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OPTIMAL STOCHASTIC CONTROL WITH RECURSIVE COST FUNCTIONALS
OF STOCHASTIC DIFFERENTIAL SYSTEMS REFLECTED IN A DOMAIN *» **

JuaN L' AND SHANJIAN TANG2

Abstract. The paper is concerned with optimal control of a stochastic differential system reflected in
a domain. The cost functional is implicitly defined via a generalized backward stochastic differential
equation developed by Pardoux and Zhang [Probab. Theory Relat. Fields 110 (1998) 535-558]. The
value function is shown to be the unique viscosity solution to the associated Hamilton—Jacobi—-Bellman
equation, which is a fully nonlinear parabolic partial differential equation with a nonlinear Neumann
boundary condition. The proof requires new estimates for the reflected stochastic differential system.
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1. INTRODUCTION

Let D be an open connected bounded convex subset of R? such that D = {¢ > 0}, 9D = {¢ = 0} for some
function ¢ € CZ(R?) satisfying |[V¢(x)| = 1 at any x € dD. Note that at any = € 9D, V¢(x) is a unit normal
vector on the boundary point z, pointing towards the interior of D.

Let U be a metric space. An admissible control process is a U-valued F-progressively measurable process.
The set of all admissible control processes is denoted by U. In this paper, for the initial data (¢,z) € [0,T] x R?
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we consider the optimal control problem for the following stochastic differential equations (SDEs) reflected in
domain D:

{XS =z+ [b(r, X, u)dr + [ o (r, X, u,) dB, + [ Vo (X,) dK,, s € [t,T]; a1

K, = f: I;x,eopydK,, K is increasing.

are uniformly Lipschitz continuous and grows linearly in the state variable xz. For each u(-) € U, in
view of Proposition A.1 in the appendix, the above reflected SDE (1.1) has a unique strong solution, de-
noted by (X®@u K4%%) Consider the following controlled generalized backward stochastic differential equa-
tion (GBSDE):

{ —dY, =f (s,Xﬁ’““,Y’S, Zs,us) ds+g (s,Xﬁ’Z;“,YS) dKL™" — Z,dBs, s€10,7T); (1.9)

Yr =& (Xp"").

Under suitable conditions on the functions f, g and @ (see (H3.2) in Sect. 3 for more details), it has a unique
adapted solution (see Pardoux and Zhang [20]), denoted by (Y% Z%%%) hereafter. The optimal control prob-
lem is to maximize the cost functional J(t,z;u) := ;""" over all admissible controls u € U. The associated
Hamilton—Jacobi-Bellman (HJB) equation turns out to have a nonlinear Neumann boundary condition, and
reads as follows:

%W(t,az) + H (t,z, W,DW, D*W) = 0, (t,x) € 0,T) x D,

%W(t,x) +g(t,z,W(t,x)) =0, 0<t<T,zcdD; (1.3)
W(T,z) = &(x), z €D,

where at a point € 0D, % = Z?zl a?:. ¢(w)%, and the Hamiltonian H is given by

1
H(taxayvpa A) ‘= sSup {itr (O'O'T(t,.T,U)A) + <p,b(t,x,u)> + f(t7$7yap-07 U)}
uclU

for (t,z,y,p, A) € [0,T] x R® x R x R? x 8. We aim to show that the value function of our optimal control
problem is the unique viscosity solution to above HJB equation (1.3).

BSDEs were initially studied by Bismut in 1973 (see Bismut [2-4]), and a general nonlinear version was
studied by Pardoux and Peng [17] in 1990. Since then BSDE has received an extensive attention both in the
theory and in the application. The reader is referred to, among others, El Karoui et al. [12], Darling and
Pardoux [9], Pardoux and Peng [18], Peng [21,22], Hu [13], and Delbaen and Tang [11]. Stochastic differential
equations reflected in a domain are referred to Lions [14], Lions and Sznitman [15], Menaldi [16], Pardoux and
Williams [19], Saisho [23], among others. Pardoux and Zhang [20] studied BSDEs (1.2), and gave a probabilistic
formula for the solution of a semi-linear system of parabolic or elliptic partial differential equation (PDE) with a
nonlinear Neumann boundary condition. Other related studies on a PDE with a nonlinear Neumann boundary
condition include Boufoussia and Van Casterenb [5], who gave an approximation result to semi-linear parabolic
PDEs with Neumann boundary conditions with the help of BSDEs, and Day [10], who studied the Neumann
boundary conditions for viscosity solutions of Hamilton—Jacobi equations. In contrast to those works, we study
optimal control of stochastic differential systems reflected in a domain, and give the stochastic representation
for the solution of the associated HIJB equation (1.3) with a nonlinear Neumann boundary condition.

In this paper, the generalized BSDE formulation of dynamic programming given by Peng [21,22] for optimally
controlled SDEs, is extended to our controlled stochastic differential systems reflected in a domain. The relevant
arguments of Buckdahn and Li [7] is generalized to show that our value function W (see (3.7)) is deterministic
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(see Prop. 3.1). Since our associated BSDE involves an increasing process which incorporates the reflection of
the system state on the boundary of the given domain, we have to resolve some new issues, for example, a new
estimate (see Prop. A.3) for the increasing process K, and the linear growth and locally Lipschitz continuity of
the value of the system path Y at the initial time with respect to the initial (random) state (see Prop. A.2, which
improves the estimates on GBSDE of Pardoux and Zhang [20]). Using these new results, we can prove that the
value function is continuous (see Thm. 3.2) and moreover, it is the unique viscosity solution of the associated
HJB equation (see Thm. 4.1). On the other hand, Proposition 3.1 allows us to prove the dynamic programming
principle (DPP in short, see Thm. 3.1) in a straight forward way by adapting to GBSDEs the method of
stochastic backward semigroups introduced by Peng [21]. Furthermore, our proof of Theorem 4.1 contains
techniques so as to deal with the Neumann boundary condition, which differs heavily from the counterpart of
either Buckdahn and Li [7] or Peng [21]. For more details, the reader is referred to among others Lemmas 4.2
and 4.3 and the constructions of BSDEs (4.10), (4.12), (4.23) and (4.24), etc.

The rest of the paper is organized as follows. In Section 2, we give some preliminary results on BSDEs and
GBSDEs. In Section 3, we formulate the optimal stochastic control problem and define the value function W. We
prove that W is deterministic and satisfies the DPP. Furthermore, we prove that W is continuous. In Section 4, we
prove that W is the unique viscosity solution to the associated HJB equation. In the end, we give some properties
on GBSDEs associated with forward reflected SDEs in the Appendix (Sect. A.1), where Propositions A.2 and A.3
contain new results on GBSDEs. For the reader’s convenience, the proofs of Proposition 3.1 and Theorem 3.1
are given in Section A.2.

2. PRELIMINARIES

We consider the Wiener space (§2, F, P), where (2 is the set of continuous functions from [0, T] to R¢ starting
from 0 (2 = Cy([0,T];R?)), F the completed Borel o-algebra over 2, and P the Wiener measure. Let B be
the canonical process: Bs(w) = ws, s € [0,T], w € 2. By F = {F,,0 < s < T} we denote the natural filtration
generated by {B;}o<s<r and augmented by all P-null sets, i.e.,

Fs=0{B,,r<s}VN, s€]0,T],

where A is the set of all P-null subsets, and T > 0 a fixed real time horizon. For any n > 1, |z| de-

notes the Euclidean norm of z € R™. We introduce the following two spaces of processes: S?(0,T;R) is the

collection of (1¢)o<t<r which is a real-valued adapted cadlag process such that E[ sup [¢:]?] < +oo; and
0<t<T

H2(0,T;R™) is the collection of (1/;)o<t<7 which is an R™-valued progressively measurable process such that
T
IW]13 = E[fy [t]?dt] < +oo.

Let {A;,t > 0} be a continuous increasing F-progressively measurable scalar process, satisfying Ag = 0 and
Eler47] < oo for all > 0. We are given a final condition & € L?(§2, Fr, P) such that E(e*47|¢|?) < oo for all
p >0, and two random fields f: 2 x [0,7] x R x R - R and g: 2 x [0,T] x R — R satisfying,

(i) The processes f(-,y,z) and g(-,y) are F-progressively measurable and
E [fOT e“A*|f(t,0,())\2dt} +E [fOT e“Af|g(t,0)\2dAt} < oo, for all p > 0;
There is a constant C such that, for all (t,y, z) € [0,T] x R x R%,
|f(t,y,z) - f(taylaz/)‘ < C(|y - y/‘ + |Z - Z/|) )
(iii) There is a constant C' such that, for all (¢,y) € [0,T] x R,
lg(t,y) —g (LY < Cly -yl
A solution to the following GBSDE

(m2.1) (0

T T T
t t t
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is a pair of F-progressively measurable processes (Yz, Zt)o<i<7 taking values in R x R? which satisfies equa-

tion (2.1) and
T
/ 12,|* dt
0

From Theorem 1.6 and Proposition 1.1 of [20], we have the following two lemmas.

Lemma 2.1. Let (H2.1) be satisfied. Then GBSDE (2.1) has a unique solution (Y, Z).

