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DEGENERATE PARABOLIC OPERATORS OF KOLMOGOROV TYPE
WITH A GEOMETRIC CONTROL CONDITION ∗

Karine Beauchard1, Bernard Helffer2, Raphael Henry2 and Luc Robbiano3

Abstract. We consider Kolmogorov-type equations on a rectangle domain (x, v) ∈ Ω = T × (−1, 1),
that combine diffusion in variable v and transport in variable x at speed vγ , γ ∈ N

∗, with Dirichlet
boundary conditions in v. We study the null controllability of this equation with a distributed control
as source term, localized on a subset ω of Ω. When the control acts on a horizontal strip ω = T× (a, b)
with 0 < a < b < 1, then the system is null controllable in any time T > 0 when γ = 1, and only
in large time T > Tmin > 0 when γ = 2 (see [K. Beauchard, Math. Control Signals Syst. 26 (2014)
145–176]). In this article, we prove that, when γ > 3, the system is not null controllable (whatever T is)
in this configuration. This is due to the diffusion weakening produced by the first order term. When the
control acts on a vertical strip ω = ω1× (−1, 1) with ω1 ⊂ T, we investigate the null controllability on a
toy model, where (∂x, x ∈ T) is replaced by (i(−Δ)1/2, x ∈ Ω1), and Ω1 is an open subset of R

N . As the
original system, this toy model satisfies the controllability properties listed above. We prove that, for
γ = 1, 2 and for appropriate domains (Ω1, ω1), then null controllability does not hold (whatever T > 0
is), when the control acts on a vertical strip ω = ω1 × (−1, 1) with ω1 ⊂ Ω1. Thus, a geometric control
condition is required for the null controllability of this toy model. This indicates that a geometric
control condition may be necessary for the original model too.
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1. Introduction

1.1. Origin of the problem

The goal of this article is to study the null controllability of Kolmogorov-type equations⎧⎪⎨⎪⎩
∂tf(t, x, v)− vγ∂xf(t, x, v)− ∂2

vf(t, x, v) = u(t, x, v)1ω(x, v), (t, x, v) ∈ (0, T )×Ω,
f(t, x,±1) = 0, (t, x) ∈ (0, T )× T,

f(0, x, v) = f0(x, v), (x, v) ∈ Ω,
(1.1)

where Ω = T × (−1, 1), T is the 1D-torus, γ ∈ N∗, T > 0, and the control is a source term u(t, x, v) localized
on a nonempty open subset ω of Ω. This equation is close to linearizations of Prandtl or Crocco-type equations
for fluids [13, 14, 39]; this motivates the study of the controllability of (1.1).

Definition 1.1 (null controllability). Let T > 0 and γ ∈ N∗. System (1.1) is null controllable in time T if, for
any f0 ∈ L2(Ω), there exists u ∈ L2((0, T )×Ω) such that the solution of (1.1) satisfies f(T, ·, ·) = 0.

By duality, null controllability is equivalent to observability for the adjoint system⎧⎪⎨⎪⎩
∂tg(t, x, v) + vγ∂xg(t, x, v)− ∂2

vg(t, x, v) = 0, (t, x, v) ∈ (0,+∞)×Ω,
g(t, x,±1) = 0, (t, x) ∈ (0, T )× T,

g(0, x, v) = g0(x, v), (x, v) ∈ Ω.
(1.2)

Definition 1.2 (observability). Let T > 0, γ ∈ N∗ and ω be a non empty open subset of Ω. System (1.2)
is observable in ω in time T if there exists C > 0 such that, for any g0 ∈ L2(Ω), the solution of the Cauchy
problem (1.2) satisfies ∫

Ω

|g(T, x, v)|2 dxdv � C
∫ T

0

∫
ω

|g(t, x, v)|2 dxdvdt.

Equation (1.2) combines diffusion in variable v and transport in variable x (at speed vγ). Thanks to the
interplay between these two phenomena, the equation diffuses both in variables v and x (see Prop. 6.2),
contrarily to equation (∂t − ∂2

v)g(t, x, v) = 0. But, the global diffusion is weaker than for the 2D heat equation
(∂t − ∂2

x − ∂2
v)g(t, x, v) = 0 . Thus, natural questions are the following ones.

Question 1: Is the diffusion in variable v strong enough for observability to hold when the control acts on a
horizontal strip ω = T×(a, b) with 0 < a < b < 1, whatever γ ∈ N∗ is? (i.e. as for equation (∂t−∂2

v)g(t, x, v) = 0,
(t, x, v) ∈ (0, T )× T× (−1, 1))

Question 2: Is the diffusion in variable x sufficient for null controllability to hold when the control acts on a
vertical strip ω = ω1 × (−1, 1) where ω1 ⊂⊂ T? (i.e. as for the 2D heat equation (∂t − ∂2

x − ∂2
v)g(t, x, v) = 0 ,

(t, x, v) ∈ (0, T )× T× (−1, 1)).

The goal of this article is to answer the first question and to study the second one for a toy-model.
Question 1 is studied in [9], where the following result is proved.

Theorem 1.3.

1. If γ = 1 and ω = T× (a, b) with −1 < a < b < 1, then system (1.2) is observable in ω in any time T > 0.
2. If γ = 2 and ω = T× (a, b) with 0 < a < b < 1 then there exists T ∗ � a2/2 such that
• system (1.2) is observable in ω in any time T > T ∗ ;
• system (1.2) is not observable in ω in time T < T ∗.

3. If γ = 2 and ω = T× (a, b) with −1 < a < 0 < b < 1 then system (1.2) is observable in any time T > 0.

Statements 2 and 3 above show that, when γ = 2, the information needs time to reach the degeneracy line
{v = 0} from the observation location ω when ω ∩ {v = 0} = ∅.
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1.2. Main results

The first goal of this article is to prove that observability does not hold, when γ � 3 and the control acts on
a horizontal strip: the presence of the first order term vγ∂xf in the equation reduces diffusion in the variable v
so strongly that observability becomes false. Thus, Theorems 1.3 and 1.4 below answer Question 1.

Theorem 1.4. If γ � 3 and ω = T × (a, b) with 0 < a < b < 1, then system (1.2) is not observable in ω
(whatever T > 0 is).

The second goal of this article is to investigate null controllability of equation (1.2) for γ ∈ {1, 2} when the
control acts on a vertical strip ω = ω1× (−1, 1) where ω1 ⊂⊂ T. Unfortunately, we are not able to work directly
on equation (1.2). Thus, we consider the following toy model.⎧⎪⎨⎪⎩

∂tg(t, x, v) + ivγ(−ΔD
x )βg(t, x, v)− ∂2

vg(t, x, v) = 0, (t, x, v) ∈ (0, T )×Ω,
g(t, x,±1) = 0, (t, x) ∈ (0, T )×Ω1,

g(0, x, v) = g0(x, v), (x, v) ∈ Ω1 × (−1, 1),

(1.3)

where

• Ω := Ω1 × (−1, 1) , Ω1 is a bounded open subset of RN1 and N1 ∈ N∗;
• ΔD

x is the Dirichlet–Laplace operator on Ω1

D(ΔD
x ) = H2 ∩H1

0 (Ω1), ΔD
x g = Δg;

• γ ∈ N∗, β ∈ (0, 1).

The case β = 1/2 is of particular interest for system (1.2). The presence of “i” in the term “ivγ(−ΔD
x )βg” aims

at ensuring the skew symmetry of this operator, as in the original model. We use the same definition for the
observability of systems (1.2) and (1.3).

We are able to deny observability with explicit counterexamples, under an appropriate assumption P(s) on
the open sets (Ω1, ω1). In order to express this assumption, we introduce the non decreasing sequence (λn)n∈N∗

of the eigenvalues of (−ΔD
x ) on Ω1 and a corresponding orthonormal sequence of associated eigenfunctions,⎧⎪⎨⎪⎩

−Δϕn(x) = λnϕn(x), x ∈ Ω1,

ϕn(x) = 0, x ∈ ∂Ω1,

‖ϕn‖L2(Ω1) = 1.

(1.4)

Definition 1.5 (property P(s)). Let s ∈ (0, 1/2) and ω1 be an open subset of Ω1. The pair (Ω1, ω1) satisfies
the property P(s) if

lim
n→+∞

[−1
λs

n

ln
(∫

ω1

|ϕn(x)|2dx
)]

= +∞.

This assumption is related to the classical problem of high-frequency localization of the eigenfunctions of the
Laplacian. Note that 1/2 is the optimal upperbound for possible values of s (see [35], Thm. 5.4 and Prop. 5.5).
Particular examples of pairs (Ω1, ω1) satisfying property P(s) for any s ∈ (0, 1/2) are discussed in Section 4.
For instance, if Ω1 is a conical open subset of Rd (d � 2) generated by an open subset U of Sd−1,

Ω1 = {x = rx′; 0 < r < 1, x′ ∈ U},
and ω1 is an open subset of Ω1 that does not intersect its boundary ∂Ω1, then the pair (Ω1, ω1) satisfies property
P(s) for every s ∈ (0, 1/2). One can indeed construct a subsequence of eigenfunctions ϕ̃k localized near the
boundary ∂Ω1, called “whispering gallery eigenmodes”.

