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NONSMOOTH PROBLEMS OF CALCULUS OF VARIATIONS
VIA CODIFFERENTIATION∗

Maxim Dolgopolik
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Abstract. In this paper multidimensional nonsmooth, nonconvex problems of the calculus of variations
with codifferentiable integrand are studied. Special classes of codifferentiable functions, that play an
important role in the calculus of variations, are introduced and studied. The codifferentiability of
the main functional of the calculus of variations is derived. Necessary conditions for the extremum
of a codifferentiable function on a closed convex set and its applications to the nonsmooth problems
of the calculus of variations are described. Necessary optimality conditions in the main problem of
the calculus of variations and in the problem of Bolza in the nonsmooth case are derived. Examples
comparing presented results with other approaches to nonsmooth problems of the calculus of variations
are given.
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1. Introduction

In this paper nonsmooth problems of the calculus of variations are studied. These problems were first studied
in the works of Rockafellar [21–23]. After these works many different approaches were suggested to studying
nonsmooth problems of the calculus of variations (cf., for details, [5–7,14,15,17–19,25,26]); however, all existing
approaches have some disadvantages, that make their practical applications quite difficult.

As a rule, nonsmooth problems are studied by different homogeneous approximations of the increment of a
function, such as the Clarke subdifferential [7] or the proximal subgradient [15]. But all these approximations
are not continuous functions of points in a nonsmooth case. A lack of continuity makes the construction of
effective numerical methods based on homogeneous approximations a very difficult task. The other disadvantage
of a “homogeneous” approach is that computing an approximation is very complicated because there does
not exist a convenient calculus of these approximations (cf., for instance, formulae for computing the Clarke
subdifferential [7] and “fuzzy calculus” of the proximal subgradients [15]).

In this paper nonsmooth problems of the calculus of variations are studied by the notion of codifferentiability.
The concept of codifferentiable function was introduced by Demyanov [9, 10] (cf., also, [11, 13]). Although an
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approach based on codifferentials does not allow to study nonsmooth optimization problems under such general
assumptions as some other nonsmooth methods, it has its own benefits. An approximation of the increment of
a function based on the codifferential is nonhomogeneous and is usually a continuous function of points. That
is why it is easy to construct effective numerical methods based on the concept of codifferential (cf. method of
codifferential descent in [11] and method of truncated codifferential descent and its applications in [12]). Also,
there exists a well-developed codifferential calculus [11, 13] and formulae for computing codifferentials are very
simple. These advantages make an approach based on the notion of codifferentiability more appealing for many
practical applications than other existing approaches.

However, one should mention some limitations of the approach based on codifferentiability (and the closely
related notion of quasidifferentiability [11]). Unlike the Clarke subdifferential and some other types of sub-
differentials, a codifferential of a Lipschitz continuous function can be empty, but it is worth mentioning that
the difference of two continuous convex functions defined on a normed space is always codifferentiable. Also, no
characterization of the class of codifferentiable (or quasidifferentiable) functions is known. Moreover, despite the
fact that there exists a convenient and elaborate calculus of codifferentiable and quasidifferentiable functions,
there are no algorithms, in general, for the construction of elements in codifferential or quasidifferential in
the case when they are not empty. However, codifferential was proved to be a very efficient tool for solving
nonsmooth optimization problems in the case when codifferentials of the functions under consideration can be
effectively computed [3, 4].

The main goal of our study is to prove that the main functional of the calculus of variations with codif-
ferentiable integrand is codifferentiable. In order to do that we introduce and study several special classes of
codifferentiable functions. Also, we derive necessary conditions for the extremum of a codifferentiable function
on a closed convex set and apply them to studying the main problem of the calculus of variations and the
problem of Bolza in the nonsmooth case. In the end, we provide two examples demonstrating that the necessary
optimality conditions derived in this paper are better than the existing necessary optimality conditions for
nonsmooth problems of the calculus of variations.

2. Necessary conditions for the extremum of a codifferentiable function

In this section we discuss necessary conditions for the extremum of a codifferentiable function on a closed
convex set. We will apply these conditions to the study of nonsmooth problems of the calculus of variations.

We introduce the notation first. We denote by (E, ‖ · ‖) a real normed space. As usual, its topological dual
space is denoted by E∗ and the weak∗ topology on E∗ is denoted by w∗ or σ(E∗, E). The standard topology
on the real line R is denoted by τ , the inner product in R

d is denoted by 〈·, ·〉. Denote by coA the convex hull
of a set A ⊂ E.

Let us recall the definition of codifferentiable function and related notions. Let S ⊂ R
d be an open set.

Definition 2.1. A function f : S → R is said to be codifferentiable at a point x ∈ S if there exists a pair of
nonvoid compact convex sets df(x), df(x) ⊂ R

d+1 such that for any admissible argument increment Δx (i.e.
co{x, x+Δx} ⊂ S) the corresponding function increment is represented as

f(x+Δx) − f(x) = max
[a,v]∈df(x)

(a+ 〈v,Δx〉) + min
[b,w]∈df(x)

(b+ 〈w,Δx〉) + o(Δx, x),

where

max
[a,v]∈df(x)

a+ min
[b,w]∈df(x)

b = 0,
o(αΔx, x)

α
→ 0 as α ↓ 0.

Remark 2.2. We write α ↓ 0 instead of α→ +0.

The following definition is a natural generalization of the notion of codifferentiation to the infinite-dimensional
case.
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Definition 2.3. Let S ⊂ E be an open set. A function f : S → R is said to be codifferentiable at a point x ∈ S
if there exists a pair of nonvoid convex sets df(x), df(x) ⊂ R×E∗ that are compact in the topological product
(R, τ) × (E∗, w∗) and such that for any admissible argument increment Δx ∈ E

f(x+Δx) − f(x) = max
[a,ϕ]∈df(x)

(a+ ϕ(Δx)) + min
[b,ψ]∈df(x)

(b+ ψ(Δx)) + o(Δx, x),

where
max

[a,ϕ]∈df(x)
a+ min

[b,ψ]∈df(x)
b = 0,

o(αΔx, x)
α

→ 0 as α ↓ 0.

A pair of sets Df(x) = [df(x), df(x)] is called a codifferential of f at a point x, the set df(x) is called a
hypodifferential, and the set df(x) is referred to as a hyperdifferential. Note that a codifferential is not unique.
A function f is said to be hypodifferentiable at a point x if there exists a codifferential of the form Df(x) =
[df(x), {0}] and hyperdifferentiable at a point x if there exists a codifferential of the form Df(x) = [{0}, df(x)].

Remark 2.4. It is easy to see that for any convex and compact in the topology τ × w∗ set S ⊂ R × E∗ the
pair [df(x)+S, df(x)−S] is a codifferential of f at x. Therefore there is an interesting and unresolved question
concerning how to find a codifferential Df(x) which is minimal, in some sense. For some results on the closely
related problem of finding a minimal, in some sense, quasidifferential see [20, 24].

Remark 2.5. The direct product R × E∗ can be equipped with the norm ‖[a, ϕ]‖p = (|a|p + ‖ϕ‖p) 1
p , where

1 ≤ p < ∞, or ‖[a, ϕ]‖∞ = max{|a|, ‖ϕ‖}. It is clear that all norms ‖ · ‖p, 1 ≤ p ≤ ∞ are equivalent. Every
norm ‖ · ‖p induces the Hausdorff metric on the set of all closed bounded subsets of the space (R × E∗, ‖ · ‖p).
Since all norms ‖ · ‖p, 1 ≤ p ≤ ∞, are equivalent, then all corresponding Hausdorff metrics are also equivalent.
Therefore, hereafter we will refer to Hausdorff metric without specifying a norm on R × E∗ that induces given
metric.

A function f is said to be continuously codifferentiable at a point x if it is codifferentiable in a neighbourhood
of x and there exists a mapping y → Df(y) = [df(y), df(y)] such that the mappings y → df(y) and y →
df(y) are Hausdorff continuous at this point. One can also define continuously hypodifferentiable functions and
continuously hyperdifferentiable functions.

Remark 2.6. The class of continuously codifferentiable functions is quite large. This class forms a linear space
closed under the main algebraic operations (such as multiplication), the pointwise maximum and the pointwise
minimum of a finite family of its elements (see [11, 13] for a codifferential calculus).

Let us give several examples of important classes of functions that are contained in the class of continuously
codifferentiable functions. Any convex function f : R

d → R is hypodifferentiable on R
d and continuously hypod-

ifferentiable on any bounded subset of R
d (cf. [11], Sect. 4.1), and any norm is continuously hypodifferentiable

on the whole space ([13], example 3.2). Let S ⊂ E be an open set, functions fi, gj : S → R be continuously
Gâteaux differentiable at a point x ∈ S, i ∈ I = {1, . . . , k}, j ∈ J = {1, . . . , l}. Let us show that the function

f(·) = max
i∈I

fi(·) + min
j∈J

gj(·)

is continuously codifferentiable at x. Indeed, for any admissible Δx ∈ E one has

f(x+Δx) − f(x) = max
i∈I

(
fi(x +Δx) − max

i∈I
fi(x)

)
+ min

j∈J

(
gj(x+Δx) − min

j∈J
gj(x)

)
.

Since the functions fi and gj are condinuously Gâteaux differentiable at x then

f(x+Δx) − f(x) = max
i∈I

(
fi(x) − max

i∈I
fi(x) + f ′

i [x](Δx) + ofi(Δx, x)
)

+ min
j∈J

(
gj(x) − min

j∈J
gj(x) + g′j [x](Δx) + ogj (Δx, x)

)
,
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where ofi(αΔx, x)/α → 0 and ogj (αΔx, x)/α → 0 as α ↓ 0, f ′
i [x] and g′j [x] are the Gâteaux derivatives of the

functions fi and gj, respectively, i ∈ I, j ∈ J . Therefore one gets

f(x+Δx) − f(x) = max
i∈I

(
fi(x) − max

i∈I
fi(x) + f ′

i [x](Δx)
)

+ min
j∈J

(
gj(x) − min

j∈J
gj(x) + g′j [x](Δx)

)
+ o(Δx, x),

where o(αΔx, x)/α → 0 as α ↓ 0. Thus the function f is continuously codifferentiable at x, and there is a
codifferential of f at x of the form

Df(x) =
[
co
{
[fi(x) − max

i∈I
fi(x), f ′

i [x]] | i ∈ I
}
, co

{
[gj(x) − min

j∈J
gj(x), g′j [x]] | j ∈ J

}]
.

In particular, if E = R
d then

Df(x) =

[
co
{[
fi(x) − max

i∈I
fi(x),

∂fi
∂x1

(x), . . . ,
∂fi
∂xd

(x)
] ∣∣∣ i ∈ I

}
,

co
{[
gj(x) − min

j∈J
gj(x),

∂gj
∂x1

(x), . . . ,
∂gj
∂xd

(x)
] ∣∣∣ j ∈ J

}]
.

Remark 2.7. Let a function f : S → R be codifferentiable at a point x. One can always suppose that the
following equalities hold true

max
[a,ϕ]∈df(x)

a = min
[b,ψ]∈df(x)

b = 0. (2.1)

In fact, if equalities (2.1) do not hold true, then one can consider the pair [A,B] = [df(x) − {[a, 0]}, df(x) +
{[a, 0]}], where

a = max
[a,ϕ]∈df(x)

a = − min
[b,ψ]∈df(x)

b,

that, as it is easy to check, satisfies the definition of codifferential and equalities (2.1).
Note that if one uses standard formulae for computing codifferentials (cf. [11,13]), then equalities (2.1) always

hold true.

Let a function f : S → R be codifferentiable on an open set S ⊂ E, i.e. f is codifferentiable at any point
x ∈ S, and let A ⊂ S be a nonvoid closed convex set. Consider the problem of minimizing the function f on
the set A.

Theorem 2.8. Suppose that the function f has a local minimum on the set A at a point x∗ ∈ A. Then for any
[0, ψ] ∈ df(x∗) the function

g(x) = max
[a,ϕ]∈df(x∗)

(a+ ϕ(x)) + ψ(x), x ∈ E,

has a global minimum on the set A− x∗ at the origin. Moreover, if (E, ‖ · ‖) is a Banach space, then

(df(x∗) + {[0, ψ]}) ∩ ({0} × (−N(A, x∗))) �= ∅ ∀[0, ψ] ∈ df(x∗), (2.2)

where N(A, x∗) = {p ∈ E∗ | p(a− x∗) ≤ 0 ∀a ∈ A} is the normal cone to the set A at the point x∗.

Proof. Ab absurdo, suppose that there exists [0, ψ] ∈ df(x∗) for which the function

g(x) = max
[a,ϕ]∈df(x∗)

(a+ ϕ(x)) + ψ(x), x ∈ E,
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does not attain a global minimum on the set A− x∗ at the origin. Then there exists a point y ∈ A− x∗, y �= 0,
such that g(y) = −c < 0 = g(0) (the last equality holds true by virtue of Rem. 2.7). Since A is convex, then
co{x∗, x∗ + y} ⊂ A. It is clear that the function g is convex, therefore for all α ∈ [0, 1]

g(αy) = g(αy + (1 − α)0) ≤ αg(y) + (1 − α)g(0) = −cα. (2.3)

By the definition of codifferentiable function, there exists α0 ∈ (0, 1) such that for all α ∈ (0, α0)

f(x∗ + αy) − f(x∗) ≤ max
[a,ϕ]∈df(x∗)

(a+ ϕ(αy)) + min
[b,ψ]∈df(x∗)

(b+ ψ(αy)) +
c

2
α ≤ g(αy) +

c

2
α.