E{ sup |Yt|1 +E <oo, 0<t<T. (2.2)

0<t<T

Lemma 2.2. Under the assumption (H2.1), we have for any p >0

T T
E| swp e“Af«\m”/ e Y[ dAt+/ oA |7, at
0 0

0<t<T

T T
<CE |erieP+ [ ot 0.0)Par+ [ g0 (2.3)
0 0

for a positive constant C, which depends on the Lipschitz constant of f and g, p, and T.

Let two sets of data (&, f,g,A4) and (¢, f',¢', A") satisfy assumption (H2.1). Let (Y, Z) be a solution to
GBSDE (2.1) for data (¢, f,g,A) and (Y', Z’) for data (£, f/,¢', A’). We define

(Y,Z,g,f,g,le) = (Y_Y/aZ_Zlvf_flvf_f/ag_glvA_A/)'

The following two lemmas are borrowed from Proposition 1.2 and Theorem 1.4 of Pardoux and Zhang [20],
respectively.

Lemma 2.3. For any p > 0, there exists a constant C such that

T
E | sup et |?t’2+/ etk ’Ztlzdt
0<t<T 0
. T ~ ) T T ~
< CE [eM[¢] +/ | F (8, Z)] dt+/ o \g(t,Yt)\szH/ g (8, Y)* d [ A]], | (2.4)
0 0 0

where k; = ||Al|s + A}, and ||A||; is the total variation of the process A on the interval [0,t].
For the particular case A = A’, we have

Lemma 2.4 (Comparison Theorem). Assume that £ < &', f(t,y,z) < f'(t,y,2), and g(t,y) < ¢'(t,y), for all
(y,2) ER x R4 dP x dt,a.s. Then Y; <Y/, 0<t<T, as.

Moreover, if Yo = Y, then Y, = Y{, 0 < ¢ < T, a.s. In particular, if in addition either P(§ < &) > 0 or
flt,y,2) < f'(t,y,2) for any (y,2) € R x R? holds on a set of positive dt x dP measure, or g(t,y) < ¢'(t,y) for
any y € R holds on a set of positive dA; x AP measure, then Yy < Y.

3. FORMULATION OF THE PROBLEM AND RELATED DPP
We assume that the two functions b : [0,7] x R x U — R? and o : [0,7] x R x U — R%*? satisfy the
following three conditions:
(i) The two functions b and o are uniformly continuous in (¢, u);
(ii) There is a constatnt C' > 0 such that, for all (¢,u) € [0,7] x U and z,2’ € R™,
(H3.1) |b(t, x,u) — b (t, 2, u)| + |o(t, z,u) —o (t, 2/, u)] < Clx—a|;

(iii) There is a constant C' > 0 such that, for all (¢, z,u) € [0,T] x R" x U,

|b(t, x,u)| + |o(t, z,u)] < C(1+|z|).
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For u € U, the corresponding state process starting from ¢ € L2(82, F;, P; D) at the initial time ¢, is governed
by the following reflected SDE:

Xbouw =4 [7b(r, XpS u) dr + [ o (r, X265 u,) dB,
+ [ Vo (XESw) dRLSY, s € [t,T), (3.1)
Ko = [7 I{Xﬁ,c;ueaD}dKﬁ’C?“, K% is increasing.

In view of Proposition A.1 in the Appendix, SDE (3.1) has a unique strong solution (XtGu KtGH) . Moreover,
for any (t,u) € [0,T] x U and (, ¢’ € L?(2, F;, P; D), we have

E | sup |Xbov — Xﬁ’g/;“|4\-7:t <C|¢ - C/‘47
s€t,T]

E | sup [XDSUHF| <C(14[¢"). (3.2)
set,T]

Here, the constant C' depends only on the Lipschitz and the linear growth constants of b and o with respect
to x.

Assume that three functions @ : R = R, f: [0,T] x RIx RxR? x U — R, and g : [0,7] x R x R — R
satisfy the following conditions:
(i) f is uniformly continuous in (¢,u); g(-) € C*22([0, 7] x R? x R); and there exists
a constant C' > 0 such that, for all t € [0,T], u € U, (x,y,2),(2',y,2') € RI+1+d
[f(t 2,y z,u) = f (62, Y 2 u)[ + (gt 2, y) — g (827, )]
SC(z—a|+ly—y[+1z—2);
(ii) There is a constant C' > 0 such that, for all z, 2’ € R?,
P(z) =@ ()] < Ol —2'[;
(iii) There is some C' > 0 such that, for all (t,u) € [0,T] x U and = € R",
|f(t,2,0,0,u)| < C(1+ |z]).
Note that conditions (i) and (ii) of assumption (H3.2) imply the globally linear growth in the state variable
of the two functions g and @: for some C > 0, |g(t,z,0)| + |P(x)| < C(1 + |z|) for all (¢,2) € [0,T] x R™.
_ For any u(-) € U, and ¢ € L?(2,F;, P; D), the mappings ¢ := @(X;:g;“), g(s,y) == g(s, XL%% y) and
f(s,y,2) == f(s, XS y, 2, u,) satisfy the conditions (H2.1) on the interval [t, T]. Therefore, there is a unique
solution to the following GBSDE:
_dystc;u =f (s,Xﬁ’g;“,Y;’Q“, Z?C;u’us) ds
+g (5, XOGU YIO) ARLS — Z06 dB,, (3.3)

YTt,C;u - & (X%’C;u) ’

(H3.2)

where (X*¢u Kt64) solves the reflected SDE (3.1).
Moreover, similar to Proposition A.2, there exists some constant C' > 0 such that, for all ¢ € [0,7],¢,¢ €
L?(02,F, P;D),u €U, P-as.,

(l) ’Y;t,g;u o Y:’C U
(i)

‘We now define our admissible controls.

<o(lk=¢I+Ic=¢1F):
< L+ ).

Ytt’g;“ (3.4)
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Definition 3.1. An admissible control process u = {u,,r € [t, s]} on [t, s] (with s € (¢, T]) is an F,-progressively
measurable process taking values in U. The set of all admissible controls on [¢, s] is denoted by U s. We identify
two processes u and 4 in U s and write w = @ on [t, s], if P{u =@ a.e. in [t,s]} = 1.

At u € U 1, the value of the cost functional is given by
J(t, 75 u) = Y5, (t,7) € [0,T) x D, (3.5)

where the process Y% is defined by GBSDE (3.3).
From Theorem A.7, we have

J(t,Gu) =Y, (4,0) € 0,T] x L (2, F,, P; D). (3.6)
We define the value function of our stochastic control problem as follows:
W (t,z) :=esssup J(t,z;u), (t,z) € [0,T] x D. (3.7)
u€Uy, T

Under assumptions (H3.1) and (H3.2), the value function W is well-defined on [0, 7] x D, and its values at
time t are bounded and F;-measurable random variables. In fact, they are all deterministic. We have

Proposition 3.2. For any (t,x) € [0,T] x D, we have W (t,x) = E[W(t,x)], P-a.s. Let W(t,x) equal to its
deterministic version E[W (t,x)]. Then W : [0,T] x D — R is a deterministic function.

The proof is an adaptation of relevant arguments of Buckdahn and Li [7]. For the readers’ convenience we
give it in the Section A.2 of Appendix.
As an immediate result of (3.4) and (3.7), the value function W has the following property.

Lemma 3.3. There exists a constant C' > 0 such that, for all (t,z,z') € [0,T] x D x D,

6) W(ta) =W (t,2)] < C [la— ' o o'}
() [W(t.2)] < C(1+ Ja).

We now study the (generalized) DPP for our stochastic control problem (3.1), (3.3), and (3.7). For this we
have to define the family of (backward) semigroups related with GBSDE (3.3). Peng [21] first introduced the
notion of backward stochastic semigroups to study the DPP for the optimal stochastic control of SDEs. In what
follows, it is adapted to the optimal control problem of stochastic differential systems reflected in a domain.

Given the initial data (¢,x), a positive number § < T — ¢, an admissible control u(-) € U ¢4, and a random
variable n € L?(§2, F1s, P;R), we define

G?,ffts [n} = }'}'St,x;u’ CRS [t, t+ 5], (39)

(3.8)

where (Y%, Zb%4) o 415 is the solution of the following GBSDE on the time interval [t, ¢ + 4]:
_df/st,x;u _ f (S’Xz,x;u7?€t,x;1t7 Zﬁ,x;u7us) ds + g (S,Xﬁ’w;u, f/st,x;u) dKﬁ,x;u
—ZbmudB,, s € [t,t 4+ 0);

triu
Yiis =

and (Xb®u KH%%) i the solution of reflected SDE (3.1). Then, obviously, for the solution (Y4, ZH%%) of
GBSDE (3.3), we have

G [@ (X)) = G VS (3.10)
Furthermore,

T(ti) = Y5 = GL [0 (X57)] = Gty [VA5™) = Gty [7 (¢4 0, X157 ).
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Remark 3.4. If both f and g do not depend on (y, z), we have

G iisll = B

t+48 t+0
0+ / F(r X5 0, dr + / g (n X550 RS E, | s e it 4+ 4.
Ej S

Theorem 3.5. Under assumptions (H3.1) and (H3.2), the value function W satisfies the following DPP: For
any 0 <t<t+6<T,zeD,

W (t,z) = esssup Gy [W(t+ 6, X5 . (3.11)

ueut,H.,s

The proof is similar to [4]. For the readers’s convenience we give it in Section A.2.
Lemma 3.3 shows that the value function W (t,z) is continuous in z, uniformly in ¢. From Theorem 3.5 we
can get the continuity of W (¢, x) in t.

