS × ϑ) × n = (wS · n)ϑ− (ϑ · n)wS and ϑ · n = 0, the above boundary conditions become

y = 0, ϑ · n = 0, (curlϑ) × n− (wS · n)ϑ = 0 on Σ. (4.6)

Next, we introduce the (real) spaces

G
def= V0

n(Ω) × V0
n(Ω) where V0

n(Ω) def= {y ∈ (L2(Ω; R))3 | div y = 0 in Ω, y · n = 0 on ∂Ω}. (4.7)

We denote by P the Helmholtz projection operator related to Ω (i.e. the orthogonal projection operator from
(L2(Ω; R))3 onto V0

n(Ω)) and we define the following linear operator A : D(A) ⊂ G→ G by

A

[
y
ϑ

]
=
[
P
(
Δy − (wS · ∇)y − (y · ∇)wS + (θS · ∇)ϑ+ (ϑ · ∇)θS

)
−curl(curlϑ) + curl(wS × ϑ) + curl(y × θS)

]
D(A) =

{
(y, ϑ) ∈ (H2(Ω; R))3 × (H2(Ω; R))3 | div y = div ϑ = 0 in Ω,

y = 0, ϑ · n = 0 and (curlϑ× n− (wS · n)ϑ) = 0 on ∂Ω
}
.

Note that P does not appear in the second component of A t[y, ϑ] because curl(curlϑ − wS × ϑ − y × θS)
belongs to V0

n(Ω). In particular, the fact that its normal component is zero on the boundary comes from
y = (curlϑ−wS × ϑ)× n = 0 on ∂Ω with the following calculation for all q ∈ H2(Ω) and a density argument:∫

∂Ω

curl(curlϑ− wS × ϑ− y × θS) · nqdσ =
∫
Ω

curl(curlϑ− wS × ϑ− y × θS) · ∇qdx

=
∫
∂Ω

(curlϑ− wS × ϑ− y × θS) × n · ∇qdσ = 0.

Since Ω and (wS , θS) are regular enough, with analogous arguments as in [3, 5] we verify that A generates
an analytic semigroup and that it has compact resolvent. It implies that (H1), (H3) and (H5) are satisfied.
Moreover, we can verify that the adjoint of A is given by:

A∗
[
z
ρ

]
=
[
P (Δz + (Dsz)wS − (Daρ)θS)
P (Δρ− (Dsz)θS + (Daρ)wS)

]
D(A∗) =

{
(z, ρ) ∈ (H2(Ω; R))3 × (H2(Ω; R))3 | div z = div ρ = 0 in Ω,

z = 0 on ∂Ω, ρ · n = (curlρ) × n = 0 on ∂Ω
}
. (4.8)

Moreover, if we define B : W → G as follows

W
def= (L2(ω; R))3 × (L2(ω; R))3, B

[
u1

u2

]
def=
[
P1ωu1

1ωPω u2

]
, (4.9)
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then (H5) (for γ = 0) is satisfied. Finally, (4.5) and (4.6) can be rewritten in the form (3.8) with:

N
([
y
ϑ

]
,

[
u1

u2

])
def=
[
P ((ϑ · ∇ϑ) − (y · ∇y))

(ϑ · ∇)y − (y · ∇)ϑ

]
. (4.10)

Step 2. Verification of Fattorini’s criterion. Since A and B satisfy (H1), (H3), (H5) and (H6), Theorem 3.5
applies and stabilizability of (A + σ,B) for all σ > 0 is reduced to (UC), which is to say that for all λ ∈ C,
every (z, π, ρ, κ) that satisfies:⎧⎪⎨⎪⎩

λz −Δz − (Dsz)wS + (Daρ)θS + ∇π = 0 in Ω,

λρ−Δρ+ (Dsz)θS − (Daρ)wS + ∇κ = 0 in Ω,
div z = div ρ = 0 in Ω,

(4.11)

with boundary data
z = 0, ρ · n = 0, (curl ρ) × n = 0 on ∂Ω, (4.12)

and such that
z = 0, Pωρ = 0 in ω, (4.13)

must be identically equal to zero in Ω. Note that (4.13) is equivalent to

z = 0, ρ = ∇p in ω for some p ∈ H1
loc(ω; R). (4.14)

Then (4.14) implies z = curl ρ = 0 in ω and from Corollary A.6 of the Appendix, the fact that Ω is simply
connected guarantees that the above uniqueness result is true.

Step 3. Stabilizing control for linear and nonlinear systems. From Theorem 3.5, for all σ > 0, there
exists K > 0 and there exist families

((v1
j , v

2
j ))j=1,...,K ∈ (B∗Fσ)K ⊂WK and ((ẑj , ρ̂j))j=1,...,K ∈ GK (4.15)

and a finite rank feedback operator F : G→W defined by

F

[
ξ
ζ

]
=

K∑
j=1

[
v1
j

v2
j

] ∫
Ω

(ξ · ẑj + ζ · ρ̂j) dx, (4.16)

such that A + BF with domain D(A + BF ) = D(A) (since B is bounded) is the infinitesimal generator af an
exponentially stable semigroup on G. Moreover, as it happens for the Navier−Stokes system treated in [2, 5],
Sobolev embeddings guarantee that the nonlinearity N defined by (4.10) satisfies (3.10) only for s ∈ [d−2