Taking into account (2.3), we find that for any α ∈ (0, α0)

f(x∗ + αy) − f(x∗) ≤ − c

2
α < 0,

which contradicts the definition of the point x∗.
It remains to prove that if (E, ‖ · ‖) is a Banach space, then (2.2) holds true. Indeed, since g attains a global

minimum on the set A−x∗ at the origin, then by virtue of the necessary and sufficient condition for the minimum
of a convex function on a convex set ([16], Thm. 1.1.2) one has

∂g(0) ∩ (−N(A− x∗, 0)) �= ∅.
Applying the theorem about the subdifferential of the supremum ([16], Thm. 4.2.3), one gets

∂g(0) = {p ∈ E∗ | p = ϕ+ ψ, [0, ϕ] ∈ df(x∗)}
(it is easy to verify that the set on the right-hand side is convex and closed in the weak∗ topology). Hence the
desired result immediately follows from the obvious inclusion {0} × ∂g(0) ⊂ df(x∗) + {[0, ψ]} and the equality
N(A− x∗, 0) = N(A, x∗). �

Corollary 2.9. Suppose that the function f has a local maximum on the set A at a point x∗ ∈ A. Then for
any [0, ϕ] ∈ df(x∗) the function

h(x) = min
[b,ψ]∈df(x∗)

(b + ψ(x)) + ϕ(x), x ∈ E,

has a maximum on the set A− x∗ at the point 0. Moreover, if (E, ‖ · ‖) is a Banach space, then

(df(x∗) + {[0, ϕ]}) ∩ ({0} ×N(A, x∗)) �= ∅ ∀[0, ϕ] ∈ df(x∗).

3. Two problems of the calculus of variations

In this section we will describe two problems of the calculus of variations that are the main subject of our
study. Both of these problems have its own difficult points. However, the ideas and results that were obtained
during the study of one problem helped us to understand better the other one and vice versa. This is the main
reason to consider both of these problems together.

Let us introduce the additional notation. In the subsequent sections Ω ⊂ R
d will be an open bounded set

and | · | will be the Euclidean norm on R
d.

We denote by C1(Ω) a vector space of all those f ∈ C1(Ω) (i.e. f is continuously differentiable on Ω) for
which functions f and ∂f

∂xi
, i ∈ {1, . . . , d}, are bounded and uniformly continuous on Ω (then there exist unique,

bounded, continuous extensions of the function f and all its first order partial derivatives to the closure Ω of
Ω). C1(Ω) is a Banach space with the norm given by

‖f‖C1 = max
{

sup
x∈Ω

|f(x)|, sup
x∈Ω

∣∣∣∣ ∂f∂x1
(x)

∣∣∣∣ , . . . , sup
x∈Ω

∣∣∣∣ ∂f∂xd (x)
∣∣∣∣} .
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The vector space of all functions f ∈ C1(Ω) vanishing on the boundary of Ω is denoted by C1
0 (Ω). C1(Ω,Rm)

is a Banach space of all functions f = (f1, . . . , fm) mapping Ω to R
m such that fi ∈ C1(Ω), i ∈ {1, . . . ,m},

endowed with the norm

‖f‖C1 = max
{

sup
x∈Ω

|f(x)|, sup
x∈Ω

|∇f(x)|
}
,

where

∇f(x) =
(
∂fj
∂xi

(x)
)1≤j≤m

1≤i≤d
∈ R

m×d, x ∈ Ω.

The space C1
0 (Ω,Rm) is defined in the same way as C1

0 (Ω).
Consider the space Lp(Ω,Rm). This is a Banach space equipped with the norm

‖u‖p =
(∫

Ω

|u(x)|pdx
) 1

p

in the case 1 ≤ p < ∞ and ‖u‖∞ = esssupx∈Ω |u(x)| in the case p = ∞, where u = (u1, . . . , um) ∈ Lp(Ω,Rm).
The Sobolev space W 1,p(Ω,Rm) is endowed with the norm ‖u‖1,p = ‖u‖p + ‖∇u‖p. The closure of the space
C∞

0 (Ω) in the Sobolev space W 1,p(Ω) is referred to as W 1,p
0 (Ω), 1 ≤ p ≤ ∞. Here, as usual, C∞

0 (Ω) is a
subspace of C∞(Ω) consisting of all functions with compact support. If 1 ≤ p ≤ ∞, then we denote by q the
conjugate index to p, i.e. 1 ≤ q ≤ ∞ and 1/p+ 1/q = 1.

Let us consider the following functional

IC(u) =
∫
Ω

f(x, u(x),∇u(x)) dx

defined on the space C1(Ω,Rm). Here f : Ω × R
m × R

m×d → R, f = f(x, u, ξ), is a given continuous function,
u = (u1, . . . , um) ∈ C1(Ω,Rm). Fix an arbitrary u0 ∈ C1(Ω,Rm) and denote by AC = {u0+u | u ∈ C1

0 (Ω,Rm)}
a closed convex subset of C1(Ω,Rm). We will consider the following problem of the calculus of variations

IC(u) → extr, u ∈ AC . (3.4)

We will also consider the following functional

IW (u) =
∫
Ω

g(x, u(x),∇u(x)) dx,

defined on the space W 1,p(Ω,Rm), 1 ≤ p ≤ ∞. Here u = (u1, . . . , um) ∈W 1,p(Ω,Rm) and g : Ω×R
m×R

m×d →
R, g = g(x, u, ξ), is a given function satisfying the Caratheodory condition (i.e. the function (u, ξ) → g(x, u, ξ)
is continuous for almost every x ∈ Ω and the function x → g(x, u, ξ) is measurable for all u ∈ R

m, ξ ∈ R
m×d)

and the growth condition: there exist C ≥ 0 and β ∈ L1(Ω), β ≥ 0, such that for a.e. x ∈ Ω

|g(x, u, ξ)| ≤ β(x) + C(|u|p + |ξ|p) ∀(u, ξ) ∈ R
m × R

m×d, (3.5)

in the case 1 ≤ p <∞, and for any N ∈ N there exists a function βN ∈ L1(Ω), βN ≥ 0 such that for a.e. x ∈ Ω

|g(x, u, ξ)| ≤ βN (x) ∀(u, ξ) ∈ BN ,

in the case p = ∞. Here BN = {(u, ξ) ∈ R
m × R

m×d | |u| + |ξ| ≤ N}.

Remark 3.1. With the use of the Sobolev embedding theorem, the inequality (3.5) can be improved under
some additional assumptions on the set Ω (cf., for instance, [8], Sect. 3.4.2).
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Fix an arbitrary v0 ∈W 1,p(Ω,Rm) and denote by AW = {v0 +u ∈ W 1,p(Ω,Rm) | u ∈W 1,p
0 (Ω,Rm)} a closed

convex subset of W 1,p(Ω,Rm). We will consider the following problem of the calculus of variations

IW (u) → extr, u ∈ AW (3.6)

along with the problem (3.4).
In the subsequent sections we will show that the functionals IC and IW are codifferentiable under some

assumptions on the functions f and g. With the use of Theorem 2.8, we will derive necessary optimality
conditions for problems (3.4) and (3.6).

4. Special codifferentiable functions

In this section we will introduce several special classes of codifferentiable functions that will play an important
role in studying the functionals IC and IW . Let X be an arbitrary nonvoid set, S ⊂ E be an open set.

Definition 4.1. A function f : X×S → R, f = f(x, y), is said to be codifferentiable with respect to y at a point
(x0, y0) ∈ X×S if the function g(y) = f(x0, y), y ∈ S, is codifferentiable at the point y0. It obviously means that
there exists a pair of nonvoid convex sets dyf(x0, y0), dyf(x0, y0) ⊂ R×E∗ that are compact in the topological
product (R, τ) × (E∗, w∗) and such that for any admissible argument increment Δy (i.e. co{y, y +Δy} ⊂ S)

f(x0, y0 +Δy) − f(x0, y0) = Φf (x0, y0;Δy) + Ψf (x0, y0;Δy) + o(Δy;x0, y0),

where

Φf (x0, y0;Δy) = max
[a,ϕ]∈dyf(x0,y0)

(a+ ϕ(Δy)), Ψf (x0, y0;Δy) = min
[b,ψ]∈dyf(x0,y0)

(b+ ψ(Δy)),

Φf (x0, y0; 0) + Ψf(x0, y0, 0) = 0,
o(αΔy;x0, y0)

α
→ 0 as α ↓ 0.

A pair of sets Dyf(x, y) = [dyf(x, y), dyf(x, y)] is called a codifferential of f with respect to y at a point
(x, y), the set dyf(x, y) is referred to as a hypodifferential with respect to y, and the set dyf(x, y) is called a
hyperdifferential with respect to y. A function f is said to be codifferentiable with respect to y on X ×S if f is
codifferentiable at every point (x, y) ∈ X × S. As in the case of an ordinary codifferential, a codifferential with
respect to y is not unique.

Let (X,σ) be an aribitrary topological space. A function f : X×S → R is said to be continuously codifferen-
tiable with respect to y at a point (x0, y0) ∈ X ×S if it is codifferentiable with respect to y in a neighbourhood
of (x0, y0) and there exists a mapping (x, y) → Dyf(x, y) such that the mappings (x, y) → dyf(x, y) and
(x, y) → dyf(x, y) are Hausdorff continuous at this point.

Remark 4.2. It is clear that a codifferential with respect to y has the same properties as an ordinary codiffer-
ential. In particular, it is easy to derive formulae for computing a codifferential with respect to y and assertions
about its continuity.

Let us obtain some useful properties of a function that is continuously codifferentiable with respect to y.

Proposition 4.3. Let (X,σ) be a topological space, and suppose that a function f : X ×S → R, f = f(x, y), is
continuously codifferentiable with respect to y at a point (x0, y0) ∈ X × S. Then for any Δy0 ∈ E the functions
(x, y,Δy) → Φf (x, y;Δy) and (x, y,Δy) → Ψf (x, y;Δy) are continuous at the point (x0, y0, Δy0)

Proof. We consider only the function Φf (x, y;Δy) since the assertion for the function Ψf (x, y;Δy) is proved
in a similar way. Fix arbitrary ε > 0 and Δy0 ∈ E. Since the function f is continuously codifferentiable with



1160 NONSMOOTH PROBLEMS OF CALCULUS OF VARIATIONS VIA CODIFFERENTIATION

respect to y at (x0, y0), then there exist a neighbourhood Vx0 ∈ σ of the point x0 and δ1 > 0 such that for all
x ∈ Vx0 and y ∈ E, ‖y − y0‖ < δ1

ρH(dyf(x0, y0), dyf(x, y)) = sup
[a2,ϕ2]∈dyf(x,y)

inf
[a1,ϕ1]∈dyf(x0,y0)

(|a1 − a2| + ‖ϕ1 − ϕ2‖)

+ sup
[a1,ϕ1]∈dyf(x0,y0)

inf
[a2,ϕ2]∈dyf(x,y)

(|a1 − a2| + ‖ϕ1 − ϕ2‖) < ε

6(‖Δy0‖ + 1)
, (4.7)

where ρH is a Hausdorff metric. The set dyf(x, y) is compact in (R, τ) × (E∗, w∗), then it is bounded (cf. [13],
Thm. 2.1). Hence by (4.7) one gets that

C = sup{|a| + ‖ϕ‖ | [a, ϕ] ∈ dyf(x, y), x ∈ Vx0 , y ∈ E, ‖y − y0‖ < δ1} < +∞.

Denote δ2 = ε/3C and fix an arbitrary x ∈ Vx0 , y ∈ E, Δy ∈ E such that ‖y − y0‖ < δ1, ‖Δy −Δy0‖ < δ2.
By definition of Φf , there exists [a1, ϕ1] ∈ dyf(x0, y0) for which Φf (x0, y0;Δy0) = a1 + ϕ1(Δy0). It follows
from (4.7), that there exists [a2, ϕ2] ∈ dyf(x, y) such that

|a1 − a2| + ‖ϕ1 − ϕ2‖ < ε

3(‖Δy0‖ + 1)
<
ε

3
·

We have

|ϕ1(Δy0) − ϕ2(Δy)| ≤ |ϕ1(Δy0) − ϕ2(Δy0)| + |ϕ2(Δy0) − ϕ2(Δy)| ≤
≤ ‖ϕ1 − ϕ2‖‖Δy0‖ + ‖ϕ2‖‖Δy0 −Δy‖ ≤ ε

3(‖Δy0‖ + 1)
‖Δy0‖ + C

ε

3C
<

2ε
3
·

Hence
Φf (x0, y0;Δy0) = a1 + ϕ1(Δy0) ≤ a2 + ϕ2(Δy) + ε ≤ Φf (x, y;Δy) + ε.

Arguing in the same way we get the inverse inequality

Φf (x, y;Δy) ≤ Φf (x0, y0;Δy0) + ε.

Therefore for any x ∈ Vx0 , y ∈ E and Δy ∈ E such that ‖y−y0‖ < δ1, ‖Δy−Δy0‖ < δ2 the following inequality
holds true

|Φf (x0, y0;Δy0) − Φf (x, y;Δy)| < ε.