Theorem 3.6. Let assumptions (H3.1) and (H3.2) be satisfied. Then the value function W (t,z) is continuous
nt.

Proof. Let (t,x) € [0,7] x D and 6 € (0,T — t]. We want to prove that W is continuous in ¢. For this we notice
that from (A.33), for an arbitrarily small € > 0,

I} + I <W(t,o) — W(t+6,2) < I} + 12+ Ce, (3.12)
where
1= Gy W (e + 0 X055 )| - G e+ 6.00)
IZ =Gy W(t+6,2)] — W(t+6,2),

for u® € U445 such that (A.33) holds. From Lemma 2.3 (taking p = 1) and the estimates (A.4), in Ap-
pendix, (3.8) we get that, for some constant C' which does not depend on the controls u*,

1

€ 4 4

13| SC(E UW(tJré,Xffg“)—W(t—I—é,az)‘ ]ﬁD
1
t,x;u® 4 t,x;u® 2 ¢
<C|E||X5 —x‘ +’Xt’+5’ —w’ ’ft ;

and since E[|Xff5“€ — z|3|F] < O5* (vefer to (A.17) in Appendix) we get that |[I}| < C§3. From the definition

of Giiiis [] (see (39)),
t46 . - .. R
1} = E[W(t+6,2) +/ J (s, XLt oo 00 ) ds
t

t+6 . A A t+8 A
_|_/ g (S7X;7x;u ’Yst,x;u )dKﬁ,x;u _/ Zﬁ,x;u st‘]:t} _ W(t + 6, 1‘)
t t

t+0
o E T E ~ Vo €
/ J (s, XLt loos 705 g ds + /

t

t+0

=E 9 (s, ng?“s,?f’““e) dK b ftl :

o+
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From the Schwartz inequality, Propositions A.2 and A.3 in Appendix and (3.2), we then get

=

t+6 € -~ £ fd € 2
12| < 6% E / ‘f (s,ngm%“ JYpmw zbwi u‘E) ds]-'t]
t
1
. 1 t46 . N2 A 2
+B K| R E / g (s, Xt vt ) gt | 7,
t

=

<§2E

t+48 R
[ (s o o)
t

t+46 . _ R
[ (o (sxemg) e i
t

+C ‘}'};t,z;ua

vz

)2 ds]-}}

ft]

t46

t+0 .
[ robe
t

t+5 .

[t .

t

1
2 2 1
‘]—'tD < Cst.

Then, from (3.12), |W(t, ) — W (t + 8,z)| < C6% + C52 + Ce, and letting € | 0 we get W (¢, z) is continuous
in ¢. The proof is complete. O

VE [K“““E ]—'t] ‘p

2 e €
) drte

)2 dsft] 2

2 Vo E
)’ arcpe

< C§°E

vt ziu®
+ ’}/;a 5

7t,x;u°
+ ’Z; 5

(S

1
+CE K| R E

t,xu®
+ ’)/s’ 5

<Cot+C (E UKffg“E

4. VISCOSITY SOLUTIONS OF RELATED HJB EQUATIONS

We consider the following PDE:

G,
—W(t,z) + H (t,z, W,DW, D*W) = 0, (t,z) €10,T) x D,

ot
%W(tvl") +g(t,z,W(t,xz)) =0, 0<t<T, z€dD; (4.1)
W(T’ SL’) = (P(x)v x e Dv

where at a point x € 9D, % = Z?Zl 82'_ gb(ac)%, and the Hamiltonian H is defined by

1
(e, 4) = sup { G1r (307 (12:0)4) + 0 0(t2,0) + 0,0, 9090,0) .
uelU

where (¢,z,y,p, A) € [0,T] x R x R x R? x S¢ with S? being the set of all d x d symmetric matrices.

In this section we shall prove that the value function W defined by (3.7) is the unique viscosity solution
of (4.1). The interested reader is referred to Crandall, Ishii, and Lions [8] for a detailed introduction to viscosity
solutions. Let C’fib([O, T] x D) be the set of the real-valued functions that are continuously differentiable up to
the third order and whose derivatives of order from 1 to 3 are bounded.
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Definition 4.1. A real-valued continuous function W € C([0,T] x D) is called

(i) a viscosity subsolution of (4.1) if W(T,z) < &(x), for all € D, and if for all functions ¢ € Cl?:b([O, T] x D)
and (t,z) € [0,T) x D such that W — ¢ attains its local maximum at (¢, z):

9%

5 (t,x) + H (t,x, W,Dyp, D*p) >0, if z € D;

max{‘z—f(t,x)+H(t,x,W,D¢,D2¢), g—i(t,w)w(t,x,W)} >0, if z € OD;

(ii) a viscosity supersolution of (4.1) if W (T, x) > &(x), for all z € D, and if for all functions ¢ € C’Eb([(), T]x D)
and (¢,z) € [0,T) x D such that W — ¢ attains its local minimum at (¢, x):

dp

E(t,z)JrH(t,x,VV,Dw,D%p) <0, if z € D;

min{z—f(t,x)—I—H(t,ac,W/,D<p,D2<p), g—i(t,x)—l—g(t,x,W)} <0, if z € OD;

(iii) a viscosity solution of (4.1) if it is both a viscosity sub- and a supersolution of (4.1).

For simplicity of notations, we define for ¢ € Cl?:b([(), T) x D),

1
F(s,z,y,z,u) = gw(s,m) + itr (oo™ (s,z,u)D?*p) + Dp.b(s, z,u)
s
Tf(s, 2,y +0(s, ), 2 + Do(s, x).0(s, z,u), u),

G(S,.Z‘,y) = (S,.’L‘) —|—g(s,x,y—|—<p(s,x)), (42)

9
on?
for (s,x,y,z,u) €[0,T] x D x R x R x U.

Proposition 4.2. Under the assumptions (H3.1) and (H3.2) the value function W is a viscosity subsolution
o (4.1).

Proof. Obviously, W(T,x) = &(x), x € D. Suppose that ¢ € C7 (10,7 x D) and (t,z) € [0,T) x D is such that
W — ¢ attains its maximum at (¢,x). Without loss of generality, we assume that ¢(t,z) = W (¢, z).
We first consider the case x € D. We shall prove that

sup F(t,z,0,0,u) > 0.
uclU

If this is not true, then there exists some 6 > 0 such that

Fyo(t,z) := sup F(t,2,0,0,u) < —60 < 0. (4.3)
uelU

Therefore, F(t,2,0,0,u) < —0, for all u € U.
Since Fj is continuous at (¢, x), we can choose & € (0,T — t] such that

Oa(z) :=={g: g —=| < a} CD, (4.4)
F(s,3,0,0,u) < =30, forall (s,§,u) € [t,t+ a] x O(z) x U. (4.5)
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For any « € (0, @], we consider the following BSDE:

—dY = F (s, X054 Y, Z0% ug) ds + G (s, XE5, YY) AR5
—ZbdB,, set,t+al; (4.6)
e =0,
where the pair of processes (X%%% K%") are given by (3.1) and u(-) € Uz t14. It is not hard to check that
F(s, Xb™" y 2 ug) and G(s, XL¥", y) satisfy (H2.1). Thus, due to Lemma 2.1, GBSDE (4.6) has a unique
solution. We have the following observation.
Lemma 4.3. For every s € [t,t + o], we have the following relationship:
ylv = Giffa (o (t+a, Xttfa")] — ¢ (s, X", P-as. (4.7
Proof. We recall that G573 [p(t + o, X{1%")] is defined by the solution of the GBSDE
_dY€u = f (S’ X.z’m;u7 YGu’ Z?’ us) ds + g (87 Xz,z;u’ }/:Su) dKﬁ’z;u
—Z*dBs, s€[t,t+al;
Vo= (t+o, X1,
with the following formula:
Goita e (t+ o, X =Y, seltt+al, (4.8)
(see (3.9)). Hence, we only need to show that Y* — ¢(s, XL%%) = Y1 for s € [t,t + a]. This can be verified
directly by applying It6’s formula to (s, X%%"). Indeed, the stochastic differentials of Y* — (s, X1%%) and
Y} equal, and with the same terminal condition ;% , — ¢(t + a, Xttfa“) =0= Ytlﬁ.i O
Remark 4.4. For x € 9D Lemma 4.1 still holds.

