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DELAUNAY TYPE DOMAINS FOR AN OVERDETERMINED ELLIPTIC
PROBLEM IN Sn × R AND Hn × R ∗, ∗∗

Filippo Morabito
1,2

and Pieralberto Sicbaldi
3

Abstract. We prove the existence of a countable family of Delaunay type domains

Ωt ⊂ M
n × R,

t ∈ N, where Mn is the Riemannian manifold Sn or Hn and n ≥ 2, bifurcating from the cylinder Bn ×R

(where Bn is a geodesic ball in Mn) for which the first eigenfunction of the Laplace–Beltrami operator
with zero Dirichlet boundary condition also has constant Neumann data at the boundary. In other
words, the overdetermined problem

⎧⎨
⎩

Δg u + λ u = 0 in Ωt

u = 0 on ∂Ωt

g(∇u, ν) = const . on ∂Ωt

has a bounded positive solution for some positive constant λ, where g is the standard metric in Mn×R.
The domains Ωt are rotationally symmetric and periodic with respect to the R-axis of the cylinder and
the sequence {Ωt}t converges to the cylinder Bn × R.
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1. Introduction and statement of the result

A long-standing open problem is to classify (smooth) domains Ω ⊆ Rn, n ≥ 2, for which the overdetermined
elliptic problem ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Δu+ f(u) = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω
〈∇u, ν〉 = const. on ∂Ω

(1.1)

admits a solution u ∈ C2(Ω), where f is a given Lipschitz function, ν is the normal vector to ∂Ω, and 〈·, ·〉
denotes the usual scalar product.

By Serrin’s Theorem [28], if Ω is bounded, then Ω must be a ball and the solution u is radial (see also [25]).
Such a result has many applications to Physics. For example, problem (1.1), when f is constant, describes
a viscous incompressible fluid moving in straight parallel streamlines through a straight pipe of given cross
section Ω (see [28]), and Serrin’s Theorem shows then that the tangential stress per unit area on the pipe wall
is the same at all points of the wall if and only if the pipe has a circular cross section. Problem (1.1) is used in
the linear theory of torsion of a solid straight bar of cross section Ω (see [31]). In this setting Serrin’s Theorem
implies that when a solid straight bar is subject to torsion, the magnitude of the resulting traction which occurs
at the surface of the bar is independent of the position if and only if the bar has a circular cross section.

Overdetermined boundary conditions arise naturally also in free boundary problems, when the variational
structure imposes suitable conditions on the separation interface (see for example [3]). In this context it is
important to underline that several methods for studying locally the regularity of solutions of free boundary
problems are often based on blow-up techniques applied to the intersection of Ω with a small ball centered in
a point of ∂Ω, which lead then to the study of an elliptic problem in an unbounded domain. Problem (1.1) in
unbounded domains was considered by Berestycki et al. in [5].

For some types of functions f the structure of the family of domainsΩ where the overdetermined problem (1.1)
can be solved shares many similarities with the class of embedded constant mean curvatures surfaces (CMC
surfaces). For the bounded case, the analogy is very simple: the only compact embedded CMC surfaces in Rn

are the round spheres (very well known result by Alexandrov [2]) and the only bounded domains in Rn where
problem (1.1) can be solved are balls by Serrin’s Theorem. For the unbounded case, a very well known family of
CMC surfaces is the family of Delaunay onduloids, see [7]. In [29] Sicbaldi showed the existence of Delaunay type
domains, i.e. perturbations of the straight solid cylinder in Rn which are rotationally symmetric and periodic
in the vertical direction, where it is possible to solve problem (1.1) for the linear function f(t) = λ t. In [27],
Schlenk and Sicbaldi showed that the previous unbounded domains belong in fact to a smooth 1-parameter
family, a property enjoyed also by Delaunay onduloids.

In order to show that the analogy with the CMC surfaces is even deeper, we remark that domains where
problem (1.1) with f = 0 can be solved arise as limits under scaling of sequences of domains where problem (1.1)
with f(t) = λ t can be solved, just like minimal surfaces arise as limits under scaling of sequences of CMC
surfaces. In a recent paper, [32], M. Traizet shows a one-to-one correspondence, under some weak hypothesis,
between 2-dimensional domains where problem (1.1) with f = 0 can be solved and a special class of minimal
surfaces.

The analogy between problem (1.1) and CMC surfaces has been explored in a systematic way by Ros and
Sicbaldi in [26]. In particular they obtain, for 2-dimensional domains where (1.1) can be solved, a half-space
theorem and also, for some functions f , the boundedness of the ends of the domain, paralleling analogous results
for CMC surfaces.

One of the most remarkable recent achievements in the field of Differential Geometry is the extension of
the classical theory of CMC surfaces in the Euclidean space to other ambient spaces, and in particular to the
the eight Thurston’s 3-dimensional geometries: the Euclidean space R3, the round sphere S3, the hyperbolic
space H3, the product spaces S2×R and H2×R, the Heisenberg group Nil3, the universal covering of PSL2(R)
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and the Lie group Sol3. The importance of the classification of CMC surfaces in such ambient spaces comes from
the outstanding Thurston’s Geometrization Conjecture (which includes in particular the Poincaré’s Conjecture),
proved finally by Perelman in 2003 [22–24] using Ricci flow with surgery, according to which every closed 3-
dimensional manifold can be decomposed in a canonical way into pieces in order that each piece has one of
the eight Thurston’s geometric structures. For a survey on the Thurston’s Geometrization Conjecture we refer
to [4]. The number of results in the framework of CMC surfaces in Thurston’s 3-dimensional geometries is very
large, and we cite only the works by Abresch et al. [1, 17, 18] which have set the direction of the subsequent
research in the field.

As for CMC surfaces, overdetermined problems can be considered also in a Riemannian manifold, and in this
framework problem (1.1) becomes ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Δgu+ f(u) = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω

g(∇u, ν) = const. on ∂Ω,

(1.2)

where g denotes the metric of the manifold and Δg is the Laplace–Beltrami operator.
First, we remark that unlike CMC surfaces, where the lowest possible dimension for the ambient space

is 3, in the case of overdetermined elliptic problems the lowest possible dimension for the ambient space is 2.
In dimension 2 the equivalent of the Thurston’s Geometrization Conjecture is the Riemann’s Uniformization
Theorem, according to which every 2-dimensional Riemannian manifold is a quotient of one of the following
manifolds by a free action of a discrete subgroup of their isometries group: the round sphere S2, the Euclidean
space R2 and the hyperbolic plane H2 (remark that in the case of dimension 2 it is not necessary to decompose
the manifold in pieces and this is the reason why the 2-dimensional case is much simpler than the 3-dimensional
one).

Serrin’s Theorem for overdetermined elliptic problems in Rn has been generalized by Molzon [19] and Ku-
maresan and Prajapat [15] to the case of the round sphere Sn and the hyperbolic space Hn, for every dimension
n ≥ 2: assuming that Ω is a bounded domain in Hn or that Ω is a domain contained in a hemisphere of Sn, and
that problem (1.2) has a solution u ∈ C2(Ω), then Ω is a ball. In the round sphere Sn there exists nontrivial
(bounded) domains (not contained in a hemisphere) where problem (1.2) can be solved, see [12]. Such results
parallel analogous results about CMC surfaces in Sn and Hn, see [2].

In 3-dimensional Riemannian manifolds, results on overdetermined elliptic problems are expected in particular
for the remaining five Thurston’s geometries: S2×R, H2×R, Nil3, the universal covering of PSL2(R) and Sol3.
Up to now very few results are known.

In this paper we generalize the construction of Delaunay type domains of Sicbaldi in [29] to the case of the
product spaces Sn × R and Hn × R (and in particular our result holds in the two Thurston’s 3-dimensional
geometries S2 × R and H2 × R). In fact, we prove that the solid straight cylinder Bn

R × R (where Bn
R is a

geodesic ball of radius R properly contained in Sn or Hn) can be perturbed in order to obtain new domains
where problem (1.2) can be solved for the function f(t) = λ t for some positive constant λ. The boundary of
such domains is rotationally symmetric with respect to the R-axis of the cylinder, and is periodic in the vertical
direction. The parallel of our result in the framework of CMC surfaces is the construction of Delaunay surfaces
in Sn × R and Hn × R, done by Pedrosa and Ritoré [21].

In order to state our result, let Mn denote the Riemannian manifold Sn or Hn, i.e. the n-dimensional manifold
of constant sectional curvature equal to 1 or -1. Points of Mn ×R are denoted by (x, t), x ∈ Mn and t ∈ R. Let
us fix a point 0 (origin) in Mn and let r(x) denote the distance of x ∈ Mn to the origin 0 ∈ Mn. Our main
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result is the following:

Theorem 1.1. Let R > 0 and BR a geodesic ball of radius R centered at 0 such that BR � Mn. There exist a
real positive number T∗, a sequence of real positive numbers Tj −→ T∗ and a sequence of nonconstant functions
vj ∈ C2,α(R) (of small norm, of period Tj, and converging to 0 in C2,α(R)) such that the domains

Ωj = {(x, t) ∈ Mn × R, r(x) < R+ vj(t)}

have a positive solution uj ∈ C2,α(Ωj) to the problem (1.2). Moreover
∫ Tj

0

vj dt = 0.

The reader will notice that the condition BR � M is an empty condition when M = H and is equivalent to
ask R < π when M = S.

