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IDENTIFICATION OF A WAVE EQUATION GENERATED BY A STRING ∗

Amin Boumenir
1

Abstract. We show that we can reconstruct two coefficients of a wave equation by a single boundary
measurement of the solution. The identification and reconstruction are based on Krein’s inverse spectral
theory for the first coefficient and on the Gelfand−Levitan theory for the second. To do so we use
spectral estimation to extract the first spectrum and then interpolation to map the second one. The
control of the solution is also studied.
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1. Introduction

We are concerned with the identification and recovery of the mass of a Lebesgue Stieltjes measure dm(x) and
a control function p (t) appearing in the wave equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2

∂t2
u(x, t) =

∂

∂m(x)
∂+

∂x+
u (x, t) + p(t)u(x, t) 0 ≤ x ≤ b

u(x, 0) = f(x), ut(x, 0) = g(x),

hu(0, t)− ∂+

∂x+
u(0, t) = 0 h ≥ 0

Hu(b, t) +
∂+

∂x+
u(b, t) = 0 H ≥ 0

(1.1)

from a single measurement

{f(x), g(x)} → {u(0, t), u(b, t) for t > T } . (1.2)

We assume that the mass m of the string is right-continuous, nondecreasing so that dm(x) defines a
Lebesgue−Stieltjes measure. If dm is absolutely continuous, i.e. m′ is locally integrable, then the string op-
erator, see (2.2) below, reduces to the classical Sturm−Liouville operator, ∂

∂m(x)
∂+

∂x+ = 1
m′(x)

∂2

∂x2 except that
m′(x) is allowed to vanish on subintervals of [0, b] where m is constant. i.e. m′(x) ≥ 0. In terms of modeling,
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1/
√
m′(x) stands for the wave speed, and so its recovery unveils the nature of the medium. Thus depending

on the nature of the mass, or medium, the string operator includes a wide variety of operators and spectra. If
h > 0, then we say that we have elastic boundary conditions as u(0, t) and ux(0, t) can vary. The case h = ∞
is known as a “killing” boundary condition [21], as it implies u(0, t) = 0, i.e. no motion at the boundary. Thus
the parameters h and H control how much sound can be absorbed or reflected by the boundaries which are also
described sometimes as either soft or hard.

We probe the medium by sending waves whose initial profile are given in (1.1) by u(x, 0) = f(x), and speed
ut(x, 0) = g(x). As the waves propagate inside, we measure their reflections on the wall, i.e. (1.2). Thus it is
important that we let h > 0 or H > 0 so that sound waves can be heard across the boundary and this is why
we shall avoid the case h = H = 0, i.e. Neumann boundary conditions as they act as sound insulators. The first
question is how many measurements or readings of (1.2) are needed to recover both m and p? We show that we
can do it for the setting (1.1) with a single measurement if we choose f(x) = 1 and g(x) = x. Recall that for
the standard one dimensional wave equation with one coefficient [10],

utt = uxx + q(x)u where 0 ≤ x ≤ b, and t ≥ 0 (1.3)

and similar boundary conditions, it is shown that we can reconstruct the potential q from a finite, but unknown,
number of measurements, N say. It was also shown that in case we have an a priori information on the upper
bound of q then we can estimate the value of N and if in addition we know a lower bound on q, then at most 2
measurements are needed. In each case, the main issue is to find suitable initial conditions. The main tools used
for (1.3) are asymptotics of eigenvalues and transformation operators that follow from the Gelfand−Levitan
theory [22, 24]. Unfortunately for the string, as in (1.1), none of the techniques used for (1.3) is applicable. For
example there are no known asymptotics for the eigenvalues of the string, except if we know the behavior of
m as x → 0, and it may even happen that the spectrum of a string is finite, see [11]. The lack of standard
spectral features, such as transformation operators and asymptotics of eigenvalues for the string makes the
inverse problem for (1.1) far more challenging than for the case in (1.3).