Our first nonobservability result concerns system (1.3) for γ = 1.
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Theorem 1.6. We assume γ = 1.

1. If β > 0 and ω = Ω1 × (a, b) where 0 < a < b < 1 then system (1.3) is observable in ω in any time T > 0.
2. If β ∈ (0, 3/4) and (Ω1, ω1) satisfies property P

(
2β
3

)
, then system (1.3) is not observable in ω = ω1× (−1, 1)

(whatever T > 0 is).

In particular, when β = 1/2, the diffusion in the variable v is strong enough for system (1.3) to be observable
in a horizontal strip ω = Ω1 × (a, b) in any positive time T . On the contrary, the diffusion in the variable x
is too weak for system (1.3) to be observable in a vertical strip ω = ω1 × (−1, 1) in finite time T , at least for
appropriate pairs (Ω1, ω1) that satisfy property P(1/3) (which happens, for instance, when Ω1 is a bounded
conical open subset of Rd and ω1 ⊂ Ω1). Thus a geometric control condition (GCC) on (Ω,ω) is required for
system (1.3) to be observable in ω. As a consequence, we conjecture that system (1.2), with γ = 1, requires a
GCC to be observable.

Our second noncontrollability result concerns system (1.3) for γ = 2.

Theorem 1.7. We assume γ = 2.

1. If β > 0 and ω = Ω1 × (a, b) where 0 < a < b < 1 then there exists T ∗ � a2/2 such that
• system (1.3) is observable in ω in any time T > T ∗;
• system (1.3) is not observable in ω in time T < T ∗.

2. If β ∈ (0, 1) and (Ω1, ω1) satisfies property P
(

β
2

)
, then system (1.3) is not observable in ω = ω1 × (−1, 1)

(whatever T > 0 is).

In particular, when β = 1/2, the diffusion in the variable v is strong enough for system (1.3) to be observable
in a horizontal strip ω = Ω1 × (a, b), but information needs time to propagate from the observation location ω
to the degeneracy set {v = 0}. On the contrary, the diffusion in the variable x is too weak for (1.3) to be
observable in a vertical strip ω = ω1 × (−1, 1) in finite time T , at least for appropriate pairs (Ω1, ω1). Thus a
GCC on (Ω,ω) is required for (1.3) to be observable in ω. As a consequence, we conjecture that system (1.2),
with γ = 2, requires a GCC to be observable.

1.3. Bibliographical comments

1.3.1. Null controllability of the heat equation

The null and approximate controllabilities of the heat equation are essentially well understood subjects. In
particular, the heat equation on a smooth bounded domain Ω of Rd (d ∈ N∗), with a source term located on
an open subset ω of Ω, is null controllable in arbitrarily small time T and with an arbitrarily small control
support ω. This result is related to the infinite speed of propagation. It is proved, for the case d = 1 by Fattorini
and Russell ([24], Thm. 3.3), and, for d � 2 by O. Imanuvilov [31, 32] (see also the book [26] by Fursikov and
Imanuvilov) and Lebeau and Robbiano [34]. It is then natural to wonder whether the same result holds for
degenerate parabolic equations.

1.3.2. Boundary-degenerate parabolic equations

The null controllability of 1D-parabolic equations degenerating on the boundary of the space domain is well
understood: it still holds for weak degeneracies and fails for strong ones, see [2, 15–20,25, 36]. Fewer results are
available for multidimensional problems, see [21].

1.3.3. Parabolic equations degenerating inside the domain

In [37], Martinez et al. study linearized Crocco type equations{
∂tf(t, x, v) + ∂xf(t, x, v)− ∂vvf(t, x, v) = u(t, x, v)1ω(x, v), (t, x, v) ∈ (0, T )× T× (0, 1),

f(t, x, 0) = f(t, x, 1) = 0, (t, x) ∈ (0, T )× T.
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For a given strict open subset ω of T × (0, 1), they prove that null controllability does not hold: the optimal
result is regional null controllability. Note that, for Kolmogorov-type equations (1.2), the coupling between
diffusion in v and transport in x (at speed vγ) generates diffusion both in variables x and v (see Prop. 6.2). As
a consequence, the controllability properties are different.

In [10], Beauchard et al. study Grushin-type equations{
∂tf(t, x, y)− ∂2

xf(t, x, y)− |x|2γ∂2
yf(t, x, y) = u(t, x, y)1ω(x, y), (t, x, y) ∈ (0, T )×Ω,

f(t, x, y) = 0, (t, x, y) ∈ (0, T )× ∂Ω, (1.5)

where Ω := (−1, 1)× (0, 1), ω ⊂ (0, 1)× (0, 1), and γ > 0. Here, the parabolic operator degenerates along the
line {0} × (0, 1). They prove that null controllability

• holds in any time T > 0 and any control support ω when γ ∈ (0, 1);
• does not hold (whatever T and ω) when γ > 1;
• holds only in large time when γ = 1 and ω = (a, b)× (0, 1) with 0 < a < b < 1.

Note that, contrary to Grushin-type equations (1.5), in Kolmogorov-type equations (1.2), the parabolic
operator degenerates everywhere on the domain.

1.3.4. Unique continuation for Kolmogorov-type equations

In this section, we focus on unique continuation for Kolmogorov-type equations (1.2), i.e. whether the property
g(t, x, v) ≡ 0 on (0, T )× ω does imply g ≡ 0 on (0, T )× Ω, for a given open subset ω of Ω.

When ω = T× (a, b) is an horizontal strip, then the unique continuation of equation (1.2) holds for every γ ∈
N∗, as a consequence of Holmgren’s theorem (the coefficients of the operator are analytic and the hypersurface
T × {a, b} is noncharacteristic). In particular, Theorem 1.4 emphasizes that, when γ � 3, then observability
does not hold even if unique continuation holds.

To our best knowledge, when ω is a general open subset of Ω, then unique continuation for Kolmogorov-type
equations (1.2) is an open problem.

Bony proved in [11] that Hörmander’s operators of the form P =
∑

j X
2
j (i.e. such that the Lie algebra

generated by the Xj has maximal rank at any point) with analytic coefficients, satisfy the unique continuation,
in the following sense: if, for some f with non zero gradient, f−1(a) is a strongly noncharacteristic surface and
u is a distribution such that Pu = 0 and u = 0 on f−1[(−∞, a)], then u ≡ 0 on a neighborhood of f−1(a). The
validity of the same result for Hörmander’s operators of the form P = X0+

∑
j X

2
j (generalizing our Kolmogorov

operator K = ∂t + vγ∂x − ∂2
v) is an open problem.

When coefficients are not analytic, but only C∞, unique continuation may not hold. For instance, Alinhac
and Zuily built in [3] a zero order C∞-perturbation of the Kolmogorov operator K = ∂t + vγ∂x − ∂2

v for which
unique continuation does not hold. There exist C∞-functions u(t, x, v) and a(t, x, v) on a neighborhood V of 0
in R3 such that Ku+ au = 0, u(t, x, v) = a(t, x, v) = 0 when v < 0, and 0 ∈ Supp(u). And the same result holds
with any surface {v = const.}.

The result of Alinhac and Zuily leaves open the question of the unique continuation for system (1.2). Indeed,
their counterexample does not satisfy the boundary conditions of (1.2) and it cannot be built with a = 0.
However, it suggests that unique continuation for system (1.2) is a subtle issue.

1.4. Structure of the paper

The article is organized as follows.

Section 2 is devoted to the proof of Theorem 1.4.
In Section 3, we prove the negative statements of Theorems 1.6 and 1.7. These results rely on a fine semi

classical analysis of the complex Airy and Davies operators.
In Section 4, we propose examples of pairs (Ω1, ω1) satisfying property P(s) for any s ∈ (0, 1/2).
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The proof of the positive results of Theorems 1.6 and 1.7 relies on the decomposition of the solution of (1.3)
on a Hilbert basis of L2(Ω1), called ‘Fourier decomposition’ with a slight abuse of vocabulary. Thus, the validity
of this decomposition and associated well-posedness results are treated in Section 5.

In Section 6, we prove the positive results of Theorems 1.6 and 1.7. The strategy is the same as in [9], but
intermediate results have been improved. Hence we rewrite the proof completely. First, we state a Carleman
estimate for the 1D-heat equation satisfied by the Fourier components. Then, we quantify the dissipation of
Fourier modes; this result is stronger than in [9]. Then, we combine these two tools to prove the first statements
of Theorems 1.6 and 1.7.

2. Nonobservability when γ � 3

The goal of this section is the proof of Theorem 1.4. The strategy is the same as in Section 5.3 of [9], but
intermediate results are different. Let γ ∈ N∗, a, b, T ∈ R be fixed, in the whole section, such that

γ � 3, T > 0 and 0 < a < b < 1.