Thus, the proof is complete. �
Proposition 4.4. Let (X,σ) be a topological space, E = R

k, S ⊂ E be an open set. Suppose that a function
f : X × S → R, f = f(x, y), is continuously codifferentiable with respect to y on X × S. Then for any compact
set K ⊂ X × S and bounded set Q ⊂ R

k there exists L > 0 such that for all (x, y) ∈ K and Δy1, Δy2 ∈ Q

|Φf (x, y;Δy1) − Φf (x, y;Δy2)| ≤ L|Δy1 −Δy2|, |Ψf (x, y;Δy1) − Ψf (x, y;Δy2)| ≤ L|Δy1 −Δy2|.
Proof. Let us prove the assertion for Φf . Denote r = supΔy∈Q |Δy|. By the previous proposition, the function
Φf is continuous. Since by the Tichonoff theorem the set K × {Δy ∈ R

k | |Δy| ≤ 2r} is compact, then

c = max
(x,y)∈K,|Δy|≤2r

|Φf (x, y;Δy)| < +∞.

Fix an arbitrary (x, y) ∈ K and Δy1, Δy2 ∈ Q, Δy1 �= Δy2. Denote θ = |Δy1−Δy2|
r+|Δy1−Δy2| ∈ (0, 1) and Δy =

1
θ (Δy1 − (1 − θ)Δy2). We have

|Δy −Δy1| =
1 − θ

θ
|Δy1 −Δy2| =

r

r + |Δy1 −Δy2|
r + |Δy1 −Δy2|
|Δy1 −Δy2| |Δy1 −Δy2| = r,

thus |Δy| ≤ 2r and |Φf (x, y;Δy)| ≤ c.
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By definition of the function Φf , one has that the mappingΔy → Φf (x, y;Δy) is convex for any (x, y) ∈ X×E.
Hence

(θ + (1 − θ))Φf (x, y;Δy1) = Φf (x, y;Δy1) = Φf (x, y; θΔy + (1 − θ)Δy2) ≤ θc+ (1 − θ)Φf (x, y;Δy2),

therefore
Φf (x, y;Δy1) − Φf (x, y;Δy2) ≤ θ

1 − θ
(c− Φf (x, y;Δy1)) ≤ 2c

r
|Δy1 −Δy2|.

Since Δy1, Δy2 ∈ Q are arbitrary, then

Φf (x, y;Δy2) − Φf (x, y;Δy1) ≤ 2c
r
|Δy2 −Δy1|.

It remains to denote L = 2c/r. �

Remark 4.5. The proof of Proposition 4.4 is based on the well-known proof of the Lipschitz continuity of a
convex function.

Let us consider a particular case of Definition 4.1, that is the most important for the study of nonsmooth
problems of the calculus of variations.

Definition 4.6. Let X ⊂ R
d be an arbitrary nonvoid set, a function f : X × R

m × R
m×d → R, f = f(x, u, ξ).

Denote E = R
m × R

m×d. The function f is said to be codifferentiable with respect to u and ξ at a point
(x0, u0, ξ0) ∈ X × R

m × R
m×d if the function g(x, y) = f(x, u, ξ), y = (u, ξ), is codifferentiable with respect

to y at the point (x0, y0) ∈ X × E, y0 = (u0, ξ0). It means that there exist nonvoid compact convex sets
du,ξf(x0, u0, ξ0), du,ξf(x0, u0, ξ0) ⊂ R × R

m × R
m×d such that for all Δu ∈ R

m and Δξ ∈ R
m×d

f(x0, u0 +Δu, ξ0 +Δξ) − f(x0, u0, ξ0) = Φf (x0, u0, ξ0;Δu,Δξ) + Ψf (x0, u0, ξ0;Δu,Δξ) + o(Δu,Δξ;x0, u0, ξ0),

where

Φf (x0, u0, ξ0;Δu,Δξ) = max
[a,v1,v2]∈du,ξf(x0,u0,ξ0)

(a+ 〈v1, Δu〉 + 〈v2, Δξ〉),

Ψf (x0, u0, ξ0;Δu,Δξ) = min
[b,w1,w2]∈du,ξf(x0,u0,ξ0)

(b+ 〈w1, Δu〉 + 〈w2, Δξ〉),

Φf (x0, u0, ξ0; 0, 0) + Ψf (x0, u0, ξ0; 0, 0) = 0,
o(αΔu, αΔξ;x0, u0, ξ0)

α
→ 0 as α ↓ 0.

Remark 4.7. All notions and assertions connected with a codifferentiation (such as a continuous codifferenti-
ation) are easily transferred to the case of a codifferentiability with respect to u and ξ. In particular, one can
always suppose that Φf (x, u, ξ; 0, 0) = Ψf (x, u, ξ; 0, 0) = 0.

We introduce several auxiliary definitions that will allow us to use “a codifferentiation of an integral with
respect to a parameter”. These definitions will be vital for the study of nonsmooth problems of the calculus of
variations. As previously mentioned, Ω ⊂ R

d is an open bounded set.

Definition 4.8. A function f : Ω ×R
m ×R

m×d → R, f = f(x, u, ξ), is said to be codifferentiable with respect
to u and ξ on Ω × R

m × R
m×d uniformly with respect to C1(Ω,Rm) if f is codifferentiable with respect to u

and ξ on Ω × R
m × R

m×d and for all u, h ∈ C1(Ω,Rm), x ∈ Ω and α ≥ 0

f(x, u(x) + αh(x),∇u(x) + α∇h(x)) − f(x, u(x),∇u(x))
− Φf (x, u(x),∇u(x);αh(x), α∇h(x)) − Ψf (x, u(x),∇u(x);αh(x), α∇h(x)) = αεf (x, α),

where εf(x, α) → 0 as α ↓ 0 uniformly with respect to x ∈ Ω.
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Let us adduce some propositions that help to check whether a function is codifferentiable with respect to u
and ξ uniformly with respect to C1(Ω,Rm). The following proposition immediately follows from the well-known
properties of a continuously differentiable function.

Proposition 4.9. Let a function f : Ω × R
m × R

m×d → R, f = f(x, u, ξ), be continuous and continuously
differentiable with respect to ui and ξij on Ω×R

m×R
m×d , i ∈ {1, . . . ,m}, j ∈ {1, . . . , d}. Then the function f

is continuously codifferentiable with respect to u and ξ on Ω×R
m×R

m×d uniformly with respect to C1(Ω,Rm).

Applying assertions about computing a codifferential (cf. [11], Lems. 4.2.1–4.2.4) and Proposition 4.4, it is
easy to prove the following propositions.

Proposition 4.10. Let functions f1, f2 : Ω × R
m × R

m×d → R, fi = fi(x, u, ξ), be codifferentiable with respect
to u and ξ on Ω × R

m × R
m×d uniformly with respect to C1(Ω,Rm), and let c1, c2 ∈ R be given real numbers.

Then the function c1f1 + c2f2 is codifferentiable with respect to u and ξ on Ω × R
m × R

m×d uniformly with
respect to C1(Ω,Rm).

Proposition 4.11. Let functions f1, f2 : Ω × R
m × R

m×d → R, fi = fi(x, u, ξ), be codifferentiable with respect
to u and ξ on Ω×R

m×R
m×d uniformly with respect to C1(Ω,Rm). Then the function f1 · f2 is codifferentiable

with respect to u and ξ on Ω × R
m × R

m×d uniformly with respect to C1(Ω,Rm).

Proposition 4.12. Let functions fi : Ω × R
m × R

m×d → R, fi = fi(x, u, ξ), i ∈ I = {1, . . . , k}, be codiffer-
entiable with respect to u and ξ on Ω × R

m × R
m×d uniformly with respect to C1(Ω,Rm). Then the functions

g1 = maxi∈I fi and g2 = mini∈I fi are codifferentiable with respect to u and ξ on Ω × R
m × R

m×d uniformly
with respect to C1(Ω,Rm).

Proposition 4.13. Let function f : Ω × R
m × R

m×d → R, f = f(x, u, ξ), be continuous and codifferentiable
with respect to u and ξ on Ω×R

m×R
m×d uniformly with respect to C1(Ω,Rm), and suppose that f(x, u, ξ) �= 0

for all x ∈ Ω, u ∈ R
m and ξ ∈ R

m×d. Then the function g = 1/f is codifferentiable with respect to u and ξ on
Ω × R

m × R
m×d uniformly with respect to C1(Ω,Rm).

For instance, let us prove Proposition 4.12.

Proof. We consider only the function g1. Fix arbitrary u, h ∈ C1(Ω,Rm). For all α ≥ 0 and x ∈ Ω one has

g1(x, u(x) + αh(x),∇u(x) + α∇h(x)) − g1(x, u(x),∇u(x))

= max
i∈I

(
fi(x, u(x),∇u(x)) + Φfi (x, u(x),∇u(x);αh(x), α∇h(x))

+ Ψfi(x, u(x),∇u(x);αh(x), α∇h(x)) + αεfi(x, α)
)
− g1(x, u(x),∇u(x))

= max
i∈I

(
fi(x, u(x),∇u(x)) − g1(x, u(x),∇u(x)) + Φfi(x, u(x),∇u(x);αh(x), α∇h(x))

+ Ψfi(x, u(x),∇u(x);αh(x), α∇h(x))
)

+ αεg1(x, α),

where
min
i∈I

εfi(x, α) ≤ εg1(x, α) ≤ max
i∈I

εfi(x, α).

It is clear that εg1(x, α) → 0 as α ↓ 0 uniformly with respect to x ∈ Ω. It remains to note that

max
i∈I

(
fi(x, u(x),∇u(x)) − g1(x, u(x),∇u(x))

+ Φfi(x, u(x),∇u(x);αh(x), α∇h(x)) + Ψfi(x, u(x),∇u(x);αh(x), α∇h(x))
)

= Φg1(x, u(x),∇u(x);αh(x), α∇h(x)) + Ψg1(x, u(x),∇u(x);αh(x), α∇h(x))

(cf. for details [11], the proof of Lem. 4.2.4). �
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Fix an arbitrary 1 ≤ p ≤ ∞. In order to give a correct definition of codifferentiation with respect to u and ξ
uniformly with respect to the Sobolev space W 1,p(Ω,Rm), we need the following definition.

Definition 4.14. Let a function f : Ω × R
m ×R

m×d → R, f = f(x, u, ξ), be codifferentiable with respect to u
and ξ on Ω × R

m × R
m×d. A codifferential Du,ξf(x, u, ξ) of the function f with respect to u and ξ is said to

satisfy the growth condition if there exists a codifferential mapping (x, u, ξ) → Du,ξf(x, u, ξ), (x, u, ξ) ∈ Ω ×
R
m×R

m×d, such that there exist almost everywhere nonnegative functions β, γ ∈ L1(Ω), β1, β2, γ1, γ2 ∈ Lq(Ω)
and nonnegative real numbers C,C1, C2, D,D1, D2 ∈ R such that for almost every x ∈ Ω and for all u ∈ R

m,
ξ ∈ R

m×d

|a| ≤ β(x) + C(|u|p + |ξ|p), |v1| ≤ β1(x) + C1(|u|p−1 + |ξ|p−1), |v2| ≤ β2(x) + C2

(|u|p−1 + |ξ|p−1
)

for all [a, v1, v2] ∈ du,ξf(x, u, ξ) and

|b| ≤ γ(x) +D(|u|p + |ξ|p), |w1| ≤ γ1(x) +D1(|u|p−1 + |ξ|p−1), |w2| ≤ γ2(x) +D2

(|u|p−1 + |ξ|p−1
)

for all [b, w1, w2] ∈ du,ξf(x, u, ξ) in the case 1 ≤ p < ∞, and for all N ∈ N there exist almost everywhere
nonnegative functions β(N), β(N)

1 , β(N)
2 , γ(N), γ(N)

1 , γ(N)
2 ∈ L1(Ω) such that for almost every x ∈ Ω and for all

(u, ξ) ∈ BN

|a| ≤ β(N)(x), |v1| ≤ β
(N)
1 (x), |v2| ≤ β

(N)
2 (x) ∀[a, v1, v2] ∈ du,ξf(x, u, ξ),

|b| ≤ γ(N)(x), |w1| ≤ γ
(N)
1 (x), |w2| ≤ γ

(N)
2 (x) ∀[b, w1, w2] ∈ du,ξf(x, u, ξ),

in the case p = ∞.

Remark 4.15. With the use of the Sobolev embedding theorem, the inequalities in the previous definition can
be improved under some additional assumptions on the set Ω (cf., for instance, [8], Sect. 3.4.2).

The next proposition follows directly from the formulae for computing a codifferential.

Proposition 4.16. Let 1 ≤ p ≤ ∞, functions fi : Ω × R
m × R

m×d → R, fi = fi(x, u, ξ), be codifferentiable
with respect to u and ξ on Ω × R

m × R
m×d and satisfy the growth condition, i ∈ I = {1, . . . , k}. Suppose that

codifferentials of the functions fi with respect to u and ξ satisfy the growth condition, i ∈ I. Then for any real
numbers ci ∈ R, i ∈ I, the functions

∑k
i=1 cifi, maxi∈I fi and mini∈I fi are codifferentiable with respect to u

and ξ on Ω × R
m × R

m×d, satisfy the growth condition and their codifferentials with respect to u and ξ also
satisfy the growth condition.

Note an obvious property of a codifferentiable function, that has a codifferential satisfying the growth condi-
tion.