In [28, 29], Sini uses the Dirichlet−to−Neumann map to come up with Borg type uniqueness results for
general Sturm−Liouville operators defined by (py′)′ + qy = λry, where r > 0. It is shown that if two operators
differing by one coefficient have identical spectral sets then they must be equal. This settles the uniqueness
issue. Thus the main issue in the inverse problem for (1.1), is whether we can extract a complete spectral set
using a single measurement. Uniqueness would then follow from Sini’s work. The aim of this paper is to show
that when h,H ≥ 0, and h + H > 0, we can identify m and p by listening only once through the walls of the
boundary.

A possible application of (1.1) is to show how acoustic waves can be used to assess the condition of the wall
thickness in an oil pipeline or clogged artery in a non invasive way. Also how to find a function p that helps
focus and control high energy waves at certain points in the hope of clearing out any blockage.

2. Preliminaries

To avoid jumps of the derivative at the end-points, we assume m(0−) = m(0+) and m(b−) = m(b+). Define
the Hilbert space L2

dm(0, b) whose inner product is given by (f, h)m =
∫ b

0
f(x)h(x)dm(x). The string operator

is then defined by

Sy(x) : =
−dy′(x+)
dm(x)

for 0 ≤ x ≤ b (2.1)

where y′(x+) is the right derivative at x and Sy(x) = f(x) for f ∈ L2
dm(0, b) means [19]

y(x) = y(0) + y′(0)x−
∫ x

0

(x− t) f(t)dm(t). (2.2)
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Note that m can also be a step function, with jumps mk at xk for k = 1, . . . , n− 1 in which case (2.1) reduces
to a finite differences operator

d
dm(x)

d+

dx+
u (xk) =

1
mk

[
u(xk+1) − u(xk)

xk+1 − xk
− u(xk) − u(xk−1)

xk − xk−1

]
·

Thus we can write the wave equation in (1.1) as an evolution equation in L2
dm(0, b){

u′′(t) = −Su(t) + p(t)u(t).

u(0) = f and u′(0) = g
(2.3)

where usually f ∈Dom(S) ⊂ L2
dm(0, b) and g ∈ L2

dm(0, b). To express the solution u, we first denote by ϕn

the normalized eigenfunctions of the string, i.e. ‖ϕn‖2
m = 1,⎧⎪⎨⎪⎩

Sϕn(x) = λnϕn(x) 0 ≤ x ≤ b

hϕn(0) − ϕ′
n(0) = 0 h ≥ 0

Hϕn(b) + ϕ′
n(b) = 0 H ≥ 0.

(2.4)

Under the condition, ϕn (0) > 0 the set {ϕn}n≥1 is uniquely defined and forms an orthonormal eigenbasis in
L2

dm(0, b), since S is a self-adjoint operator there ([14], p. 153). Note that from (2.2) and (2.4), on the intervals
where dm(x) = 0 we have ϕ′′

n(x) = 0 and so ϕn(x) = anx + bn is a linear function there. We shall see below
that the eigenvalues λn are increasing 0 < λ1 < λ2 < . . . and in case they are infinite and the limit-circle
condition

∫ b

0
x2dm(x) <∞ holds, then λn → ∞. Recall that a Stieltjes’ string, whose mass has a finite number

of jumps only, has a finite set of eigenvalues [11], and its reconstruction is based on continued fractions. The
inverse spectral theory of the string, which is closely connected to Gaussian processes, and prediction theory,
is based on function theory [14, 19, 21]. For the reconstruction and uniqueness of general strings, one needs the
theory of DeBranges spaces ([14], Chapters 5 and 6).