Step 1: Approximate solution.
Let ε > 0 be such that b < 1 − ε and θ± ∈ C∞(R) be such that Supp(θ−) ⊂ (−1 − ε,−1 + ε), Supp(θ+) ⊂
(1−ε, 1+ε) and θ±(±1) = 1. Let μ ∈ C be some eigenvalue, with smallest real part, of the operator (−∂2

y + iyγ),
with domain

Dγ := {u ∈ H2(R) s. t. yγu ∈ L2(R)}.
Note that this operator has compact resolvent (see [28]); moreover, μ is a simple eigenvalue and a real number

if γ = 3. Let ξ be an associated eigenfunction{−ξ′′(y) + iyγξ(y) = μ ξ(y), y ∈ R,

‖ξ‖L2(R) = 1.

We recall that (see [42], Chap. 10, Sects. 59 and 60)

|ξ(y)| � Ce−c |y| 2+γ
2 , ∀y ∈ R (2.1)

for some constants C, c > 0.
For n ∈ N∗, we define

g̃n(t, v) := n
1

2(2+γ)

⎡⎣ξ (n 1
2+γ v

)
−

∑
σ∈{−,+}

ξ
(
σn

1
2+γ

)
θσ(v)

⎤⎦ e−μn
2

2+γ t.

We have {
∂tg̃n(t, v) + in vγ g̃n(t, v)− ∂2

v g̃n(t, v) = En(t, v), (t, v) ∈ (0, T )× (−1, 1),

g̃n(t,±1) = 0, t ∈ (0, T ),

where
En(t, v) = n

1
2(2+γ)

∑
σ∈{−,+}

(
(μn

2
2+γ − in vγ)θσ(v) + θ′′σ(v)

)
ξ
(
σ n

1
2+γ

)
e−μ n

2
2+γ t. (2.2)

Let gn be the solution of⎧⎪⎨⎪⎩
∂tgn(t, v) + in vγgn(t, v)− ∂2

vgn(t, v) = 0, (t, v) ∈ (0, T )× (−1, 1),

gn(t,±1) = 0, t ∈ (0, T ),

gn(0, v) = g̃n(0, v), v ∈ (−1, 1).
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We have

1
2

d
dt
‖(g̃n − gn)(t)‖2L2(−1,1) = −‖∂v(g̃n − gn)(t)‖2L2(−1,1) + Re

(∫ 1

−1

En(t, v)(g̃n − gn)(t, v)dv
)
.

By Poincaré and Cauchy–Schwarz Inequalities, we deduce that, for every t ∈ [0, T ],

d
dt
‖(g̃n − gn)(t)‖2L2(−1,1) � −π

2

4
‖(g̃n − gn)(t)‖2L2(−1,1) +

4
π2
‖En(t)‖2L2(−1,1).

From this inequality and (2.2), we deduce that, for every t ∈ [0, T ]

‖(g̃n − gn)(t)‖2L2(−1,1) � 4
π2

∫ t

0
‖En(τ)‖2L2(−1,1)e

−π2
4 (t−τ)dτ

� C n2+ 1
2+γ

∑
σ∈{−1,1}

∣∣∣ξ (σ n 1
2+γ

)∣∣∣2 ∫ t

0 e

(
−2Re (μ) n

2
2+γ + π2

4

)
τ
dτ

� C n2− 1
2+γ

∑
σ∈{−1,1}

∣∣∣ξ (σ n 1
2+γ

)∣∣∣2
where the constant C may change from line to line.

By (2.1), we deduce that

‖(g̃n − gn)(t)‖L2(−1,1) � Cn
3+2γ

2(2+γ) e−c
√

n, ∀t ∈ [0, T ]. (2.3)

Step 2: Conclusion.
Working by contradiction, we assume that system (1.2) is observable in ω in time T . The observability inequality
applied to the solution g(t, x, v) := gn(t, v)einx of (1.2) gives

∫ 1

−1

|gn(T, v)|2 dv � C
∫ T

0

∫ b

a

|gn(t, v)|2 dvdt, ∀n ∈ N
∗.

We deduce from the triangular inequality, the previous relation and (2.3) that

‖g̃n(T )‖L2(−1,1) �
(
C
∫ T

0

∫ b

a

|g̃n(t, v)|2dvdt
)1/2

+ ‖(g̃n − gn)(T )‖L2(−1,1)

+

(
C
∫ T

0

∫ b

a

|(g̃n − gn)(t, v)|2dvdt
)1/2

�
(
C

∫ T

0

∫ b

a

|g̃n(t, v)|2 dvdt

)1/2

+
(
1 +
√
TC

)
C n

3+2γ
2(2+γ) e−c

√
n.

However, there exists C > 0 such that

‖g̃n(T )‖L2 � Ce−Re (μ) n
2

2+γ T
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and(∫ T

0

∫ b

a

|g̃n(t, v)|2 dvdt

)1/2

=

(∫ T

0

∫ b

a

n
1

(2+γ)

∣∣∣ξ (n 1
2+γ v

)∣∣∣2 e−2Re (μ)n
2

2+γ t dvdt

)1/2

because b < 1− ε

=

⎛⎝∫ b n
1

2+γ

a n
1

2+γ

|ξ(y)|2 dy

⎞⎠1/2 (∫ T

0

e−2Re (μ) n
2

2+γ t dt

)1/2

� C n
−1
2+γ

⎛⎝∫ b n
1

2+γ

a n
1

2+γ

e−2c |y| 2+γ
2 dy

⎞⎠1/2

by (2.1)

� C n
−1

2(2+γ) e−c a
2+γ
2

√
n.

This gives a contradiction, when n→ +∞, because 2
2+γ <

1
2 when γ > 2. �

3. Nonobservability on a vertical strip

The goal of this section is the proof of the nonobservability results of Theorems 1.6 and 1.7.

3.1. Accurate spectral analysis

In this section, we are interested in the spectrum of the operators

A(−R,R) := − d2

dy2
+ iy and H(−R,R) := − d2

dy2
+ iy2

defined on the segment (−R,R), R > 0, with Dirichlet boundary conditions at y = ±R, with domains

D(A(−R,R)) = D(H(−R,R)) = H2 ∩H1
0 ((−R,R),C).

More precisely, we study the asymptotic behavior, as R → +∞, of the bottom of the spectrum of A(−R,R)

and H(−R,R) and we prove the following two theorems, in Sections 3.3 and 3.4, respectively.

Theorem 3.1. Let μ1 < 0 be the first zero of the Airy function. Then,

lim
R→∞

(
inf Reσ(A(−R,R))

)
=
|μ1|
2
, (3.1)

where σ(A(−R,R)) denotes the spectrum of A(−R,R). Moreover, for every ε > 0, there exists Rε > 0 and Mε > 0
such that, for every R ≥ Rε,

sup
γ ≤ |μ1|/2 − ε,

ν ∈ R

∥∥∥ (A(−R,R) − (γ + iν)
)−1

∥∥∥
L(L2(−R,R))

� Mε. (3.2)

Now, let us consider the case of the Davies operator.

Theorem 3.2. We have

lim
R→∞

(
inf Reσ(H(−R,R))

)
=
√

2
2
· (3.3)

Moreover, for every ε > 0, there exists R′
ε > 0 and M ′

ε > 0 such that, for every R ≥ R′
ε,

sup
γ ≤ √

2/2 − ε,

ν ∈ R

∥∥∥ (H(−R,R) − (γ + iν)
)−1

∥∥∥
L(L2(−R,R))

� M ′
ε. (3.4)

Analogous questions have been considered in [4–8] in relation with problems occuring in superconductivity.
We study these two operators using the techniques developed in these references. The study of more general
cases (dimension 2) complementary to those studied in [4, 5] will be done in [30].
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3.2. Proof of the negative statements of Theorems 1.6 and 1.7

The goal of this subsection is the proof of the second statements of Theorems 1.6 and 1.7, by application of
the results of the previous subsection. Thus, in the whole subsection, γ, β, Ω1 and ω1 are fixed such that

• either γ = 1, β ∈ (0, 3/4) and (Ω1, ω1) satisfies property P(2β/3);
• or γ = 2, β ∈ (0, 1) and (Ω1, ω1) satisfies property P(β/2).

For n ∈ N∗, we introduce the operator An,γ defined by

D(An,γ) := H2 ∩H1
0 ((−1, 1),C), An,γψ := −d2ψ

dv2
+ iλβ

nv
γψ.

By rescaling (y = λ
β

2+γ
n v) and using Theorems 3.1 and 3.2, there exist C1, C2 > 0 and n∗ ∈ N∗ such that, for

every n � n∗, An,γ has an eigenvalue μn satisfying

C1λ
2β

2+γ
n � Re (μn) � C2λ

2β
2+γ
n . (3.5)

We introduce a normalized eigenfunction ψn of An,γ associated with the eigenvalue μn,⎧⎪⎨⎪⎩
−ψ′′

n(v) + iλβ
nv

γψn(v) = μnψn(v), v ∈ (−1, 1),

ψn(±1) = 0,

‖ψn‖L2(−1,1) = 1.

Then the function
gn(t, x, v) := ϕn(x)ψn(v)e−μnt

is a solution of (1.3). The second statement of Theorems 1.6 and 1.7 is a consequence of the following proposition.