2 , 1].
This yields the following stabilization theorem for system (4.3) with feedback control

u1(t) =
K∑
j=1

v1
j

∫
Ω

(
(w(t) − wS) · ẑj + (θ(t) − θS) · ρ̂j

)
dx,

u2(t) =
K∑
j=1

v2
j

∫
Ω

(
(w(t) − wS) · ẑj + (θ(t) − θS) · ρ̂j

)
dx. (4.17)

Theorem 4.1. Let s ∈ [d−2
2 , 1]\{ 1

2}, let Ω be a bounded and simply-connected open subset of Rd of class C2,1,
let (wS , θS) ∈ (H2(Ω; R))d×(H2(Ω; R))d satisfy (4.1) and let (y0, ϑ0) ∈ (Hs

0(Ω; R))d×(Hs(Ω; R))d satisfy (4.2).
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For all σ > 0 there exists μ > 0 such that if

‖y0‖(Hs0(Ω;R))d + ‖ϑ0‖(Hs(Ω;R))d ≤ μ,

then systems (4.3), (4.17) if d = 3 or systems (4.4), (4.17) if d = 2 admits a solution (w, r, θ) in

{(wS , rS , θS)}+Wσ((Hs+1(Ω; R))d, (Hs−1(Ω; R))d) ×H
s−1
2 (L2(Ω; R)R)×Wσ((Hs+1(Ω; R))d, (Hs−1(Ω; R))d)

which is unique within the class of function in

{(wS , rS , θS)}+Wloc((Hs+1(Ω; R))d, (Hs−1(Ω; R))d)×H
s−1
2

loc (L2(Ω; R)/R)×Wloc((Hs+1(Ω; R))d, (Hs−1(Ω; R))d).

Moreover, there exists C > 0 such that for all t ≥ 0 the following estimate holds:

‖w(t) − wS‖(Hs0(Ω;R))d + ‖θ(t) − θS‖(Hs(Ω;R))d ≤ Ce−σt(‖y0‖(Hs0 (Ω;R))d + ‖ϑ0‖(Hs(Ω;R))d).

Remark 4.2. To extend the above theorem to s = 1/2 the initial datum y0 must be chosen in (H1/2
00 (Ω; R))d

whereH1/2
00 (Ω; R) stands for the subspace ofH1/2

0 (Ω) composed with y such that
∫
Ω

dist(x, ∂Ω)−1|y|2 dx < +∞.

Remark 4.3. According to Corollary A.6 the uniqueness result stated in step 2 is true if and only if Ω is
simply connected. When Ω is multiply connected and λ = 0, for each nonzero ρ̃ ∈ XN (defined by (A.22)
in Appendix) we have that (z, π, ρ, κ) def= (0, 0, ρN , 0) satisfies (4.11)−(4.13). Then there is a N -dimensional
subspace of eigenvectors related to the zero eigenvalue which is uncontrollable and the linear system obtained
from (4.3) by linearizing around (wS , θS) is not stabilizable. A way to obtain a stabilizability result in the
multiply connected case is to impose on ϑ0 some zero flux conditions through cuts that joint the connected
components of ∂Ω, see [4].

4.2. Stabilizability of micropolar system

The methodology described in the last section can also be used to stabilize the following 3D micropolar
system: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

wt −Δw + (w · ∇)w − curl θ + ∇r = fS in Q,

θt −Δθ + (w · ∇)θ − curlw −∇(div θ) = gS in Q,
divw = 0 in Q,

w(0) = wS + y0, θ(0) = θS + ϑ0 in Ω.

(4.18)

About micropolar systems and related control problems see for instance [20,37] and references therein. Here Ω
is a bounded open subset of R3 of class C2,1, (wS , θS) ∈ (H2(Ω; R))3 × (H2(Ω; R))3 verifies⎧⎪⎨⎪⎩

−ΔwS + (wS · ∇)wS − curl θS + ∇rS = fS in Ω,

−ΔθS + (wS · ∇)θS − curlwS −∇(div θS) = gS in Ω,

divwS = 0 in Ω,

(4.19)

and (y0, ϑ0) ∈ (L2(Ω; R))3 × (L2(Ω; R))3 satisfies

div y0 = 0 in Ω and y0 · n = 0 on ∂Ω. (4.20)

We want to find a control function u = (u1, u2) such that for all (y0, ϑ0) sufficiently small the solution (w, θ)
of (4.18) with nonhomegeneous boundary data of the form

w = wS +mu1 and θ = θS +mu2 on Σ (4.21)
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are such that (w(t), θ(t)) → (wS , θS) as t→ ∞. Here, m ∈ C2(∂Ω; R) is a non zero cut-off function that allows
to localize the action of the control (u1, u2) on a subset of ∂Ω and for all t ≥ 0:

u1(t) ∈ V0
m(∂Ω) def=

{
v ∈ (L2(∂Ω; R))3 |

∫
∂Ω

mv · ndσ = 0
}
, u2(t) ∈ (L2(∂Ω; R))3. (4.22)

For that, we follow the same strategy as in Section 4.1: first we rewrite (4.18) in the abstract form (3.8) for A,
B, satisfying (H1), (H3), (H5), (H6); second we prove Fattorini’s criterion (UC) by using Theorem A.7 of the
Appendix; third we apply Theorem 3.4 (see Rem. 3.3).