Let f, g ∈ L2
dm(0, b) and denote their Fourier coefficients

an =
∫ b

0

f(x)ϕn(x)dm(x) and bn =
∫ b

0

g(x)ϕn(x)dm(x). (2.5)

Then if
∑ |an|2 λn < ∞ then we can define a weak solution u(., t) ∈ L2

dm(0, b) of (2.3) by ([31], Sect. 29, 6,
p. 403),

u(x, t) =
∑
n≥1

(anC (t, λn) + bnS (t, λn))ϕn(x) for 0 ≤ t (2.6)

where the functions C and S are cosine and sine type functions as they satisfy −y′′(t) + p(t)y(t) = λny(t) and
the initial conditions

C (0, λn) = S′ (0, λn) = 1 and C′ (0, λn) = S (0, λn) = 0. (2.7)

At the lateral boundaries, x = 0, x = b and 0 ≤ t we can read, as we shall see, the continuous functions

u(0, t) =
∑
n≥1

(anC (t, λn) + bnS (t, λn))ϕn(0) (2.8)

u(b, t) =
∑
n≥1

(anC (t, λn) + bnS (t, λn))ϕn(b).

In the sums (2.8) we must have ϕn(0) 	= 0, otherwise it would follow from (2.4), that ϕn(0) = ϕ′
n(0) = 0 and

so ϕn = 0, and similarly ϕn(b) 	= 0. Thus if

a2
n + b2n 	= 0 for n ≥ 1 (2.9)
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then all eigenvalues λn are present in the sum (2.8). In other words if for a certain i ∈ N, both ai = bi = 0
then λi would be missing in (2.8) and so cannot be extracted later from the reading. In what follows we show
that (2.9) holds for a particular pair of initial conditions f(x) and g(x). Here we state the first result pertaining
to a single measurement when

h, H ≥ 0, h+H 	= 0, f(x) = 1 and g(x) =
{
x if h > 0
arbitrary if h = 0. (2.10)

Note that (2.10) excludes the case of Neumann boundary conditions. We first show that

Proposition 2.1. Assume that (2.10) holds, then λn > 0 and a2
n + b2n 	= 0 for all n ≥ 1.

Proof. Multiply (2.4) by ϕn to obtain

λn

∫ b

0

ϕ2
n(x)dm(x) = −

∫ b

0

ϕ′′
n(x)ϕn(x)dx = −ϕ′

n(b)ϕn(b) + ϕ′
n(0)ϕn(0) +

∫ b

0

ϕ′2
n (x)dx

= Hϕ2
n(b) + hϕ2

n(0) +
∫ b

0

ϕ′2
n (x)dx > 0

and by (2.10) we deduce that λn > 0.
Next we compute the coefficients an, bn in (2.5) first for the case h > 0, i.e. f(x) = 1, and g(x) = x. Since

λn 	= 0, use the fact that dϕ′
n = −λnϕn(x)dm(x) to obtain

−λnan = −
∫ b

0

λnϕn(x)dm(x) =
∫ b

0

dϕ′
n(x) = ϕ′

n(b) − ϕ′
n(0) (2.11)

−λnbn = −
∫ b

0

xλnϕn(x)dm(x) =
∫ b

0

xdϕ′
n(x) = ϕn (0) − ϕn (b) + bϕ′

n(b).

Thus if an = bn = 0, together with the boundary condition (2.4) and (2.11) yield a homogeneous system in
(ϕn(0), ϕ′

n(0), ϕn(b), ϕ′
n(b)) ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕ′
n(0) − ϕ′

n(b) = 0

ϕn (0) − ϕn (b) + bϕ′
n(b) = 0

hϕn(0) − ϕ′
n(0) = 0

Hϕn(b) + ϕ′
n(b) = 0

which has a nontrivial solution and yet its determinant, by (2.10), satisfies H + h+Hbh ≥ h+H > 0, which is
impossible.

For the next case, if h = 0, then by (2.4) we have ϕ′
n(0) = 0. Next if an = 0, then (2.11) yields ϕ′

n(b) = 0
which forces ϕn(b) = 0 since H 	= 0. Thus ϕn = 0 which is impossible and therefore an 	= 0 for all n ≥ 1. �

We now show that (2.6) defines a weak solution and its traces, defined by (2.8), exist and are continuous.