Proposition 3.3. For every T > 0, we have

lim
n→+∞

(∫ T

0

∫
ω
|gn(t, x, v)|2 dxdvdt∫

Ω |gn(T, x, v)|2 dxdv

)
= 0.

Proof of Proposition 3.3.
We have ∫

Ω

|gn(T, x, v)|2dv = e−2 Re (μn)T ,

because ψn and ϕn are normalized in L2.
By Fubini’s Theorem, we get∫ T

0

∫
ω

|gn(t, x, v)|2 dxdvdt =

(∫ T

0

e−2Re (μn) tdt

)(∫ 1

−1

|ψn(v)|2 dv
)(∫

ω1

|ϕn(x)|2 dx
)

=
1− e−2Re (μn) T

2 Re (μn)

∫
ω1

|ϕn(x)|2 dx.

Thus, ∫ T

0

∫
ω
|gn(t, x, v)|2 dxdvdt∫

Ω |gn(T, x, v)|2 dxdv
=

e2 Re (μn) T − 1
2 Re (μn)

∫
ω1

ϕn(x)2 dx.
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Let C be a positive constant such that
C > 2 C2 T, (3.6)

where C2 is as in (3.5).
Let s := 2β

2+γ · By property P(s), there exists a subsequence (nk)k∈N such that

−1
λs

nk

ln
(∫

ω1

|ϕnk
(x)|2dx

)
� C, ∀k ∈ N,

or, equivalently ∫
ω1

|ϕnk
(x)|2dx � e−C λs

nk , ∀k ∈ N.

Then, ∫ T

0

∫
ω |gnk

(t, x, v)|2 dxdvdt∫
Ω |gnk

(T, x, v)|2 dxdv
� e(2C2T−C) λs

nk

2C1 λs
nk

−→
k→+∞

0,

by (3.6), which gives the conclusion. �

3.3. Semi classical analysis of the complex Airy operator (γ = 1)

The goal of this subsection is the proof of Theorem 3.1.

We introduce two model-operators, that have well known spectral and pseudospectral behavior. Let A(−R,+∞)

and A(−∞,R) be the Dirichlet realizations of the operator − d2

dy2 + iy on the intervals (−R,+∞) and (−∞, R)
respectively. We are going to approximate the resolvent ofA(−R,R) by the one ofA(−R,+∞) orA(−∞,R) depending
on where we are, respectively close to −R or close to +R.

Let us remark that, if

TR : u(x) → u(x+R) and UR : u(x) → u(R− x) (3.7)

then

T−1
R (A(−R,+∞) − λ)TR = A(0,+∞) − (λ+ iR), (3.8)

U−1
R (A(−∞,R) − λ)UR = A∗

(0,+∞) − (λ− iR), (3.9)

thus

inf Reσ
(A(−R,∞)

)
= inf Reσ

(A(−∞,R)

)
=
|μ1|
2
, (3.10)

because inf Re σ
(A(0,+∞)

)
= |μ1|/2, see [4].

Step 1. We prove

lim
R→+∞

(
inf Reσ

(A(−R,R)

))
� |μ1|

2
(3.11)

and (3.2).
Let ε > 0. We search Rε > 0 such that

∀R ≥ Rε, σ
(A(−R,R)

) ∩ (]−∞, |μ1|/2− ε] + iR) = ∅. (3.12)

We recall that, by [27], there exists Cε > 0 such that

sup
γ ≤ |μ1|/2 − ε,

ν ∈ R

∥∥∥ (A(0,+∞) − (γ + iν)
)−1

∥∥∥
L(L2(0,+∞))

� Cε, (3.13)

sup
γ ≤ |μ1|/2 − ε,

ν ∈ R

∥∥∥(
A∗

(0,+∞) − (γ + iν)
)−1 ∥∥∥

L(L2(0,+∞))
� Cε. (3.14)
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Let λ = γ + iν ∈]−∞, |μ1|/2− ε] + iR and h+, h− ∈ C∞(R; [0, 1]) be such that

Supp (h−) ⊂ (−∞, 1/2), h− ≡ 1 on (−∞,−1/2],
Supp (h+) ⊂ (−1/2,+∞), h+ ≡ 1 on [1/2,+∞),

h2
− + h2

+ ≡ 1 on (−∞,+∞).

For R > 0, we define
η±R(x) = h±

( x
R

)
1(−R,R)(x) (3.15)

and
RR(λ) = η−R

(A(−R,+∞) − λ
)−1

η−R + η+
R

(A(−∞,R) − λ
)−1

η+
R . (3.16)

RR(λ) will be used as an approximation of the resolvent of A(−R,R). We have(A(−R,R) − λ
)RR(λ) = I +

[A(−R,R), η
−
R

] (A(−R,+∞) − λ
)−1

η−R

+
[A(−R,R), η

+
R

] (A(−∞,R) − λ
)−1

η+
R (3.17)

as an equality between operators on L2(−R,R).
We estimate the second term on the right hand side. In what follows, the estimates are uniform with respect to
ν = Imλ. We have[A(−R,R), η

−
R

] (A(−R,+∞) − λ
)−1

η−R =
(
− (

η−R
)′′ − 2

(
η−R

)′ d
dy

)(A(−R,+∞) − λ
)−1

η−R . (3.18)

Using ‖(η−R)′‖L∞(−R,R) = O(R−1) and ‖(η−R)′′‖L∞(−R,R) = O(R−2), we get, by (3.8) and (3.13),∥∥∥(η−R)′′
(A(−R,+∞) − λ

)−1
η−R

∥∥∥
L(L2(−R,R))

= O
(

1
R2

)
· (3.19)

Moreover, for every v ∈ L2(−R,+∞),∥∥∥∥ d
dy

(A(−R,+∞) − λ
)−1

v

∥∥∥∥
L2(−R,+∞)

≤
(∥∥∥ (A(−R,+∞) − λ

)−1
∥∥∥1/2

+
√
γ
∥∥∥ (A(−R,+∞) − λ

)−1
∥∥∥) ‖v‖L2(−R,+∞).

(3.20)
Indeed, let w := (A(−R,+∞) − λ)−1v, i .e.{−w′′(y) + iyw(y)− λw(y) = v(y), y ∈ (−R,+∞),

w(−R) = w(+∞) = 0.

We have

‖w′‖2L2(−R,+∞) = −Re

⎛⎝ +∞∫
−R

w(y)w′′(y)dy

⎞⎠
= Re

⎛⎝ +∞∫
−R

w[iyw + λw + v]

⎞⎠
= γ

+∞∫
−R

|w|2 + Re

⎛⎝ +∞∫
−R

wv

⎞⎠
� γ‖w‖2L2(−R,+∞) + ‖w‖L2(−R,+∞)‖v‖L2(−R,+∞).
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By taking the square root of this inequality, we get

‖w′‖L2(−R,+∞) � √γ‖w‖L2(−R,+∞) + ‖w‖1/2
L2(−R,+∞)‖v‖1/2

L2(−R,+∞),

which proves (3.20). By applying (3.20) to v = η−Ru, u ∈ L2(R), we get∥∥∥(η−R )′
d
dy

(A(−R,+∞) − λ
)−1

η−R
∥∥∥
L(L2(−R,R))

= O
(

1
R

)
, (3.21)

which gives, with (3.18) and (3.19),∥∥∥[A(−R,R), η
−
R ]

(A(−R,+∞) − λ
)−1

η−R
∥∥∥
L(L2(−R,R))

= O
(

1
R

)
· (3.22)

In the same way, we verify that∥∥∥[A(−R,R), η
+
R ]

(A(−∞,R) − λ
)−1

η+
R

∥∥∥
L(L2(−R,R))

= O
(

1
R

)
· (3.23)

Equality (3.17) can be written
(A(−R,R) − λ)RR(λ) = I + ER(λ),

with ‖ER(λ)‖L(L2(−R,R)) = O(R−1), uniformly with respect to λ ∈]−∞, |μ1|/2−ε]+iR. We deduce the existence
of Rε > 0 such that, for every R ≥ Rε, (A(−R,R) − λ) is invertible, with inverse(A(−R,R) − λ

)−1 = RR(λ) (I + ER(λ))−1
.

We have proved (3.12). Moreover, according to the definition (3.16) of RR(λ), (3.8), (3.9), (3.13) and (3.14)
yield the estimate (3.2).

Step 2. We prove that

lim
R→+∞

(
inf Reσ

(A(−R,R)

))
� |μ1|

2
· (3.24)

First, we reduce the study to the complex Airy operator A(0,R) on the interval (0, R). Indeed, applying the
translation TR : u(x) → u(x+R), we get

T−1
R (A(−R,R) − λ)TR = A(0,2R) − (λ + iR),

thus Reσ(A(−R,R)) = Reσ(A(0,2R)). Therefore, in order to prove (3.24), we are going to prove that

lim
R→+∞

(
inf Reσ

(A(0,R)

))
� |μ1|

2
· (3.25)

Let θ1, θ2 ∈ C∞(R; [0, 1]) be such that

Supp (θ1) ⊂ (−∞, 2/3), θ1 ≡ 1 on (−∞, 1/2),
Supp (θ2) ⊂ (1/2,+∞), θ2 ≡ 1 on (2/3,+∞),

θ21 + θ22 ≡ 1 on R.