Step 1. Abstract reformulation. We first werify that (y, ϑ, p) = (w − wS , θ − θS , r − rS) obeys⎧⎪⎪⎪⎨⎪⎪⎪⎩
yt −Δy + (wS · ∇)y + (y · ∇)wS − curlϑ+ ∇p = −(y · ∇)y in Q,

ϑt −Δϑ+ (wS · ∇)ϑ+ (y · ∇)θS − curl y −∇(div ϑ) = −(y · ∇)ϑ in Q,
div y = 0 in Q,

y(0) = y0, ϑ(0) = ϑ0 in Ω,

(4.23)

with boundary conditions
y = mu1 and ϑ = mu2 on Σ.

Next, we introduce the (real) spaces

G
def= V0

n(Ω) × (L2(Ω; R))3 where V0
n(Ω) def= {y ∈ (L2(Ω; R))3 | div y = 0 in Ω, y · n = 0 on ∂Ω} (4.24)

and we define the following linear operator A : D(A) ⊂ G→ G by

A

[
y
ϑ

]
=
[

P (Δy − (wS · ∇)y − (y · ∇)wS + curlϑ)
Δϑ− (wS · ∇)ϑ− (y · ∇)θS + curl y + ∇(div ϑ)

]
D(A) =

{
(y, ϑ) ∈ (H2(Ω; R))3 × (H2(Ω; R))3 | div y = 0 in Ω, y = ϑ = 0 on ∂Ω

}
.

Recall that P denotes the orthogonal projection operator from (L2(Ω; R))3 onto V0
n(Ω). Since Ω and (wS , θS)

are regular enough, with analogous arguments as in [3,5] we verify that A generates an analytic semigroup and
that it has compact resolvent. It implies that (H1), (H3) and (H5) are satisfied. Moreover, we can verify that
the adjoint of A is given by:

A∗
[
z
ρ

]
=
[
P (Δz + (Dsz)wS + t(∇ρ)θS + curlρ)
Δρ+ (∇ρ)wS + curl z + ∇(div ρ)

]
D(A∗) =

{
(z, ρ) ∈ (H2(Ω; R))3 × (H2(Ω; R))3 | div z = 0 in Ω, z = ρ = 0 on ∂Ω

}
. (4.25)

By multiplying the two first equations of (4.23) by (z, ρ) ∈ D(A∗) and integrating by parts we get:

d
dt

([
Py
ϑ

]
,

[
z
ρ

])
G

=
([
y
ϑ

]
,

[
Δz + (Dsz)wS + t(∇ρ)θS + curlρ
Δρ+ (∇ρ)wS + curl z + ∇(div ρ)

])
G

−
([

(y · ∇)y
(y · ∇)ϑ

]
,

[
z
ρ

])
G

−
∫
∂Ω

(mu2) ·
(
∂ρ

∂n
+ (div ρ)n

)
dσ −
∫
∂Ω

(mu1) · ∂z
∂n

dσ. (4.26)

Thus, to rewrite (4.26) in the abstract form (3.8) let us first write[
Δz + (Dsz)wS + t(∇ρ)θS + curlρ
Δρ+ (∇ρ)wS + curl z + ∇(div ρ)

]
= A∗
[
z
ρ

]
+
[∇π

0

]
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where the pressure function π is uniquely determined by

∇π = (I − P )(Δz + (Dsz)wS + t(∇ρ)θS + curlρ)
∫
∂Ω

m2πdσ = 0. (4.27)

Then an integration by parts gives:([
y
ϑ

]
,

[
Δz + (Dsz)wS + t(∇ρ)θS + curlρ
Δρ+ (∇ρ)wS + curl z + ∇(div ρ)

])
G

=
([
Py
ϑ

]
, A∗
[
z
ρ

])
G

+
∫
∂Ω

m(u1 · n)π dσ, (4.28)

and (4.26) becomes:

d
dt

([
Py
ϑ

]
,

[
z
ρ

])
G

=
([
Py
ϑ

]
, A∗
[
z
ρ

])
G

−
∫
∂Ω

m

(
u2 ·
(
∂ρ

∂n
+ (div ρ)n

)
+ u1 ·

(
∂z

∂n
− πn

))
dσ

−
([

(y · ∇)y
(y · ∇)ϑ

]
,

[
z
ρ

])
G

, (4.29)

which suggests to define the control operator B : W → [D(A∗)]′ as follows

W
def= V0

m(∂Ω) × (L2(∂Ω; R))3, B∗
[
z
ρ

]
def=

[
m
(
πn− ∂z

∂n

)
m
(
−(div ρ)n− ∂ρ

∂n

)]. (4.30)

Boundedness properties of trace operators ensure that B satisfy (H5) with γ ∈ (3
4 , 1). Note that the normaliza-

tion condition in (4.27) guarantees that the range of B∗ is included in W . This is due to the fact ∂z
∂n is tangential

because z is divergence free and vanishs on the boundary, see formula (4.36) below.
Next, define the lifting mapping Dv = ξ where ξ is solution of⎧⎪⎨⎪⎩

−Δξ + ∇q = 0 in Ω,
div ξ = 0 in Ω,

ξ = mv on ∂Ω.
(4.31)

Then from y −Du1 ∈ V0
n(Ω) we get (I − P )y = (I − P )Du1 and[

y
ϑ

]
=
[
Py
ϑ

]
+
[
(I − P )Du1

0

]
,

and the nonlinearity in (4.29) can be rewritten in terms of Py, ϑ, u as follows:

N
([
Py
ϑ

]
,

[
u1

u2

])
def= −
[
P
[
((Py + (I − P )Du1) · ∇)(Py + (I − P )Du1)