3. Weak solution

Without loss of generality, by Proposition 2.1, we can take h = 0, and f(x) = 1 and g(x) = 0 as initial
conditions so that no eigenvalue is missing from (2.6). We next show that these conditions generate a weak
solution defined by

u(x, t) =
∑
n≥1

anC (t, λn)ϕn(x) (3.1)
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and its traces on the boundary u(0, t) and u(b, t) are continuous and so readable. Recall that (2.11) anλn =
−ϕ′

n(b) 	= 0. For the convergence of the series in (3.1), we use the fact that since{
−C′′ (t, λn) + p(t)C (t, λn) = λnC (t, λn)

C (t, λn) = 1 and C′ (t, λn) = 0
(3.2)

then for large λn, we have [22]

C (t, λn) = cos
(
t
√
λn

)
+ o(1) = O (1) and C′ (t, λn) = O

(√
λn

)
. (3.3)

Also recall that, from the inverse spectral theory of the string [14,19], a necessary and sufficient for the existence
of a string with mass m is simply that ∫ ∞

0

1
1 + λ

dΓ (λ) <∞,

where Γ is the spectral function associated with the rescaled eigenfunctions ϕn(x)/ϕn(0). The fact that there
are no asymptotics of eigenvalues or eigenfunctions required is a key difference between the Gelfand−Levitan
and Krein theories. To proceed further we can express Γ by just rewriting the eigenfunction expansion for
ψ ∈ L2

dm(0, b) as

ψ(x) =
∑
n≥1

(∫ b

0

ψ(η)ϕn(η)dm(η)

)
ϕn(x) =

∑
n≥1

(∫ b

0

ψ(η)
ϕn(η)
ϕn(0)

dm(η)

)
ϕn(x)
ϕn(0)

ϕ2
n (0) .

Thus, when the eigenfunctions are ϕn(x)/ϕn(0), the spectral function is simply given by

Γ (λ) =
∑

λn<λ

ϕ2
n (0) (3.4)

and ∫ ∞

0

1
1 + λ

dΓ (λ) =
∑
n≥1

1
1 + λn

ϕ2
n(0) <∞ i.e.

(
ϕn (0)√
λn

)
∈ �2. (3.5)

Proposition 3.1. Assume that h = 0, sup
n≥1

max
0≤x≤b

|ϕn (x) /ϕn (0)| < ∞, f(x) = 1 and g(x) = 0, then (2.6)

defines a weak solution u which is continuous over [0, b] × [0, T ] and ∇u (., t) ∈ L2
dm (0, b) .

Proof. It is enough to study the convergence of the sequence of classical solutions

u(k) (x, t) =
n=k∑
n=1

anC (t, λn)ϕn(x)

and show that it converges to u in the weak sense in L2
dm (0, b) × L2(0, T ). First we can rewrite it as

u(k) (x, t) =
n=k∑
n=1

−ϕ′
n(b)
λn

C (t, λn)ϕn(x) = H

n=k∑
n=1

ϕn(b)
ϕn(0)

ϕ2
n(0)
λn

C (t, λn)
ϕn(x)
ϕn (0)

· (3.6)

From (3.5), Weiertrass M-test and ∣∣∣∣ϕn(b)
ϕn(0)

ϕ2
n(0)
λn

C (t, λn)
ϕn(x)
ϕn (0)

∣∣∣∣ ≤ ϕ2
n(0)
λn
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we deduce that u(k) converges uniformly to u over [0, b]× [0, T ], and so u, given by (3.1) is also continuous. Next
we look at its derivatives in L2

dm (0, b) .We have

u
(k)
t (x, t) = H

n=k∑
n=1

ϕn(b)
ϕn(0)

ϕn(0)√
λn

C′ (t, λn)√
λn

ϕn(x)

and since ∣∣∣∣ϕn(b)
ϕn(0)

ϕn(0)√
λn

C′ (t, λn)√
λn

∣∣∣∣ ≤ |ϕn(0)|√
λn

again by (3.5) we deduce that ut (., t) ∈ L2
dm (0, b) for each t and by (3.3) it follows that ut ∈ L2

dm (0, b) ×
L2(0, T ).