For j = 1, 2 and R > 0, we define
χj

R(x) = θj

( x
R

)
1(0,R)(x). (3.26)
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We want to prove that

1(0,R)

(A(0,R) + 1
)−1

1(0,R) −→
R→+∞

(A(0,+∞) + 1
)−1 in L (

L2(R+)
)
. (3.27)

Let us remark that
σ
(
1(0,R)

(A(0,R) + 1
)−1

1(0,R)

)
= σ

((A(0,R) + 1
)−1

)
with non vanishing eigenvalues that have the same multiplicity for both operators.

Step 2a. We prove that

1(0,R)

(A(0,R) + 1
)−1

1(0,R) − χ1
R

(A(0,+∞) + 1
)−1

χ1
R −→

R→+∞
0 in L (

L2
(
R

+
))
.

For this, we use the following approximations of the resolvent of (A(0,R) + 1),

R̃R = χ1
R

(A(0,+∞) + 1
)−1

χ1
R + χ2

R

(A(0,R) + 1
)−1

χ2
R.

Then, we have

(A(0,R) + 1)R̃R = I +
[A(0,R) + 1, χ1

R

] (A(0,+∞) + 1
)−1

χ1
R

+
[A(0,R) + 1, χ2

R

] (A(0,2R) + 1
)−1

χ2
R,

thus, by composing on the left by 1(0,R)

(A(0,R) + 1
)−1

1(0,R), we get

1(0,R)

(A(0,R) + 1
)−1

1(0,R) − χ1
R

(A(0,+∞) + 1
)−1

χ1
R = χ2

R

(A(0,R) + 1
)−1

χ2
R

− 1(0,R)

(A(0,R) + 1
)−1

1(0,R)

[A(0,R) + 1, χ1
R

]
× (A(0,+∞) + 1

)−1
χ1

R − 1(0,R)

(A(0,R) + 1
)−1

× 1(0,R)

[A(0,R) + 1, χ2
R

] (A(0,R) + 1
)−1

χ2
R. (3.28)

Now, we control the different terms on the right hand side. The terms involving commutators can be estimated
as in Step 1, thanks to (3.2), and we get∥∥∥1(0,R)

(A(0,R) + 1
)−1

1(0,R)

[A(0,R) + 1, χ1
R

] (A(0,+∞) + 1
)−1

χ1
R

∥∥∥
L(L2(R+))

= O
(

1
R

)
, (3.29)∥∥∥1(0,R)

(A(0,R) + 1
)−1

1(0,R)

[A(0,R) + 1, χ2
R

] (A(0,R) + 1
)−1

χ2
R

∥∥∥|L(L2(R+)) = O
(

1
R

)
· (3.30)

Moreover, for u ∈ L2((0, R),C), we have

Im
〈
(A(0,R) + 1)u, u

〉
= 〈yu , u〉 (3.31)

where 〈., .〉 denotes the L2((0, R),C)-hermitian product.
This relation, applied to u = χ2

R

(A(0,R) + 1
)−1

χ2
Rf , f ∈ L2(0,+∞), which is supported in (R/2, R), gives

Im
〈
(A(0,R) + 1)u, u

〉
� R

2
‖u‖2.

Moreover,
(A(0,R) + 1)u = (χ2

R)2f + [A(0,R) + 1, χ2
R]

(A(0,R) + 1
)−1

χ2
Rf.
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Thus, estimating the commutator as in Step 1, we get∣∣Im 〈
(A(0,R) + 1)u, u

〉∣∣ � C

(
1 +

1
R

)
‖f‖‖u‖.

Therefore,
R

2
‖u‖2 � C

(
1 +

1
R

)
‖f‖‖u‖.

We have proved that ∥∥∥χ2
R

(A(0,R) + 1
)−1

χ2
R

∥∥∥
L(L2(0,+∞))

= O
(

1
R

)
· (3.32)

By (3.28), (3.29), (3.30) and (3.32), we have∥∥∥1(0,R)

(A(0,R) + 1
)−1

1(0,R) − χ1
R

(A(0,+∞) + 1
)−1

χ1
R

∥∥∥
L(L2(0,+∞))

= O
(

1
R

)
(3.33)

which ends Step 2a.

Step 2b. We verify that

χ1
R

(A(0,+∞) + 1
)−1

χ1
R −→

R→+∞
(A(0,+∞) + 1

)−1 in L(L2(0,+∞)), (3.34)

which ends the proof of (3.27).
To simplify notation, let us introduce

A+ = A(0,+∞) + 1.

First, we write
χ1

RA−1
+ χ1

RA+ =
(
χ1

R

)2 − χ1
RA−1

+

[A+, χ
1
R

]
,

then, composing on the right by A−1
+ and using that (χ1

R)2 = 1− (χ2
R)2,

A−1
+ − χ1

RA−1
+ χ1

R =
(
χ2

R

)2A−1
+ + χ1

RA−1
+

[A+, χ
1
R

]A−1
+ . (3.35)

The term involving a commutator can be estimated as in Step 1,∥∥∥χ1
RA−1

+

[A+, χ
1
R

]A−1
+

∥∥∥
L(L2(R+))

= O
(

1
R

)
· (3.36)

For f ∈ L2(0,+∞), we have

R

2
‖(χ2

R)2A−1
+ f‖2 � ‖y1/2(χ2

R)2A−1
+ f‖2 (

because Supp (χ2
R) ⊂ (R/2, R)

)
= Im 〈A+(χ2

R)2A−1
+ f, (χ2

R)2A−1
+ f〉

� ‖A+(χ2
R)2A−1

+ f‖‖(χ2
R)2A−1

+ f‖
�

(‖(χ2
R)2f‖+ ‖[A+, (χ2

R)2]A−1
+ f‖) ‖(χ2

R)2A−1
+ f‖,

where 〈., .〉 denotes the L2((0,+∞),C)-hermitian product and ‖.‖ is the associated norm. Estimating the term
with a commutator as in Step 1, we get

R ‖(χ2
R)2A−1

+ f‖L2(0,+∞) � C

(
1 +

1
R

)
‖f‖L2(0,+∞).
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Thus ∥∥∥(χ2
R)2A−1

+

∥∥∥
L(L2(0,+∞))

= O
(

1
R

)
· (3.37)

Finally, (3.35), (3.36) and (3.37) imply (3.34).

Step 2c. Conclusion:

Step 2a and Step 2b prove (3.27). The eigenvalues of A−1
+ are isolated, thus we can apply ([33], Sect. IV,

Paragr. 3.5). For any subsequence Rj → +∞ and any eigenvalue λ ∈ σ(A−1
+ ) \ {0}, there exists a sequence (λj)

such that, for every j large enough

λj ∈ σ
(
1(0,Rj)

(A(0,Rj) + 1
)−1

1(0,Rj)

)
\ {0} = σ

((A(0,Rj) + 1
)−1

)
\ {0}

and λj → λ when j → +∞.
In particular, with λ = 1/(λ̃+1), where λ̃ = eiπ/3|μ1| ∈ σ(A(0,+∞)) is the eigenvalue of A(0,+∞) with smallest

real part (see [4]), we get a sequence λ̃j = 1/λj − 1 ∈ σ(A(0,Rj)) such that Re λ̃j → Re λ̃ = |μ1|/2, from which
we deduce (3.24).

3.4. Semi classical analysis of the Davies operator (γ = 2)

The goal of this section is the proof of Theorem 3.2, which is similar to the one of Theorem 3.1.

Step 1. Let ε > 0. We search Rε > 0 such that

∀R ≥ Rε, σ
(H(−R,R)

) ∩ (
(−∞,

√
2/2− ε) + iR

)
= ∅ (3.38)

and we prove (3.4).
Let α ∈ (0, 1/3) and ζ1

R, ζ
2
R, ζ

3
R ∈ C∞(R; [0, 1]) be such that

Supp ζ1
R ⊂ (−∞,−R+Rα) , ζ1

R ≡ 1 on (−∞,−R+Rα/2) ,
Supp ζ2

R ⊂ (−R+Rα/2, R−Rα/2) , ζ2
R ≡ 1 on (−R+ Rα, R −Rα) ,

Supp ζ3
R ⊂ (R−Rα,+∞) , ζ3

R ≡ 1 on (R−Rα/2,+∞) ,(
ζ1
R

)2
+

(
ζ2
R

)2
+

(
ζ3
R

)2 ≡ 1 on R,

‖(ζj
R)′‖L∞(R) = O

R→+∞
(
R−α

)
, ‖(ζj

R)′′‖L∞(R) = O
R→+∞

(
R−2α

)
. (3.39)

Close to y = −R, we have
y2 = −2R(y +R) +R2 + o(|y +R|).

Thus, we are going to approximate H(−R,R), close to y = −R, by the complex Airy type operator on (−R,+∞)

A−
R := − d2

dy2
− 2iR(y +R) + iR2.

In the same way, we will approximateH(−R,R) close to y = +R by the complex Airy type operator on (−∞,+R)

A+
R := − d2

dy2
− 2iR(R− y) + iR2.