Remark 1.2. More generally, the same construction can be done in the spaces Mn(k)×R, where Mn(k), k ∈ R,
is the n-dimensional space form of constant sectional curvature k. In other words, Theorem 1.1 still holds when
we replace Mn with Mn(k). The case k = 0 corresponds to the Euclidean one, settled in [27, 29], and here we
will consider only the cases k 	= 0. We recall that the condition BR � Mn(k) is again an empty condition when
k ≤ 0 and is equivalent to R < π

√
1/k when k > 0. Sections 6 and 7, which play a crucial role in this paper,

have been redacted using Mn(k) instead of Mn. In the other sections we consider Sn × R or Hn × R, but we
always point out the main changes to do in order to adapt the formulas to the ambient space Mn(k)×R, k 	= 0.

The previous result leaves two open interesting questions:

(1) We do not have a smooth one-parameter family of domains, but only a sequence of domains converging
to the straight cylinder. In view of the result which holds in Rn [27] and the existence of CMC surfaces
in Mn × R [21], it is tempting to conjecture that the domains in Theorem 1.1 belong in fact to a smooth
one-parameter family of domains.

(2) In the framework of Mn(k) × R, it would be very interesting to study the dependence on k of the domains
Ωj , and understand their behavior as k changes sign. We trust that this is a very nontrivial question.

In order to simplify the redaction, we will prove Theorem 1.1 in the case R = 1, and we will show, according
to Remark 1.2, that the construction can be done also in the more general space Mn(k) × R, for all k 	= 0.
There is no loss of generality in choosing R = 1. Indeed, the problem of finding overdetermined domains does
not depend on the value of k, and perturbations of BR × R in Mn(k) × R turn equivalently into perturbations
of B1 × R in Mn(k′) × R, for some real number k′ of the same sign of k.

The strategy of the proof of our result is the one adopted in [29], and the real novelty here stays in the tools
used to solve the central step of the proof. If (x, t) are the points of Mn×R, or more generally Mn(k)×R (where
k satisfies the condition that B1 � Mn(k)), we construct the domain CT

1+v as the interior of the radial graph
over the cylinder of radius 1 of a periodic function v(t) with period T (Sect. 2). We consider the operator that
to the function v associates the normal derivative of the first eigenfunction φ of the Laplace–Beltrami operator
on CT

1+v with zero Dirichlet boundary condition. In order to find nontrivial solutions v such that the normal
derivative of φ at ∂CT

1+v is constant, we need to study the linearized operator with respect to the variable v
(Sects. 3 and 4) and show that for some value of the parameter T it has a nontrivial kernel. In [29] such step
could be easily solved because the study of the linearized operator led to solving a Bessel ODE. In our case, we
have to handle a much more difficult situation, and we are able to study the linearized operator by using some
large classes of complex valued functions known as Legendre and Ferrer’s functions, with complex argument
and depending on two parameters. For convenience of the reader, in Section 5 we recollect the basic facts about
such classes of functions, their asymptotics and related differential equations, and this material will be used in
the study of the linearized operator in Sections 6 and 7. The final step of the proof uses the Lyapunov−Schmidt
reduction and a bifurcation argument (Sect. 8).
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2. Rephrasing the problem

Given a continuous function v : R/2πZ �−→ (0,+∞) whose L∞-norm is small enough, we define

CT
1+v := {(x, t) ∈ Mn × R/TZ : 0 ≤ r(x) < 1 + v(2πt/T )} .

Our aim is to show that there exists a positive real number T∗, a sequence Tj → T∗ and a sequence of nonconstant
functions vj ∈ C2,α(R/2πZ) of mean value equal to zero and converging to the zero function in the C2,α-norm,
such that the overdetermined problem

⎧⎪⎪⎨
⎪⎪⎩
Δg φ+ λφ = 0 in CT

1+v

φ = 0 on ∂CT
1+v

g(∇φ, ν) = const. on ∂CT
1+v

(2.1)

has a nontrivial positive solution (φ, λ) = (φj , λj) for the sequence (vj , Tj). Here ν denote the normal vector
field to ∂CT

1+v, λ is a positive constant, and g is the product metric of Mn × R/T Z (in particular the second
factor is equipped with the metric induced by the standard metric of R).

We remark that the symmetry of the problem allow us to require the function v to be even.
Let gMn denote the usual metric on Mn. Let λ1 be the first eigenvalue of the Laplace–Beltrami operator with

zero Dirichlet boundary condition in the unit geodesic ball

B1 = {x ∈ Mn : r(x) < 1}.

Let φ̃1 denote the associated eigenfunction⎧⎨
⎩
ΔgMn φ̃1 + λ1 φ̃1 = 0 in B1

φ̃1 = 0 on ∂B1

(2.2)

which is normalized to have L2(B1)-norm equal to 1/2π. Then φ1(x, t) = φ̃1(x) solves the problem

{
Δgφ1 + λ1 φ1 = 0 in CT

1

φ1 = 0 on ∂CT
1

(2.3)

and ∫
C2π

1

φ2
1 dvolg = 1. (2.4)

As φ1 do not depend on t, sometimes we will write simply φ1(x).
Let C2,α

even,0(R/2πZ) be the set of even functions on R/2πZ of mean value equal to zero. For all function
v ∈ C2,α

even,0(R/2πZ) whose norm is small enough, the domain CT
1+v is well defined for all T > 0 and standard

results on Dirichlet eigenvalue problem (see [6,10]) apply to give the existence, for all T > 0, of a unique positive
function

φ = φv,T ∈ C2,α
(
CT

1+v

)
and a constant λ = λv,T ∈ R such that φ is a solution to the problem

{
Δg φ+ λφ = 0 in CT

1+v

φ = 0 on ∂CT
1+v

(2.5)
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which is normalized by ∫
C2π

1+v

(
φ

(
x,

T

2π
t

))2

dvolg = 1 (2.6)

In addition φ and λ depend smoothly on the function v, and φ = φ1, λ = λ1 when v ≡ 0.
After canonical identification of ∂CT

1+v with Sn−1 × R/TZ, we define the Dirichlet-to-Neumann operator N :

N(v, T ) = g(∇φ, ν) |∂CT
1+v

− 1
Volg(∂CT

1+v)

∫
∂CT

1+v

g(∇φ, ν) dvolg,

where ν denotes the unit normal vector field to ∂CT
1+v and φ is the solution of (2.5). A priori N(v, t) is a function

defined over Sn−1 × R/TZ, but it is easy to see that it depends only on the variable t ∈ R/TZ because v has
such a property. For the same reason it is an even function, and moreover it is clear that its mean vanishes. If
now we operate a rescaling and we define

F (v, T ) (t) = N(v, T )
(
T

2π
t

)
, (2.7)

Schauder’s estimates imply that F is well defined in a neighborhood of (0, T ) in the space C2,α
even,0(R/2πZ)×R,

and takes its values in C1,α
even,0(R/2πZ). Our aim is to find a positive real number T∗, a sequence Tj → T∗ and a

sequence of nonconstant functions vj ∈ C2,α(R/2πZ) of mean equal to zero and converging to the zero function
in the C2,α-norm, such that F (vj , Tj) = 0. Observe that, with this condition, φ = φvj ,Tj will be the solution to
the problem (2.1) and our Theorem 1.1 will be proved.

3. The linearized operator

Let k be the sectional curvature of the manifold Mn (i.e. k = 1 if Mn = Sn and k = −1 if Mn = Hn). If we
choose spherical coordinates (r, θ), with θ ∈ Sn−1 and r ∈ [0,+∞) if k < 0 and r ∈ [0, π] if k > 0, the usual
metric in Mn can be written as

gMn = dr2 + Sk(r)2 dθ2

where

Sk(r) =
{

sinh r if k = −1
sin r if k = 1

(see [6], Sect. II.5, Thm. 1).

Remark 3.1. According to Remark 1.2, when we consider Mn(k) instead of Mn, we use spherical coordinates
(r, θ), with θ ∈ Sn−1 and r ∈ [0,+∞) if k < 0 and r ∈ [0, π/

√
k) if k > 0, and then the usual metric in Mn(k) is

gMn(k) = dr2 + Sk(r)2 dθ2

where

Sk(r) =

⎧⎪⎪⎨
⎪⎪⎩

1√−k sinh(
√−k r) if k < 0

1√
k

sin(
√
k r) if k > 0

(see [6], Sect. II.5, Thm. 1). The computations that follow are true in general for the manifold Mn(k)×R, under
the hypothesis that Mn(k) contains properly a geodesic ball B1 of radius 1. For the convenience of the reader,
we consider only the cases k = 1 and −1 till Section 5, but Sections 6 and 7, which are the crucial part of this
paper, will be established for any k 	= 0.
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For all v ∈ C2,α
even,0(R/2πZ) and all T > 0, let ψ be the (unique) solution (periodic with respect to the

variable t) of {
Δgψ + λ1 ψ = 0 in CT

1

ψ = −∂rφ1 v(2πt/T ) on ∂CT
1

(3.1)

which is L2(CT
1 )-orthogonal to φ1. The function φ1 = φ1(r) is the solution on CT

1 , for any T > 0, of (2.3) with
L2-norm equal to 1. We define

H̃T (v) :=
(
∂rψ + ∂2

rφ1 v

(
2πt
T

))∣∣∣∣
∂CT

1

. (3.2)

By symmetry it is clear that H̃T (v) is a function only depending on t, then changing the variable we can define

HT (v)(t) := H̃T (v)
(
T

2π
t

)
. (3.3)

The main result of this section is the:

Proposition 3.2. The linearization of the operator F with respect to v computed at the point (0, T ) is given
by HT .