]
((Py + (I − P )Du1) · ∇)ϑ

]
. (4.32)

Finally, (4.29) is reduced to the following abstract formulation of type (3.8):[
Py
ϑ

]′
= A

[
Py
ϑ

]
+B

[
u1

u2

]
+ N
([
Py
ϑ

]
,

[
u1

u2

])
in [D(A∗)]′. (4.33)

Step 2. Verification of Fattorini’s criterion. Since A and B satisfy (H1), (H3), (H5) and (H6), Theorem 3.5
applies and stabilizability of (A+ σ,B) for all σ > 0 is reduced to (UC), which is to say (see (4.25) and (4.30))
that for all λ ∈ C, every (z, π, ρ, κ) satisfying⎧⎪⎨⎪⎩

λz −Δz − (Dsz)wS − t(∇ρ)θS − curlρ+ ∇π = 0 in Ω,

λρ−Δρ− (∇ρ)wS − curl z + ∇κ = 0 in Ω,
div z = 0, div ρ+ κ = 0 in Ω.

(4.34)
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with boundary conditions
z = ρ = 0 on ∂Ω

and satisfying moreover

∂z

∂n
− πn = 0 and

∂ρ

∂n
− κn = 0 on Γ

def= Supp(m), (4.35)

must be identically equal to zero in Ω.
With a classical extension of the domain procedure, such above uniqueness theorem can be obtained from

Theorem A.7 of the Appendix applied in an extended domain. Let us briefly recall the argument. First by
recalling the decomposition formula

div z = divτ zτ + (div n)z · n+
∂z

∂n
· n on Γ (4.36)

(see for instance [29], Sect. 5.4.3) where divτ denotes the tangential divergence operator and zτ the tangential
component of z, from z = 0 and div z = 0 on Γ we get that ∂z

∂n is tangential on Γ . Then ∂z
∂n − πn = 0 yields

π = 0, ∂z
∂n = 0 and finally ∇z = 0 on Γ . Similarly, ρ = 0 on Γ implies ∂ρ

∂n · n = div ρ = −κ on Γ . Since from the
second equality in (4.35) we also have ∂ρ

∂n · n = κ we deduce that κ = 0 and then ∂ρ
∂n = 0 on Γ , and since ρ = 0

on Γ we get ∇ρ = 0 on Γ . Finally, we have proved that ∇z, ∇ρ, π, κ vanish on Γ and we can smoothly extend
(z, π, ρ, κ) by zero in a larger domain containing an outside open set ω. Then it suffices to invoke Theorem A.7
for this larger domain.

Step 3. Stabilizing control for linear and nonlinear systems. From Theorem 3.5 we obtain the existence
of families of type (4.15) (where W and G are given by (4.24), (4.30)) and a finite rank feedback operator
F : G→ W of the form (4.16) such that A+ BF with domain D(A+ BF ) is the infinitesimal generator of an
exponentially stable semigroup on G. However, because B is now unbounded, D(A+BF ) is not equal to D(A)
as it was the case in Section 4.1. More precisely, by following the method considered in [5] it can be proved that
D(A +BF ) is composed of (Pξ, ζ) where (ξ, ζ) ∈ (H2(Ω))3 × (H2(Ω))3 obey[

ξ
ζ

]
= m

K∑
j=1

[
v1
j

v2
j

] ∫
Ω

(ξ · ẑj + ζ · ρ̂j) dx on ∂Ω, (4.37)

and that for each s ∈ (0, 1) the space D((−AF )
s
2 ) is a closed subspace of (Hs(Ω; R))3 × (Hs(Ω; R))3 composed

with elements satisfying trace conditions on ∂Ω related to the feedback law F when s ≥ 1/2. Moreover, as it
happens for the Navier−Stokes system treated in [2, 5], Sobolev embeddings guarantee that the nonlinearity
defined in (4.32) satisfies (3.10) only for s ∈ [d−2

2 , 1] where d is the space dimension. Then feedback stabilization
of 3D micropolar system (4.23) cannot be obtained unless very specific initial trace compatibility conditions
related to F are satisfied. However, since when d = 2 inequality (3.10) is satisfied for s ∈ [0, 1/2), a relevant sta-
bilization theorem could be obtained from Theorem 3.3 for the two dimensional version of system (4.18)−(4.21)
with feedback control (4.17).

To obtain a 3D stabilization result we have to consider a dynamical control. From (UC) we have the existence
of a complex matrix Λ of size K ×K and of a family {ε̂j = (ε̂1j , ε̂

2
j) ∈ V0

n(Ω)× (L2(Ω; R)3 ; j = 1, . . . ,K}, such
that dynamical controls: [

u1(t)
u2(t)

]
=

K∑
j=1

uj(t)
[
v1
j

v2
j

]
, u

def= (u1, . . . , uK)

u′ + Λu =
K∑
j=1

ej

∫
Ω

(
ε̂1j · (w − wS) + ε̂1j · (θ − θS)

)
dx

u(0) = 0 (4.38)
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stabilize the linear system obtained from (4.33) by linearizing around zero. In the above setting {ej ; j =
1, . . . ,K} denotes a basis of RK . The following stabilization theorem can be deduced from Theorem 3.4 with
s = 1 and Remark 3.6.