On the other hand, from the DPP (see Thm. 3.5), for every «,

p(t,z) = W(t,x) = esssup Gifﬁa [W (t + a,Xff(;“)] ,

uEUt t 4o

t,x;u

and from W < ¢ and the monotonicity property of G 7's[-] (see Lem. 2.4) we get

esssup {G:fﬁ; [p (t+ o, X[51)] - ﬂt,x)} >0, P-as.
ueut‘t_,_a

Thus, from Lemma 4.3, we have esssup,, ¢, ,. . v, >0, P-as.
Hence, for arbitrary ¢ > 0, similar to that of inequality (A.33), there is u® € Uy 14, such that

Y > —ca, Pas. (4.9)

Remark 4.5. Similarly, (4.9) is still true for « € 9D.
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For u® € Us 1o we define 7 = inf{s >t : | Xb®"" — x| > a} A (t + a). Consequently, on [t, 7] the process
(K*%%v) is zero and, hence

S

T T
Liu® _ yLiu t,x;u® 1;u® Lu® e 1;u®
Yl =y +/ F(T,Xr Yyl 71 ,ur)dr—/ Z5 4B, .
s s

We consider the following two BSDEs:

—dY2 = V2| +|Z2%|) — 10) ds — Z%2dB,,
(22—t im0 o
Y2, =0,
whose unique solution is given by
yz— 0 (1 - eC*<S*<t+°‘>>) L Z2=0, selt.t+al, (4.11)
2C*
and
—dy3 = (C* (|Y3| +|Z3|) — 30) ds — Z23dB,, se€|t,7];
(4.12)
Y2 =yl

Here, C* is the Lipschitz constant of F' with respect to y, z; also the Lipschitz constant of G with respect to y,
in order to be different from the constant C' which may vary from lines to lines. We have the following lemma.

Lemma 4.6. We have thﬁ <YP and |Y2-Y?3| < Ca?, P-a.s. Here C > 0 is independent of both the control u
and o

Proof.
(1) We observe from (4.5) and the definition of 7 that, for all (s,y, z,u) € [t,7] x R x R? x U,

F (5, X050y ) < O (lyl + [2]) + F (5, X05,0,0,0°)

X 1
< Ol +12) — 20,
Consequently, from Lemma 2.2 in [7] (the comparison result for BSDEs) we have that
Y;LUE < Y;Sa s € [t,’T}, P—a.s.,

where (Y3, Z3) is the solution of BSDE (4.12).
(2) From equation (4.6), Proposition A.1 and Proposition A.2 in the Appendix, we have

1
3
‘Y};“ SC’(t—i—a—r)é—l—C(E {(Kttfa" —Kt“”‘ ‘.7—}]) )
where C' is independent of controls, and K; fa“ - Kb = K| _ﬁ;t s by means of the uniqueness of
solution of reflected SDE (3.1). Therefore, we have
5 2 t,z;us ) e 2
E UY};“ ‘]—"t] <CE|(t+a—-71)|FR]+CE ‘Kt DX ]—"t] :
From Proposition A.3 in Appendix, we have
t,x;u’ 1
‘K;ji ]—"t <C(E[t+a-1)?2F])*2. (4.13)
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Therefore, we get
€ 2 1
E [ y ’]—"t] <C(E[t+a—-1)F])". (4.14)
On the other hand, we consider the following SDE:
AXLTe = p (s, Xﬁ’w;“i,@) ds+o (s,X§7x§1‘E,u§) dBs, s> t; Xf’z;ue =z (4.15)
Then we know on [t, 7], P-a.s., X5%%" = Xt#u" For X% we have the classical estimate
e 8
E{ sup | XLT —x’ ‘}}} < Ca*, P-as.
t<s<t+a
Therefore, we have
vi,x;u® = c 4
P{r<t+a|lFR}<Pq sup [XJ"" —z[>alF, < —Sa’ (4.16)
sE€[t,t4a) «
Hence,
Ellvi|’|A] <cae b O
‘ £ ‘]—'t < Ca(P{r <t+aF})? < —a’. (4.17)
Furthermore, from Lemma 2.3 in [7],
512 3 2 3 2 3
-y <o (e[ -vPiR))" <o (e |W2FIm])" v o (B[] 17)
1
0 o* 1 Loue 2 2
e (1-e ) (P{r<t+alm):+C(E ’YT’“ ‘]-‘t
<c? (1 - e*C*a) L4 L0% < oat (4.18)
-2 at a?z - ’ '
U

for any a € (0, a].
Proof of Proposition 4.1 (sequel).

By combining (4.9) with Lemma 4.2 we then obtain
—ea < Ytl’“E < Yt3 < Yt2 + |Yt2 _ Yt3 < Yt2 + Ca%, P-a.s.

(1—e9"®) 4 Ca?, P-as. Therefore,

ie., —ea <Y < -8
0 1—e C@ 1
— + Caz.

e < —
- 20C* «

Letting @« — 0+ and ¢ — 0+, we get 0 < —g, which contradicts our assumption that # > 0. Therefore, we have

sup, ey F(t,2,0,0,u) > 0, which implies by the definition of F' that
3(,0 2 .
(t,x) + H (t,z, W, Dy, D*p) >0, if z € D.

ot

We now consider the case € 9D. We must prove that
dyp 2 Iy
max ¢ == (@) + H (2,9, D9, D*p) , 5=(t,2) + g(t,2,0) ¢ 2 0.
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If this is not true, then there exists some 6 > 0 such that

sup F'(t,2,0,0,u) < -0 <0, G(t,2,0) < —0<0, (4.19)
uelU

therefore, F(t,x,0,0,u) < —60 for all u € U; and G(t,2,0) < —6 for all w € U.
Choose @& € (0,T — t] such that

F(Svyaovoau) < _%9’ (420)
G(s,y,0) < —10, foralluce Ut <s<t+a, ly—z| <a. (4.21)

Now we fix @, and we consider any « € (0, @]. Similarly, we consider GBSDE (4.6) with « € 9D, then we also
can get (4.7) and (4.9). For u® € Uy 114 in (4.9) we define

7 = inf {s >t ‘Xﬁ’x”‘a — x‘ > 07} A (t+ ).
We observe that, for all (s,y, z) € [t,7] x R x RY, from (4.20), (4.21) and the definition of 7

F (san’z;usayvzaui) <cr (‘y| + |Z|) + F (san’z;usaovoaui)
< C*(|yl +12)) — 39;

G (5, XL ) < C*fy| +G (s, X7, 0) < Oy~ 36,

Consequently, applying the comparison result for GBSDEs (Lem. 2.7, or Rem. 1.5 in Pardoux and Zhang [20])
to GBSDEs (4.6) and (4.23) we have that

viv <Y* selt1], P-as., (4.22)

where Y* is defined by the following BSDE:

—dvd = (C* (|Y2H +|22]) — 30) ds + (C* |Y2| - 40) dKL= — Z2dB,,

vi _ ylu (4.23)
On the other hand, we also have to introduce the following BSDE:

a2 = (" (V8| +122) — 36) ds-+ (C* [¥] — 40) diEew — 234, s

Yf—)i-a =0. .

Notice that C*|Y2|— 36 < 0, therefore Y? < Y2, s € [t,t+a], P-a.s., from the comparison theorem-Lemma 2.4.
From Lemma 2.3 we have
1
7))

2 ,ftD% vo(e]vep |J-'tD% +c (B[l -2 |7))

vi-vi|<c(B[v:-v2 |]-‘tD% <c (e[’ |]-'tD% +C (B[

1
2

<o (e
<Ca?+C (E [’Yf’ — YT2|2 \ftD% (from the proof of (4.18)),

for any a € (0,@a]. From (A.17) of Remark A.3 in Appendix, similarly we also have

sEft,t+al

"> C
P{r<t+a|F}< P{ sup | XLT — x‘ > d|ft} < 5@“. (4.25)
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d

-

On the other hand, from Lemma 2.3 (taking p = 1)

t+a ¢ ot
/ eQKS <C*
T

t+a t,z;uf 02 * -
=CFE |:/ eQKS/WY ) —62C (Sf(tJra))dKz,x;u

2
E UYf’ -v2 ‘ft} < CE V2| - %9) AR bt

4
ﬁ 2Kt‘.7:;u,5 _ 2Kt,z:u5
S C 4 E I{T<t+0¢} € tta (§ T ft

92 t,xiu® e
< OTE [Irarsap i (K2 K;m);ft]

1) (e[ 7))

2 ! i
< C% (P{r <t+a|F}T (E {(t Loa— 7-)2’]-}}) (from Props. A.1 and A.3.)

2

0 1 ziu t,x;u
<7 (P[r < t+alF))* (B [Sm X

‘Kt—&-oz

1
1

< CO2(P{r <t+alF})T (®P{r<t+a|F})

< Ch2at. (4.26)

Therefore,

e

v -

(4.27)

Now we obtain

—ca < Ylu <YAL<YP+ |Y Y"| < Y2+Ca2 + Chai, P-as.

i.e., —ea < Y;l’us < (1—e ") 4 Ca? + Chai, P-as. Therefore,

§ 1—e Cla
—e < — P
- 20 «

and by taking the limit as o | 0, | 0 we get 0 < —% which contradicts our assumption that 6 > 0. Therefore,
it must hold

_2C*

+ Ca? + Chat,

max{z—f(t,x) +H (t,ac,VV,D% D2@) ’ g—i(t,x) +g(t, z, W)} > 0. O

In an identical way, we can show
Proposition 4.7. Under the assumptions (H4.1) and (H4.2), the value function W is a viscosity supersolution
o (4.1).
Proof. Obviously, W (T,xz) = ®(z), « € D. Suppose that ¢ € C}?,([0,T] x D) and (t,z) € [0,T) x D is such
that W — ¢ attains its minimum at (¢, ). Without loss of generality, assume that ¢(t,z) = W (¢, z).