Proof. To linearize the operator F (see (2.7)) with respect to v at (0, T ) we will compute

lim
s→0

F (sw, T ) − F (0, T )
s

·

Precisely we determine the first order approximation of F (sw, T ) with respect to the variable s. Let {e1, . . . , en}
denote an orthonormal basis of the tangent space to Mn at the origin 0. Suppose that y = (y1, y2, . . . , yn) are
geodesic normal coordinates at 0 ∈ Mn, and let x denote the point of Mn whose geodesic coordinates are y. We
parameterize CT

1+sw on C2π
1 by

Y (x, t) :=

(
Exp0

(
(1 + s χ(y)w)

n∑
1

yiei

)
,
T t

2π

)

for x ∈ Mn and t ∈ R and where χ is a cutoff function identically equal to 0 when |y| ≤ 1/4 and identically equal
to 1 when |y| ≥ 1/2. If we use the coordinates (r, θ, t), being (r, θ) the coordinates introduced at the beginning
of Section 3, the map Y reduces to

(r, θ, t) →
(

(1 + s χ(r)w) r , θ,
T t

2π

)
·

The metric induced by Y will be denoted by
ĝ := Y ∗g. (3.4)

If φ solves (2.5) and (2.6), then φ̂ = Y ∗φ is solution (smoothly depending on the real parameter s) of⎧⎨
⎩
Δĝ φ̂+ λ̂ φ̂ = 0 in C2π

1

φ̂ = 0 on ∂C2π
1

with λ̂ = λ and satisfying ∫
C2π

1

φ̂2 dvolĝ = 1.
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Consider the function φ1 defined in (2.3) and (2.4). Clearly the function φ̂1 := Y ∗φ1 solves

Δĝ φ̂1 + λ1 φ̂1 = 0

and

φ̂1(x, t) = φ1

(
Exp0

(
(1 + sw)

n∑
1

yiei

)
,
T t

2π

)
(3.5)

for |y| ≥ 1
2 . Writing φ̂ = φ̂1 + ψ̂ and λ̂ = λ1 + μ, we find out that ψ̂ solves⎧⎨

⎩
Δĝ ψ̂ + (λ1 + μ) ψ̂ + μ φ̂1 = 0 in C2π

1

ψ̂ = −φ̂1 on ∂C2π
1

(3.6)

with ∫
C2π

1

(2 φ̂1 ψ̂ + ψ̂2) dvolĝ =
∫

C2π
1

φ2
1 dvolg −

∫
C2π

1+sw

φ2
1 dvolg. (3.7)

Obviously ψ̂ and μ are smooth functions of s. If s = 0, then CT
1+sw = CT

1 and in particular we have φ = φ1 = φ̂1,

λ = λ1, ψ̂ ≡ 0, μ = 0 and ĝ = g. We set

ψ̇ := ∂sψ̂|s=0 and μ̇ := ∂sμ|s=0.

Differentiating (3.6) with respect to s and evaluating the result at s = 0, we obtain⎧⎨
⎩
Δg ψ̇ + λ1 ψ̇ + μ̇ φ1 = 0 in C2π

1

ψ̇ = −∂rφ1 w on ∂C2π
1

(3.8)

because from (3.5), differentiation with respect to s at s = 0 yields ∂sφ̂1|s=0 = ∂rφ1 w, where r = r(x).
Differentiating (3.7) with respect to s and evaluating the result at s = 0, we obtain∫

C2π
1

φ1 ψ̇ dvolg = 0. (3.9)

Indeed, the derivative of the right hand side of (3.7) with respect to s vanishes when s = 0 since φ1 vanishes
identically on ∂C2π

1 .
If we multiply the first equation of (3.8) by φ1 and we integrate it over C2π

1 , using (3.9) we get:∫
C2π

1

(φ1Δgψ̇ + μ̇ φ2
1) dvolg = 0.

By Gauss−Green Theorem and the boundary conditions φ1 = 0, ψ̇ = −∂rφ1w, we deduce the following identity∫
C2π

1

φ1Δgψ̇ dvolg =
∫

C2π
1

ψ̇ Δgφ1 dvolg +
∫

∂C2π
1

w ∂νφ1 ∂rφ1 dvolg,

where ∂νφ1 is the normal derivative of φ1 and ν is the unit normal vector to ∂C2π
1 . The first term of the right

hand side is easily seen to vanish by multiplying by ψ̇ the equation satisfied by φ1 and integrating. As s = 0,
then ∂νφ1 = ∂rφ1 on ∂C2π

1 . Since on this set ∂νφ1 is constant and the average of w is 0 we conclude that
μ̇ = 0. Consequently the 2π-periodic function ψ̇(x, t) is related to the solution ψ(x, t) of (3.1) by the identity
ψ(x, t) := ψ̇(x, 2πt/T ), using v = w.

We proved that
φ̂(x, t) = φ̂1(x, t) + s ψ(x, T t/2π) + O(s2).
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In particular, in C2π
1 \ C2π

3/4, we have

φ̂(x, t) = φ1

(
Exp0

(
(1 + sw)

n∑
1

yiei

)
, T t/2π

)
+ s ψ(x, T t/2π) + O(s2)

= φ1 (x, T t/2π) + s (w r(x) ∂rφ1 + ψ(x, T t/2π)) + O(s2).

To complete the proof of the result, we will compute ĝ(∇φ̂, ν̂) on the boundary of C2π
1 . Such a function is the

normal derivative of φ̂ when the normal is computed with respect to the metric ĝ. We now use the coordinates
(r, θ, t). In C2π

1 \ C2π
3/4 the metric ĝ equals

ĝ = (1 + sw)2dr2 + 2sr w′ (1 + sw) drdt +

((
T

2π

)2

+ s2 r2 (w′)2
)

dt2 + S2
k((1 + sw)r) dθ2 .

It follows from this expression that the unit normal vector field to ∂C2π
1 for the metric ĝ is given by

ν̂ =
(
(1 + sw)−1 + O(s2)

)
∂r + O(s) ∂t. (3.10)

Hence, on ∂C2π
1 ,

ĝ(∇φ̂, ν̂) = ∂rφ1 + s
(
w ∂2

rφ1 + ∂rψ(x, T t/2π)
)
+ O(s2).

On ∂C2π
1 the term w ∂2

rφ1 + ∂rψ(x, T t/2π) has mean equal to zero and ∂rφ1 is constant. Using ĝ(∇φ̂, ν̂) to
compute F (sw), we get that the linearized of F is HT . �

4. The structure of the linearized operator

Let v ∈ C2,α
even,0(R/2πZ). Recalling that the mean of v is zero and the fact that v is even, by Fourier expansion

v can be written as
v =

∑
j≥1

aj cos(jt). (4.1)

Observe that in principle φ1 is only defined in the cylindrical domain C2π
1 , however, this function being radial

in the first n variables and not depending on t, it is a solution of a second order ordinary differential equation
and then it can be extended at least in a neighborhood of ∂C2π

1 .
We will need the following:

Lemma 4.1. Assume that v ∈ C2,α
even,0(R/2πZ) and write v as in (4.1). For T > 0 we define

φ0(x, t) = ∂rφ1(x) v(2πt/T )

where r = r(x). Then

Δgφ0 + λ1 φ0 = ∂rφ1

∑
j≥1

aj
1

Sk(r)2
cos
(

2πjt
T

) [
n− 1 −

(
2πj
T

)2

Sk(r)2
]
.

Proof. The Laplace–Beltrami operator for the metric g can be written as

Δg = ∂2
r + (n− 1)

Ck(r)
Sk(r)

∂r +
1

Sk(r)2
ΔSn−1 + ∂2

t

where

Ck(r) =
{

cosh r if k = −1
cos r if k = 1
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(see [6], Sect. II.5, Thm. 1). Then it is easy to obtain

Δg ∂rφ1 = −λ1 ∂rφ1 +
n− 1
S2

k(r)
∂rφ1

and

Δgφ0 = −λ1 φ0 + ∂rφ1

∑
j≥1

aj
1

Sk(r)2
cos
(

2πjt
T

) [
n− 1 −

(
2πj
T

)2

Sk(r)2
]
.

This completes the proof of the result. �

Remark 4.2. With respect to Remark 3.1 we give the formula of Ck(r) when k /∈ {−1, 1}. In fact, we have

Ck(r) =
{

cosh(
√−k r) if k < 0

cos(
√
k r) if k > 0.

We investigate now the structure of the linearized operator HT . The main result of this section is the:

Proposition 4.3. For all T > 0, the operator

HT : C2,α
even,0(R/2πZ) −→ C1,α

even,0(R/2πZ),

defined by (3.3), is a self-adjoint, first order elliptic operator preserving, for all j ∈ N\{0}, the eigenspace Vj

spanned by the function cos(jt).

Proof. The fact that HT is a first order elliptic operator is standard since it is the sum of the Dirichlet-to-
Neumann operator for Δg + λ1 and a constant times the identity. In particular, elliptic estimates yield

‖HT (w)‖C1,α
even,0(R/2πZ) ≤ c ‖w‖C2,α

even,0(R/2πZ).

The fact that the operator HT is (formally) self-adjoint is easy. Let ψ1 (resp. ψ2) the solution of (3.1) corre-
sponding to the function w1 (resp. w2). Let ψ̃i(x, t) = ψi(x, T t/2π). We compute

∂rφ1(1)
∫ 2π

0

(HT (w1)w2 − w1HT (w2)) dt = ∂rφ1(1)
∫ 2π

0

(∂rψ̃1 w2 − ∂rψ̃2 w1) dt

=
∫ 2π

0

(ψ̃1 ∂rψ̃2 − ψ̃2 ∂rψ̃1) dt

=
1

Volg(Sn−1)

∫
C2π

1

(ψ̃1Δgψ̃2 − ψ̃2Δg ψ̃1) dvolg

= 0.