Theorem 4.4. Let Ω be a bounded and open subset of Rd of class C2,1, let (wS , θS) ∈ (H2(Ω; R))d ×
(H2(Ω; R))d satisfy (4.19) and let (y0, ϑ0) ∈ (H1

0 (Ω; R))d × (H1
0 (Ω; R))d satisfy (4.20). For all σ > 0 there

exists μ > 0 such that if
‖y0‖(H1(Ω;R))3 + ‖ϑ0‖(H1(Ω;R))3 ≤ μ,

then systems (4.18), (4.21) and (4.38) admits a solution (w, r, θ, u) in

{(wS , rS , θS , 0)} +Wσ((H2(Ω; R))3, (L2(Ω; R))3) × L2(H1(Ω; R)/R)

×Wσ((H2(Ω; R))3, (L2(Ω; R))3) ×H1(R+; RK),

which is unique within the class of function in

{(wS , rS , θS , 0)} +Wloc((H2(Ω; R))3, (L2(Ω; R))3) × L2
loc(H

1(Ω; R)/R)

×Wloc((H2(Ω; R))3, (L2(Ω; R))3) ×H1
loc(R

+; RK),

Moreover, there exists C > 0 such that for all t ≥ 0 the following estimate holds:

‖w(t) − wS‖(H1(Ω;R))3 + ‖θ(t) − θS‖(H1(Ω;R))3 + ‖u(t)‖RK

≤ Ce−σt(‖w0 − wS‖(H1(Ω;R))3 + ‖θ0 − θS‖(H1(Ω;R))3).

Appendix A. Uniqueness theorems for coupled Stokes type systems

In the present appendix, we first provide local Carleman inequalities for the Stokes system that are useful to
prove Fattorini’s criterion (UC) corresponding to Stokes and coupled Stokes like systems. Thus, as a first simple
illustration of such inequalities, we recover in a uniqueness theorem for Oseen equations originally obtained
by Fabre and Lebeau in [17]. Next, we prove two uniqueness theorem for coupled Stokes like system that are
needed in Section 4: one for an adjoint MHD system and one for an adjoint micropolar system.

In what follows we use the notation of Section 4. Moreover, O denotes a nonempty bounded open subset
of Rd of class C2 and ψ : O → R is a function satisfying

ψ ∈ C2(O; R), ψ > 0 and |∇ψ| > 0 on O. (A.1)

A.1. Carleman inequalities for the Stokes system

Let us recall a well-known Carleman inequality for the Laplace equation.

Theorem A.1. Let k ∈ {0, 1}, F0 ∈ L2(O; C) and F1 ∈ (L2(O; C))d. There exist C > 0 and τ̂ > 1 such that
for all τ ≥ τ̂ there exists ŝ(τ) such that for all s ≥ ŝ(τ) and for all u ∈ H1

0 (O; C) solution of

−Δu = F0 + divF1 in O
the following inequality holds:∫

O

(
e(k−1)τψ|∇u|2 + s2τ2e(k+1)τψ|u|2

)
e2seτψdx ≤ C

∫
O

(
sekτψ|F1|2 + s−1τ−2e(k−2)τψ|F0|2

)
e2seτψdx. (A.2)

Inequality (A.2) for k = 1 can be obtained for instance from ([32], Thm. A.1) and (A.2) for k = 0 is obtained
by applying (A.2) with k = 1 to the equation satisfied by e−

τ
2ψu. Note that the proof of (A.2) proposed in the

above quoted work is performed for a R-valued function u, but it is easily checked that it can be done in the
same way for a C-valued function u.

From Theorem A.1, we deduce the following Carleman inequalities for the Stokes system.
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Corollary A.2. Let α ∈ R\{−1}. There exist C > 0 and τ̂ > 1 such that for all τ ≥ τ̂ there exists ŝ(τ) such
that for all s ≥ ŝ(τ) and for all (z, π) ∈ (H2

0 (O; C))d ×H1
0 (O; C) the following inequalities hold:∫

O

(|∇z|2 + s2τ2e2τψ|z|2) e2seτψdx ≤ C

∫
O

(seτψ|div z + απ|2 + τ−2|∇π −Δz|2)e2seτψdx, (A.3)∫
O
sτ2eτψ

(|curl z|2 + |div z − π|2) e2seτψdx ≤ C

∫
O
|∇π −Δz|2e2seτψdx. (A.4)

Proof. Set f def= −Δz + ∇π and g def= div z. From −Δz = curl (curl z) −∇(div z) we get:

−Δz =
1

1 + α
(curl (curl z) −∇(g + απ) + αf) in O, (A.5)

−Δ(curl z) = curl f in O, (A.6)
−Δ(π − g) = −div f in O. (A.7)

Then (A.4) is obtained by applying (A.2) for k = 0 to (A.6) and to (A.7). Finally, (A.3) is obtained by first
applying (A.2) for k = 1 to (A.5) and next using the estimate of curl z given by (A.4). �

A.2. Uniqueness theorem for the Oseen system

Here we give a first illustration of an application of Corollary A.2 that allows to recover in an easy way a
uniqueness theorem for the Oseen equations. It also provides a sketch of the method of proof which is used in the
next section to obtain uniqueness theorems for coupled Stokes type systems. For λ ∈ C and wS ∈ (L∞

loc(Ω; R))d

consider the following eigenvalue problem:

λz −Δz − (Dsz)wS + ∇π = 0 in Ω,

div z = 0 in Ω. (A.8)

Let us prove that every z ∈ (H1
loc(Ω; C))d solution of (A.8) which vanishes in a non empty open subset ω ⊂⊂ Ω

must be identically zero in Ω. Such a distributed observability theorem has been first proved by Fabre and Lebeau
in [17] for Stokes equations with bounded potential. When ω has a smooth C2 boundary and wS ∈ (H2(Ω; R))d

the result has been obtained in [49]. Such a uniqueness theorem implies Fattorini’s criterion (UC) corresponding
to the linearized Navier−Stokes equations and permits to construct a feedback or a dynamical control stabilizing
the Navier−Stokes equations around a given stationary state wS , see [5] for details.