Proposition 4.17. Let 1 ≤ p ≤ ∞, a function f : Ω × R
m × R

m×d → R, f = f(x, u, ξ), be codifferentiable
with respect to u and ξ on Ω × R

m × R
m×d, and suppose that a codifferential of f with respect to u and ξ

satisfy the growth condition. Then for any u ∈W 1,p(Ω,Rm) all measurable selections of the set–valued mapping
x→ du,ξf(x, u(x),∇u(x)) (or x→ du,ξf(x, u(x),∇u(x))) belong to the space L1(Ω)×Lq(Ω,Rm)×Lq(Ω,Rm×d).

Definition 4.18. Let a function f : Ω × R
m × R

m×d → R, f = f(x, u, ξ), satisfy the Caratheodory condition
and the growth condition. The function f is said to be codifferentiable with respect to u and ξ on Ω×R

m×R
m×d

uniformly with respect to W 1,p(Ω,Rm), if

1. f is codifferentiable with respect to u and ξ on Ω × R
m × R

m×d,
2. the set–valued maps (x, u, ξ) → du,ξf(x, u, ξ) and (x, u, ξ) → du,ξf(x, u, ξ), x ∈ Ω, u ∈ R

m, ξ ∈ R
m×d,

satisfy the Caratheodory condition,
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3. a codifferential of the function f with respect to u and ξ satisfies the growth condition,
4. for all u, h ∈W 1,p(Ω,Rm), α ≥ 0 and for a.e. x ∈ Ω

f(x, u(x) + αh(x),∇u(x) + α∇h(x)) − f(x, u(x),∇u(x))
− Φf (x, u(x),∇u(x);αh(x), α∇h(x))

− Ψf (x, u(x),∇u(x);αh(x), α∇h(x)) = αεf (x, α),

where
∫
Ω |εf (x, α)| dx → 0 as α ↓ 0.

Remark 4.19. Definition 4.18 is correct in the sense that under our assumptions ε(·, α) ∈ L1(Ω) for all α ≥ 0.
Indeed, since the function f satisfies the Caratheodory condition, the growth condition and u, h ∈W 1,p(Ω,Rm),
then f(·, u(·) + αh(·),∇u(·) + α∇h(·)) ∈ L1(Ω) for all α ≥ 0.

The set–valued mapping (x, u, ξ) → du,ξf(x, u, ξ) satisfies the Caratheodory condition, hence the set–
valued mapping x → du,ξf(x, u(x),∇u(x)) is measurable (cf. [2], Thm. 8.2.8). It is clear, that the mapping
(x, a, v1, v2) → a + 〈v1, αh(x)〉 + 〈v2, α∇h(x)〉, x ∈ Ω, [a, v1, v2] ∈ R

1+m+m×d, satisfies the Caratheodory
condition, therefore the set–valued mapping

x→ {a+ 〈v1, αh(x)〉 + 〈v2, α∇h(x)〉 | [a, v1, v2] ∈ du,ξf(x, u(x),∇u(x))}
is measurable (cf. [2], Thm. 8.2.8). Then it is easy to check, that the mapping

x→ Φf (x, u(x),∇u(x);αh(x), α∇h(x)) = max
[a,v1,v2]∈du,ξf(x,u(x),∇u(x))

(a+ 〈v1, αh(x)〉 + 〈v2, α∇h(x)〉)

is measurable. Applying the fact that a codifferential of f satisfies the growth condition, it is easy to ver-
ify that Φf (·, u(·),∇u(·);αh(·), α∇h(·)) ∈ L1(Ω). Arguing in the same way, one can find that the function
Ψf (·, u(·),∇u(·);αh(·), α∇h(·)) ∈ L1(Ω). Thus, ε(·, α) ∈ L1(Ω).

Let us consider several assertions, that help to verify whether a function is codifferentiable with respect to u
and ξ uniformly with respect to W 1,p(Ω,Rm).

Proposition 4.20. Let 1 ≤ p ≤ ∞, a function f : Ω×R
m×R

m×d → R satisfy the Caratheodory condition and
the growth condition, and suppose that there exist all partial derivatives ∂f

∂ui
and ∂f

∂ξij
satisfying the Caratheodory

condition on Ω × R
m × R

m×d, i ∈ {1, . . . ,m}, j ∈ {1, . . . , d}. Suppose also that there exist a.e. nonnegative
functions βi, γij ∈ Lq(Ω) and real numbers Ci ≥ 0 and Dij ≥ 0, i ∈ {1, . . . ,m}, j ∈ {1, . . . , d}, such that for
a.e. x ∈ Ω and for all u ∈ R

m, ξ ∈ R
m×d∣∣∣∣ ∂f∂ui (x, u, ξ)
∣∣∣∣ ≤ βi(x) + Ci(|u|p−1 + |ξ|p−1) ∀i ∈ {1, . . . ,m},∣∣∣∣ ∂f∂ξij (x, u, ξ)

∣∣∣∣ ≤ γij(x) +Dij(|u|p−1 + |ξ|p−1) ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , d}

in the case 1 ≤ p < ∞, and for any N ∈ N there exist a.e. nonnegative functions β
(N)
i , γ

(N)
ij ∈ L1(Ω),

i ∈ {1, . . . ,m}, j ∈ {1, . . . , d}, such that for a.e. x ∈ Ω and for all (u, ξ) ∈ BN , i ∈ {1, . . . ,m} and j ∈ {1, . . . , d}∣∣∣∣ ∂f∂ui (x, u, ξ)
∣∣∣∣ ≤ β

(N)
i (x),

∣∣∣∣ ∂f∂ξij (x, u, ξ)
∣∣∣∣ ≤ γ

(N)
ij (x)

in the case p = ∞. Then the function f is codifferentiable with respect to u and ξ on Ω×R
m×R

m×d uniformly
with respect to W 1,p(Ω,Rm).

Proof. cf. the proof of Theorem 3.37 in [8]. �

It is easy to check that the following proposition holds true.
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Proposition 4.21. Let 1 ≤ p ≤ ∞, functions fi : Ω × R
m × R

m×d → R, fi = fi(x, u, ξ), i ∈ I = {1, . . . , k},
satisfy the Caratheodory condition and the growth condition, and suppose that the functions fi are codifferentiable
with respect to u and ξ on Ω × R

m × R
m×d uniformly with respect to W 1,p(Ω,Rm). Then for any numbers

ci ∈ R, i ∈ I, the functions
∑k

i=1 cifi, maxi∈I fi and mini∈I fi are codifferentiable with respect to u and ξ on
Ω × R

m × R
m×d uniformly with respect to W 1,p(Ω,Rm).

Remark 4.22. There are two interesting open questions. Let a function f : Ω×R
m×R

m×d → R be continuously
codifferentiable with respect to u and ξ on its domain. Is f codifferentiable with respect to u and ξ uniformly
with respect to C1(Ω,Rm)? Let a function g : Ω × R

m × R
m×d → R satisfy all conditions of Definition 4.18

except the last one. Is g codifferentiable with respect to u and ξ uniformly with respect to W 1,p(Ω,Rm)?

5. Codifferentiability of the Main functionals

Let us study the functionals IC and IW in the case, when the integrands f and g are codifferentiable with
respect to u and ξ on their domain.

For the proof of a codifferentiability of the functionals IC and IW , we need the theorem that the space
C1(Ω,Rm) is dense in the Sobolev space. This theorem holds true only if the set Ω has the segment property
(cf. [1], Sect. 3.17), i.e. if for every x ∈ bdΩ there exist an open set Ux ⊂ R

d and a nonzero vector yx ∈ R
d such

that x ∈ Ux and if z ∈ Ω ∩ Ux, then z + tyx ∈ Ω for t ∈ (0, 1). If the set Ω has this property then it must have
(n− 1)-dimensional boundary and cannot simultaneously lie on both sides of any given part of its boundary.

Theorem 5.1. Let Ω ⊂ R
d be an open bounded set having the segment property, 1 ≤ p ≤ ∞, and let a function

g : Ω × R
m × R

m×d → R, g = g(x, u, ξ), satisfy the Caratheodory condition and the growth condition. Suppose
that g is codifferentiable with respect to u and ξ on Ω × R

m × R
m×d uniformly with respect to W 1,p(Ω,Rm).

Suppose also that in the case p = ∞ for any N ∈ N there exists C(N) > 0 such that for a.e. x ∈ Ω and for all
(u, ξ) ∈ BN

|a| ≤ C(N), |v1| ≤ C(N), |v2| ≤ C(N) ∀[a, v1, v2] ∈ du,ξg(x, u, ξ),

|b| ≤ C(N), |w1| ≤ C(N), |w2| ≤ C(N) ∀[b, w1, w2] ∈ du,ξg(x, u, ξ)

(in particular, one can suppose that the function g is continuously codifferentiable on its domain). Then the
functional

IW (u) =
∫
Ω

g(x, u(x),∇u(x)) dx,

defined on the space W 1,p(Ω,Rm), is codifferentiable on its domain, and there is a codifferential of the functional
IW at a point u ∈ W 1,p(Ω,Rm) of the form

dIW (u) =
{
[A,ϕ] ∈ R × (W 1,p(Ω,Rm))∗

∣∣∣ A =
∫
Ω

a(x) dx,

ϕ(h) =
∫
Ω

(〈v1(x), h(x)〉 + 〈v2(x),∇h(x)〉) dx ∀h ∈ W 1,p(Ω,Rm),

[a(·), v1(·), v2(·)] is a measurable selection of the map x→ du,ξg(x, u(x),∇u(x))
}

and
dIW (u) =

{
[B,ψ] ∈ R × (W 1,p(Ω,Rm))∗

∣∣∣ B =
∫
Ω

b(x) dx,

ψ(h) =
∫
Ω

(〈w1(x), h(x)〉 + 〈w2(x),∇h(x)〉) dx ∀h ∈W 1,p(Ω,Rm),

[b(·), w1(·), w2(·)] is a measurable selection of the map x→ du,ξg(x, u(x),∇u(x))
}

We divide the proof of Theorem 5.1 into several lemmas.
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Lemma 5.2. Let Ω ⊂ R
d be an open bounded set, 1 ≤ p ≤ ∞, and let a function g : Ω × R

m × R
m×d → R,

g = g(x, u, ξ) satisfy the assumptions of Theorem 5.1. Then for all u, h,∈W 1,p(Ω,Rm) and α ≥ 0

IW (u + αh) − IW (u) = max
[A,ϕ]∈dIW (u)

(A+ ϕ(αh)) + min
[B,ψ]∈dIW (u)

(B + ψ(αh)) + o(α),

where o(α)/α→ 0 as α ↓ 0 and the sets dIW (u) and dIW (u) are defined in Theorem 5.1.

Proof. Since the function g is codifferentiable with respect to u and ξ uniformly with respect to W 1,p(Ω,Rm),
then for all u, h ∈ W 1,p(Ω,Rm) and α ≥ 0

IW (u+ αh) − IW (u) =
∫
Ω

Φg(x, u(x),∇u(x);αh(x), α∇h(x)) dx

+
∫
Ω

Ψg(x, u(x),∇u(x);αh(x), α∇h(x)) dx + o(α),

where o(α)/α→ 0 as α ↓ 0. Note that by virtue of Remark 4.19 one has that Φg(·, u(·),∇u(·);αh(·), α∇h(·)) ∈
L1(Ω) and Ψg(·, u(·),∇u(·);αh(·), α∇h(·)) ∈ L1(Ω).

Let [a(·), v1(·), v2(·)] be an arbitrary measurable selection of the set-valued mapping x →
du,ξg(x, u(x),∇u(x)). Since a codifferential of the function g with respect to u and ξ satisfies the growth
condition with index p, then according to Proposition 4.17 one has that a(·) ∈ L1(Ω), v1(·) ∈ Lq(Ω,Rm) and
v2(·) ∈ Lq(Ω,Rm×d). It is clear that for all α ≥ 0 and for a.e. x ∈ Ω

Φg(x, u(x),∇u(x);αh(x), α∇h(x)) ≥ a(x) + 〈v1(x), αh(x)〉 + 〈v2(x), α∇h(x)〉

Since for a.e. x ∈ Ω

Φg(x, u(x),∇u(x);αh(x), α∇h(x)) ∈ {a+ 〈v1, αh(x)〉 + 〈v2, α∇h(x)〉 | [a, v1, v2] ∈ du,ξg(x, u(x),∇u(x))},

then by the well-known Filippov theorem (cf., for example, [2], Thm. 8.2.10) there exists a measurable selection
[a(·), v1(·), v2(·)] of the set-valued mapping x→ du,ξg(x, u(x),∇u(x)) such that for a.e. x ∈ Ω

Φg(x, u(x),∇u(x);αh(x), α∇h(x)) = a(x) + 〈v1(x), αh(x)〉 + 〈v2(x), α∇h(x)〉

Thus ∫
Ω

Φg(x, u(x),∇u(x);αh(x), α∇h(x)) dx = max
∫
Ω

(a(x) + 〈v1(x), αh(x)〉 + 〈v2(x), α∇h(x)〉) dx.

Here, the maximum on the right-hand side is taken over all measurable selections [a(·), v1(·), v2(·)] of the set-
valued mapping x→ du,ξg(x, u(x),∇u(x)). Taking into account the form of the set dIW (u) one has that∫

Ω

Φg(x, u(x),∇u(x);αh(x), α∇h(x)) dx = max
[A,ϕ]∈dIW (u)

(A+ ϕ(αh)).