We first consider the case x € D. We shall prove that

sup F(t,x,0,0,u) < 0.
uelU

If this is not true, then there exists some 6 > 0 such that

Fo(t,x) :=sup F(t,z,0,0,u) > 6 > 0. (4.28)
uelU

Therefore, there exists a u* = u*(t, ) € U such that F(¢,x,0,0,u*) > 23—9.



1164 J. LI AND S. TANG

Since Fy is continuous at (¢,x), we can choose & € (0,7 — t] (for simplifying the notation, we still use @)
such that

Oal) = {5+ [ — 2l <a} C D, (4.29)
F(5,,0,0,u%) > 26 forall (5,9) € [1,1 +a] x Ou(a). (4.30)
For any « € (0, @], we still consider the BSDE (4.6):
—dY} = F (s, XEmw VI Zu 0) ds+ G (s, XEow, Y1) dRGe
—ZMdB,, seltt+al; (4.31)
Yia =0,

where the pair of processes (X", K"*") are given by (3.1) and u(-) € Uy t14- Therefore, Lemma 4.1 still
holds for € D. On the other hand, from the DPP (Thm. 3.1), for every «,

o(t,x) = W(t,z) = esssup Gif_ﬁg W (t+ a,Xff&?‘)] ,

uEUL t 4o

t,xu

and from W > ¢ and the monotonicity property of G,

[[] (see Lem. 2.4) we have

esssup {Gif_ﬁg [ (t+a, X5 - cp(t,x)} <0, P-as.

uEUt t 4o

Thus, from Lemma 4.3, we get esssup,,¢, o Ytl’“ <0, P-a.s., which implies that

Yy <0, Pas. (4.32)

Remark 4.8. Similarly, the inequality (4.32) holds true for z € 9D.

For u* € Uy 11 we define 7 = inf {s >t : [Xt®%" —z| > a} A(t+a). Consequently, on [t, 7] the process (K%")
is zero and, hence

T T
i i i i i i
5151,11, — YTl,u _|_/ F (’I“, X:,x,u 7}/”‘1,11, ’Zi,u ’u*) dr _/ Zﬁ,u dBr.
s s

We consider the following two BSDEs:

—avz = (e (|92 + ’ZQD +10) ds - Z2dB,,
R (4.33)
Y;Ei-a =0,
whose unique solution is given by
N 0 . ~
P22 sl o0 2220 seltital, (4.34)
and R R R R
—avs = (o (|93 + |28]) + 30) ds - Z3dB,, s et
(4.35)

3 _ ylu®
v =yl

We have the following lemma.
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Lemma 4.9. We have Ytl’u* > EA’E’ and |§A’,52—§A/t3| < Ca?, P-a.s. Here C > 0 is independent of both the control u
and o. O

Proof.
(1) We observe from (4.30) and the definition of 7 that, for all (s,y,2,u) € [t,7] x R x R% x U,

o o 1
F (5, X0 g, zut) = =C (lyl + [2) + F (5, X077,0,0,07) = =C* (|y| + |2]) + 50.

Consequently, from Lemma 2.2 in [7] we have that Y% > Y3 s € [t, 7], where Y3 is defined by BSDE (4.35).
(2) From the equation (4.31), Propositions A.1 and A.2
1
2
=)

where C' is independent of controls. Then similar to the proof of estimate (4.14), we have

* . * * 2
Yl < Ct+a—1)i+C <E [(Kff(;“ — Kb )

«|2 1
E UY};“ ’ft} SC(E[t+a—1)%F])" (4.36)
Similar to (4.16), we still have
P{r<t+al|F}< %a‘*. (4.37)
Therefore,
w2 1 C
E UYTL“ ‘]—}} < Ca(P{r<t+alF})} < Za’. (4.38)
Furthermore, from Lemma 2.3 in [7],
~ ~ ~ —~ 12 % 12 % 12 %
v2-v2|<c (E { Vo3 ’]—}D <C (E { 2 ‘ftD +C (E { v ’ft])
¢ —C*a 1 Lu* 2 %
<3 (1-e ) (P{r<t+am)?+C(E ‘YT’ ‘]—'t
9 —C* 1 2 C 3 3
< (O= — ) — —a2? < 2 .
_02 (1 e )5/10[ +d2a <Caz, (4.39)
for any a € (0, a]. O

Proof of Proposition 4.7 (sequel).
By combining (4.32) with Lemma 4.3 we then obtain

0> Y > 93> 72 ‘f/tz _ f,ts’ > V2~ Cal, P-as.

i.e., 0> Ytl’u* > L (1—e ) — Ca?, P-as. Therefore,

0 1—e Ca
0> -
— 20% «
Letting @« — 04, we get 0 > %, which contradicts our assumption that 6 > 0. Therefore, we have
sup,cy F(t,2,0,0,u) <0, which implies by the definition of F' that

— Cas.

9
a—f(t,x)+H(t,x,V[/,D<p,D2<p) <0, if z€D.
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We now consider the case € 9D. We must prove that

e

0
min{a—f(tw)+H(t,x,s0,Ds0,D2<p), = (t,) +g(t7w,¢)} <0

If this is not true, then there exists some 6 > 0 such that

sup F'(t,2,0,0,u) > 60 >0, G(t,z,0)>60>0, (4.40)
uelU

therefore, there exists u* € U such that F(¢,z,0,0,u*) > %.
Choose @& € (0,T — t] such that

F(s,9,0,0,u*) > 30, (4.41)
G(s,y,0) > 10, forallt < s <t+a, [y—z| <a (4.42)

Now we fix @, and we consider any a € (0, @]. Similarly, we still consider GBSDE (4.31) with « € 9D. For
this u* € Uy 14 we still have (4.32) and define

T = inf {5 >t: ‘Xﬁw“ - .T’ > 07} A(t+ a).
We observe that, for all (s,y,z) € [t,7] x R x R, from (4.41), (4.42) and the definition of 7

F (5, X050 1y 2ug) > =C(lyl + Jol) + F (5, X557 ,0,0,u5)

Y

—C*(ly[ +[21) + 5

- o 1
G (5, X057 y) = =C*ly| + G (5, XE57,0) = —C*Jy| + 0.

Consequently, from the comparison result for GBSDEs (Lem. 2.7, or Rem. 1.5 in [20]) we have that Y% >
Y2 s €t,7], P-as., where Y is defined by the following BSDE:

P4 = (_c* (‘?4‘ +| 2 ) + %9) ds + (—C* v+ %9) dKt# 7448,
(4.43)
}/}4 _ Yl;u*.
On the other hand, we also have to introduce the following BSDE:
—a87 = (—c (|92] + |22]) + 16) s+ (—c* 7] + 30) arcton — Za,
- (4.44)
Vi =0,
Notice that —C*|YV2|+ 30 > 0, therefore Y5 >Y2 set,t+a], P-as., from Lemma 2.4.
From Lemma 2.3 we have
A : 2
o <o (s n]) <o (e[ 7)) <o (o[ ])
1 1 1
2 2 ~r ~a ]2 2
SC( I H) (el 1]) +o (o252 )
2 3
<Ca?+C (E { Y5 y? ’ft]) (from the proof of (4.39)), (4.45)

for any a € (0, aj.
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Similar to (4.25) and (4.26), P{r < t+ a|F} < Sa*; and

~ ~o 2 to tywiu* S 1\? *
|72 52| < om | [ e (o 2] - o) amie
t+a tzu® 92 * * 5
=CE [ / QT Ze20 (s=(t+a)) q g t.iv ]—'t] < Ch*az. (4.46)
Therefore,
Vi - V7| < cat + Cal. (4.47)
Now we obtain
0>V >VA>YP— [VA— VP > Y2 - Ca® — Chat, P-as.

e, 0> Ytl’u* > 23* (1—e o)~ Ca? — Chai, P-a.s. Therefore,

_ A Cra
0> 0 1—e

Z 50~ o —Caz — Chat,

and by taking the limit as « | 0, we get 0 > % which contradicts our assumption that # > 0. Therefore, it must
hold

min{fg—f(t,x) +H (t,ac,VV,Dg@, D2@) ’ g—i(t,x) +g(t, z, W)} <0. O

Hence, we have

Theorem 4.10. Under assumptions (H4.1) and (H4.2), the value function W is the unique viscosity solution
to (4.1).

Remark 4.11. From Propositions 4.2 and 4.7, it remains to show the uniqueness assertion, which can be
referred to Barles ([1], Sect. 3), Bourgoing ([6], Sect. 3), and Crandall et al. ([8], Sect. 7B).

APPENDIX. A

A.1. Forward—Backward SDES (FBSDEs)

In this section we give some results on GBSDEs associated with forward reflected SDEs (for short: FSDEs).
Consider the following assumption.