More precisely, we prove the following theorem.

Theorem A.3. Let Ω be a connected open subset of Rd with d = 2 or d = 3, λ ∈ C and wS ∈ (L∞
loc(Ω; R))d.

Suppose that (z, π) ∈ (H1
loc(Ω; C))d×L2

loc(Ω; C) satisfies (A.8) and that z vanishes on a non empty open subset
of Ω. Then z is identically equal to zero in Ω and the function π is constant.

Proof. The proof consists in three steps.

Step 1. A local Carleman inequality. Let O ⊂⊂ Ω and ψ satisfying (A.1). From (A.3) and (A.4) with
α = 0 we get that every (z, π) ∈ (H2

0 (O; C))d ×H1
0 (O; C) satisfies:∫

O

(|∇z|2 + s2τ2e2τψ|z|2 + sτ2eτψ|π − divz|2) e2seτψdx ≤

C

∫
O

(seτψ|div z|2 + |λz −Δz − (Dsz)wS + ∇π|2)e2seτψdx. (A.9)

Indeed, it suffices to choose τ in (A.3) large enough so that the first order term (Dsz)wS is absorbed by the left
side of the inequality (since wS ∈ (L∞(O; R))d), and thus to choose s large enough so that the zero order term
λz is absorbed by the left hand side of the inequality. Thus, we combine the resulting inequality with (A.4).
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Next, suppose that (z, π) ∈ (H1
loc(Ω; C))d × L2

loc(Ω; C) is a solution of (A.8). Let O1 and O∗ be two open
subsets of Rd satisfying

O1 ⊂⊂ O and O∗ def= O \ O1, (A.10)

and let χ : O → R a cut-off function such that

χ ∈ C∞
c (O; R), χ ≡ 1 in O1 ⊂⊂ O and 0 ≤ χ ≤ 1 in O∗. (A.11)

From (A.8) and regularity results for Stokes equations we get that (χz, χπ) ∈ (H2
0 (O; C))d×H1

0 (O; C) satisfies:

λ(χz) −Δ(χz) − (Ds(χz))wS + ∇(χπ) = −[Δ+ (wS · ∇) + (wS · t∇), χ]z + [∇, χ]π in Ω

div (χz) = [div, χ]z in Ω, (A.12)

where [·, ·] denote commutators. Then applying (A.9) to (χz, χπ) and using the fact that commutators in (A.12)
are supported in O∗ we deduce that solutions of (A.8) obey:∫

O1

e2seτψ(|z|2 + |π|2)dx ≤ Cχ,τ,ψ

∫
O∗

e2seτψ (|z|2 + |∇z|2 + |π|2)dx. (A.13)

Step 2. A local uniqueness theorem. Now let us use inequality (A.13) to prove that if z vanishes in
a relatively compact ball of Ω then z is necessarily zero in a neighborhood of such a ball. More precisely,
let x0 ∈ Rd and R > 0, denote by B(x0, R) the open ball centered at x0 with radius R and suppose that
B(x0, R) ⊂⊂ Ω and z ≡ 0 in B(x0, R). Since ∂B(x0, R) is compact, to prove that z vanishes in an open
neighborhood of ∂B(x0, R) it suffices to prove that for each x1 ∈ ∂B(x0, R) there is a ball B(x1, ε), ε > 0, in
which z vanishes.

For x1 ∈ ∂B(x0, R) choose O = B(x1, r), O1 = B(x1, r/2), O∗ = O\O1 with 0 < r < R/2 small enough such
that B(x0, R) ∪ O ⊂ Ω and set

ψ(x) = C0 − |x− x0|2 − 1
2
|x− x1|2,

where C0 > 0 is large enough so that ψ > 0 in O. Moreover, we verify that |∇ψ| > 0 and then (A.1) is
satisfied. Thus, set V = O\B(x0, R), Vε = B(x1, ε) \B(x0, R) for ε > 0 and V∗ = O∗ \B(x0, R). Since we have
ψ(x) < ψ(x1) for all x ∈ V∗, by continuity we get for ε > 0 small enough:

max
V∗

ψ
def= ψ∗ < ψ1

def= min
Vε

ψ. (A.14)

From (A.8) and z ≡ 0 in B(x0, R) we get that ∇π is zero in B(x0, R) and then π = π ∈ R is constant in
B(x0, R). Then we apply (A.13) to (z, π − π) (which satisfies (A.8)) and since z and π − π vanish in B(x0, R)
we obtain ∫

Vε
(|z|2 + |π − π|2)dx ≤ e2s(eτψ

∗−eτψ1)Cχ,τ,ψ

∫
V∗

(|z|2 + |∇z|2 + |π − π|2)dx.