The rest of the proof is obvious. �

Remark 5.3. It is easy to see that in the previous lemma

max
[A,ϕ]∈dIW (u)

A =
∫
Ω

Φg(x, u(x),∇u(x); 0, 0) dx =
∫
Ω

Ψg(x, u(x),∇u(x); 0, 0) dx = min
[B,ψ]∈dIW (u)

B.

Therefore max[A,ϕ]∈dIW (u)A = min[B,ψ]∈dIW (u)B = 0.
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Lemma 5.4. Let Ω ⊂ R
d be an open bounded set, 1 ≤ p ≤ ∞, and let a function g satisfy the assumptions of

Theorem 5.1. Then the sets dIW (u) and dIW (u) are convex and bounded.

Proof. We will consider only the set dIW (u). The convexity of the set dIW (u) follows directly from the convexity
of a hypodifferential with respect to u and ξ.

Suppose that 1 ≤ p <∞. With the use of the Hölder inequality, it is easy to show that for all [A,ϕ] ∈ dIW (u)

|A| ≤ ‖β‖1 + C ((‖u‖p)p + (‖∇u‖p)p) ,
|ϕ(h)| ≤

(
‖β1‖q + C1(‖u‖p)

p
q + C1(‖∇u‖p)

p
q

)
‖h‖p +

(
‖β2‖q + C2(‖u‖p)

p
q + C2(‖∇u‖p)

p
q

)
‖∇h‖p,

where β, β1, β2, C, C1 andC2 are from the definition of the codifferential’s growth condition and h ∈W 1,p(Ω,Rm)
is arbitrary. Thus, the set dIW (u) is bounded.

Consider the case p = ∞. Fix an arbitrary u ∈ W 1,∞(Ω,Rm). It is clear that there exists N ∈ N such that
|u(x)| + |∇u(x)| ≤ N for a.e. x ∈ Ω. Therefore, applying the fact that a codifferential of the function g with
respect to u and ξ satisfies the growth condition one has that there exist β(N), β

(N)
1 , β

(N)
2 ∈ L1(Ω) such that

for a.e. x ∈ Ω

|a| ≤ β(N)(x), |v1| ≤ β
(N)
1 (x), |v2| ≤ β

(N)
2 (x) ∀[a, v1, v2] ∈ du,ξg(x, u(x),∇u(x)).

Thus for any [A,ϕ] ∈ dIW (u) and for all h ∈ W 1,∞(Ω,Rm)

|A| ≤ ‖β(N)‖1, |ϕ(h)| ≤ ‖β(N)
1 ‖1‖h‖∞ + ‖β(N)

2 ‖1‖∇h‖∞.
Hence, the set dIW (u) is bounded in the case p = ∞. �

Since an arbitrary set A ⊂ R × E∗ is compact in the topology τ × w∗ iff it is bounded and closed in the
topology τ × w∗ ([13], Thm. 2.1), then in order to prove Theorem 5.1 it remains to show that the sets dIW (u)
and dIW (u) are closed in the topology τ × w∗.

For the proof of the closedness of the sets dIW (u) and dIW (u) we need a simple auxiliary assertion about
Bochner integral. For the sake of completeness we will give a brief proof of it (see [27], Chap. 5 for the definition
and detailed study of Bochner integral).

Lemma 5.5. Let (X,A, μ) be a complete σ–finite measure space, and let a mapping η =
(η1, η2, . . . , ηn, . . .) : X → �2 be measurable. Suppose that ‖η‖	2 ∈ L1(X,A, μ) and ζ =
(
∫
X
η1 dμ,

∫
X
η2 dμ, . . . ,

∫
X
ηn dμ, . . .) ∈ �2. Then the function η is Bochner integrable and

∫
X
η dμ = ζ.

Proof. If the function η is simple, then the proof is obvious. Let η be an arbitrary function satisfying the
assumptions of the lemma. Since η is measurable and ‖η‖	2 ∈ L1(X,A, μ), then function η is Bochner integrable
and for any n ∈ N the function ηn ∈ L1(X,A, μ) (cf., for instance, [27], Chap. 5, Sect. 5). It remains to prove
that

∫
X
η dμ = ζ. Fix an arbitrary sequence of simple functions η(k) : X → �2 such that η(k) converges to η

almost everywhere and

lim
k→∞

∫
X

‖η(k) − η‖	2dμ = 0. (5.8)

Then, by definition
∫
X η dμ = limk→∞

∫
Ω η

(k) dμ. Therefore it is sufficient to prove that limk→∞
∫
X η

(k) dμ = ζ.
Fix an arbitrary ε > 0. Since ζ ∈ �2 and

∫
X η dμ ∈ �2, then there exists m ∈ N for which( ∞∑

n=m+1

|ζn|2
) 1

2

=

( ∞∑
n=m+1

∣∣∣∣∫
X

ηn dμ
∣∣∣∣2
) 1

2

< ε,

( ∞∑
n=m+1

∣∣∣∣(∫
X

η dμ
)
n

∣∣∣∣2
) 1

2

<
ε

2
· (5.9)

Here
(∫
X η dμ

)
n

is the n–th term of the sequence
∫
X η dμ.
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From (5.8) it follows, that there exists k1 ∈ N such that for all k ≥ k1∣∣∣∣∣∣
( ∞∑
n=m+1

∣∣∣∣∫
X

η(k)
n dμ

∣∣∣∣2
) 1

2

−
( ∞∑
n=m+1

∣∣∣∣(∫
X

η dμ
)
n

∣∣∣∣2
) 1

2

∣∣∣∣∣∣
≤
( ∞∑
n=m+1

∣∣∣∣∫
X

η(k)
n dμ−

(∫
X

η dμ
)
n

∣∣∣∣2
) 1

2

≤
∥∥∥∥∫

X

η(k) dμ−
∫
X

ηdμ
∥∥∥∥
	2

<
ε

2
· (5.10)

Here, we used the equality
(∫
X η

(k) dμ
)
n

=
∫
X η

(k)
n dμ that follows from the fact that the lemma holds true for

simple functions. Hence (5.9) and (5.10) imply that for all k ≥ k1( ∞∑
n=m+1

∣∣∣∣∫
X

η(k)
n dμ

∣∣∣∣2
) 1

2

< ε. (5.11)

It is clear, that for all n ∈ N the sequence η(k)
n converges to ηn almost everywhere and∫

X

|η(k)
n − ηn| dμ ≤

∫
X

‖η(k) − η‖	2dμ → 0 as k → ∞.

Therefore there exists k2 ∈ N such that for all k ≥ k2(
m∑
n=1

∣∣∣∣∫
X

|η(k)
n − ηn| dμ

∣∣∣∣2
) 1

2

< ε.

Hence applying (5.9) and (5.11) one has that for all k ≥ max{k1, k2}
∥∥∥∥∫

X

η(k) dμ− ζ

∥∥∥∥
	2

=

( ∞∑
n=1

∣∣∣∣∫
X

η(k)
n dμ−

∫
X

ηn dμ
∣∣∣∣2
) 1

2

≤
(

m∑
n=1

∣∣∣∣∫
X

|η(k)
n − ηn| dμ

∣∣∣∣2
) 1

2

+

( ∞∑
n=m+1

∣∣∣∣∫
X

η(k)
n dμ

∣∣∣∣2
) 1

2

+

( ∞∑
n=m+1

∣∣∣∣∫
X

ηn dμ
∣∣∣∣2
) 1

2

< 3ε,

that completes the proof. �

Lemma 5.6. Let 1 ≤ p ≤ ∞, a set Ω and a function g satisfy the assumptions of Theorem 5.1. Then for all
u ∈W 1,p(Ω,Rm) the sets dIW (u) and dIW (u) are closed in the topology τ × w∗.

Proof. We will prove the assertion for dIW (u) since the assertion for dIW (u) is proved in a similar way.
Consider the case 1 ≤ p < ∞. Our aim is to construct a set-valued mapping such that the limit points of

the set dIW (u) are closely related, in some sense, to the limit points of the Aumann integral of this set-valued
mapping. Then applying the closedness of the Aumann integral we will get the required result (see [2], Sect. 8.6
for the definition and basic properties of the Aumann integral of a set-valued mapping).

The space W 1,p(Ω,Rm) is separable ([1], Thm. 3.5). Let {yn}∞n=1 ⊂ W 1,p(Ω,Rm) be a countable dense
subset. The space C1(Ω,Rm) is dense in W 1,p(Ω,Rm) ([1], Thm. 3.18), therefore for all n, k ∈ N there exists
znk ∈ C1(Ω,Rm) such that ‖znk− yn‖1,p <

1
k . It is clear that the set {znk}∞n,k=1 ⊂ C1(Ω,Rm) is countable and

dense in W 1,p(Ω,Rm). For convenience sake we denote this set by {zn}∞n=1. Denote hn = 1
n2

zn

‖zn‖C1
, then

|hn(x)| ≤ 1
n2
, |∇hn(x)| ≤ 1

n2
∀x ∈ Ω.
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Introduce the mapping F : Ω × R × R
m × R

m×d → �2,

F (x, a, v1, v2) = (a, 〈v1, h1(x)〉 + 〈v2,∇h1(x)〉, . . . , 〈v1, hn(x)〉 + 〈v2,∇hn(x)〉, . . .).
It is easy to see that for all x ∈ Ω and [a, v1, v2] ∈ R × R

m × R
m×d, one has that F (x, a, v1, v2) ∈ �2 and the

mapping F is continuous, hence it satisfies the Caratheodory condition.
Fix an arbitrary u ∈ W 1,p(Ω,Rm) and consider the set-valued mapping x → F (x, du,ξg(x, u(x),∇u(x)). By

virtue of Theorem 8.2.8 from [2], one has that the mapping x→ F (x, du,ξg(x, u(x),∇u(x))) is measurable.
Note that applying the Filippov theorem, one can show that the mapping η(·) = (η0(·), η1(·), . . . , ηn(·), . . .),

η : Ω → �2 is a measurable selection of the set-valued mapping x → F (x, du,ξg(x, u(x),∇u(x))) if and only if
there exists a measurable selection [a(·), v1(·), v2(·)] of the mapping x→ du,ξg(x, u(x),∇u(x)) such that for all
n ∈ N and for a.e. x ∈ Ω

η0(x) = a(x), ηn(x) = 〈v1(x), hn(x)〉 + 〈v2(x),∇hn(x)〉.
Consider the Aumann integral

∫
Ω
F (x, du,ξg(x, u(x),∇u(x)))dx. Let a map η(·) = (η0(·), η1(·), . . . , ηn(·), . . .),

η : Ω → �2 be a measurable selection of the set-valued mapping x → F (x, du,ξg(x, u(x),∇u(x))). Let us
show that η satisfies the assumptions of Lemma 5.5. As earlier mentioned, there exists a measurable selec-
tion [a(·), v1(·), v2(·)] of the set-valued mapping x → du,ξg(x, u(x),∇u(x)) such that for all n ∈ N and for a.e.
x ∈ Ω

η0(x) = a(x), ηn(x) = 〈v1(x), hn(x)〉 + 〈v2(x),∇hn(x)〉.
Since a codifferential of the function g with respect to u and ξ satisfies the growth condition, then applying

the Hölder inequality one has that for all n ∈ N∫
Ω

|η0(x)| dx ≤ ‖β‖1 + C ((‖u‖p)p + (‖∇u‖p)p) = θ0,∫
Ω

|ηn(x)| dx ≤
∫
Ω

|v1(x)||hn(x)| dx +
∫
Ω

|v2(x)||∇hn(x)| dx

≤ (μ(Ω))
1
p

n2

[
‖β1‖q + ‖β2‖q + (C1 + C2)

(
(‖u‖p)

p
q + (‖∇u‖p)

p
q

)]
=

θ

n2
,

where μ is the Lebesgue measure on R
d, β, β1, β2, C, C1, C2 are from the definition of the growth condition of a

codifferential and
θ = (μ(Ω))

1
p

[
‖β1‖q + ‖β2‖q + (C1 + C2)

(
(‖u‖p)

p
q + (‖∇u‖p)

p
q

)]
.

Hence one gets, that ζ = (
∫
Ω η0(x) dx, . . . ,

∫
Ω ηn(x) dx, . . .) ∈ �2 and

∫
Ω

‖η(x)‖	2 dx =
∫
Ω

( ∞∑
n=0

|ηn(x)|2
) 1

2

dx ≤
∫
Ω

∞∑
n=0

|ηn(x)| dx =
∞∑
n=0

∫
Ω

|ηn(x)| dx ≤ θ0 + θ

∞∑
n=1

1
n2

<∞.