To prove the other statements, we define for all v ∈ C2,α
even,0(R/2πZ) written as in (4.1), Ψ to be the continuous

solution of ⎧⎪⎨
⎪⎩
ΔgΨ + λ1 Ψ = ∂rφ1

∑
j≥1

aj
1

Sk(r)2
cos
(

2πjt
T

) [
n− 1 −

(
2πj
T

)2

Sk(r)2
]

in CT
1

Ψ = 0 on ∂CT
1 .

(4.2)

Observe that ∂rφ1 vanishes at first order at r = 0 and hence the right hand side is smaller than a constant
times r−1 near the origin. Standard elliptic estimates then imply that the solution Ψ is at least continuous near
the origin (the right side of (4.2) belongs to the space Lp(CT

1 ) for each p < n, then the solution Ψ belongs to
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the Sobolev space W 2,p(CT
1 ) for each p < n, and by the Sobolev embedding Theorem for a compact domain Ω

we have W 2,p(Ω) ⊆ C0,α(Ω) for p ≥ n
2−α ). A straightforward computation using the result of Lemma 4.1 and

writing Ψ(x, t) = ψ(x, t) + ∂rφ1(x) v(2πt/T ), shows that

H̃T (v) = ∂rΨ |∂CT
1
.

By this alternative definition, it is clear that HT preserves the eigenspaces Vj and in particular, HT maps
into the space of functions whose mean is zero. �

By the previous proposition

H̃T (v) =
∑
j≥1

σj(T ) aj cos
(

2πjt
T

)
, (4.3)

where σj(T ) are the eigenvalues of HT with respect to the eigenfunctions cos(jt). From (3.2), (4.3) and (3.1)
we deduce that

ψ =
∑
j≥1

cj(r) aj cos
(

2πjt
T

)
,

where cj is the continuous solution on [0, 1] of

(
∂2

r + (n− 1)
Ck(r)
Sk(r)

∂r + λ1

)
cj −

(
2πj
T

)2

cj = 0, (4.4)

with cj(1) = −∂rφ1(1). Then
σj(T ) = ∂rcj(1) + ∂2

rφ1(1). (4.5)

Our next task is to find the kernel of the operator HT . For this it is enough to study the eigenvalues σj . We
remark that if we set

j

T
=

1
D
,

for T > 0, from (4.4) we obtain that
σj(T ) = σ1(D).

Then, in order to study the kernel of the linearized operator, it suffices to consider only the first eigenvalue σ1.
For this aim we will use Legendre and Ferrers functions.

To simplify the notation, in the sequel we will drop the lower index 1, and we set σ1 = σ.

5. Recollection on Legendre and Ferrers functions

In what follows we shall use several properties of associated Legendre and Ferrers functions. For the conve-
nience of the reader, we recall their definitions and some properties. This section can be skipped by the reader
who is familiar with these functions. For more details we refer to [8, 16, 20].

5.1. Legendre functions

The (general) Legendre equation in the variable z ∈ C (see [20], 5.12) is

(1 − z2)
d2w

dz2
− 2z

dw
dz

+
[
ν(ν + 1) − μ2

1 − z2

]
w = 0 (5.1)

where μ, ν are complex parameters. To solve this equation one considers special solutions to the hypergeometric
equation:

z(1 − z)
d2u

dz2
+ {c− (a+ b+ 1)z}du

dz
− abu = 0,
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where a, b, c ∈ C. The solutions to this equation can be found by the power series method. If we consider a series
centered at z = 0 we find a series which is convergent for |z| < 1 and whose sum is known as hypergeometric
function:

F (a, b; c; z) =
∞∑

s=0

(a)s(b)s

(c)s

zs

s!
,

where c > 0 (see [20], 9.02, p. 159). Let Γ be the Gamma function and let (·)s denote the Pochammer symbol

(q)n =
{

1 if n = 0
q (q + 1) (q + 2) . . . (q + n− 1) if n ≥ 1.

The Olver hypergeometric function F (see [20], 9.03, p. 159) is defined by

F(a, b; c; z) =
F (a, b; c; z)

Γ (c)
=

∞∑
s=0

(a)s(b)s

Γ (c+ s)
zs

s!

for |z| < 1 and extended to |z| ≥ 1 by analytic continuation. Such a function presents the advantage of being
defined for all values of c. Using the Olver hypergeometric function we can construct a first solution of (5.1):

P−μ
ν (z) =

(
z − 1
z + 1

)μ/2

F
(
ν + 1 , −ν ; μ+ 1 ;

1 − z

2

)
· (5.2)

A second solution can be built from the first one by using the fact that also

(−z)a F
(
a, 1 + a− c; 1 + a− b;

1
z

)

is a solution to the hypergeometric equation and replacing a = ν + 1, b = −ν, c = μ+ 1 and z by 1−z
2 . We get

(after multiplication by 2ν Γ (ν + 1)):

Qμ
ν (z) = 2ν Γ (ν + 1)

(z − 1)μ/2−ν−1

(z + 1)μ/2
F
(
ν + 1 , ν − μ+ 1 ; 2ν + 2 ;

2
1 − z

)
· (5.3)

Because the Legendre equation is unchanged by replacing μ by −μ or ν by −ν − 1, the functions

P±μ
ν (z),P±μ

−ν−1(z),Q
±μ
ν (z),Q±μ

−ν−1(z) ,

are all solutions, but only the following four of them are distinct:

P±μ
ν (z),Qμ

ν (z),Qμ
−ν−1(z).

Moreover only two of them are linearly independent, as one can see by the two following connection formulas:

2 sin(μπ)
π

Qμ
ν (z) =

Pμ
ν (z)

Γ (ν + μ+ 1)
− P−μ

ν (z)
Γ (ν − μ+ 1)

cos(νπ)P−μ
ν (z) =

Qμ
−ν−1(z)

Γ (ν + μ+ 1)
− Qμ

ν (z)
Γ (μ− ν)

· (5.4)

The functions P±μ
ν (z) are called associated Legendre functions of first kind. The functions Q±μ

ν (z) are called
associated Legendre functions of second kind4. Such functions exist for all values of ν, μ, z, except possibly the
singular points z = ±1 and ∞. They are multi-valued functions of z with branch points at z = ±1 and ∞.
The principal branches of both solutions are obtained by introducing a cut along the real axis from z = −∞ to
z = +1, and assigning the principal value to each function.

4For more clarity the associated Legendre functions of first kind are denoted by P±μ
ν (x). We do not adopt the standard notation

P±μ
ν (x) which is very similar to P±μ

ν (x), that denotes the associated Ferrers function of first kind.
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5.2. Ferrers functions

Suppose that P−μ
ν (z) and Qμ

ν (z) are real valued on the real interval [1,+∞) (it is the case when ν, μ ∈ R). On
the cut from −∞ to 1 there are two possible values for each function, depending whether the cut is approached
from the upper or lower side. Replacing z by x, these values are denoted by

P−μ
ν (x+ i0), P−μ

ν (x− i0), Qμ
ν (x+ i0), Qμ

ν (x− i0).

For |x| < 1, it is possible to define four real valued functions if ν and μ are real. They are known as associated
Ferrers functions. Two of such functions are defined as follows under the assumption −(ν + μ) /∈ N∗ (here
N∗ = {1, 2, 3, . . .}):

Pμ
ν (x) = eiμπ/2 Pμ

ν (x+ i0) = e−iμπ/2 Pμ
ν (x − i0)

Qμ
ν (x) =

1
2
Γ (ν + μ+ 1)

[
e−iμπ/2 Qμ

ν (x+ i0) + eiμπ/2 Qμ
ν (x− i0)

]
. (5.5)

The two other associated Ferrers functions are P−μ
ν (x) and Q−μ

ν (x). It is possible to show that

Pμ
ν (x) =

(
1 + x

1 − x

)μ/2

F
(
ν + 1 , −ν ; 1 − μ ;

1 − x

2

)
·

Such a formula allows to extend the definition of Pμ
ν (x) to complex values of ν, μ and x : cuts are introduced

along the real intervals (−∞,−1] and [1,+∞). The expression for other Ferrers functions can be derived using
the connection formulas:

Pμ
ν =

Γ (ν + μ+ 1)
Γ (ν − μ+ 1)

[
cos(μπ) P−μ

ν +
2 sin(μπ)

π
Q−μ

ν

]

Qμ
ν =

Γ (ν + μ+ 1)
Γ (ν − μ+ 1)

[
cos(μπ)Q−μ

ν − π sin(μπ)
2

P−μ
ν

]
. (5.6)

In particular the formula we get for Qμ
ν is used to extend Qμ

ν (x) to complex values of ν, μ and x in the same
way as for Pμ

ν (x).

5.3. Asymptotics

We recall now some asymptotics about Legendre and Ferrers functions that we will need through the paper.

Lemma 5.1 (see [8], Sect. 14.8, or [20] p. 186 and [9] p. 163). The associated Legendre functions Pμ
ν (x), Qμ

ν (x)
defined on (1,+∞) have the following asymptotic behaviour for x→ 1+:

Pμ
ν (x) ∼ 1

Γ (1 − μ)

(
2

x− 1

)μ
2

if μ /∈ N∗ (5.7)

Pμ
ν (x) ∼ Γ (ν + μ+ 1)

Γ (ν − μ+ 1)μ!