Then, we remark that, if TR and UR are defined by (3.7), then we have

A−
R = TRÃ∗

2RT
−1
R + iR2 and A+

R = URÃ∗
2RU

−1
R + iR2,

where ÃR is the Dirichlet realization of the complex Airy operator − d2

dy2 + iRy on (0,+∞).
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Following [27], we deduce that

inf Reσ
(A+

R

)
= inf Reσ

(A−
R

)
= (2R)2/3 |μ1|

2
, (3.40)

and, for every ε > 0, there exists Cε > 0 such that

sup
γ ∈ [0, R2/3|μ1|/2 − ε],

ν ∈ R

∥∥∥ (A±
R − (γ + iν)

)−1
∥∥∥ � Cε

R2/3
· (3.41)

We call H0 the complex harmonic oscillator − d2

dy2 + iy2 on R, that will serve to approximate H(−R,R) on the
support of ζ2

R. We recall that inf Reσ(H0) = cosπ/4 =
√

2/2 (see [22]) and

sup
γ ≤ √

2/2 − ε,
ν ∈ R

∥∥∥ (H0 − (γ + iν))−1
∥∥∥ � C′

ε, (3.42)

for some C′
ε > 0, see for instance [41].

Now, we take λ = γ + iν ∈ (0,
√

2/2− ε) + iR and we set

QR(λ) = ζ1
R

(A−
R − λ

)−1
ζ1
R + ζ2

R (H0 − λ)−1 ζ2
R + ζ3

R

(A+
R − λ

)−1
ζ3
R. (3.43)

Then, we have(H(−R,R) − λ
)QR(λ) = I +

[H(−R,R), ζ
1
R

] (A−
R − λ

)−1
ζ1
R

+
[H(−R,R), ζ

2
R

]
(H0 − λ)−1

ζ2
R +

[H(−R,R), ζ
3
R

] (A+
R − λ

)−1
ζ3
R

+ ζ1
R

(H(−R,R) −A−
R

) (A−
R − λ

)−1
ζ1
R + ζ3

R

(H(−R,R) −A+
R

) (A+
R − λ

)−1
ζ3
R,

as equality between operators on L2(−R,R). The terms involving commutators can be estimated as in Step 1
of the previous section, by using (3.39), (3.41), (3.42) and we get∥∥∥[H(−R,R), ζ

1
R]

(A−
R − λ

)−1
ζ1
R

∥∥∥
L(L2(−R,R))

+
∥∥∥[H(−R,R), ζ

2
R] (H0 − λ)−1 ζ2

R

∥∥∥
L(L2(−R,R))

+
∥∥∥[H(−R,R), ζ

3
R]

(A+
R − λ

)−1
ζ3
R

∥∥∥
L(L2(−R,R))

= O(R−α).

Moreover, we have, by definition of A−
R,

(H(−R,R) −A−
R)u(y) = i(y +R)2u(y),

and on the support of ζ1
R, we have y +R ≤ Rα. Therefore, by (3.41)∥∥∥ζ1

R(H(−R,R) −A−
R)

(A−
R − λ

)−1
ζ1
R

∥∥∥
L(L2(−R,R))

≤ R2α
∥∥∥ (A−

R − λ
)−1

∥∥∥
L(L2(−R,+∞))

≤ CεR
2(α−1/3).

In the same way, we verify∥∥∥ζ3
R(H(−R,R) −A+

R)
(A+

R − λ
)−1

ζ3
R

∥∥∥
L(L2(−R,R))

≤ CεR
2(α−1/3).
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Thus, we have proved that
(H(−R,R) − λ)QR(λ) = I + ẼR(λ),

with ‖ẼR(λ)‖ → 0 as R → +∞, uniformly with respect to λ in the interval (0,
√

2/2 − ε) + iR. Thus, there
exists Rε > 0 such that, for every R ≥ Rε, (H(−R,R) − λ) is invertible, with(H(−R,R) − λ

)−1 = QR(λ)
(
I + ẼR(λ)

)−1

. (3.44)

This proves the existence of Rε > 0 such that (3.38) holds. The resolvent estimate (3.4) follows from (3.41),
(3.42) and (3.43).

Step 2. We prove

lim
R→+∞

inf Reσ
(H(−R,R)

)
�
√

2
2
· (3.45)

Let ϕ1
R, ϕ

2
R ∈ C∞(R, [0, 1]) be such that

Supp
(
ϕ1

R

) ⊂ (−∞,−R/2) ∪ (R/2,+∞) , ϕ1
R ≡ 1 on (−∞,−2R/3)∪ (2R/3,+∞) ,

Supp
(
ϕ2

R

) ⊂ (−2R/3, 2R/3) , ϕ2
R ≡ 1 on (−R/2, R/2) ,(

ϕ1
R

)2
+

(
ϕ2

R

)2 ≡ 1 on R,

‖
(
ϕj

R

)′
‖L∞(R) = O

(
R−1

)
, ‖

(
ϕj

R

)′′
‖L∞(R) = O

(
R−2

)
.

We recall that H0 denotes the operator − d2

dx2 + ix2 defined on R, and we set

Q̃R = ϕ2
R (H0 + 1)−1

ϕ2
R + ϕ1

R

(H(−R,R) + 1
)−1

ϕ1
R.

Thus, we have (H(−R,R) + 1
) Q̃R = I + PR,

where
PR = [H(−R,R), ϕ

2
R] (H0 + 1)−1

ϕ2
R + [H(−R,R), ϕ

1
R]

(H(−R,R) + 1
)−1

ϕ1
R,

and
‖PR‖L(L2(−R,R)) = O(R−1). (3.46)

By composing on the left with (H(−R,R) + 1)−1, we get(H(−R,R) + 1
)−1 − ϕ2

R (H0 + 1)−1
ϕ2

R = ϕ1
R

(H(−R,R) + 1
)−1

ϕ1
R −

(H(−R,R) + 1
)−1PR. (3.47)

By going back over the proof of (3.32) and replacing (3.31) by

Im
〈H(−R,R)u, u

〉
= 〈x2u, u〉, (3.48)

we get ∥∥∥ϕ1
R

(H(−R,R) + 1
)−1

ϕ1
R

∥∥∥
L(L2(−R,R))

= O
(

1
R

)
·

By (3.47), the previous relation, together with (3.46) and (3.4) imply∥∥∥ (H(−R,R) + 1
)−1 − ϕ2

R (H0 + 1)−1 ϕ2
R

∥∥∥
L(L2(−R,R))

= O
(

1
R

)
· (3.49)

Then, we prove that the operator ϕ2
R(H0 + 1)−1ϕ2

R converges to (H0 + 1)−1 in L(L2(R)), when R → +∞,
with the same arguments as in Step 2b of the previous section. Thus, (3.45) is proved, with the same arguments
as in Step 2c of the previous section, and this ends the proof of Theorem 3.2.
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4. Examples of (Ω1, ω1) satisfying property P(s)

The goal of this section is to give examples of pairs (Ω1, ω1) that satisfy property P(s) for any s ∈ (0, 1/2).
Precisely, we prove that it is the case if Ω1 is a conical bounded subset of Rd and ω1 is any open subset of Ω1

that does not intersect the boundary ∂Ω1. Note that the result covers the situation where Ω1 is a disk or a
circular sector in 2D, a ball in any space dimension.

Proposition 4.1. Let d ∈ N, d � 2 and U be an open subset of Sd−1. Let Ω1 be the conical open subset of Rd

defined by
Ω1 := {x = rx′ ; 0 < r < 1, x′ ∈ U}.

Let ω1 be an open subset compactly embedded in Ω1. There exist constants C,K > 0, a sequence (λ̃k)k∈N∗

of eigenvalues of the operator (−ΔD
Ω1

) (with domain H2 ∩ H1
0 (Ω1)) and associated normalized eigenvectors

(ϕ̃k)k∈N∗ such that ∫
ω1

|ϕ̃k(x)|2dx � Ke−C
√

λ̃k , ∀k ∈ N
∗.

In particular (Ω1, ω1) satisfies property P(s) for any s ∈ (0, 1/2).

We refer to [38] for other similar results. Our Proof of Proposition 4.1 relies on properties of Bessel functions,
recalled in the next statement.

Proposition 4.2. The Bessel functions of the first kind Jν satisfy

0 < Jν(νx) � eνg(x), ∀ν ∈ (0,+∞), x ∈ (0, 1), (4.1)

|J ′
ν(νx)| < (1 + x2)1/4eνg(x)

x
√

2πν
, ∀ν ∈ (0,+∞), x ∈ (0, 1), (4.2)

Jν(ν) ∼
ν→+∞

a

ν1/3
, (4.3)

where

g(x) := ln(x) +
√

1− x2 − ln
[
1 +

√
1− x2

]
and a :=

21/3

32/3Γ (2/3)
> 0.

Inequalities (4.1) and (4.2) are proved in [43]; inequality (4.3) is in ([1], formula 9.3.31, p. 368). Note that g
is negative and increasing on (0, 1) and that g(1) = 0.