Thus, the function η satisfies the assumptions of Lemma 5.5. Therefore η is Bochner integrable and∫
Ω
η(x) dx = ζ. As a result, one has∫

Ω

F (x, du,ξg(x, u(x),∇u(x))) dx =

{(∫
Ω

η0(x) dx, . . . ,
∫
Ω

ηn(x) dx, . . .
) ∣∣∣∣∣

η0(x) = a(x), ηn(x) = 〈v1(x), hn(x)〉 + 〈v2(x),∇hn(x)〉, n ∈ N,

[a(·), v1(·), v2(·)]is a measurable selection of the map x→ du,ξg(x, u(x),∇u(x))

}
.
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Furthermore, one has that for any measurable selection η of the map x → F (x, du,ξg(x, u(x),∇u(x))) the
following inequality holds true( ∞∑

n=m+1

∣∣∣∣∫
Ω

ηn(x) dx
∣∣∣∣2
) 1

2

≤ θ
∞∑

n=m+1

1
n2

→ 0 as m→ ∞, (5.12)

i.e. the series remainder converges to zero uniformly with respect to all measurable selections η.
Let [A0, ϕ0] be a limit point of the set dIW (u) in the topology τ × w∗. Let us show, that the point

(A0, ϕ0(h1), . . . , ϕ0(hn), . . .) is a limit point of the Aumann integral
∫
Ω
F (x, du,ξg(x, u(x),∇u(x))) dx in the

norm topology in �2.
By definition one has that ϕ0 ∈ (W 1,p(Ω,Rm))∗, then (cf. [1], Thm. 3.8) there exist r1 ∈ Lq(Ω,Rm) and

r2 ∈ Lq(Ω,Rm×d) such that

ϕ0(h) =
∫
Ω

(〈r1(x), h(x)〉 + 〈r2(x),∇h(x)〉) dx ∀h ∈ W 1,p(Ω,Rm).

Therefore for all n ∈ N

|ϕ0(hn)| ≤
∫
Ω

|〈r1(x), hn(x)〉 + 〈r2(x),∇hn(x)〉| dx ≤ (‖r1‖q + ‖r2‖q)μ(Ω)
1
p

1
n2

·

Hence one gets that (A0, ϕ0(h1), . . . , ϕ0(hn), . . .) ∈ �2. Fix an arbitrary ε > 0. It is clear that there exists N0 ∈ N

for which

θ

∞∑
n=N0+1

1
n2

<
ε

3
,

( ∞∑
n=N0+1

|ϕ0(hn)|2
) 1

2

<
ε

3
·

Since [A0, ϕ0] is a limit point of the set dIW (u) in the topology τ ×w∗, then there exists a measurable selection
[a(·), v1(·), v2(·)] of the set-valued mapping x→ du,ξg(x, u(x),∇u(x)) such that∣∣∣∣A0 −

∫
Ω

a(x) dx
∣∣∣∣+ N0∑

n=1

∣∣∣∣ϕ0(hn) −
∫
Ω

(〈v1(x), hn(x)〉 + 〈v2(x),∇hn(x)〉) dx
∣∣∣∣ < ε

3
·

Denote

η(x) = (a(x), 〈v1(x), h1(x)〉 + 〈v2(x),∇h1(x)〉, . . . , 〈v1(x), hn(x)〉 + 〈v2(x),∇hn(x)〉, . . .), x ∈ Ω.

Then η(x) ∈ F (x, du,ξg(x, u(x),∇u(x))) for a.e. x ∈ Ω and
∫
Ω
η(x) dx ∈ ∫

Ω
F (x, du,ξg(x, u(x),∇u(x))) dx.

Hence, by (5.12), one has∥∥∥∥∫
Ω

η(x) dx − (A0, ϕ0(h1), . . . , ϕ0(hn), . . .)
∥∥∥∥
	2

=

( ∣∣∣∣∫
Ω

a(x) dx −A0

∣∣∣∣2 +
∞∑
n=1

∣∣∣∣∫
Ω

(〈v1(x), hn(x)〉 + 〈v2(x),∇hn(x)〉) dx − ϕ0(hn)
∣∣∣∣2
) 1

2

≤
∣∣∣∣A0 −

∫
Ω

a(x) dx
∣∣∣∣+ N0∑

n=1

∣∣∣∣ϕ0(hn) −
∫
Ω

(〈v1(x), hn(x)〉 + 〈v2(x),∇hn(x)〉) dx
∣∣∣∣

+

( ∞∑
n=N0+1

|ϕ0(hn)|
) 1

2

+

( ∞∑
n=N0+1

∣∣∣∣∫
Ω

ηn(x) dx
∣∣∣∣2
) 1

2

<
ε

3
+
ε

3
+
ε

3
= ε.
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Since ε > 0 is arbitrary, then the point (A0, ϕ0(h1), . . . , ϕ0(hn), . . .) is a limit point of the Aumann integral∫
Ω F (x, du,ξg(x, u(x),∇u(x))) dx.
The space �2 is separable and reflexive. It is easy to verify, that the mapping x→ F (x, du,ξg(x, u(x),∇u(x))

is integrably bounded (cf. [2], Sect. 8.6). Hence, the set
∫
Ω
F (x, du,ξg(x, u(x),∇u(x))) dx is closed (cf. [2],

Thm. 8.6.4). Thus, there exists a measurable selection [a(·), v1(·), v2(·)] of the mapping x→ du,ξg(x, u(x),∇u(x))
such that for all n ∈ N

A0 =
∫
Ω

a(x) dx, ϕ0(hn) =
∫
Ω

(〈v1(x), hn(x)〉 + 〈v2(x),∇hn(x)〉) dx.

Since ϕ0 is a linear functional, then

ϕ0(zn) =
∫
Ω

(〈v1(x), zn(x)〉 + 〈v2(x),∇zn(x)〉) dx ∀n ∈ N.

The set {zn}∞n=1 is dense in W 1,p(Ω,Rm) by definition, and the linear functional ϕ0 is continuous, hence

ϕ0(z) =
∫
Ω

(〈v1(x), z(x)〉 + 〈v2(x),∇z(x)〉) dx ∀z ∈ W 1,p(Ω,Rm),

therefore [A0, ϕ0] ∈ dIW (u) and the set dIW (u) is closed.
Suppose now that p = ∞. Fix an arbitrary u ∈ W 1,∞(Ω,Rm). It is obvious that there exists N ∈ N such

that |u(x)| + |∇u(x)| ≤ N . Hence, under our assumptions there exists C(N) > 0 such that

|a| ≤ C(N), |v1| ≤ C(N), |v2| ≤ C(N) ∀[a, v1, v2] ∈ du,ξg(x, u(x),∇u(x). (5.13)

Let [A,ϕ] ∈ dIW (u) then, by definition, there exists a measurable selection [a(·), v1(·), v2(·)] of the mapping
x→ du,ξg(x, u(x),∇u(x)) such that for all h ∈ W 1,∞(Ω,Rm)

A =
∫
Ω

a(x) dx, ϕ(h) =
∫
Ω

(〈v1(x), h(x)〉 + 〈v2(x),∇h(x)〉) dx.

Taking into account (5.13), one has

|ϕ(h)| ≤ C(N)‖h‖1,1 ∀h ∈W 1,∞(Ω,Rm). (5.14)

Since the space C1(Ω,Rm) is dense in W 1,1(Ω,Rm) ([1], Thm. 3.18), then it is clear that W 1,∞(Ω,Rm) is dense
in W 1,1(Ω,Rm). Therefore there exists a unique extension ϕ̂ ∈ (W 1,1(Ω,Rm))∗ of the functional ϕ on the space
W 1,1(Ω,Rm). Denote by dÎW (u) the set of all pairs [A, ϕ̂], where [A,ϕ] ∈ dIW (u) and ϕ̂ is a unique continuous
extension of ϕ on the space W 1,1(Ω,Rm). It is clear that

dÎW (u) =

{
[A, ϕ̂] ∈ R × (W 1,1(Ω,Rm))∗

∣∣∣∣∣ A =
∫
Ω

a(x) dx,

ϕ̂(h) =
∫
Ω

(〈v1(x), h(x)〉 + 〈v2(x),∇h(x)〉) dx ∀h ∈W 1,1(Ω,Rm),

[a(·), v1(·), v2(·)] is a measurable selection of the map x→ du,ξg(x, u(x),∇u(x))

}
.

Let the pair [A0, ϕ0] be a limit point of the set dIW (u) in the topology τ×σ((W 1,∞(Ω,Rm))∗,W 1,∞(Ω,Rm)).
Then for any ε > 0 and h ∈W 1,∞(Ω,Rm) there exists [A,ϕ] ∈ dIW (u) such that

|A−A0| < ε, |ϕ0(h) − ϕ(h)| < ε
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Applying (5.14), it is easy to show that

|ϕ0(h)| ≤ C(N)‖h‖1,1 ∀h ∈W 1,∞(Ω,Rm).

Thus, there exists a unique extension ϕ̂0 ∈ (W 1,1(Ω,Rm))∗ of the functional ϕ0 on the space W 1,1(Ω,Rm).
Moreover, it is easy to check that the pair [A0, ϕ̂0] is a limit point of the set dÎW (u) in the topology τ ×
σ((W 1,1(Ω,Rm))∗,W 1,1(Ω,Rm)).

Arguing in the same way as in the proof of the case 1 ≤ p <∞, one can find that [A, ϕ̂0] ∈ dÎW (u), therefore
[A0, ϕ0] ∈ dIW (u). Thus, the proof is complete. �

An analogous result for the functional IC also holds true.

Theorem 5.7. Let Ω ⊂ R
d be an open bounded set having the segment property, and let a function f : Ω ×

R
m × R

m×d → R, f = f(x, u, ξ), be continuous and continuously codifferentiable with respect to u and ξ on
Ω × R

m × R
m×d uniformly with respect to C1(Ω,Rm). Then the functional

IC(u) =
∫
Ω

f(x, u(x),∇u(x)) dx,

defined on the space C1(Ω,Rm), is continuously codifferentiable at every point u ∈ C1(Ω,Rm) and there is a
codifferential of the functional IC at a point u of the form

dIC(u) =
{
[A,ϕ] ∈ R × (C1(Ω,Rm))∗

∣∣∣ A =
∫
Ω

a(x) dx,

ϕ(h) =
∫
Ω

(〈v1(x), h(x)〉 + 〈v2(x),∇h(x)〉) dx ∀h ∈ C1(Ω,Rm),

[a(·), v1(·), v2(·)] is a measurable selection of the map x→ du,ξf(x, u(x),∇u(x))
}

and

dIC(u) =
{

[B,ψ] ∈ R × (C1(Ω,Rm))∗
∣∣∣ B =

∫
Ω

b(x) dx,

ψ(h) =
∫
Ω

(〈w1(x), h(x)〉 + 〈w2(x),∇h(x)〉) dx ∀h ∈ C1(Ω,Rm),

[b(·), w1(·), w2(·)] is a measurable selection of the map x→ du,ξf(x, u(x),∇u(x))
}

Proof. Fix an arbitrary u ∈ C1(Ω,Rm). Since f is continuously codifferentiable with respect to u and ξ on its
domain, then there exists C > 0 such that

|a| ≤ C, |v1| ≤ C, |v2| ≤ C ∀[a, v1, v2] ∈ du,ξf(x, u(x),∇u(x)),

|b| ≤ C, |w1| ≤ C, |w2| ≤ C ∀[b, w1, w2] ∈ du,ξf(x, u(x),∇u(x))

and, by virtue of Proposition 4.3, the functions Φf (·, u(·),∇u(·);αh(·), α∇h(·)), Ψf(·, u(·),∇u(·);αh(·), α∇h(·))
are continuous. Applying these facts and arguing in a similar way to the proof of Theorem 5.1 in the case p = ∞
one can show that the functional IC is codifferentiable at the point u and it has a codifferential of the form
stated in the theorem. It remains to prove that the functional IC is continuously codifferentiable.

Let us prove the Hausdorff continuity of the maps u → dIC(u) and u → dIC(u). We will consider only the
hypodifferential of the functional IC , since the continuity of the hyperdifferential is proved in a similar way.

Fix an arbitrary ε > 0 and denote

K = {(x, u0, ξ0) | x ∈ Ω, |u0| ≤ ‖u‖C1 + 1, |ξ0| ≤ ‖u‖C1 + 1}.
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It is clear that K is compact. Since f is continuously codifferentiable with respect to u and ξ on its domain, then
the mapping (x, u, ξ) → du,ξf(x, u, ξ) is uniformly Hausdorff continuous on K. Hence, there exists δ ∈ (0, 1)
such that for all (x, u(1), ξ(1)), (x, u(2), ξ(2)) ∈ K such that |u(1) − u(2)| < δ and |ξ(1) − ξ(2)| < δ

ρH(du,ξf(x, u(1), ξ(1)), du,ξf(x, u(2), ξ(2))) < ε. (5.15)

Thus, for any h ∈ C1(Ω,Rm) such that ‖h‖C1 < δ one has that for all x ∈ Ω

ρH(du,ξf(x, u(x) + h(x),∇u(x) + ∇h(x)), du,ξf(x, u(x),∇u(x))) < ε. (5.16)

Fix arbitrary h ∈ C1(Ω,Rm), ‖h‖C1 < δ and [A,ϕ] ∈ dIC(u + h). Then there exists a measurable selection
[a(·), v1(·), v2(·)] of the mapping x→ du,ξf(x, u(x) + h(x),∇u(x) + ∇h(x)) such that for all z ∈ C1(Ω,Rm)

A =
∫
Ω

a(x) dx, ϕ(z) =
∫
Ω

(〈v1(x), z(x)〉 + 〈v2(x),∇z(x)〉) dx.

It follows from (5.16) that for a.e. x ∈ Ω

ρ(du,ξf(x, u(x),∇u(x)), {[a(x), v1(x), v2(x)]})
= inf

{
max{|a(x) − a(x)|, |v1(x) − v1(x)|, |v2(x) − v2(x)}

∣∣∣ [a(x), v1(x), v2(x)] ∈ du,ξf(x, u(x),∇u(x))
}
< ε.

Therefore, by virtue of Corollary 8.2.13 from [2], there exists a measurable selection [a(·), v1(·), v2(·)] of the
mapping x→ du,ξf(x, u(x),∇u(x)) such that for a.e. x ∈ Ω

|a(x) − a(x)| < ε, |v1(x) − v1(x)| < ε, |v2(x) − v2(x)| < ε.