(
x− 1

2

)μ
2

if μ ∈ N∗,−(ν ± μ) /∈ N∗ (5.8)

Qμ
ν (x) ∼ Γ (μ)

2Γ (ν + μ+ 1)

(
2

x− 1

)μ
2

if Re(μ) > 0,−(ν + μ) /∈ N∗ (5.9)

Q0
ν(x) = − ln(x− 1)

2Γ (ν + 1)
+

ln
√

2 − γ − ψ(ν + 1)
Γ (ν + 1)

+O (x− 1) if − ν /∈ N∗, (5.10)
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where γ is the Euler–Mascheroni constant and ψ(x) = Γ ′(x)/Γ (x). The associated Ferrers functions Pμ
ν (x),

Qμ
ν (x) have the following asymptotic behaviour for x→ 1−:

Pμ
ν (x) ∼ 1

Γ (1 − μ)

(
2

1 − x

)μ
2

, μ /∈ N∗ (5.11)

Pμ
ν (x) ∼ Γ (ν + μ+ 1) (−1)μ

Γ (ν − μ+ 1)μ!

(
1 − x

2

)μ
2

, μ ∈ N∗, ν 	= μ− 1, μ− 2, . . . ,−μ (5.12)

Qμ
ν (x) ∼ 1

2
cos(πμ)Γ (μ)

(
2

1 − x

)μ/2

, μ /∈
(

N∗ − 1
2

)
(5.13)

Qμ
ν (x) ∼ π Γ (ν + μ+ 1) (−1)μ+ 1

2

2Γ (μ+ 1)Γ (ν − μ+ 1)

(
1 − x

2

)μ
2

, μ ∈
(

N∗ − 1
2

)
,−(ν ± μ) /∈ N∗ (5.14)

where N∗ − 1
2

=
{

1
2
,
3
2
,
5
2
, . . .

}

Q0
ν(x) =

1
2

ln
(

2
1 − x

)
− γ − ψ(ν + 1) +O (1 − x) if − ν /∈ N∗. (5.15)

6. Finding a formula for σ(T ) via Legendre and Ferrers functions

We are going now to study the first eigenvalue σ1(T ) = σ(T ) of the linearized operator HT . For this we need
a formula for σ(T ). Recall that

σ(T ) = c′(1) + φ′′(1), (6.1)

where φ(r) is the bounded solution of the ordinary differential equation

u′′(r) + (n− 1)
Ck(r)
Sk(r)

u′(r) + λ1 u(r) = 0 (6.2)

such that φ(1) = 0 and φ(r) > 0 on [0, 1), and normalized by (2.4), and c(r) is the continuous solution on [0, 1]
of the ordinary differential equation

u′′(r) + (n− 1)
Ck(r)
Sk(r)

u′(r) +

[
λ1 −

(
2π
T

)2
]
u(r) = 0 (6.3)

such that c(1) = −φ′(1). We observe that φ′(1) 	= 0 otherwise φ(r) ≡ 0. Indeed the solution of (6.2) satisfying
also φ(1) = φ′(1) = 0 is the function identically equal to zero.

The general solution of (6.2) can be found as follows. The function

p(r) := Sk(r)
n
2 −1 u(r)

satisfies:

p′′(r) +
Ck(r)
Sk(r)

p′(r) +

{
λ1 + k

(n
2
− 1
)

+
[(n

2
− 1
) Ck(r)
Sk(r)

]2}
p(r) = 0.

By the change of variable x = x(r) = Ck(r), we get that the function

w(x) = p(r(x))
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satisfies (5.1) after replacing z by the real variable x and setting

μ =
n− 2

2
, ν = −1

2
+

√
(n− 1)2

4
+
λ1

k
·

When (n−1)2

4 + λ1
k < 0 then we will always consider the square root having positive imaginary part. In other

terms Im(ν) > 0. The general solution to (5.1) can be expressed as linear combination of Pμ
ν (x),Qμ

ν (x) if k < 0
and of Pμ

ν (x),Qμ
ν (x) if k > 0. Consequently the general solution to (6.2) is:

u(r) =

{
a (Sk(r))1−

n
2 Pμ

ν (Ck(r)) + b (Sk(r))1−
n
2 Qμ

ν (Ck(r)) if k > 0

a (Sk(r))1−
n
2 Pμ

ν (Ck(r)) + b (Sk(r))1−
n
2 Qμ

ν (Ck(r)) if k < 0.

Lemma 5.1 says that such functions are, in some cases, unbounded on [0, 1]. They can diverge as r tends to 0, as
specified below. Qμ

ν (Ck(r)) is unbounded for: (a) Re(μ) > 0 and μ+ ν 	= −1,−2,−3, . . .; (b) μ = 0. Pμ
ν (Ck(r))

is unbounded if μ is half-integer (that is n is odd). Qμ
ν (Ck(r)) is unbounded if μ is integer (that is n is even).

Pμ
ν (Ck(r)) is unbounded if μ is half-integer (that is n is odd). Furthermore, the function Qμ

ν (Ck(r)) is bounded
if μ is half-integer, but it is a complex valued function.

If μ is half-integer, then a bounded real valued solution to equation (6.2) is P−μ
ν (x) if k < 0, and P−μ

ν (x) if
k > 0 (see (5.7), (5.12) with μ replaced by −μ). Formulas (5.4) and (5.6) show that the function P−μ

ν (x) is a
linear combination of Pμ

ν (x),Qμ
ν (x), and P−μ

ν (x) is a linear combination of Pμ
ν (x), Qμ

ν (x). Consequently:

φ(r) =

⎧⎪⎪⎨
⎪⎪⎩
s (Sk(r))1−

n
2 Pμ

ν (Ck(r)), if k > 0, μ integer
s (Sk(r))1−

n
2 P−μ

ν (Ck(r)), if k > 0, μ half-integer
s (Sk(r))1−

n
2 Pμ

ν (Ck(r)), if k < 0, μ integer
s (Sk(r))1−

n
2 P−μ

ν (Ck(r)), if k < 0, μ half-integer

where s is a constant chosen in order to ensure the conditions φ(r) > 0 for r ∈ [0, 1) and (2.4). The value of the
eigenvalue λ1 which appears in ν is the smallest positive real number so that φ(1) = 0.

In order to find the function c(r) we set

ν∗ = −1
2

+

√
(n− 1)2

4
+
λ1 − 4π2

T 2

k
·

When (n−1)2

4 +
λ1− 4π2

T2

k < 0 then we will always suppose that the imaginary part of ν∗ is positive. By the same
reasoning we did for φ, we find that the solution of (6.3) is given by

c(r) =

⎧⎪⎪⎨
⎪⎪⎩
A (Sk(r))1−

n
2 Pμ

ν∗(Ck(r)), if k > 0, μ integer
A (Sk(r))1−

n
2 P−μ

ν∗ (Ck(r)), if k > 0, μ half-integer
A (Sk(r))1−

n
2 Pμ

ν∗(Ck(r)), if k < 0, μ integer
A (Sk(r))1−

n
2 P−μ

ν∗ (Ck(r)), if k < 0, μ half-integer

(6.4)

where A is a constant that can be determined using the boundary condition c(1) = −φ′(1).
In the next two sections we will study σ(T ). An essential ingredient will be the following:

Proposition 6.1. The following facts hold:

(1) Let r0 > 0 be the n-th zero of the associated Legendre function Pμ

− 1
2+iτ

(Ck(r)). If τ ∈ R+, then r0 is a
decreasing function of τ.

(2) Let r0 ∈ (0, π) be the n-th zero of the associated Ferrers function Pμ

− 1
2+iτ

(Ck(r)). If τ ∈ R+, then r0 is a
decreasing function of τ.
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Proof. We follow the proof of Theorem 7.6.4 in [20]. Suppose that z0 = cosh(r0) and ν = −1/2 + iτ. If we
differentiate Pμ

−1/2+iτ (z0) = 0, we get

(
Pμ

− 1
2+iτ

)′
(z0)

dz0
dτ

+
∂Pμ

− 1
2 +iτ

∂τ
(z0) = 0. (6.5)

The differential equation satisfied by the function Pμ
ν is

[(1 − x2)(Pμ
ν )′]′ +

(
ν(ν + 1) − μ

1 − x2

)
Pμ

ν = 0.

We multiply it by Pμ
η , with η 	= ν, and we subtract from the expression we get this way, the differential equation

satisfied by Pμ
η multiplied by Pμ

ν . We get:

[(1 − x2)((Pμ
ν )′Pμ

η − (Pμ
η )′Pμ

ν )]′ + (ν(ν + 1) − η(η + 1))Pμ
ν Pμ

η = 0.

If η = − 1
2 + iρ, then ν(ν + 1) − η(η + 1) = ρ2 − τ2. In conclusion, if ρ 	= τ,

∫
Pμ

ν Pμ
η dx =

(x2 − 1)((Pμ
ν )′Pμ

η − (Pμ
η )′Pμ

ν )
ρ2 − τ2

·

If we let ρ tend to τ, then using the l’Hôpital rule, we get:

∫
(Pμ

ν )2dx =
(x2 − 1)

2τ

(
(Pμ

ν )′
∂(Pμ

ν )
∂τ

− ∂(Pμ
ν )

∂τ

′
Pμ

ν

)
·

If we set the integration bounds equal to 1 and z0 then∫ z0

1

(Pμ
ν )2dx =

(z2
0 − 1)
2τ

(Pμ
ν )′(z0)

∂(Pμ
ν )

∂τ
(z0). (6.6)

In other terms:
∂(Pμ

ν )
∂τ

(z0) =
2τ

(z2
0 − 1)

1
(Pμ

ν )′(z0)

∫ z0

1

(Pμ
ν )2dx

which replaced in (6.5) gives:

dz0
dτ

= − 2τ
(z2

0 − 1)
1

((Pμ
ν )′(z0))2

∫ z0

1

(Pμ
ν )2dx < 0.