Finally we show that ux (., t) ∈ L2
dx (0, b) for each t > 0. Use (3.6) to see that∫ b

0

(
u(k)

x (η, t)
)2

dη = −H
(
u(k)

x (b, t)
)2

+
∫ b

0

Su(k) (η, t) u(k) (η, t) dm(η)

≤
∫ b

0

Su(k) (η, t) u(k) (η, t) dm(η) =
n=k∑
n=1

ϕ′2
n (b)
λn

C2 (t, λn)

≤ H2
n=k∑
n=1

ϕ2
n(b)

ϕ2
n(0)

ϕ2
n(0)
λn

C2 (t, λn)

≤M(t)
n=k∑
n=1

ϕ2
n(0)
λn

<∞.

Having ∇u ∈ L2 (0, b) × [0, T ] allows us to say that u is a generalized solution, see [31]. The trace u(0, t) is
continuous since the sequence

u(k)(0, t) =
n=k∑
n=1

anC (t, λn)ϕn(0) = H

n=k∑
n=1

ϕn(b)
ϕn(0)

ϕ2
n(0)
λn

C (t, λn)

converges uniformly by (3.3) and the M-test , as we clearly have∑
n≥1

∣∣∣∣ϕn(b)
ϕn(0)

ϕ2
n(0)
λn

C (t, λn)
∣∣∣∣ ≤M1 (t)

∑
n≥1

ϕ2
n(0)
λn

<∞

where M1 (t) = sup
n≥1

∣∣∣ϕn(b)
ϕn(0)C (t, λn)

∣∣∣ . Similarly for the other trace u(b, t), we also have

u(k)(b, t) =
n=k∑
n=1

anC (t, λn)ϕn(b) = H

n=k∑
n=1

ϕ2
n(b)
λn

C (t, λn)

≤
∑
n=1

∣∣∣∣ϕ2
n(b)

ϕ2
n(0)

ϕ2
n(0)
λn

C (t, λn)
∣∣∣∣ ≤M2(t)

∑
n=1

ϕ2
n(0)
λn

·

Thus both traces u(0, t) and u(b, t) are continuous functions. �

Remark 3.2. In case m is smooth then we have ϕ′′
n (x) + λnm

′(x)ϕn(x) = 0, and the assumption on the
boundedness of ϕn follows easily from the WKB method,

ϕn(x) ∼ c1 exp
(
−i
√
λnm′(x)

)
+ c2 exp

(
i
√
λnm′(x)

)
as λn → ∞.
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4. Recovering m(x)

We now want to extract the spectral data of the string by readings on the boundary of the solution given
by (3.1)

u(0, t) =
∑
n≥1

anC (t, λn)ϕn(0) and u(b, t) =
∑
n≥1

anC (t, λn)ϕn(b) for t > T

where C (t, λn) are defined by (3.2). Here the reading u(0, t) carries information for both m(x) and p(t), and
it is difficult to filter one out from the other. Basically we face two problems. The first is that not knowing
p, we would not know the profile for C(t, λn). Next even if we knew p and the functions C(t, λn) are still
unknown because the λn are. For this reason if we want to recover p over the interval [0, T ], we shall assume
that p(t) = κ ≤ 0 for t > T , where κ is a given constant. This is usually known in control theory, as bang-bang
controller. Thus when p is quiet, we can “listen” to the solution for t > T , which is given by

u(x, t) =
∑
n≥1

an

[
C (T, λn) cos

(
(t− T )

√
λn − κ

)
+ C′ (T, λn)

sin
(
(t− T )

√
λn − κ

)
√
λn − κ

]
ϕn(x).