Denote A =
∫
Ω a(x) dx and

ϕ(z) =
∫
Ω

(〈v1(x), z(x)〉 + 〈v2(x),∇z(x)〉) dx ∀z ∈ C1(Ω,Rm).

It is clear that [A,ϕ] ∈ dIC(u) and there exists M > 0, depending only on the measure of Ω, d and m, such
that ‖[A,ϕ] − [A,ϕ]‖ < Mε. Arguing in the same way one can prove that for any [A,ϕ] ∈ dIC(u) there exists
[A,ϕ] ∈ dIC(u+ h) such that ‖[A,ϕ] − [A,ϕ]‖ < Mε. Thus

ρH(dIC(u), dIC(u + h)) < Mε ∀h ∈ C1(Ω,Rm), ‖h‖ < δ,

that completes the proof. �

Remark 5.8. Arguing in a similar way to the proof of the previous theorem, one can show that if in Theorem 5.1
the function g is continuously codifferentiable with respect to u and ξ on its domain, then the functional IW is
continuously codifferentiable in the case p = ∞.

6. Necessary optimality conditions in nonsmooth problems of the calculus

of variations

Let us derive necessary conditions for the extremum of the functional IW on the set AW . We will consider
only necessary conditions for a minimum, since necessary conditions for a maximum are derived in a similar
way.
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Theorem 6.1. Let a set Ω and a function g satisfy the assumptions of Theorem 5.1, and suppose that the
functional IW has a local minimum on the set AW at a point u∗ ∈ W 1,p(Ω,Rm). Then for any measurable
selection [b(·), w1(·), w2(·)] of the mapping x→ du,ξg(x, u∗(x),∇u∗(x)) such that b(x) = 0 for a.e. x ∈ Ω, there
exists a function ζ ∈ Lq(Ω,Rm×d) such that there exists div ζ = (div(ζ11, . . . , ζ1d), . . . ,div(ζm1, . . . , ζmd)) ∈
Lq(Ω,Rm) and for a.e. x ∈ Ω

[0, div(ζ)(x), ζ(x)] ∈ du,ξg(x, u
∗(x),∇u∗(x)) + {[0, w1(x), w2(x)]}.

Proof. It is easy to see, that

N(AW , u∗) = {ϕ ∈ (W 1,p(Ω,Rm))∗ | ϕ(h) = 0 ∀h ∈W 1,p
0 (Ω,Rm)}.

Applying Theorems 2.8 and 5.1 one easily get that for any measurable selection [b(·), w1(·), w2(·)] of the map-
ping x → du,ξg(x, u∗(x),∇u∗(x)) such that b(x) = 0 for a.e. x ∈ Ω, there exists a measurable selection
[a(·), v1(·), v2(·)] of the mapping x → du,ξg(x, u

∗(x),∇u∗(x)) such that a(x) = 0 for a.e. x ∈ Ω and for all
h ∈ W 1,p

0 (Ω,Rm) ∫
Ω

(〈v1(x) + w1(x), h(x)〉 + 〈v2(x) + w2(x),∇h(x)〉) dx = 0. (6.17)

Therefore, by definition, v1 + w1 = div(v2 + w2). It remains to denote ζ = v2 + w2. �

An analogous theorem for the functional IC also holds true.

Theorem 6.2. Let a set Ω and a function f satisfy the assumptions of Theorem 5.7, and suppose that the
functional IC has a local minimum on the set AC at a point u∗ ∈ C1(Ω,Rm). Then for any measurable
selection [b(·), w1(·), w2(·)] of the mapping x→ du,ξf(x, u∗(x),∇u∗(x)) such that b(x) = 0 for a.e. x ∈ Ω, there
exist a function ζ ∈ L∞(Ω,Rm×d) such that there exists div ζ ∈ L∞(Ω,Rm) and for a.e. x ∈ Ω

[0, div(ζ)(x), ζ(x)] ∈ du,ξf(x, u∗(x),∇u∗(x)) + {[0, w1(x), w2(x)]}.
In the case d = 1 necessary conditions for a minimum can be formulated in a different way.

Corollary 6.3. Let d = 1, Ω = (a, b), and let a function g satisfy the assumptions of Theorem 5.1. Suppose
that the functional IW has a local minimum on the set AW at a point u∗ ∈ W 1,p((a, b),Rm). Then for any
measurable selection [b(·), w1(·), w2(·)] of the mapping x → du,ξg(x, u∗(x), (u∗)′(x)) such that b(x) = 0 for
a.e. x ∈ (a, b), there exist a vector c ∈ R

m and a measurable selection [a(·), v1(·), v2(·)] of the mapping x →
du,ξg(x, u

∗(x), (u∗)′(x)) such that a(x) = 0 for a.e. x ∈ (a, b) and∫ b

x

(v1(y) + w1(y)) dy + v2(x) + w2(x) = c for a.e. x ∈ (a, b). (6.18)

or, equivalently, for any measurable selection [b(·), w1(·), w2(·)] of the mapping x → du,ξg(x, u∗(x), (u∗)′(x))
such that b(x) = 0 for a.e. x ∈ (a, b), there exist an absolutely continuous function ζ : (a, b) → R

m such that for
a.e. x ∈ (a, b)

[0, ζ′(x), ζ(x)] ∈ du,ξg(x, u
∗(x), (u∗)′(x)) + {[0, w1(x), w2(x)]}.

Moreover, ζ ∈W 1,q((a, b),Rm).

Proof. Integrating the first term on the left-hand side of (6.17) by parts one find that for all h ∈ C∞
0 ((a, b),Rm)∫ b

a

〈∫ b

x

(v1(y) + w1(y)) dy + v2(x) + w2(x), h′(x)
〉
dx = 0.

Applying the du Bois–Reymond lemma (cf., for instance, [16], Sect. 2.2), one gets that there exists c ∈ R
m

such that the equation (6.18) holds true. In order to get the equivalent result it remains to denote ζ(x) =
− ∫ b

x (v1(y) + w1(y)) dy + c. �
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Necessary optimality conditions can be transformed into a more convenient form for different particular
functionals. Let us give an example of how one can transform the condition for a minimum stated in Corollary 6.3.

Proposition 6.4. Let d = 1, Ω = (a, b), f = maxi∈I fi + minj∈J gj, where I = {1, . . . , k}, J = {1, . . . , l},
functions fi, gj : [a, b] × R

m × R
m → R, fi = fi(x, u, ξ), gj = gj(x, u, ξ), are continuous and continuously

differentiable with respect to us and ξr on [a, b] × R
m × R

m, i ∈ I, j ∈ J , s, r ∈ {1, . . . ,m}. Suppose that
the functional IC has a local minimum on the set AC = {u ∈ C1([a, b],Rm) | u(a) = u1, u(b) = u2} where
u1, u2 ∈ R

m are given vectors, at a point u∗. Then for any measurable functions αj : (a, b) → [0, 1], j ∈ J , such
that α1 + . . .+ αl = 1 a.e. and for any j ∈ J

αj(x)(gj(x, u∗(x), (u∗)′(x)) − min
j∈J

gj(x, u∗(x), (u∗)′(x))) = 0 for a.e. x ∈ (a, b),

there exist a vector c = (c1, . . . , cm) ∈ R
m and measurable functions λi : (a, b) → [0, 1] such that λ1+ . . .+λk = 1

a.e., for any i ∈ I

λi(x)(max
i∈I

fi(x, u∗(x), (u∗)′(x)) − fi(x, u∗(x), (u∗)′(x))) = 0 for a.e. x ∈ (a, b)

and for all s ∈ {1, . . . ,m} and for a.e. x ∈ (a, b)∫ b

x

(∑
i∈I

λi(t)
∂fi
∂us

(t, u∗(t), (u∗)′(t)) +
∑
j∈J

αj(t)
∂gj
∂us

(t, u∗(t), (u∗)′(t))

)
dt

+
∑
i∈I

λi(x)
∂fi
∂ξs

(x, u∗(x), (u∗)′(x)) +
∑
j∈J

αj(x)
∂gj
∂ξs

(x, u∗(x), (u∗)′(x)) = cs.

Proof. By virtue of Propositions 4.9, 4.10 and 4.12, one has that the function f is continuous and continuously
codifferentiable with respect to u and ξ on [a, b]×R

m×R
m uniformly with respect to C1([a, b],Rm) and there is a

codifferential of the function f with respect to u and ξ of the form Du,ξf(x, u, ξ) = [du,ξf(x, u, ξ), du,ξf(x, u, ξ)],
where (cf. Rem. 2.6)

du,ξf(x, u, ξ) = co
{(
fi(x, u, ξ) − max

i∈I
fi(x, u, ξ),

∂fi
∂u1

(x, u, ξ), . . . ,
∂fi
∂um

(x, u, ξ),
∂fi
∂ξ1

(x, u, ξ), . . . ,
∂fi
∂ξm

(x, u, ξ)
) ∣∣∣ i ∈ I

}
and

du,ξf(x, u, ξ) = co
{(
gj(x, u, ξ) − min

i∈I
gj(x, u, ξ),

∂gj
∂u1

(x, u, ξ), . . . ,
∂gj
∂um

(x, u, ξ),
∂gj
∂ξ1

(x, u, ξ), . . . ,
∂gj
∂ξm

(x, u, ξ)
) ∣∣∣ j ∈ J

}
.

Let us describe all measurable selections of the map x → du,ξf(x, u(x), u′(x)), where u ∈ C1([a, b],Rm) is
arbitrary. Denote

Λ = {(λ1, . . . , λk) ∈ R
k | λi ≥ 0, i ∈ I, λ1 + . . .+ λk = 1}

and introduce the mapping F : [a, b] × R
k → R

1+2m,

F (x, λ1, . . . , λk) =

(∑
i∈I

λi(fi(x, u(x), u′(x)) − max
i∈I

fi(x, u(x), u′(x))),

∑
i∈I

λi
∂fi
∂u1

(x, u(x), u′(x)), . . . ,
∑
i∈I

λi
∂fi
∂um

(x, u(x), u′(x)),

∑
i∈I

λi
∂fi
∂ξ1

(x, u(x), u′(x)), . . . ,
∑
i∈I

λi
∂fi
∂ξm

(x, u(x), u′(x))

)
.
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It is easy to verify that the mapping F satisfies the Caratheodory condition. Let [a(·), v1(·), v2(·)] be a measurable
selection of the mapping x→ du,ξf(x, u∗(x), (u∗)′(x)), then for a.e. x ∈ (a, b)

[a(x), v1(x), v2(x)] ∈ F (x, Λ).

By virtue of the Filippov theorem one has that there exists a measurable selection (λ1(·), . . . , λk(·)) of the
constant mapping x→ Λ such that for a.e. x ∈ (a, b)

a(x) =
∑
i∈I

λi(x)(fi(x, u(x), u′(x)) − max
i∈I

fi(x, u(x), u′(x))),

v1(x) =

(∑
i∈I

λi(x)
∂fi
∂u1

(x, u(x), u′(x)), . . . ,
∑
i∈I

λi(x)
∂fi
∂um

(x, u(x), u′(x))

)
,

v2(x) =

(∑
i∈I

λi(x)
∂fi
∂ξ1

(x, u(x), u′(x)), . . . ,
∑
i∈I

λi(x)
∂fi
∂ξm

(x, u(x), u′(x))

)
.

Furthermore, λi ≥ 0 and λ1 + . . . + λk = 1 almost everywhere. Hence, applying Corollary 6.3 it is easy to get
the required result. �

7. Problem of Bolza

In this section we will briefly discuss necessary optimality conditions in the problem of Bolza. Let 1 ≤ p ≤ ∞,
d = 1, Ω = (a, b), and consider the following problem of Bolza

I(u) = g0(u(a), u(b)) +
∫ b

a

g(x, u(x), u′(x)) dx → extr, (7.19)

where u ∈ W 1,p((a, b),Rm). Here, as usual, we identify the Sobolev space W 1,p((a, b),Rm) with the space
consisting of all absolutely continuous functions u : [a, b] → R

m, such that u′ ∈ Lp((a, b),Rm). We will assume
that the function g : (a, b) × R

m × R
m → R, g = g(x, u, ξ) satisfies the assumptions of Theorem 5.1, and the

function g0 : R
m × R

m → R is codifferentiable on its domain.

Theorem 7.1. Let the functional I have a local minimum at a point u∗ ∈ W 1,p((a, b),Rm). Then for
any [0, r1, r2] ∈ dg0(u∗(a), u∗(b)) and for any measurable selection [b(·), w1(·), w2(·)] of the mapping x →
du,ξg(x, u∗(x), (u∗)′(x)) such that b(x) = 0 for a.e. x ∈ (a, b) there exists an absolutely continuous function
ζ : [a, b] → R

d such that ζ′ ∈ Lq((a, b),Rd), for a.e. x ∈ (a, b)

[0, ζ′(x), ζ(x)] ∈ du,ξg(x, u
∗(x), (u∗)′(x)) + {[0, w1(x), w2(x)]}

and the following transversality condition holds true

[0, ζ(a),−ζ(b)] ∈ dg0(u∗(a), u∗(b)) + {[0, r1, r2]}.