The functions b : [0,7] x 2 x R — R? and o : [0,7] x 2 x R? — R4*? are measurable and satisfy the
following conditions:

(i) The processes b(-,0) and o(-,0) are F-adapted, and there is a constant C' > 0 such
that, for all (t,z) € [0,T] x RY,

[b(t, 2)| + |o(t,z)] < C(1+|z|), as.;
(HA.1)
(ii) b and o are Lipschitz in z, i.e., there is a constant C' > 0 such that, for all ¢ € [0,T7],

and z, 2’ € R,

[b(t, ) — b(t,2")| + |o(t,x) — o(t,a’)| < Clx — 2’|, as.



1168 J. LI AND S. TANG

Under the assumption (HA.1), it follows from the results in Lions and Sznitman [15] that for each initial
condition (t,¢) € [0,7] x L2(Q,.7-"t,P;12) there exists a unique pair of progressively measurable continuous
processes {(X*¢, K¢)}, with values in D x R, such that

X =C+ [P (r, Xt dr + [ o (r, XLC) dB, + [ V¢ (XL¢) dKLS, s € [t,T],

(A1)
Kt¢ = 7 I{Xﬁ’CeaD}dKf"’C’ K*¢ is increasing.

Proposition A.1. For each T > 0, there exists a constant Cr such that, for all ¢, ¢’ € L*(02, F;, P; D),

14
E( sup | X4€ — x| \ft) <orlc-¢I, (A-2)
t<s<T
and y
E ( sup ’Kﬁ’g - Ki’cl‘ ’ft) <Cr|¢— CI\4~ (A.3)
t<s<T

Moreover, for each j1 > 0,s € [t,T), there exists C(u,s) such that for all ¢ € L?(£2, F;, P; D),
E (e“K;'C ‘ft) < O, s). (A.4)

The proof is similar to that of Propositions 3.1 and 3.2 in Pardoux and Zhang [20].
We assume that the three functions f, g and @ satisfy the following conditions:

(i) @: 2 x RY — R is an Fr @ B(RY)-measurable random variable and f : [0, 7] x {2
xR? x R x R — R is a measurable process such that f(-,z,y, z) is F-adapted, for
all (z,9,2) €ERT xR x R% ¢:[0,7T] x R x R — R is a measurable function such
that g(-) € C122([0,T] x R? x R);

( ) (ii) There exists a constant C' > 0 such that for all t € [0,T], x,2', 2,2’ € RY, y,y' € R,
HA.2

‘f(ta x,Y, Z) - f (t7 xlv y/a Z/)| + ‘g(ta x, y) -9 (t7 xlv y/)| + |¢('T) - ('T/)‘

<C(flo -2 +ly—y/| + |2 — 7)), as;

(iii) f and @ satisfy a linear growth condition, i.e., there exists some C' > 0 such that,

for all x € RY,  |f(¢,2,0,0)| + |®(x)] < C(1 + |z|), as.

Under the above assumptions the coefficients f(s, X', y, z) and g(s, X5¢, y) satisfy (H2.1) and & = @(X}’C) €
L2(02, Fr, P). Therefore, the following GBSDE possesses a unique solution:

—dYHC = f (s, X0 VS, Z66) ds + g (s, X0C, V) dKEC — 28¢dB,, s € [t, T,
(A.5)
i = o (X5,

Proposition A.2. Let assumptions (HA.1) and (HA.2) hold. Then, for any 0 < ¢t < T and (, (' €
LQ(Q,ftaP;D)7
(i) F {suptSsST |Yf*4’2 + ftT ’Zﬁ’4|2 ds‘ft] <C(1+[¢?), a.s; and in particular,
v < e+ i, as:
i) [y = v <cle- ¢+ el -1, as,

where the constant C' > 0 depends only on the Lipschitz and the growth constants of b, o, f, g and P.
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Remark A.3. Since D is bounded, we have

T
E | sup |Yst’<|2—|—/ ’Z§’§|2ds|ft <C, as., (A.6)
t

t<s<T

where C' is independent of (.

Proof. From Lemma 2.2 and Proposition A.1, we have assertion (i). Now we prove assertion (ii). First notice
that from (i) we have |Y;"| < C(1 4 [¢]), a.s., therefore we can get from the uniqueness of the solution of
equations (A.1) and (A.5) that

= e <0 ) < s a

since D is bounded. From Burkholder-Davis—Gundy inequality and (A.5), as well as from the boundedness of

the processes XS, Y+<C,
T
/ ZLCdB,| | F
S

T 2
E (/ yzfg<|2dr>
YRR 4
< C+Co(T—9)°E (/ |2 dr) Fi +CE[(K%C) M

4

Fi| <CE | sup

re(s,T]

2
T
< O+ Co(T - 5)*E (/ ’Zf’g|2dr> Fi

Consequently, for 7' — s < (ﬁ)lm, E[(fST 4

t =1ty <ty <...<ty =T of the interval [t,T] such that E[(ftt”_1 |Zt¢

T 2
E (/ | Z5¢| dr)
t

For any A > 0, applying Ito’s formula to eM*° [V5¢ — V1< |2) we have

2dr)?|F,] < C. This argument allows to choose a partition
2dr)?| /] < C, 1 <i < N. Therefore,

we have
2

Fi| <C. (A.8)

12
R A

/12 T t, ¢! /12 ’ T Nl
‘yst,c_yst,c’ +/\/ NELS Yf’C—Yrt’C’ AKHS +/ QMK
S

S

t,¢’
= eAKT

T i
yi¢ _yte \2 —2 / M (v ) (206 - 21 a)
T et ’ ! ' '
+2/ MK (Yrt,g B YTLC) (f (r, X6, Y16, 25) — ¢ (r, Xyt gt )) dr
S
T ) ' ' /
n 2/ MK (Y;t’c _ YTt,C ) <g (T’ Xﬁ’C’ Y;t’C) —g (r, X:faC ’Y;t,C )) dKﬁ’C

T 4 ’ ’
+2/ QMELE (y:c _ YTt,C g (r, X}f’C,YTt’C) d (Kf:C _ Ki,c ) ) (A.9)
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Then from (HA.1), (HA.2), (A.4), (A.7) and (A.8), taking a suitable A > 0, we get

T e
[
S

;12
X - X< a7,

12
vec—yid | <cic-¢P+cE

T 0!
/ eAK »
S

T , , ’
2/ ML (Yrt’c _ye )g (r, X2S,Y9) d (Kf;c — K¢ ) ‘}11 ) (A.10)

12
v - | dr]fsl

+CE +CE

T ’ 12 ,
/ M x b= XAk,
S

+E

Furthermore, from Proposition A.1, we have

12
eyl <ce-¢f e

T o
/ eAK;
S

T 4 ’ ’
2/ e (YTM _yi< >g (r, X€, v4) d (Kﬁvf — K¢ ) ‘]—'1 . (A1)

12
vie - yhe| dr‘fsl

+FE

On the other hand, applying Ito’s formula to M5 (YE¢ — Y1) g(s, X1C YO (KB — KB, we have

T ’
E / M (Y ) g (r XE V) d (K- KLY |,

S

/ ’ / T /
= B[ (Vi - vi) g (x5 V) (K - K3) R ] + B / L) (K = K<) ar| 7,
S

T
+E / folr) (K%/—K:v@)dkﬁv?‘fs +E

T
/ f3(r) (Kﬁf - Kf’g) dKf,’C’fs] , (A.12)
where

Fi(s) = =M (f (5, X060, 206) — (5, X070 209) ) g (5, XEC, V1)
+ M (v -y {639 (5, X0 Y50) + Vg (5, X00 Y b (5, X06)
—Vyg (5, X0 YE0) f (5, X0, Y, Z00) + %tr (D3g (s, X204 Y) oo™ (5, X1°))

1 2
+5D;

9 (5 XEVEY |25+ Gt (Dryg (X2, VE) 0 (5, X26)  266)
+ e e (ZgC ~ ngi’) {V.g (s, X0 YE) 0 (5, X59) + Vyg (s, X0, VEC) 28
fals) = (MM (Y6 v ) 4 Mg (5, X VI ) L g (. X0 V)
Fas) = M (YIS - ¥IC) (Vg (5, XD, Y) V6 (5, X = Wy (5, X0 VI g (5, X0, 119))

— M g (s, XV
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From assertion (i), Propositions A.1, (A.7) and (A.8), we have

E

T , , ,
e (YJ’C—Y%)g(r,X:’C,Y:’C)d(Kﬁ*C—Ki’C)\fs] <Cl-¢fro-¢l.

2
2
dr>

T , 4
[ el

Furthermore, from (A.11) and (A.4) we have

t, t,¢’
YTC_YTC

14 T !
Eﬂw—w\ ]ﬂ} <CI=¢'+ClC-CF+CE (/ M Fi

<cl-d"+ci-¢P+CE [ew’f" 7] B

<ci-¢I"+ClK-¢F+CE

T , 4
/ ‘Y,fvi —yhe ‘ dr‘]—'t] . seltT),

then from Gronwall’s Lemma, we get E[|[Y/ ¢ — YEC|HF] < C|1¢C = '* + Cl¢ — ¢')?, as, s € [t,T], which
means (ii) for s = t. O

Remark A.4. If g is a bounded random variable, assertion (ii) of (A.6) still holds. Indeed, from Lemma 2.3
in [7] and Proposition A.1, we get

t t¢'|? t ¢\ |

vt -v| <cE Uc—c’+g(w> (5% - &5)] |

;

+CE

T , 9
/ ’f (s,Xﬁ’C,Yf’C,Zﬁ’C) —f (s,Xﬁ’C ,th’C,Zﬁ’C)‘ ds‘]—‘t}
t

<ClC-C), as.