The readings for t > T, are then

u(0, t) =
∑
n≥1

αn cos
(
(t− T )

√
λn − κ

)
+ βn sin

(
(t− T )

√
λn − κ

)
u(b, t) =

∑
n≥1

α̃n cos
(
(t− T )

√
λn − κ

)
+ β̃n sin

(
(t− T )

√
λn − κ

)
(4.1)

where

αn = anC (T, λn)ϕn(0) βn = anC
′ (T, λn)ϕn(0)/

√
λn − κ

α̃n = anC (T, λn)ϕn(b) β̃n = anC
′ (T, λn)ϕn(b)/

√
λn − κ. (4.2)

Using the shifted Laplace transform

L (u(0, t)) (s) =
∫ ∞

T

e−s(t−T )u(0, t)dt =
∑
n≥1

sαn + βn

√
λn − κ

s2 + λn − κ
· (4.3)

We can read the poles ±i√λn − κ, as the zeros of 1/L (u(0, t)) (s), and from their residues compute both
sequences ±iαn + βn since λn − κ > 0. Solving the system would yield both αn and βn and similarly we could
repeat the same procedure to evaluate α̃n, β̃n from 1/L (u(b, t)) (s). Thus we can read from (4.3) the following
data {

λn, αn, βn, α̃n, β̃n

}
n≥1

. (4.4)

Taking the ratios α̃n/αn or β̃n/βn we would get the complete sequence {ϕn(b)/ϕn(0)}n≥1. This is possible
as C (T, λn) , C′ (T, λn) cannot be both zero.

In order to recover the mass m, we need to use the complete spectral data

Ξ :=
{
λn,

ϕn (b)
ϕn (0)

}
n≥1

to construct the norming constants. To this end define the function

δ (λ) = H
∏
n≥1

(
1 − λ

λn

)
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then the norming constants are in fact given by the well-known formula, see [2]

1
ϕ2

n (0)
=
∫ b

0

(ϕn(x)/ϕn (0))2 dm(x) = −δ′ (λn)ϕn(b)/ϕn (0) .

Thus we can reconstruct the spectral function by (3.4) and by Krein inverse spectral theory, we can uniquely
reconstruct the mass m, see the backward problem in [14,19]. Recall that there is no uniqueness in the Neumann
case. Thus we have proved the following

Proposition 4.1. Assume that p(t) = κ ≤ 0 for t ≥ T , h = 0, f(x) = 1 and g(x) = 0 then we can recover the
mass m uniquely from one reading of {u(0, t), u(b, t)} for t > T .

Remark 4.2. The reading over (T,∞) and the use of the Laplace transform are for simplicity only. If we do
not know when p is constant, then we can guess and pick a value for T “large enough”. If the formula for the
Laplace transform does not fit (4.3), then it means that our guess was wrong and we need to read at a later
time. If p is a control function then we usually have some information about its behaviour. If the value of κ is
unknown, then we would need the asymptotics of the large λn to find it. This requires an a priori information
on the behavior of m as x→ 0, [7]. If we know that p(t) = κ on (T1, T2) , then we could use spectral estimation
methods to read the sequence (λn) , see the window problem [27] or the method of pencil operators as in [4].
Again this methods require for example that the set of exponentials is a minimal set in L2 (0, T ) .

Observe that the above proposition is still valid in the particular case p = 0, where we can use more initial
conditions as required by (2.10).

Corollary 4.3. Assume that p = 0 in (1.1) and (2.10) holds then we can recover m from a single measurement
u(0, t) and u(b, t) for t > 0.

Proof. We only need notice that from (2.6) with p = 0, we have the simple expression

u(x, t) =
∑
n≥1

(
an cos

(
t
√
λn

)
+ bn sin

(
t
√
λn

))
ϕn(x)

and the same procedure using the Laplace transform, as in (4.3), applies and so we can read off λn, an, and bn
and form the spectral function (3.4). If it is known that exp

(
i
√
λn

)
form a minimal set in L2 (0, τ) then we

need only read u(0, t) and u(b, t) for 0 ≤ t ≤ τ. �

Once m has been recovered, we then know ϕn, ϕn (0) , and ϕn (b) explicitly for the next step, which is to
recover p(t) over (0, T ).