As z0 = cosh(r0) then
dz0
dτ

=
dz0
dr0

dr0
dτ

= sinh(r0)
dr0
dτ

·

So
dr0
dτ

=
1

sinh(r0)
dz0
dτ

< 0.

The proof of the monotonicity for the zeros of Pμ
ν is essentially the same. Suppose that z0 = cos(r0). As

z0 ∈ (−1, 1), we set the bounds of integration equal to −1 and z0. In this case instead of (6.6) we have:

∫ z0

−1

(Pμ
ν )2dx =

(z2
0 − 1)
2τ

(Pμ
ν )′(z0)

∂(Pμ
ν )

∂τ
(z0).
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Plugging it into (6.5) (which is true also for Pμ
ν ), we get:

dz0
dτ

= − 2τ
(z2

0 − 1)
1

((Pμ
ν )′(z0))2

∫ z0

−1

(Pμ
ν )2dx > 0.

Now we consider the identity z0 = cos(r0) then

dz0
dτ

=
dz0
dr0

dr0
dτ

= − sin(r0)
dr0
dτ

·

As a consequence:
dr0
dτ

= − 1
sin(r0)

dz0
dτ

< 0.

This completes the proof of the proposition. �

7. Study of σ(T )

It is easy to see that σ(T ) is analytic. This fact comes from the following remark: if K is an invertible operator
and I is the identity, then for T > 0 and any continuous function v, the solution u of(

K − 1
T 2

ρ I

)
u = v

is analytic with respect to T for each constant ρ (this follows from the equality

(I − sK)−1 =
∑
n≥0

snKn

for each s ∈ R). Then to prove that c is analytic it suffices to take

K =
(
∂2

r + (n− 1)
Ck(r)
Sk(r)

∂r + λ1

)
, v = 0, ρ = (2π)2 .

We conclude that c′(1) is analytic with respect to T , and from (4.5) the analyticity of σ follows. The following
proposition shows the behavior of σ at 0+ and +∞.

Proposition 7.1. The function σ(T ) satisfies

lim
T→0+

σ(T ) = +∞ and lim
T→+∞

σ(T ) = −∞.

Proof. We consider four cases, depending on the dimension n is odd or even and if the curvature k of Mn is
positive (Sn) or negative (Hn). According to Remark 3.1, we could use k 	= 0 instead of k ∈ {−1, 1}. For this
reason, in the following computation we will distinguish the case k < 0 from the case k > 0 and we do not
replace k by its value. Furthermore, as σ(T ) = c′(1)+φ′′(1) and φ′′(1) does not depend on T it suffices to study
the behavior of c′(1).

First case: n even and k negative. If n is even then μ is integer. In the case k < 0 and μ integer the
derivative of c(r) is

c′(r) = A
(
1 − n

2

)
S
−n

2
k (r)Ck(r)Pμ

ν∗(Ck(r)) − k AS
2−n

2
k (r) (Pμ

ν∗ )′(Ck(r)).

The last summand can be expressed in terms of Pμ
ν∗ and Pμ+1

ν∗ using formula (7.12.17, p. 195, [16]):

(Pμ
ν∗(x))′ =

1
x2 − 1

[√
(x2 − 1)Pμ+1

ν∗ (x) + μxPμ
ν∗(x)

]
. (7.1)
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If x = Ck(r) then C2
k(r) − 1 = −k S2

k(r) and
√
C2

k(r) − 1 =
√−k Sk(r). As a consequence

(Pμ
ν∗)′(Ck(r)) =

1
−k S2

k(r)

[√−k Sk(r)Pμ+1
ν∗ (Ck(r)) + μCk(r)Pμ

ν∗(Ck(r))
]

and
c′(r) = A

(
1 − n

2

)
S
−n

2
k (r)Ck(r)Pμ

ν∗(Ck(r))

+AS
−n

2
k (r)

[√−k Sk(r)Pμ+1
ν∗ (Ck(r)) + μCk(r)Pμ

ν∗(Ck(r))
]

=

= AS
−n

2
k (r)

[
Ck(r)Pμ

ν∗(Ck(r))
(
1 − n

2
+ μ

)
+
√−k Sk(r)Pμ+1

ν∗ (Ck(r))
]

= A
√−k S1−n

2
k (r)Pμ+1

ν∗ (Ck(r)).

If we replace ν∗ by ν and A by s, then c(r) reduces to φ(r). So the computation above shows also that

φ′(r) = s
√−k S1−n

2
k (r)Pμ+1

ν (Ck(r)).

As

A = − φ′(1)

S
1−n

2
k (1)Pμ

ν∗(Ck(1))
= −s

√−kPμ+1
ν (Ck(1))

Pμ
ν∗(Ck(1))

,

then the function c′(r) is

c′(r) =
s kPμ+1

ν (Ck(1))
Pμ

ν∗(Ck(1))
S

1−n
2

k (r)Pμ+1
ν∗ (Ck(r)).

Consequently

c′(1) + φ′′(1) = s k S
1−n

2
k (1)

Pμ+1
ν (Ck(1))
Pμ

ν∗(Ck(1))
Pμ+1

ν∗ (Ck(1)) + φ′′(1).

We remark that
lim

T→+∞
ν∗ = ν.

Consequently the numerator of c′(1) tends to

s k S
1−n

2
k (1) (Pμ+1

ν (Ck(1)))2

when T goes to +∞. We observe that

ν = −1
2

+

√
(n− 1)2

4
+
λ1

k

has a non-vanishing imaginary part because k < 0 and λ1 > −k (n−1)2

4 . As Im(ν∗) < Im(ν), then Proposition 6.1
ensures that the first positive zero of Pμ

ν∗(Ck(r)) is bigger than 1. Indeed from the definition of φ and φ(1) = 0, it
is easily seen that Pμ

ν (Ck(1)) = 0. Furthermore Pμ
ν∗(Ck(1)) > 0 if Pμ

ν (Ck(r)) > 0 for r ∈ [0, 1) or Pμ
ν∗(Ck(1)) < 0

if Pμ
ν (Ck(r)) < 0 for r ∈ [0, 1). By definition, s has the same sign as Pμ

ν (Ck(r)) on r ∈ [0, 1). Then, if s > 0,

lim
ν∗→ν

Pμ
ν∗(Ck(1)) = 0+(= Pμ

ν (Ck(1))),

i.e.
lim

ν∗→ν

1
Pμ

ν∗(Ck(1))
= +∞.
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Similarly

lim
ν∗→ν

1
Pμ

ν∗(Ck(1))
= −∞ ,

if s < 0. We conclude that
lim

T→+∞
σ(T ) = lim

T→+∞
[c′(1) + φ′′(1)] = −∞.

Now we consider the limit of σ(T ) as T → 0+. As k < 0 then

lim
T→0+

ν∗ = lim
T→0+

−1
2

+

√
(n− 1)2

4
+
λ1 − 4π2

T 2

k
= +∞.

That says also that for T small enough, ν∗ is real. Let us observe that c′(1) can be written in the following
form:

c′(1) = −φ′(1)
√−k Pμ+1

ν∗ (Ck(1))
Pμ

ν∗(Ck(1))
·

Formula 14.15.13 [8] provides the asymptotic behaviour of P−μ
ν∗ with respect to ν∗:

P−μ
ν∗ (Ck(1)) ∼ 1

(ν∗)μ

√
1

sinh(1)
Iμ

(
ν∗ +

1
2

)
(7.2)

where Iμ denotes the modified Bessel function of first kind (we refer to [16] for basic facts about Bessel functions).
To get the asymptotic expression for Pμ

ν∗(Ck(1)) we use the following identity

Pμ
ν∗ =

Γ (ν∗ + μ+ 1)
Γ (ν∗ − μ+ 1)

P−μ
ν∗ (7.3)

which follows from (5.4) using the fact that μ is integer. Notice that Γ (ν∗+μ+1)
Γ (ν∗−μ+1) ∼ (ν∗)t for ν∗ big, where t = 2μ

if μ is integer and t = 2μ+ 1 if μ is not integer. We are considering the case where μ is integer, then from (7.2)
and (7.3) we get

Pμ
ν∗(Ck(1)) ∼ (ν∗)μ

√
1

sinh(1)
Iμ

(
ν∗ +

1
2

)

for ν∗ big. Observe that

Iμ

(
ν∗ +

1
2

)
∼ eν∗+ 1

2√
π(2ν∗ + 1)

(7.4)

for ν∗ big. This implies that
Pμ+1

ν∗ (Ck(1))
Pμ

ν∗(Ck(1))
∼ ν∗

Iμ+1

(
ν∗ + 1

2

)
Iμ
(
ν∗ + 1

2

) ∼ ν∗

for ν∗ big, and in conclusion
c′(1) ∼ −φ′(1)

√−k ν∗

for ν∗ big. As φ′(1) < 0, we conclude that

lim
T→0+

σ(T ) = lim
T→0+

[c′(1) + φ′′(1)] = +∞.