Proof. Define the functional J : W 1,p((a, b),Rm) × R
m × R

m → R,

J (u, y, z) = g0(y, z) +
∫ b

a

g(x, u(x), u′(x)) dx
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and fix arbitrary h ∈ W 1,p((a, b),Rm), y,Δy, z,Δz ∈ R
m. Since the function g satisfies the assumptions of

Theorem 5.1, then it is easy to verify that for any α ≥ 0

J (u∗ + αh, y + αΔy, z + αΔz) − J (u∗, y, z)

= max

(
δ +

∫ b

a

a(x) dx+ α〈s1, Δy〉 + α〈s2, Δz〉 +
∫ b

a

〈v1(x), αh(x)〉dx +
∫ b

a

〈v2(x), αh′(x)〉dx

)

+ min

(
γ +

∫ b

a

b(x) dx+ α〈r1, Δy〉 + α〈r2, Δz〉 +
∫ b

a

〈w1(x), αh(x)〉dx +
∫ b

a

〈w2(x), αh′(x)〉dx

)
+ o(α),

(7.20)

where o(α)/α → 0 as α ↓ 0. Here the maximum on the right-hand side is taken over all [δ, s1, s2] ∈ dg0(y, z)
and measurable selections [a(·), v1(·), v2(·)] of the mapping x → du,ξg(x, u∗(x), (u∗)′(x)), and the minimum on
the right-hand side is taken over all [γ, r1, r2] ∈ dg0(y, z) and measurable selections [b(·), w1(·), w2(·)] of the
mapping x→ du,ξg(x, u∗(x), (u∗)′(x)). Hence, by (7.20), the functional J is codifferentiable.

Since the functional I has a local minimum at the point u∗, then the functional J has a local minimum on
the closed convex set

A = {(u, y, z) ∈W 1,p((a, b),Rm) × R
m × R

m | y = u(a), z = u(b)}
at the point (u∗(·), u∗(a), u∗(b)). It is easy to show that

N(A, (u∗, u∗(a), u∗(b))) = {(ϕ, y, z) ∈ (W 1,p((a, b),Rm))∗ × R
m × R

m |
ϕ(h) + 〈y, h(a)〉 + 〈z, h(b)〉 = 0 ∀h ∈W 1,p((a, b),Rm)}.

Applying the necessary condition for the minimum of a codifferentiable function (Thm. 2.8), one has that
for any [0, r1, r2] ∈ dg0(u∗(a), u∗(b)) and for any measurable selection [b(·), w1(·), w2(·)] of the mapping x →
du,ξg(x, u∗(x), (u∗)′(x)) such that b(x) = 0 for a.e. x ∈ (a, b), there exist [0, s1, s2] ∈ dg0(u∗(a), u∗(b)) and a
measurable selection [a(·), v1(·), v2(·)] of the set-valued mapping x→ du,ξg(x, u∗(x), (u∗)′(x)) such that a(x) = 0
for a.e. x ∈ (a, b) and for all h ∈W 1,p((a, b),Rm)∫ b

a

(〈v1(x) + w1(x), h(x)〉 + 〈v2(x) + w2(x), h′(x)〉) dx+ 〈s1 + r1, h(a)〉 + 〈s2 + r2, h(b)〉 = 0. (7.21)

Therefore for any h ∈ C∞
0 ([a, b],Rd), one has∫ b

a

〈(∫ b

x

(v1(t) + w1(t)) dt+ v2(x) + w2(x)

)
, h′(x)

〉
dx = 0,

then applying the du Bois–Reymond lemma one gets that there exists c ∈ R
m such that∫ b

x

(v1(t) + w1(t)) dt+ v2(x) + w2(x) = c for a.e. x ∈ (a, b).

Define ζ(x) = − ∫ b
x
(v1(τ) + w1(τ)) dτ + c, x ∈ [a, b]. It is clear that ζ is absolutely continuous, ζ′ = v1 + w1 ∈

Lq((a, b),Rm), ζ = v2 + w2 a.e. and for a.e. x ∈ (a, b)

[0, ζ′(x), ζ(x)] ∈ du,ξg(x, u
∗(x), (u∗)′(x)) + {[0, w1(x), w2(x)}.

Substituting v2 + w2 for ζ and v1 + w1 for ζ′ in (7.21) and integrating by parts one gets that for any h ∈
W 1,p((a, b),Rm)

〈s1 + r1 − ζ(a), h(a)〉 + 〈s2 + r2 + ζ(b), h(b)〉 = 0,
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therfore ζ(a) = s1 + r1 and ζ(b) = −s2 − r2 or, equivalently,

[0, ζ(a),−ζ(b)] ∈ dg0(u∗(a), u∗(b)) + [0, r1, r2].

Thus, the proof is complete. �

Remark 7.2. It is easy to derive necessary conditions for a maximum in the problem of Bolza (7.19). One can
also consider the problem of Bolza for a functional defined on C1([a, b],Rd) and get similar results.

Remark 7.3. In this paper we studied only the main problem of the calculus of variations and the problem of
Bolza. However, the techniques developed in the article can be applied to the study of more difficult problems.
In particular, one can consider the problem

I(u) =
∫ b

a

f(x, u(x), u′(x)) dx → inf, g(x, u(x), u′(x)) ≤ 0, u(a) = u1, u(b) = u2.

It is clear that u∗ is a point of local minimum in this problem if and only if u∗ is a point of local minimum in
the problem

max
{
I(u) − I(u∗),

∫ b

a

max{g(x, u(x), u′(x)), 0} dx
}
→ inf, u(a) = u1, u(b) = u2.

Applying the necessary conditions for a minimum of a codifferentiable function on a convex set one can easily
obtain necessary optimality conditions in the latter problems and, as a result, in the initial one. Also, the author
supposes that the approach based on codifferentiation can be applied to the study of various optimal control
problems.

8. Examples

We consider two examples which demonstrate benefits of the necessary optimality conditions stated in
Theorems 6.1 and 7.1. In the first example we compare the necessary conditions for a minimum (Thm. 6.1) in
the case d > 1 with Clarke’s optimality conditions [7]. In the second one we compare the necessary optimality
conditions in the problem of Bolza stated in Theorem 7.1 with Clarke’s separated Euler condition [5], Clarke’s
Euler–Lagrange condition [6, 7] and necessary optimality conditions derived by Ioffe and Rockafellar in [15].

Example 1. Let d = 2, Ω = (−1, 1) × (−1, 1), 1 ≤ p <∞, g(u, ξ) = max{u, 0}+ min{ξ1 − ξ2, 0}, i.e.

IW (u) =
∫
Ω

(
max{u(x), 0} + min

{
∂u

∂x1
(x) − ∂u

∂x2
(x), 0

})
dx,

and v0 = 0, i.e. AW = W 1,p
0 (Ω). We want to check non-optimality of the function u0(x) ≡ 0. It is easy to verify

that
∂Clg(u0(x),∇u0(x)) = ∂Clg(0, 0) = co{(1, 1,−1), (1, 0, 0), (0, 1,−1), (0, 0, 0)}.

Here ∂Clg(0, 0) is the Clarke subdifferential of the function g at the point (0, 0). Since (0, 0) ∈
∂Clg(u0(x),∇u0(x)) for any x ∈ Ω, then Clarke’s necessary optimality condition ([7], Thm. 4.6.1) is satisfied.

It is obvious that the function g satisfies the assumptions of Theorem 5.1. Thus we can use Theorem 6.1 to
check non-optimality of the function u0. Applying formulae for computing a codifferential [11, 13], one has

du,ξg(u0(x),∇u0(x)) = co {(0, 1, 0, 0), 0}, du,ξg(u0(x),∇u0(x)) = co {(0, 0, 1,−1), 0}.
The function [0, 0, x2

1,−x2
1] is a measurable selection of the set-valued mapping x → du,ξg(u0(x),∇u0(x)).

Therefore, if the necessary condition for a minimum (Thm. 6.1) is satisfied, then there exists a function ζ ∈
Lq(Ω,R2) such that there exists div ζ ∈ Lq(Ω) and for a.e. x ∈ Ω

[0, div(ζ)(x), ζ(x)] ∈ du,ξg(u0(x),∇u0(x)) + {[0, 0, x2
1,−x2

1]} = co {[0, 1, x2
1,−x2

1], [0, 0, x
2
1,−x2

1]}.
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Hence ζ(x) = (x2
1,−x2

1) and div(ζ)(x) = 2x1 a.e., but for any (x1, x2) ∈ Ω, x1 /∈ (0, 1/2)

[0, 2x1, x
2
1,−x2

1] /∈ co {[0, 1, x2
1,−x2

1], [0, 0, x
2
1,−x2

1]}.

Thus, the function u0(x) ≡ 0 is non-optimal.

Example 2. Let d = 1, Ω = (0, 1), p = 1. Consider the following problem of Bolza

I(u) = u(0) − γu(1) +
∫ 1

0

max{|u′(x)| − |u(x)|, 0} dx.

We want to check non-optimality of the function uα(x) = αex for any α ≥ 0 and γ ∈ R (cf. [15], example 2). It
was shown in [15] that Clarke’s separated Euler condition fails to disqualify uα as non-optimal for any α > 0
and γ ∈ [0, 1]. Clarke’s Euler–Lagrange condition fails to disqualify u(x) ≡ 0 (α = 0) for γ ∈ [0, 1] and the
necessary optimality condition derived in [15] is satisfied, when u(x) ≡ 0 and γ ∈ [e−1, 1]. Also, both Clarke’s
Euler–Lagrange conditions and the necessary optimality condition derived in [15] are satisfied for uα, when
γ = e−1 and α > 0.

We will show that the necessary condition for a minimum in the problem of Bolza stated in Theorem 7.1 is
not satisfied for any α ≥ 0 and γ ∈ R, except the case γ = e−1, when α > 0. Indeed, since g0(y, z) = y− γz and
Dg0(y, z) = [{[0, 1,−γ]}, {0}], then the transversality condition is ζ(0) = 1, ζ(1) = γ. One has

g(x, u, ξ) = max{|ξ|, |u|} − |u| = max{ξ,−ξ, u,−u}+ min{u,−u},

therefore the function g satisfies the assumptions of Theorem 5.1 and for any α ≥ 0

du,ξg(x, uα(x), u′α(x)) = co{(0, 0, 1), (−2αex, 0,−1), (0, 1, 0), (−2αex,−1, 0)}, (8.22)

du,ξg(x, uα(x), u′α(x)) = co{(2αex, 1, 0), (0,−1, 0)}. (8.23)

If α > 0, then the only measurable selection of the set-valued mapping x → du,ξg(·, uα(x), u′α(x)) such that
b(x) = 0 for a.e. x ∈ (0, 1) is [b(·), w1(·), w2(·)] = [0,−1, 0]. Suppose that the necessary condition for a minimum
(Thm. 7.1) is satisfied. Then there exists ζ ∈ W 1,1(0, 1) such that ζ(0) = 1, ζ(1) = γ and for a.e. x ∈ (0, 1)

[0, ζ′(x), ζ(x)] ∈ du,ξg(x, uα(x), u′α(x)) + {[0,−1, 0]} = co{(0,−1, 1), (−2αex,−1,−1), (0, 0, 0), (−2αex,−2, 0)}.

Hence ζ′ = −ζ a.e. and ζ(x) = ce−x. Applying the transversality condition ζ(0) = 1, one has that ζ(x) = e−x.
Thus, uα is non-optimal for any γ �= e−1.

Consider the case α = 0, i.e. uα(x) ≡ 0, and suppose that uα satisfies the necessary condition for a minimum.
By Theorem 7.1 there exists ζ ∈ W 1,1(0, 1) such that ζ(0) = 1, ζ(1) = γ and for a.e. x ∈ (0, 1)

[0, ζ′(x), ζ(x)] ∈ du,ξg(x, uα(x), u′α(x)) + {[0,−1, 0]} = co{(0,−1, 1), (0,−1,−1), (0, 0, 0), (0,−2, 0)}.

Therefore ζ′(x) ≤ 0 for a.e. x ∈ (0, 1) and ζ(1) ≤ ζ(0) = 1. Hence the necessary condition for a minimum is not
satisfied for any γ > 1. Analogously, there exists ζ ∈ W 1,1(0, 1) such that ζ(0) = 1, ζ(1) = γ and for almost
every x ∈ (0, 1)

[0, ζ′(x), ζ(x)] ∈ du,ξg(x, uα(x), u′α(x)) + {[0, 1, 0]} = co{(0, 1, 1), (0, 1,−1), (0, 2, 0), (0, 0, 0)}.

(cf. (8.22), and (8.23)). Thus ζ′(x) ≥ 0 for a.e. x ∈ (0, 1) and ζ(1) ≥ ζ(0) = 1. Let us show that ζ(1) > 1. If
ζ′(x) > 0 on a set of positive measure, then ζ(1) > ζ(0) = 1. If ζ′(x) = 0 a.e., then ζ(x) = 0 for a.e. x ∈ (0, 1),
which contradicts the transversality condition ζ(0) = 1. Therefore ζ(1) > 1 and for any γ ≤ 1 the necessary
condition for a minimum is not satisfied.
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Two previous examples show that the necessary optimality condition stated in Theorem 6.1 and the necessary
optimality condition in the problem of Bolza stated in Theorem 7.1 are better then Clarke’s optimality conditions
and the necessary optimality condition obtained in [15]. We believe that this is a usual situation, because
codifferential, as a nonhomogeneous approximation, provides more information about function’s behaviour than
homogeneous approximations used in Clarke’s works and in [15].
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