Proposition A.5. Let assumptions (HA.1) and (HA.2) hold. Then, for any 0 < a <T —t and the associated
initial conditions ¢ € L*(£2, F;, P; D), we have the following estimates:

2
B x|

]—'t] <Ceu, a.s., (A.13)

where the constant C' > 0 depends only on the Lipschitz and the growth constants of b, o, f, g and P.

Proof. For (' € L?(2,F;, P; D), from Ito’s formula we have
X6~ () = \<—</|2+2/ (X5~ ¢) b (r, X56) dr—|—2/ (X5~ Y o (r, XE€) dB,
t t
+ / o (r, X5) P dr + 2 / (X5 — ') Vo (X16) dKES, s € [1,T). (A.14)
t t

Since D C R? is convex, we have

[ (xt—)vo (xt) s <o (A15)
t
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Therefore, we have E[supc(; ;4 q1 [ X5 —('[2[F] < C(|¢—¢'|*+a). Recall that D is an open connected bounded
convex subset. In particular, we have,

E

sup | XD¢ — 4’2 ‘]—'t] < Ca. (A.16)
s€[tt+a]

Because ¢ € CZ(R?) we have

6 (X59) = 6(C) + / TV (X19) b (r X1C) dr + / Vo (X1 o (r, X44) dB,

t t

+%/ tr (D*¢o (r, X0¢) o7 (r,Xﬁ’C))err/( Vo (X09)|* AR, s € [t, 7).
. ¢
Therefore, we get

Kb <o (XEC) - +C/ thCy dr+ / Ve (XP¢) o (r,X0¢)dB,|,

t

and furthermore, from Burkholder—-Davis—Gundy inequality, we have

sup |X§’C ("
s€[t,t+a]

E UKffa i ‘]—'t] <CE +Ca.

In view of (A.16), the proof is complete. O

Remark A.6. In view of (A.13) and (A.14), using Burkholder-Davis—Gundy inequality, we have

E | sup ’Xﬁ’g — C|8 ‘]—'t < Cat. (A.17)
s€[t,t+a]
Let us now define the random field:
ul(t, z) = Vi o, (t,2) € 0,7 x D, (A.18)

where Y% is the solution of GBSDE (A.5) with x € D at the place of ¢ € L?(2, F;, P; D).
Proposition A.2 yields that, for all ¢ € [0, 7], P-a.s.,

() Ju(t.) ~ u(t.)| < Clo — 3] + Clo — y|%, for all v,y € D: o)
(i) |u(t,z)] < C(1 + |z|), for all z € D. ’
Theorem A.7. Under the assumptions (H3.1) and (H3.2), for any t € [0,T] and ¢ € L*(2, F;, P; D), we have

u(t,¢) = Y}, P-as. (A.20)

The proof of Theorem A.7 is similar to that of Theorem 3.1 in Peng [21] or Theorem A.2 in Buckdahn and
Li [7]. Therefore it is omitted here.
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A.2. Proofs of Proposition 3.1 and Theorem 3.1
Proof of Proposition 3.1. Let H be the Cameron-Martin space of all absolutely continuous elements h € 2
whose derivative h is in L2([0, T], R?).

For any h € H, we define Thw := w + h, w € 2. Obviously, 7, : 2 — {2 is a bijection with the inverse ’7":1.

The law is given by
T T
. 1 2
Po [Th_l] :exp{/ hSdBS_E/ ds}P.
0 0

Fix any (t,x) € [0,T] x D, and define H; := {h € H|h(-) = h(- At)}. The rest of the proof is divided into the
following three steps:
Step 1. For any u € Uy and h € Hy, J(t,z;u) (1) = J(t, z;u(1h)), P-a.s.

Indeed, the 73,-shifted reflected SDE (3.1) (with ¢ = ) is the same reflected SDE (3.1) with u being substituted
into the 7,,-shifted control process u(7,). From the uniqueness of the solution of the reflected SDE (3.1), we get

Xbwu(r,) = xEmun) and Kbou(r,) = KEmum) for 5 € [t,T] P-a.s. Furthermore, by a similar shift argument
and the associated Girsanov transformation, we get from the uniqueness of the solution of GBSDE (3.3) that

Y;t,z;u (1h) = Y;t,:v;u(fh) for any s € [t,T], P-a.s.,

hs

ZLmu () = Zb@w(n) - dsd P-a.e. on [t,T] x £2.
It means
J(t,xyu) (th) = J (t,25u (7)), P-as.
Step 2. For all h € H; we have

wEU, T wEUy, T

{esssup J(t, x; u)} (n) = esssup {J(t,x;u) (1)}, P-a.s.

Indeed, define
W (t, ) = esssup J(t, z;u).
u€Uy, T
we have W (t,x) > J(t,z;u), and thus W (t, x)(r) > J(t,x;u)(7n), P-a.s.,for all u € Uy 7. On the other hand,
for any random variable ( satisfying ¢ > J (¢, z;u)(73,), and hence also ((7—p) > J(t,z;u), P-a.s., for allu € U r,
we have ((7_p) > W (t,z), P-a.s., i.e., ¢ > W(t,z)(m,), P-a.s. Consequently,
W (t,x) (1) = esssup {J (¢t, z;u) (1)}, P-a.s.

u€lls, 7
Step 3. W(t,x) is invariant with respect to the shift 7, i.e.,
W (t,xz) (tn) = W(t,z), P-a.s., for any h € H.
Indeed, from Step 1 to Step 2, we have, for any h € Hy,
W (t,z) (mn) = esssup {J(t,x;u) (1)} = esssup J (¢, z;u (71,))

wEUy, 7 u€Uy, T

= esssup J (¢, x;u) = W(t,z), P-as.,
u€Uy, T

where we have used {u(m,)|u(-) € U} = Urr so as to obtain the 3rd equality. Therefore, W(t, z)(m,) =
W (t,z), P-a.s. for any h € H;. Since W(t,x) is Fi-measurable, it holds for all h € H. Indeed, since 2 =
Co([0,T);RY), by the definition of the filtration, the F;-measurable random variable W (t,z)(w), w € £2, only
depends on the restriction of w to the time interval [0, ¢].

The result of Step 3, combined with the following Lemma A.8 (refer to Buckdahn and Li ([7], Lem. 3.4)
completes the proof. O
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Lemma A.8. Let ¢ be a random variable defined on the Wiener space (2, Fpr, P) such that (1) = ( P-a.s.
for any h € H. Then ( = EC P-a.s.

Proof of Theorem 3.1. To simplify our exposition, define
Is(t,w,u) = Gyl [W (¢ +6, X75")]
and

W(t,z) = esssup Is(t,,u) = esssup Gyl W (16, X557

uEUy 45 ueEUy 45

The proof of Theorem 3.5 is reduced to the following three lemmas. Similar to the proof of Proposition 3.2, we
first have

Lemma A.9. W;s(t,z) is deterministic for any 0 <t <t+d<T, x € D.
Lemma A.10. Ws(t,z) < W(t,z), 0<t<t+5§<T,z € D. O

Proof. For ui () € U 445 and ua(-) € Usys 1, we define uy ©ug := w1l 145) +u2l(s4s,7), which lies in U 7. Note
that there exists a sequence {u}, i > 1} C U; 144 such that

Ws(t,x) = esssup Is (t,z,u1) = sup Is (t,ac,u%) , P-as.
w1 €Uy 145 i>1

For any ¢ > 0, we define I} := {Wg(t z) < Is(t @, u; Y +e} € F, i > 1. Then the following mutually
disjoint events I := Fl, I; = F\(U Fl) € Fyy t > 2, form a (§2, F;)-partition. It is obvious that uf :=
o1 1nul € Upips. Moreover, from the uniqueness of the solution of the forward-backward SDE, we have
Is(t,z,uf) = >is11n1s(t,z,ul), P-as. Hence,

Ws(t,z) < leiL; (t,x,u}) +e=1Is(t,x,uj) +¢
i>1

=G [w (b0 X0 + e Pas, (A.21)

On the other hand, from the definition of W (¢ + d,y) we have, for any y € D,

W(t+0,y) = esssup J(t+6,y;u2), P-as.

u2€Urys,T
Finally, since there exists a constant C' € R such that for any y,y’ € D, us € Uy 51,

() W(t+0,5)~W(E+8y) <C(ly—yl+ly—yI*);

. (A.22)
(11) ‘J(t+5ay,u2) - J(t+5,ylvu2)| < C (|y _y/‘ + |y _y/‘2> ) P—a.s.,

(see Lem. 3.3(i) and (3.4)(i)) we can prove by approximating Xttféul that

W (t+0,X05) < esssup J (640, X050, Pas.
u2 €Uy 5,7

To estimate the right side of the above inequality we notice that there exists some sequence {u?, J> 1} Cliss
such that

esssup J (t + 9, X:ﬁ;ul, 2) =supJ (t + 4, X;f{;’uﬂ’ J) P-a.s.
w2 EUr s, T j=>1



OPTIMAL STOCHASTIC CONTROL OF STOCHASTIC DIFFERENTIAL SYSTEMS REFLECTED IN A DOMAIN 1175

Then, putting A~j = {esssupy, ey, 0 J(E + 0, Xfféui;uz) < J(t+ 9, Xffgui;u?) +e} € Fits, J > 1; we have

with Ay := A~1, Aj = A~j\(U{:_11A~l) € Fits, J > 2, an (§2, Fyqs)-partition and u§ = Zj>1 lAju? € Upys,r-
Therefore, from the uniqueness of the solution of our reflected SDE and GBSDE, we have

taiuf o

Tius d, JU
T (t+6.X0555 ) = VT (see (3.6)

t,xriu

t+6,X, %5 i;uz» t,zul, 2
:ZIAj}/'t+5 t+8 :ZlAjJ(t—i-é,XH_é 1;uj), P-a.s.