Second case: n odd and k negative. If n is odd, then μ is half-integer. If k < 0 and μ is half-integer, then
c(r) is given by

c(r) = AS
1−n

2
k (r)P−μ

ν∗ (Ck(r))
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where A is the constant such that c(1) = −φ′(1). Moreover

φ(r) = s S
1−n

2
k (r)P−μ

ν (Ck(r))

where s is a constant such that φ(r) > 0 for r ∈ [0, 1) and (2.4). Moreover we have φ(1) = 0. Using (7.1) with
μ replaced by −μ, we get:

(P−μ
ν∗ )′(Ck(r)) =

1
−k S2

k(r)

[√−k Sk(r)P−μ+1
ν∗ (Ck(r)) − μCk(r)P−μ

ν∗ (Ck(r))
]

and

c′(r) = A
(
1 − n

2

)
S
−n

2
k (r)Ck(r)P−μ

ν∗ (Ck(r))

+AS
−n

2
k (r)

[√−k Sk(r)P−μ+1
ν∗ (Ck(r)) − μCk(r)P−μ

ν∗ (Ck(r))
]

= AS
−n

2
k (r)

[
Ck(r)P−μ

ν∗ (Ck(r))
(
1 − n

2
− μ

)
+
√−k Sk(r)P−μ+1

ν∗ (Ck(r))
]

= A
[√−k S1−n

2
k (r)P−μ+1

ν∗ (Ck(r)) − 2μCk(r)S− n
2

k (r)P−μ
ν∗ (Ck(r))

]
.

If we replace ν∗ by ν and A by s, then c(r) reduces to φ(r). So the computation above shows also that

φ′(r) = s
[√−k S1−n

2
k (r)P−μ+1

ν (Ck(r)) − 2μCk(r)S− n
2

k (r)P−μ
ν (Ck(r))

]
.

As a consequence
φ′(1) = s

√−k S1−n
2

k (1)P−μ+1
ν (Ck(1))

because P−μ
ν (Ck(1)) = 0. From c(1) = −φ′(1), we get the value of the constant A:

A = − φ′(1)

S
1−n

2
k (1)P−μ

ν∗ (Ck(1))
= −s√−k P−μ+1

ν (Ck(1))
P−μ

ν∗ (Ck(1))
·

If T → 0+, then ν∗ → +∞. If ν∗ is big enough, then (7.2) gives the asymptotic behaviour for ν∗ big:

P−μ
ν∗ (Ck(1)) ∼ 1

(ν∗)μ

√
1

sinh(1)
Iμ

(
ν∗ +

1
2

)
·

The asymptotic behaviour of Iμ is described by (7.4). Consequently

c′(1) = A
[√−k S1−n

2
k (1)P−μ+1

ν∗ (Ck(1)) − 2μCk(1)S−n
2

k (1)P−μ
ν∗ (Ck(1))

]

=
−φ′(1)

S
1−n

2
k (1)P−μ

ν∗ (Ck(1))

√−k S1−n
2

k (1)P−μ+1
ν∗ (Ck(1))

∼ −φ′(1)
√−k (ν∗)μ

(ν∗)μ−1

Iμ
(
ν∗ + 1

2

)
Iμ−1

(
ν∗ + 1

2

)
∼ −φ′(1)

√−k ν∗.

As φ′(1) < 0, k < 0, we conclude that

lim
T→0+

σ(T ) = lim
T→0+

[c′(1) + φ′′(1)] = +∞.
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It remains to study the behaviour of σ(T ) as T → +∞. In this case ν∗ → ν. Proposition 6.1 ensures that the
first positive zero of P−μ

ν∗ (Ck(r)) is bigger than 1. Consequently

lim
ν∗→ν

1
P−μ

ν∗ (Ck(1))
= +∞

if P−μ
ν (Ck(r)) > 0 on [0, 1) (that is s > 0) and

lim
ν∗→ν

1
P−μ

ν∗ (Ck(1))
= −∞

if P−μ
ν (Ck(r)) < 0 on [0, 1) (that is s > 0). In other terms such a limit has the same sign as s. Moreover the

numerator of c′(1) tends to
−s S1−n

2
k (1) [

√−kP−μ+1
ν (Ck(1))]2.

Then
lim

T→+∞
σ(T ) = lim

T→+∞
[c′(1) + φ′′(1)] = −∞.

Third case: n even and k positive. If n is even then μ is integer. If k > 0 and μ is integer then the function
c(r) is given by the first line of (6.4). As a consequence

c′(r) = A
(
1 − n

2

)
S
−n

2
k (r)Ck(r) Pμ

ν∗(Ck(r)) − k AS
2−n

2
k (r) (Pμ

ν∗)′(Ck(r)).

The derivative (Pμ
ν∗)′(x) is expressed in terms of Pμ+1

ν∗ (x) and Pμ
ν∗(x) using

(Pμ
ν (x))′ =

1
x2 − 1

(√
1 − x2 Pμ+1

ν (x) + xμPμ
ν (x)

)
. (7.5)

Replacing x by Ck(r) we get:

(Pμ
ν )′(Ck(r)) =

1
−k S2

k(r)

[√
k Sk(r) Pμ+1

ν (Ck(r)) + Ck(r)μPμ
ν (Ck(r))

]
.

from which it follows:

c′(r) = A
(
1 − n

2

)
S
−n

2
k (r)Ck(r) Pμ

ν∗(Ck(r))

+AS−n
2

k (r)
[√

k Sk(r) Pμ+1
ν∗ (Ck(r)) + μCk(r) Pμ

ν∗(Ck(r))
]

= AS
−n

2
k (r)

[
Ck(r) Pμ

ν∗(Ck(r)) (1 − n

2
+ μ) +

√
k Sk(r) Pμ+1

ν∗ (Ck(r))
]

= A
√
k S

1−n
2

k (r) Pμ+1
ν∗ (Ck(r)).

The constant A is determined in order to have c(1) = −φ′(1). The function φ is defined by

φ(r) = s S
1−n

2
k (r) Pμ

ν (Ck(r)),

where s is the constant such that φ(r) > 0 for r ∈ [0, 1). To get the expression of its derivative, we replace A
by s and ν∗ by ν in the expression of c′(r) :

φ′(r) = s
√
k S

1−n
2

k (r) Pμ+1
ν (Ck(r)).

The value of the constant A is given by

A = − φ′(1)

S
1−n

2
k (1) Pμ

ν∗(Ck(1))
= −s

√
k

Pμ+1
ν (Ck(1))

Pμ
ν∗(Ck(1))

·
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So c′(1) is given by

c′(1) = −φ′(1)
√
k

Pμ+1
ν∗ (Ck(1))

Pμ
ν∗(Ck(1))

= −s k Pμ+1
ν (Ck(1))

Pμ
ν∗(Ck(1))

S
1−n

2
k (1) Pμ+1

ν∗ (Ck(1)).

In conclusion, if k > 0 and μ is integer, then σ(T ) = c′(1) + φ′′(1) equals

−s k S1−n
2

k (1)
Pμ+1

ν (Ck(1))
Pμ

ν∗(Ck(1))
Pμ+1

ν∗ (Ck(1)) + φ′′(1).

For T big enough ν∗ is a real valued increasing function of T. If T → +∞, then ν∗ → ν (which is a real
number in this case). If Pμ

ν (Ck(r)) > 0 for r ∈ [0, 1), (that is s > 0) then, from Proposition 6.1, we get

lim
ν∗→ν

Pμ
ν∗(Ck(1)) = 0+(= Pμ

ν (Ck(1))).

So
lim

T→+∞
1

Pμ
ν∗(Ck(1))

= +∞.

Similarly, if Pμ
ν (Ck(r)) < 0 for r ∈ [0, 1), (that is s < 0), then

lim
T→+∞

1
Pμ

ν∗(Ck(1))
= −∞.

In other terms the sign of such a limit is the same as s. When T → +∞, the numerator of c′(1) tends to

−s k S1−n
2

k (1) [Pμ+1
ν (Ck(1))]2.

Consequently, as k > 0,
lim

T→+∞
σ(T ) = lim

T→+∞
[c′(1) + φ′′(1)] = −∞.

Now we study the limit of σ(T ) as T → 0+. If T → 0+ then ν∗ → −1/2 + i∞. We set ν∗ = −1/2 + iτ. In
this case we use the following asymptotic formula (exercise 13.4, p. 73 [20]):

P−μ

− 1
2+iτ

(Ck(1)) =
1
τμ

√
1

sin(1)
Iμ(τ)

(
1 + O

(
1
τ

))

when τ goes to infinity. To get the corresponding formula for Pμ

− 1
2+iτ

(Ck(1)) we use the following identity
(formula 14.9.2 [8]):

Pμ
ν∗ =

Γ (ν∗ + μ+ 1)
Γ (ν∗ − μ+ 1)

[
cos(μπ) P−μ

ν∗ +
2 sin(μπ)

π
Q−μ

ν∗

]
. (7.6)

As μ is integer, then (7.6) reduces to:

Pμ
ν∗(x) = (−1)μ Γ (ν∗ + μ+ 1)

Γ (ν∗ − μ+ 1)
P−μ

ν∗ (x).

We need to estimate the limit as T → 0+ of

Pμ+1
ν∗ (x)

Pμ
ν∗(x)

= −Γ (ν∗ + μ+ 2)
Γ (ν∗ − μ)

Γ (ν∗ − μ+ 1)
Γ (ν∗ + μ+ 1)

P−μ−1
ν∗ (x)
P−μ

ν∗ (x)

= −(ν∗ + μ+ 1)(ν∗ − μ)
P−μ−1

ν∗ (x)
P−μ

ν∗ (x)
·
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Observe that

(ν∗ + μ+ 1)(ν∗ − μ) = (ν∗)2 + ν∗ − μ− μ2

(
−1

2
+ iτ

)2

− 1
2

+ iτ − μ− μ2

= −1
4
− τ2 − μ− μ2 < 0.