Proof of Proposition 4.1. We recall that, in coordinates (r, x′), the Dirichlet–Laplacian writes

(−ΔD
Ω1

)
ϕ = −∂

2ϕ

∂r2
− d− 1

r

∂ϕ

∂r
+

1
r2

(−ΔD
U

)
ϕ.

Let (λ′k)k∈N∗ be the increasing sequence of eigenvalues of (−ΔD
U ) and (Xk)k∈N∗ be associated eigenfunctions⎧⎪⎨⎪⎩

(−ΔD
U

)
Xk(x′) = λ′kXk(x′), x′ ∈ U,

Xk(x′) = 0, x′ ∈ ∂U,
‖Xk‖L2(U) = 1.

For k ∈ N∗, we define

νk :=

√
λ′k +

(
d

2
− 1

)2
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and jk the first positive zero of the Bessel function of first kind Jνk
. Note that

νk < jk < νk + δν
1/3
k , ∀k ∈ N

∗, (4.4)

for some constant δ > 0 (see [1], Formula 9.5.14, p. 371). Let

Ck :=
(∫ 1

0

∣∣∣r− d
2 +1Jνk

(jkr)
∣∣∣2rd−1dr

)1/2

, ∀k ∈ N
∗.

Then, for every k ∈ N
∗, the function

ϕ̃k(rx′) :=
1
Ck

r−
d
2 +1Jνk

(jkr)Xk(x′), ∀r ∈ (0, 1), x′ ∈ U,

is a normalized eigenfunction of (−ΔD
Ω1

) associated to the eigenvalue

λ̃k := j2k. (4.5)

Step 1. We prove the existence of C1 > 0 such that, for k large enough

Ck � C1
ν

3/4
k

· (4.6)

Let ε ∈ (0, 5/6). Performing changes of variables, we get, for k large enough

Ck =
(∫ 1

0

|Jνk
(jkr)|2rdr

)1/2

=
1
jk

(∫ jk

0

|Jνk
(ρ)|2ρdρ

)1/2

� 1
jk

(∫ νk

0

|Jνk
(ρ)|2ρdρ

)1/2

by (4.4)

� νk

jk

(∫ 1

0

|Jνk
(νkr)|2rdr

)1/2

� C

⎛⎜⎜⎝
1∫

1−ν
− 5

6−ε

k

|Jνk
(νkr)|2dr

⎞⎟⎟⎠
1/2

by (4.4). (4.7)

For r ∈ (1− ν− 5
6−ε, 1) and ν large enough, we have

|Jν(νr)| � |Jν(ν)| − ν(1 − r) sup{|J ′
ν(νσ)|;σ ∈ (r, 1)}

� a

2ν1/3
− ν1− 5

6−ε C√
ν

by (4.2) and (4.3)

� 1
ν1/3

(
a

2
− C

νε

)
� a

4ν1/3
· (4.8)
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We deduce from (4.7) and (4.8) that (4.6) holds for some constant C1 > 0.

Step 2. Conclusion:
Let ω1 be an open subset of Rd such that ω1 ⊂ Ω1. There exists a ∈ (0, 1) such that

ω1 ⊂ {x = rx′; 0 < r < a, x′ ∈ U}.
Thus, for every k ∈ N

∗, ∫
ω1

|ϕ̃k(x)|2dx �
∫ a

0

∣∣∣∣ 1
Ck

r−
d
2 +1Jνk

(jkr)
∣∣∣∣2 rd−1dr

� a2

2C2
k

sup {Jνk
(jkr); 0 < r < a} .

Let b ∈ (a, 1). By (4.4), we have jka
νk

< b < 1 for k large enough. Then, by (4.1) for every r ∈ (0, a),

0 < Jνk
(jkr) = Jνk

(
νk
jkr

νk

)
� eνkg

(
jkr

νk

)
.

Explicit computations show that g′(x) > 0, for every x ∈ (0, 1), thus

g

(
jkr

νk

)
< g (b) < 0, ∀r ∈ (0, a).

Therefore, ∫
ω1

|ϕ̃k(x)|2dx � a2

2C2
k

e−|g(b)|νk .

By (4.6), (4.4) and (4.5), we get the conclusion. �
Finally, let us quote, without proof, other examples of pairs (Ω1, ω1) satisfying property P(s) for appropriate

values of s.
If Ω1 is a filled ellipse and ω1 is an open subset of Ω1 that does not intersect ∂Ω1, then the pair (Ω1, ω1)

satisfies property P(s) for any s ∈ (0, 1/2). This can be proved by working in separate variables as in [38] and
constructing “whispery galleries” solutions. The same result holds if ω1 intersects ∂Ω1 but does not intersect
the small axis of Ω1 (see [38], Thm. 3.1, p. 786). This time this corresponds to “focusing solutions”.

All these results can be proved with semi-classical analysis (see, for instance [44] and [23]).

5. Well posedness and Fourier decomposition

In this section γ ∈ N∗ and β ∈ (0, 1) are fixed. For f ∈ C∞
c (Ω,C), we define

|f |V :=
(∫

Ω

|∂vf(x, v)|2dxdv
)1/2

and
V := Adh|.|V [C∞

c (Ω,C)].

Observe that H1
0 (Ω) ⊂ V ⊂ L2(Ω), thus V is dense in L2(Ω). We define the operator Aγ,β by

D(Aγ,β) := {f ∈ V ;−∂2
vf + ivγ(−Δx)βf ∈ L2(Ω)},

Aγ,βf := −∂2
vf + ivγ(−Δx)βf.
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Then D(Aγ,β) is dense in L2(Ω), (Aγ,β, D(Aγ,β)) is a closed operator and both Aγ,β and A∗
γ,β are dissipative,

thus (Aγ,β , D(Aγ,β)) generates a strongly continuous semigroup of contractions of L2(Ω) (see the Lumer–Phillips
Theorem [40], Cor. 4.4, Chap. 1, p. 15; or the Hille Yosida’s Theorem [12], Thm. VII.4, p. 105).

We consider a solution g ∈ C0([0, T ], L2(Ω)) of (1.3). Then, the function x → g(t, x, v) belongs to L2(Ω1) for
almost every (t, v) ∈ [0,+∞) × (−1, 1), thus, it can be developed on the Hilbert basis (ϕn)n∈N∗ (see (1.4)) as
follows

g(t, x, v) =
∑

n∈N∗
gn(t, v)ϕn(x) where gn(t, v) :=

∫
Ω1

g(t, x, v)ϕn(x)dx, ∀n ∈ N
∗. (5.1)

In what follows, with a slight abuse of vocabulary, this decomposition is called ‘Fourier decomposition’ and the
functions gn(t, v) are called ‘Fourier components’.

Proposition 5.1. For every n ∈ N∗, gn is the unique solution of⎧⎪⎨⎪⎩
∂tgn(t, v) + iλβ

nv
γgn(t, v)− ∂2

vgn(t, v) = 0, (t, v) ∈ (0,+∞)× (−1, 1),

gn(t,±1) = 0, t ∈ (0,+∞),

gn(0, v) = g0,n(v), v ∈ (−1, 1),

(5.2)

where g0,n ∈ L2(−1, 1) is given by

g0,n(v) :=
∫

Ω1

g0(x, v)ϕn(x)dx, v ∈ (−1, 1).

This result can be proved by following the same steps as in ([10], Sect. 2.2).

6. Observability on a horizontal strip

The goal of this section is the proof of the statements 1 of Theorems 1.6 and 1.7. Note that the negative part
of the first statement of Theorem 1.7 (i.e. no null controllability, when γ = 2 and T < T ∗) can be done exactly
as in [9].

6.1. Global Carleman estimate

The goal of this subsection is the statement of a global Carleman estimate, proved in ([9], Appendix) and
useful for the proof of the statements 1 of Theorems 1.6 and 1.7. For λ ∈ R and γ ∈ {1, 2}, we introduce the
operator

Pλ,γ g := ∂tg + iλvγg − ∂2
vg.

Proposition 6.1. Let a, b be such that −1 < a < b < 1. There exist a weight function B ∈ C1([−1, 1],R∗
+),

positive constants C1, C2 such that, for every λ ∈ R, γ ∈ {1, 2}, T > 0 and g ∈ C0([0, T ], L2(−1, 1)) ∩
L2(0, T ;H1

0 (−1, 1)) the following inequality holds

C1
∫ T

0

∫ 1

−1

(
M

t(T − t)
∣∣∂g
∂v

(t, v)
∣∣2 +

M3

(t(T − t))3
∣∣g(t, v)∣∣2) e−

MB(v)
t(T−t) dvdt

�
∫ T

0

∫ 1

−1

|Pλ,γg(t, v)|2e−
MB(v)
t(T−t) dvdt+

∫ T

0

∫ b

a

M3

(t(T − t))3 |g(t, v)|
2e−

MB(v)
t(T−t) dvdt, (6.1)

where M := C2 max{T + T 2;
√|λ|T 2}.