Inequality (A.14) implies that the right side of the above inequality tends to zero as s goes to infinity, which
yields z ≡ 0 and π ≡ π in Vε.
Step 3. A connectivity argument. Suppose that z is a non zero solution of (A.8) which is vanishing in
an open subset of Ω, that is to say Supp(z) �= Ω and Supp(z) �= ∅. Because Ω is connected and Supp(z)
is a closed subset of Ω we have that Supp(z) is not an open subset of Ω. As a consequence, there exists
x∗ ∈ Supp(z) and R∗ > 0 small enough such that B(x∗, R∗) ∩ (Ω\Supp(z)) �= ∅ and B(x∗, R∗) ⊂ Ω. Then we
can choose x0 ∈ Ω \ Supp(z) and R0 > 0 such that B(x0, R0) ⊂ B(x∗, R∗) and x∗ ∈ B(x0, R0) (for instance,
for x∗0 ∈ B(x∗, R∗) ∩ (Ω\Supp(z)) choose x0 = x∗ + 1

3 (x∗0 − x∗) and R0 = 2
3 |x∗0 − x∗|). To summerize, we have:

x0 ∈ Ω \ Supp(z), B(x0, R0) ⊂ Ω and B(x0, R0) ∩ Supp(z) �= ∅. (A.15)
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Next, because Ω\Supp(z) is open in Rd, there exists r0 ∈ (0, R0) such that B(x0, r0) ⊂ Ω\Supp(z), and we can
introduce the value R̂ ∈ [r0, R0) defined by

R̂
def= sup{R > 0 | B(x0, R) ⊂ Ω\Supp(z)}.

Since Ω\Supp(z) is open the above infimum is a maximum and B(x0, R̂) ⊂ Ω\Supp(z). Moreover, recall
that (A.15) guarantees B(x0, R̂) ⊂ B(x0, R0) ⊂ Ω and R̂ < R0 which implies B(x0, R̂) ⊂⊂ Ω. Then according
to Step 2 above there exists ε > 0 such that B(x0, R̂+ ε) ⊂ Ω \ Supp(z) which contradicts the definition of R̂.
In conclusion, Supp(z) = ∅ or Supp(z) = Ω, which is to say that a non zero solution z of (A.8) cannot vanish
on an open subset of Ω. �

Remark A.4. Note that the key argument in the proof of Theorem A.3 is to obtain the local Carleman
inequality (A.9) related to Oseen system. Steps 2 and 3 of the proof are standard and have been recalled for
readability convenience, see for instance [35] or ([50], Appendix IV).

A.3. Uniqueness theorem for adjoint MHD system

Corollary A.2 also permits to prove a distributed observability theorem for coupled Oseen systems. Here we
prove a uniqueness theorem related to the stabilizability of a MHD system (see Sect. 4.1).

For wS ∈ (L∞
loc(Ω; R))d and θS ∈ (L∞

loc(Ω; R))d consider the following adjoint linearized MHD system:⎧⎪⎨⎪⎩
λz −Δz − (Dsz)wS + (Daρ)θS + ∇π = 0 in Ω,

λρ−Δρ+ (Dsz)θS − (Daρ)wS + ∇κ = 0 in Ω,
div z = div ρ = 0 in Ω.

(A.16)

Theorem A.5. Let Ω be a connected open subset of Rd with d = 2 or d = 3, λ ∈ C, wS ∈ (L∞
loc(Ω; R))d and

θS ∈ (L∞
loc(Ω; R))d. Suppose that (z, π) ∈ (H1

loc(Ω; C))d × L2
loc(Ω; C) and (ρ, κ) ∈ (H1

loc(Ω; C))d × L2
loc(Ω; C)

satisfy (A.16) and that z and curl ρ vanish on a non empty open subset ω ⊂⊂ Ω. Then z and curl ρ are identically
equal to zero in Ω, the function π is constant and ∇κ = −λρ.
Proof. The point is to use Corollary A.2 to get an inequality for (A.16) analogue to (A.13). Then the result will
follow from a local uniqueness theorem and a connectivity argument completely analogous to Steps 2 and 3 of
the proof of Theorem A.3.

First, set ζ def= curl ρ, apply the operator curl to the second equality in (A.16) to get⎧⎪⎨⎪⎩
λz −Δz − (Dsz)wS + S(θS)ζ + ∇π = 0 in Ω,

λζ −Δζ + curl
(
(Dsz)θS − S(wS)ζ

)
= 0 in Ω,

div z = 0 in Ω.

(A.17)

To obtain (A.17) we have used the relation (Daρ)b = S(b)curl ρ where

S(b) def=
(−b2
b1

)
if d = 2 and S(b) def=

⎛⎝ 0 b3 −b2
−b3 0 b1
b2 −b1 0

⎞⎠ if d = 3.

Next, let O ⊂⊂ Ω and ψ : O → R satisfying (A.1), suppose for the moment that (z, ζ, π) ∈ (H2
0 (O; C))d ×

(H2
0 (O; C))2d−3 ×H1

0 (O; C) and let us prove that such (z, ζ, π) obeys∫
O

(
s2τ2e2τψ|z|2 + sτ2eτψ(|π − div z|2 + |ζ|2)) e2seτψdx

≤ C

∫
O

(seτψ|div z|2 + |L1(z, ζ, π)|2 + |L2(z, ζ)|2)e2seτψdx, (A.18)
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where

L1(z, ζ, π) def= λz −Δz − (Dsz)wS + S(θS)ζ + ∇π,
L2(z, ζ)

def= λζ −Δζ + curl
(
(Dsz)θS − S(wS)ζ

)
. (A.19)

For that, first apply (A.2) to ζ (with k = 0) and obtain∫
O
sτ2eτψ|ζ|2e2seτψdx ≤ C

∫
O

(
s−2τ−2|L2(z, ζ) − λζ|2 + |(Dsz)θS − S(wS)ζ|2) e2seτψdx. (A.20)

Thus, apply (A.3) (with α = 0) and (A.4) to (z, π), add the resulting inequality to (A.20) and choose τ and s
large enough so that the first order terms (Dsz)wS , (Dsz)θS and the zero order terms S(θS)ζ, S(wS)ζ, λz, λζ
are absorbed by the left hand side of the inequality.