5. The recovery of p(t)

We now show how recover p (t) for t ∈ (0, T ) from the data in (4.4). After having recovered m, we can
reconstruct the sequences of eigenfunctions ϕn, an, ϕn(0) and so we can extract from (4.2) the sequence of
coefficients

Θ := {C(T, λn), C′(T, λn)}n≥1 . (5.1)

Note that, from the Gelfand−Levitan theory, since p is assumed to be locally integrable, there exists a continuous
kernel K such that

C(T, λn) = cos
(
T
√
λn

)
+
∫ T

0

K (T, η) cos
(
η
√
λn

)
dη

C′ (T, λn) = −
√
λn sin

(
T
√
λn

)
+K (T, T ) cos

(
T
√
λn

)
+
∫ T

0

Kx (T, η) cos
(
η
√
λn

)
dη. (5.2)
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It follows that the coefficients C(T, λn) and C′ (T, λn) +
√
λn sin

(
T
√
λn

)
are bounded for n→ ∞

C(T, λn) = O (1) and C′ (T, λn) +
√
λn sin

(
T
√
λn

)
= O (1) . (5.3)

In order to reconstruct the function p, by the Gelfand−Levitan inverse spectral theory we shall interpolate both
functions C (T, λ) and C′ (T, λ) from their extracted values at λn. To this end we need to use the eigensolutions
of the initial value problem, Kramer’s theorem [11,32],{

Sϕ(x, λ) = λϕ (x, λ)

ϕ (0, λ) = 1 and ϕ′ (0, λ) = h

then ϕ(x, λ) is an entire function of λ and is related to ϕn in (2.4) when h = 0, by

ϕn(x) = ϕn (0)ϕ (x, λn) . (5.4)

Since ϕn are normalized by ‖ϕn‖ = 1, (5.4) helps verify again (3.4) since

‖ϕ (x, λn)‖ |ϕn (0)| = 1.

Proposition 5.1. We can reconstruct the function C (T, .) and C′ (T, .) from the spectral set Θ in (5.1).

Proof. Since C (T, λn) are bounded, by (3.4), the integral is also∫ ∞

0

C2 (T, λ)
(1 + λ)2

dΓ (λ) =
∑
n≥1

C2 (T, λn)
(1 + λn)2

ϕ2
n (0) ≤ O (1)

∑
n≥1

1
(1 + λn)

ϕ2
n (0) <∞.

Thus the values C (T, λn) / (1 + λn) can be seen as the Fourier coefficients of a function h ∈ L2
dm (0, b) , i.e.

C (T, λn)
(1 + λn)

=
∫ b

0

h(x)ϕ (x, λn) dm(x), where h(x) =
∑
n≥1

C (T, λn)
(1 + λn)

ϕ (x, λn)ϕ2
n (0)

Thus, by Kramer’s sampling theorem [11,32], we get a unique analytic extention defined by

γ1 (λ) :=
C (T, λ)
(1 + λ)

=
∫ b

0

h(x)ϕ (x, λ) dm(x) for all λ ∈ C. (5.5)

Similarly we would interpolate the function

γ2 (λ) :=
C′ (T, λ) +

√
λ sin

(
T
√
λ
)

1 + λ
(5.6)

and γ1 and γ2 are ϕ-Fourier transform. From γ1 and γ2 in (5.5) and (5.6) we can get C (T, λ) and C′ (T, λ) �

The eigenvalues μn of a κ−family of Sturm−Liouville problems can be generated as the zeros of the function

Δκ (μ) = C′ (T, μ) + κC (T, μ) = (1 + μ) [γ2 (μ) + κγ1 (μ)] −√
μ sin (T

√
μ) = 0 (5.7)

and κ ∈ R. Having evaluated the μn, we can then use the traces C (T, μn) , and C′ (T, μn) to compute the
norming constants which would then deliver the spectral function of the Sturm−Liouville problem{−C′′ (t, μn) + p(t)C (t, μn) = μnC (t, μn) 0 ≤ t ≤ T

C′ (0, μn) = 0 and C′ (T, μn) + κC (T, μn) = 0

and then finally p by the Gelfand−Levitan theory. Thus by combining Propositions 3.1 and 5.1, and the above
construction we have proved the main result.