In this proposition, the weight B is the usual one for Carleman estimates for 1D heat equations; since its
explicit expression will not be used in this article, we do not specify its properties. Note that we have sharp
dependency of M on λ and T . In particular, if we treat the term iλvγg as a lower-order term, to apply the
Carleman estimate for the operator (∂t−∂2

v), then, we can obtain a less sharp dependency M = O(λ2/3), which
is not sufficient in this article.
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6.2. Dissipation of Fourier components

The Dirichlet realization of the operator −∂2
v + iλβ

nv
γ on (−1, 1) is not a normal operator. Thus it is not

obvious that the exponential decay of the solutions of (5.2) is given by the smallest real part of the eigenvalues
of this operator. This question is answered in the following statement.

Proposition 6.2. Let γ ∈ {1, 2} and

d :=
2γβ
2 + γ

·

There exist K, δ > 0 such that, for every n ∈ N∗ and g0,n ∈ L2(−1, 1), the solution of (5.2) satisfies

‖gn(t)‖L2(−1,1) � Ke−δλd
nt‖g0,n‖L2(−1,1), ∀t > 0. (6.2)

Moreover, for every ε > 0, there exists n∗ > 0 such that, for every n > n∗, (6.2) holds with K = Kε and

δ =

{ |μ1|/2− ε if γ = 1,
√

2/2− ε if γ = 2,
(6.3)

where μ1 is the first zero (from the right) of the Airy function.
Finally, the exponent d of λn in (6.2) is optimal, and the critical value of δ in (6.3) is also optimal.

This result is stronger than ([9], Props. 10 and 17) because in (6.2), we have L2-norms on both sides, whereas
in [9] there was an H1-norm on the right hand side. We study this problem in semi-classical formulation (take
h← λ

−β/2
n and t← hnt).

Let h0 > 0. For h ∈ (0, h0) and ψ0,h ∈ L2(−1, 1), we consider the equation⎧⎪⎨⎪⎩
h∂tψh(t, v)− h2∂2

vψh(t, v) + ivγψh(t, v) = 0, (t, v) ∈ (0,+∞)× (−1, 1),

ψh(t,±1) = 0, t ∈ (0,+∞),

ψh(0, v) = ψ0,h(v), v ∈ (−1, 1).

(6.4)

Proposition 6.3. Let e = 2γ/(γ+2). There exist K, δ > 0 such that, for every h ∈ (0, h0) and ψ0,h ∈ L2(−1, 1),
the unique solution of (6.4) satisfies

‖ψh(t)‖L2(−1,1) ≤ Ke−δhe−1t‖ψ0,h‖L2(−1,1), ∀t > 0. (6.5)

Moreover, for every ε > 0, there exists h∗ ∈ (0, h0) such that, for every h ∈ (0, h∗), (6.5) holds with K = Kε

and (6.3) where μ1 is the first zero (from the right) of the Airy function.
Finally, the exponent d of h in (6.5) is optimal, and the critical value of δ in (6.3) is also optimal.

Proof of Proposition 6.3.
Let Ah be the operator defined by

Ah = −h2 d2

dv2
+ ivγ , D(Ah) = H2(−1, 1) ∩H1

0 (−1, 1).

By rescaling (R = R(h) = h−e/γ and y = Rv) and using Theorems 3.1 and 3.2, we have

lim
h→0

h−e inf Reσ(Ah) =

{ |μ1|/2 if γ = 1,
√

2/2 if γ = 2.
(6.6)
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Thus, we can consider
δ∗ := min

h∈(0,h0)
h−e inf Reσ(Ah) > 0.

Let δ ∈ (0, δ∗). By Theorems 3.1 and 3.2, there exists Cδ such that

sup
ν∈R

∥∥∥ (Ah − δhe − iν)−1
∥∥∥ � Cδ

he
·

Thus,

sup
ν∈R

∥∥∥∥∥
(
Ah

h
− δhe−1 − iν

)−1
∥∥∥∥∥ � Cδh

1−e. (6.7)

Moreover, the operator h−1Ah is maximally accretive, thus it generates a semigroup of contractions:

‖ψh(t)‖L2(−1,1) � ‖ψ0,h‖L2(−1,1), ∀t > 0. (6.8)

We can apply ([29], Thm. 1.5), with ω = −δhe−1 < 0, r(ω)−1 ≤ Cδh
1−e, m(t) ≡ 1 and a = ã = t/2. Note that

‖1‖2L2((0,t/2);eωtdt) =
1− eωt/2

−ω ·

Thus, we obtain

‖ψh(t, ·)‖L2(−1,1) � δCδ

1− e−δhe−1t/2
e−δhe−1t‖ψ0,h‖L2(−1,1), ∀t > 0. (6.9)

Let c0 > 0 and th = 2c0h1−e/δ. Then, by (6.9),

‖ψh(t, ·)‖L2(−1,1) � K1e−δhe−1t‖ψ0,h‖L2(−1,1), ∀t ≥ th
with

K1 =
δCδ

1− e−c0
·

Moreover, by (6.8),
‖ψh(t)‖L2(−1,1) � K2e−δhe−1t‖ψ0,h‖L2(−1,1), ∀t ≤ th

with K2 = e2c0 . Thus,
‖ψh(t)‖L2(−1,1) � Ke−δhe−1t‖ψ0,h‖L2(−1,1), ∀t > 0 (6.10)

with K = max(K1,K2).
Finally, if ε > 0 is fixed, by (6.6) there exists h∗ ∈ (0, h0) such that all the previous estimates hold for h ∈ (0, h∗)
and δ as in (6.3). Indeed, we have

δ < δ̃∗ := min
h∈(0,h∗)

h−e inf Reσ(Ah).

To prove the optimality of exponent (e− 1) of h in (6.5), we just consider

ψ0,h ∈ ker(Ah − λ0,hh
e),

where λ0,h satisfies heλ0,h ∈ σ(Ah) and heReλ0,h = inf Reσ(Ah). Then, we have

ψh(t, v) = e−λ0,hhe−1tψ0,h(v).

Thus, by (6.6), for every t > 0 and ε > 0, there exists h∗ > 0 such that, for every h ∈ (0, h∗),

‖ψh(t, ·)‖L2(−1,1) = e−λ0,hhe−1t‖g0,n‖L2(−1,1)

� e−(ν+ε)he−1t‖ψ0,h‖L2(−1,1),

with ν = |μ1|/2 if γ = 1 and ν =
√

2/2 if γ = 2. �
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6.3. Proof of the positive statements of Theorems 1.6 and 1.7

The positive statements in Theorems 1.6 and 1.7 are consequences of the following proposition and of the
Bessel-Parseval equality.

Proposition 6.4. Let β ∈ (0, 1) and 0 < a < b < 1.

• If γ = 1, then, for every T > 0, there exists C > 0 such that for every n ∈ N
∗ and g0,n ∈ L2(−1, 1), the

solution of (5.2) satisfies ∫ 1

−1

|gn(T, v)|2 dv � C

∫ T

0

∫ b

a

|gn(t, v)|2 dvdt. (6.11)

• If γ = 2, then, there exists T1 > 0 such that, for every T > T1, there exists C > 0 such that for every n ∈ N
∗

and g0,n ∈ L2(−1, 1), the solution of (5.2) satisfies (6.11).

Proof of Proposition 6.4.
We deduce from Proposition 6.1 that

C3λ3β/2
n e−c∗ λβ/2

n

∫ 2T/3

T/3

∫ 1

−1

|gn(t, v)|2dvdt � C4
∫ T

0

∫ b

a

|gn(t, v)|2dvdt (6.12)

for n large enough, where C3 := C2 max{4C1; (4C1)3}, c∗ := 9
2C2 max{β(v); v ∈ [−1, 1]}, C4 := max{x3e−β∗x;x �

0} and β∗ := min{β(v); v ∈ (a, b)}.
Moreover, thanks to Proposition 6.2, we have∫ 1

−1

|gn(T, v)|2 dv � 3K2

T
e−2δλd

nT/3

∫ 2T/3

T/3

∫ 1

−1

|gn(t, v)|2 dvdt

� C5
λ

3β/2
n

ec∗λβ/2
n −2δλd

nT/3

∫ T

0

∫ b

a

|gn(t, v)|2 dvdt (6.13)

where C5 := K2C4/C3.

Case 1: γ = 1. Then d = 2β
3 > β

2 , thus the observability constant above converges to zero as n → +∞. This
proves the existence of a uniform observability constant for high frequencies: there exists CH > 0 and n0 ∈ N

∗

such that ∫ 1

−1

|gn(T, v)|2 dv � CH
∫ T

0

∫ b

a

|gn(t, v)|2 dvdt, ∀g0
n ∈ L2(−1, 1), n > n0.

Moreover, for every n ∈ {1, . . . , n0}, there exists a constant Cn > 0 such that∫ 1

−1

|gn(T, v)|2 dv � Cn

∫ T

0

∫ b

a

|gn(t, v)|2 dvdt, ∀g0
n ∈ L2(−1, 1)

(usual observability inequality for 1D heat equations). Thus, the uniform observability constant
C := max{CH , Cn; 1 � n � n0} gives the conclusion.

Case 2: γ = 2. Then d = β
2 , thus, when T > T1 := 3c∗

2δ , the observability constant in (6.13) converges to zero
as n→ +∞ and the proof can be ended as in the previous case. �
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