Jj=1 j=1
Thus,
W (t + 4, X:fé’“l) < esssup J (t + 4, Xttfé;ul;ug)
uz €U 45, T
t,wsus @us t,z;ufdus t,x;us
<Y 1YY e =YY 4 e = VY 46, Pas, (A.23)
Jj=1

where u® 1= uj ® u§ € Uy 7. From (A.21) and (A.23) and Lemmas 2.4 and 2.3, we get
Walt,o) < Groys [V +e| +e <GLns [V ] + €+ 1)e

= [V e De= v (0 1)

< esssup V""" + (C' + 1), P-as. (A.24)
u€Uy, T
That is,
Ws(t,z) < W(t,z) + (C + 1. (A.25)
Finally, letting € | 0, we get Wi(t,2) < W(t, z). O

Lemma A.11. W(t,z) < Ws(t,z), 0<t<t+6<T,x € D.

Proof. Since Wi(t, x) = esssup,, ¢y, ,, , 15(t, z, u1), we have

Wt ) > Iy (t,2,u1) = Gyt [W(t+ 6, X75)] (A.26)
P-as., for all uy € Uy 415. Moreover, from the definition of W (t + 4,y), y € D, we get
W(t+0,y) = esssup J(t+6,y;u2), P-as. (A.27)
w2 EUr s, T

Let {O;}i>1 C B(RY) be a decomposition of D such that ZiZI O; = D and diam(0;) < ¢, i > 1. Let y; be an

arbitrarily given element of O;, i > 1. We define [Xttfgul] =5 Then we have

i>1 yil{Xjfg“le 0}
|Xttf§“1 - [Xfféul] | <&, everywhere on (2, for all uy € Uy 4. (A.28)

Let u € Uy be arbitrarily given and decomposed into u; = uljy¢4s5) € Upirs and uz = ulys1) € Urs -
Then, from (A.26), (A.22)(i), (A.28), and Lemmas 2.4 and 2.3, we have
Wilt.a) > GLzis [W (08, X[5)]) 2 Gl [ (14, [XI™) — O - Ceb] -

> GUTH W (t+ 6, [X[5"])] — Ce — Clex

Tu 1
=Gy 1D (xizmeoyW (E+0,4:)| —Ce—C'e3, Pas. (A.29)
i>1
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Furthermore, from (A.27), (A.22)(ii), (A.28), and Lemmas 2.4 and 2.3,

Wi(t,x) > Gyyity Zl{X” o,y (46, i uz) | = Ce = Cle?
i>1

tmul

Giris (t + 9, [Xttféul] 3“2)] ~Ce—C'et

1

> G [ (t+0, X5 us) —C"e—C"cz| —Ce—C(C'e?

> G [0 (14 X )] - Ce - e
t, t, 1
_ Gl v - Ce - e}
= Ytt’w;u —Ce — C’eé, P-a.s., for any v € Uy 1, (A.30)

where the constants C, C’, C" may vary from lines to lines. Consequently,

1 1

Wis(t,z) > esssup J(t,x;u) — Ce — C'ez = W (t,z) — Ce — C'ez, P-as. (A.31)
u€Uy, T
Finally, letting £ | 0 we get Wi (¢, x) > W (t,z). The proof is complete. O
Remark A.12.
(i) For any u € Uy i+,
W(t,x) (= Ws(t,z)) > Gpills [W(t+ 06, X,5")],  P-as. (A.32)

(ii) From the inequality (A.21), for all (¢t,2) € [0,T] x R™, § € (0,T — ¢] and € > 0, the following holds: there
exists some u®(-) € Uy 46 such that

W(t,2) (= Wslt,@)) < Giiy (W (146, X05) | + Ce, Pas. (A.33)

(iii) Recall that the value function W is deterministic. Then, with 6 = T — ¢ and taking the expectation on
both sides of (A.32) and (A.33) we can get that

W(t,x) = sup E[J(t, z;u)].

u€Uy, T

Acknowledgements. The authors thank the associate editor and the referees for their helpful comments.

REFERENCES

[1] G. Barles, Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations. J. Differ.
Equ. 106 (1993) 90-106.

[2] J. Bismut, Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44 (1973) 384-404.

[3] J. Bismut, Control des systémes linéares quadratiques, in Applications de L’intégrale Stochastique, Séminaire de Proba-
bilité XII, Vol. 649 of Lect. Notes Math. Springer, Berlin, Heidelberg, New York (1978) 180-264.

[4] J. Bismut, An introductory approach to duality in optimal stochastic control. STAM Rev. 20 (1978) 62-78.

[5] B. Boufoussi and J. Van Casteren, An approximation result for a nonlinear Neumann boundary value problem via BSDEs.
Stoch. Proc. Appl. 114 (2004) 331-350.

[6] M. Bourgoing, Viscosity solutions of fully nonlinear second order parabolic equations with L!-time dependence and Neumann
boundary conditions. Available on http://www.phys.univ-tours.fr/ barles/artL1-1.pdf.


http://www.phys.univ-tours.fr/~barles/artL1-1.pdf

[7]
(8]
(9]
(10]
(1]

12]
(13]

(14]
(15]

[16]
(17]

(18]
(19]
(20]
(21]
(22]

23]

OPTIMAL STOCHASTIC CONTROL OF STOCHASTIC DIFFERENTIAL SYSTEMS REFLECTED IN A DOMAIN 1177

R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton—Jacobi-Bellman—Isaacs equations.
SIAM J. Control. Optim. 47 (2008) 444-475.

M.G. Crandall, H. Ishii and P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull.
Amer. Math. Soc. 27 (1992) 1-67.

R.W.R. Darling and E. Pardoux, Backwards SDE with random terminal time, and applications to semilinear elliptic PDE.
Ann. Probab. 25 (1997) 1135-1159.

M.V. Day, Neumann-Type Boundary Conditions for Hamilton—Jacobi Equations in Smooth Domains. Appl. Math. Optim. 53
(2006) 359-381.

F. Delbaen and S. Tang, Harmonic analysis of stochastic equations and backward stochastic differential equations. Probab.
Theory Relat. Fields 146 (2010) 291-336.

N. El Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1-71.
Y. Hu, Probabilistic interpretation for a system of quasilinear elliptic partial differential equations with Neumann boundary
conditions. Stochastic. Process. Appl. 48 (1993) 107-121.

P.L. Lions, Neumann type boundary conditions for Hamilton—Jacobi equations. Duke Math. J. 52 (1985) 793-820.

P.L. Lions and A.S. Sznitman, Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math.
37 (1984) 511-537.

J.L. Menaldi, Stochastic variational inequality for reflected diffusion. Indiana Univ. Math. J. 32 (1983) 733-744.

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 (1990)
55—61.

E. Pardoux and S. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations.
Stochastic partial differential equations and their applications. Vol. 176 of Proc. IFIP Int. Conf., Charlotte/NC (USA) (1991),
Lect. Notes Control Inf. Sci. Springer (1992) 200-217.

E. Pardoux and R.J. Williams, Symmetric reflected diffusions. Ann. Inst. Henri Poincaré 30 (1994) 13-62.

E. Pardoux and S. Zhang, Generalized BSDEs and nonlinear Neumann boundary value problems. Probab. Theory Relat. Fields
110 (1998) 535-558.

S. Peng, BSDE and stochastic optimizations (in Chinese), in: Chap. 2 of Topics in stochastic analysis, edited by J. Yan, S.
Peng, S. Fang and L. Wu. Science Press, Beijing (1997).

S. Peng, A generalized dynamic programming principle and Hamilton—Jacobi-Bellman equation. Stoch. Stoch. Rep. 38 (1992)
119-134.

Y. Saisho, Stochastic differential equations for multidimensional domains with refecting boundary. Probab. Theory Relat. Fields
74 (1987) 455-477.



	Introduction
	Preliminaries
	Formulation of the problem and related DPP
	Viscosity solutions of related HJB equations
	Appendix. A
	Forward--Backward SDES (FBSDEs)
	Proofs of Proposition 3.1 and Theorem 3.1

	References