1212 A. BOUMENIR

Proposition 5.2. Assume that p(t) = κ ≤ 0 for t > T , h = 0, f(x) = 1 and g(x) = 0 then we can uniquely
recover the mass m and p(t) for 0 < t < T from a single measurement of {u(0, t), u(b, t)} for t > T.

Remark 5.3. With few modifications we can also treat the case h > 0. By (2.10) we need to use initial condition
f(x) = 1 and g(x) = x and the solution given in (2.6). The interpolation should remain the same.

5.1. Numerical methods

We now briefly explain how the above procedure can be implemented numerically. An important class of
strings, whose spectra are finite, are known as Stieltjes strings. Their construction is simple, explicit and based
on the well-known Stieltjes continued fractions. Because the mass m(x) is a step function over a finite interval,
its recovery is very fast as it requires arithmetic operations only. The key approximation result ([14], Sect. 5.8) is
that general strings, whose spectra are infinite, are seen as the limit of an increasing sequence of longer Stieltjes
strings. Thus good approximations are always possible, and can be obtained by simply using a set of algebraic
rules. There are also examples where full explicit constructions are possible, and can serve as benchmark for
numerical methods. For example we refer to [30] where a smooth mass m(x) is approximated by step functions,
i.e. Stieltjes strings. A different and direct approach, based on identification, approximates analytic masses by
Taylor polynomials, [7], and contains several numerical examples.

For the Gelfand−Levitan theory, the algorithms are different as they are based on the idea of transformation
operators, which lead to integral equations. Because of their important applications in geophysics, vibrations,
solitons, the inverse spectral transform, they got more attention and more numerical methods are available for
the standard Sturm−Liouville operator, and sometimes by just reversing direct methods. The numerical side
of truncation errors, stability, convergence rates has also been studied by various authors, and can be found
in [1, 5, 6, 13, 13, 15, 23, 26], just to name a few. There are fast root finding methods based on sampling theory
for the computation of spectra, with guaranteed error bounds, through characteristic functions such as (5.7),
see [8]. For a reference that treat the numerical aspects of the wave equation, but with nonclassical boundary
conditions, such as δ (x) , we mention [18].

We now look at the control question which follows by simply reversing the identification process of p.

6. Controlling the solution

Assume that we have identified the string operator S, and we now want to find a controller p ∈ L1 (0, T ) so
we can steer the solution to a certain given reachable target r(x) at a given time T and with a certain speed s(x){

u(x, T ) = r(x) =
∑

n≥1 rnϕn(x) ∈ L2
dm(0, b)

ut (x, T ) = s(x) =
∑

n≥1 snϕn(x) ∈ L2
dm(0, b).

(6.1)

The condition on the Fourier coefficients translates into
∑

n≥1 r
2
nϕ

2
n (0) < ∞ and

∑
n≥1 s

2
nϕ

2
n (0) < ∞.

From (3.1), by identifying the Fourier coefficients, we have the system

anC (T, λn) = rn and anC
′ (T, λn) = sn for n ≥ 1 (6.2)

Assume that an 	= 0, which is needed for the identification of m, we end end up with an interpolation problem
where we are given the sequences C(T, λn) = rn/an and C′ (T, λn) = sn/an i.e. the set

Θ := {C(T, λn), C′(T, λn)}n≥1 (6.3)

which is treated in the previous section. We state the result which follows by reversing the identification of p.

Proposition 6.1. Assume that condition (5.3) holds for the set (6.3) which is defined by the sequences
{rn, sn, an} , where an 	= 0 in (6.2), then we can reconstruct a controller p ∈ L1 (0, T ) such that (6.1) holds.
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