Finally, let O1 and O∗ two open subsets of Rd satisfying (A.10) and let χ : O → R a cut-off function
satisfying (A.11). If (z, ζ, π) ∈ (H1

loc(Ω; C))d × (H1
loc(Ω; C))2d−3 × L2

loc(Ω; C) satisfies (A.17) then by elliptic
and Stokes regularity we get that (χz, χζ, χπ) ∈ (H2

0 (O; C))d × (H2
0 (O; C))2d−3 ×H1

0 (O; C) and (A.18) applied
to (χz, χζ, χπ) yields:∫

O1

e2seτψ(|z|2 + |π|2 + |ζ|2)dx ≤ Cχ,τ,ψ

∫
O∗

e2seτψ (|z|2 + |∇z|2 + |π|2 + |ζ|2)dx. (A.21)

Then we conclude with a local uniqueness theorem and a connectivity argument as for Theorem A.3.
Note that the facts that π is constant and that ∇κ = −λρ are direct consequences of the equations (A.16)

with z ≡ 0 and curl ρ ≡ 0 in Ω (since div ρ = 0 implies −Δρ = curl curl ρ). �

Now assume that Ω is a bounded domain of Rd with a Lipschitz-continuous boundary, denote by n the unit
exterior normal vector field defined on ∂Ω and introduce the following N -dimensional space:

XN
def= {y ∈ (L2(Ω; C))d | div y = 0 in Ω, curl y = 0 in Ω, y · n = 0 on ∂Ω}. (A.22)

The fact that the above space is finite dimensional is well-known, see for instance [15], Chapter IX, for a detailed
characterization of XN . We only recall that if Ω is simply-connected we have N = 0 and XN reduces to {0}
and if Ω is multiply-connected then N ≥ 1 is the number of cuts required to make Ω simply-connected. Note
that if d = 2 then N + 1 is exactly to the number of connected components of ∂Ω.

The following straightforward consequence of Theorem A.5 holds.

Corollary A.6. In addition to the hypotheses of Theorem A.5, assume that Ω is a bounded domain of Rd with
a Lipschitz-continuous boundary and suppose that

ρ · n = 0 on ∂Ω. (A.23)

Then the following results hold.

1. If λ �= 0 then z and ρ are identically equal to zero and the functions π and κ are constant in Ω.
2. If λ = 0 then z is identically equal to zero in Ω and ρ ∈ XN . Moreover, the functions π and κ are constant

in Ω. In particular, if Ω is simply-connected then ρ is identically equal to zero in Ω.

A.4. Uniqueness theorem for adjoint micropolar system

Corollary A.2 also provides a distributed observability theorem related to stabilizability of a micropolar system
(see Sect. 4.2).

Theorem A.7. Let Ω be a connected open subset of Rd with d = 2 or d = 3, λ ∈ C, wS ∈ (L∞
loc(Ω; R))d and

θS ∈ (L∞
loc(Ω; R))d. Suppose that (z, π) ∈ (H1

loc(Ω; C))d × L2
loc(Ω; C) and (ρ, κ) ∈ (H1

loc(Ω; C))d × L2
loc(Ω; C)

satisfy (4.34) and that z and ρ vanish on a non empty open subset ω ⊂⊂ Ω. Then z and ρ are identically equal
to zero in Ω and the functions π and κ are constant.
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Proof. Let us first consider two pairs (z, π) and (ρ, κ) of (H2
0 (O; C))d ×H1

0 (O; C). By applying (A.3), (A.4) to
(z, π) with α = 0 and (A.3), (A.4) to (ρ, κ) with α = 1, and choosing τ and s large enough to absorb the zero
and first order terms in z, ρ we get:∫

O

(
s2τ2e2τψ(|z|2 + |ρ|2) + sτ2eτψ(|π − div z|2 + |κ− div ρ|2)) e2seτψdx

≤ C

∫
O

(seτψ(|div z|2 + |div ρ+ κ|2) + (|L1(z, ρ, π)|2 + |L2(z, ρ, κ)|2))e2seτψdx, (A.24)

where

L1(z, ρ, π) def= λz −Δz − (Dsz)wS − t(∇ρ)θS − curl ρ+ ∇π,
L2(z, ρ, κ) def= λρ−Δρ− (∇ρ)wS − curl z + ∇κ.

Thus, let O1 and O∗ two open subsets of Rd satisfying (A.10) and let χ : O → R a cut-off function satisfy-
ing (A.11). For (z, π, ρ, κ) satisfying (4.34) we apply inequality (A.24) to (χz, χπ, χρ, χκ) and obtain∫

O1

e2seτψ(|z|2 + |π|2 + |ρ|2 + |κ|2)dx ≤ Cχ,τ,ψ

∫
O∗

e2seτψ (|z|2 + |∇z|2 + |π|2 + |ρ|2 + |∇ρ|2 + |κ|2)dx. (A.25)

Then we conclude with a local uniqueness theorem and a connectivity argument as for Theorem A.3. �
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