This implies that
Pμ+1

ν∗ (Ck(1))
Pμ

ν∗(Ck(1))
∼ τ2 τμ

τμ+1

Iμ+1(τ)
Iμ(τ)

∼ τ,

for τ big, since

Iμ(τ) ∼ eτ

√
2πτ

(formula 5.16.5 [16]). In conclusion for τ big,

c′(1) ∼ −φ′(1)
√
k

Pμ+1
ν∗ (Ck(1))

Pμ
ν∗(Ck(1))

∼ −φ′(1)
√
k τ.

As φ′(1) < 0, then we conclude that

lim
T→0+

σ(T ) = lim
T→0+

[c′(1) + φ′′(1)] = +∞.

Fourth case: n odd and k positive. If n is odd then μ is half-integer. If k > 0 and μ is half-integer, then
c(r) is given by

c(r) = AS
1−n

2
k (r) P−μ

ν∗ (Ck(r))

where A is the constant such that c(1) = −φ′(1). Moreover

φ(r) = s S
1−n

2
k (r) P−μ

ν (Ck(r))

where s is the constant such that φ(r) > 0 for r ∈ (0, 1) and (2.4). Moreover we have φ(1) = 0. Using (7.5) with
μ replaced by −μ, we get:

(P−μ
ν∗ )′(Ck(r)) =

1
−k S2

k(r)

[√
k Sk(r) P−μ+1

ν∗ (Ck(r)) − μCk(r) P−μ
ν∗ (Ck(r))

]

and

c′(r) = A
(
1 − n

2

)
S
−n

2
k (r)Ck(r) P−μ

ν∗ (Ck(r))

+AS
−n

2
k (r)

[√
k Sk(r) P−μ+1

ν∗ (Ck(r)) − μCk(r) P−μ
ν∗ (Ck(r))

]
= AS

−n
2

k (r)
[
Ck(r) P−μ

ν∗ (Ck(r))(1 − n

2
− μ) +

√
k Sk(r) P−μ+1

ν∗ (Ck(r))
]

= A [
√
k S

1−n
2

k (r) P−μ+1
ν∗ (Ck(r)) − 2μCk(r)S−n

2
k (r) P−μ

ν∗ (Ck(r))].

If we replace ν∗ by ν and A by s, then c(r) reduces to φ(r). So the computation above shows also that

φ′(r) = s[
√
k S

1−n
2

k (r) P−μ+1
ν (Ck(r)) − 2μCk(r)S− n

2
k (r) P−μ

ν (Ck(r))]

from which
φ′(1) = s

√
k S

1−n
2

k (1) P−μ+1
ν (Ck(1)).
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From c(1) = −φ′(1), we get the value of the constant A:

A =
−φ′(1)

S
1−n

2
k (r) P−μ

ν∗ (Ck(r))
= −s

√
k

P−μ+1
ν (Ck(1))
P−μ

ν∗ (Ck(1))
·

If T → 0+ then Im(ν∗) → +∞. For T big enough, ν∗ is a real number and if T → +∞, then ν∗ → ν ∈ R. If
ν∗ is big enough, then (7.2) gives the asymptotic behaviour for ν∗ big:

P−μ
ν∗ (Ck(1)) ∼ 1

(ν∗)μ

√
1

sinh(1)
Iμ((ν∗ + 1/2)).

The asymptotic behaviour of Iμ is described by (7.4). Consequently

c′(1) = A[
√
kS

1−n
2

k (1)P−μ+1
ν∗ (Ck(1)) − 2μCk(1)S−n

2
k (1)P−μ

ν∗ (Ck(1))]

∼ −φ′(1)
√
k

P−μ+1
ν∗ (Ck(1))
P−μ

ν∗ (Ck(1))

∼ −φ′(1)
√
k

(ν∗)μ

(ν∗)μ−1

Iμ((ν∗ + 1/2))
Iμ−1((ν∗ + 1/2))

∼ −φ′(1)
√
kν∗.

As −φ′(1) > 0, then we conclude that

lim
T→0

[c′(1) + φ′′(1)] = +∞.

It remains to study the behaviour of σ(T ) as T → +∞. If T → +∞ then ν∗ → ν increasing (for T big enough
ν∗ is real). Proposition 6.1 ensures that, the first positive zero of P−μ

ν∗ (Ck(r)) is bigger than 1. Consequently

lim
ν∗→ν

1
P−μ

ν∗ (Ck(1))
= +∞

if P−μ
ν (Ck(r)) > 0 on [0, 1) (that is s > 0) and

lim
ν∗→ν

1
P−μ

ν∗ (Ck(1))
= −∞

if P−μ
ν (Ck(r)) < 0 on [0, 1) (that is s < 0). In other terms such a limit has the same sign as s. The numerator

of c′(1) tends to
−s k S1−n

2
k (1) [P−μ+1

ν (Ck(1))]2.

As a conclusion
lim

T→+∞
σ(T ) = lim

T→+∞
[c′(1) + φ′′(1)] = −∞.

This completes the proof of the proposition. �

8. Lyapunov−Schmidt reduction and bifurcation

In view of the analyticity of σ (showed in Sect. 7) and Proposition 7.1, σ has at least one zero where it
changes sign, and the set of the zeros of σ is finite. Let {01, 02, . . . , 0p} denotes the set of the zeros of σ, and let
T∗ be the smallest zero such that σ changes sign at T∗, say T∗ = 0q. It is clear then the eigenspace V1 (defined
in Prop. 4.3) belongs to the kernel of HT∗ . As σj(T ) = σ(T/j) we obtain that σj is analytic on T and the set of
the zeros of σj is {j 01, j 02, . . . , j 0p}. It is clear that if j is big enough then T∗ /∈ {j 01, j 02, . . . , j 0p}, and this
means that Vj does not belong to the kernel of HT∗ for almost all j. This implies that the kernel of HT∗ is of
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the form Vj1 ⊕ . . .⊕ Vjl
with 1 = j1 < . . . < jl. Moreover if Vji ⊂ Ker(HT∗) and ji 	= 1 then the function σji (T )

does not change sign at T∗ by the definition of T∗.
We summarize such facts in the following proposition, where we use also the ellipticity of the linearized

operator HT given by Proposition 4.3.

Proposition 8.1. There exists a positive real number T∗ such that the kernel of HT∗ is given by Vj1 ⊕ . . .⊕Vjl
,

with 1 = j1 < . . . < jl. Moreover the eigenvalue associated to the eigenspace V1, considered as a function on
T , changes sign at T∗, and the eigenvalues associated to the other eigenspaces Vj2 , . . . , Vjl

, always considered as
functions on T , do not change sign at T∗. There exists a constant c > 0 such that

‖w‖C2,α
even,0(R/2πZ) ≤ c ‖HT∗(w)‖C1,α

even,0(R/2πZ),

provided w is L2(R/2πZ)-orthogonal to V0 ⊕ Vj1 ⊕ . . .⊕ Vjl
, where V0 is the space of constant functions.

Such proposition says us that the operator HT∗ has finite-dimensional kernel, and that it is an isomorphism
from the orthogonal to its kernel over its image (see also Prop. 4.3 and its proof). We are going to use now
these two properties.

Consider the space C2,α
even,0(R/2πZ) × (0,+∞). Clearly the curve

Ξ = {(v, T ) : v ≡ 0}

in C2,α
even,0(R/2πZ) × (0,+∞) belongs to the zero level set of the operator F , i.e. its points solve the equation

F (v, T ) = 0.

In this section we prove that (0, T∗) is a bifurcation point of Ξ for the zero level set of the operator F .
Proposition 8.1 ensures that the kernel of the operator HT∗ is finite-dimensional and it equals Vj1 ⊕ . . .⊕Vjl

.
Let Q be the projection operator onto the image of HT∗ and Q ◦ F the composition of operators F and Q. We
write a function v ∈ C2,α

even,0(R/2πZ) as v = v‖ + v⊥ with v‖ ∈ KerHT∗ and v⊥ ∈ (KerHT∗)
⊥. The next result

(that represent the classical Lyapunov−Schmidt reduction for our problem) follows from the implicit function
Theorem:

Proposition 8.2. For all v‖ ∈ KerHT∗ whose norm is small enough and for all T sufficiently close to T∗ there
exists a unique function v⊥ = v⊥(v‖, T ) such that

Q ◦ F
(
v‖ + v⊥, T

)
= 0.

Proof. Define the operator J as follows:

J(v‖, v⊥, T ) = Q ◦ F
(
v‖ + v⊥, T

)
from KerHT∗ × (KerHT∗)⊥ × (0,+∞) into the image of HT∗ . By Proposition 8.1 the implicit function theorem
applies to get the existence of a unique function

v⊥(v‖, T ) ∈ (KerHT∗)
⊥

smoothly depending on v‖ and T in a neighborhood of (0, T∗) such that

J(v‖, v⊥(v‖, T ), T ) = 0.

This completes the proof of the proposition. �



26 F. MORABITO AND P. SICBALDI

Now we can define the operator

G(v‖, T ) = (I −Q) ◦ F
(
v‖ + v⊥(v‖, T ), T

)
= 0,

where I is the identity operator and v⊥(v‖, T ) is the function given by Proposition 8.2. G is a finite-dimensional
operator from KerHT∗ × (0,+∞) into the space orthogonal to the image of HT∗ . We remark that our main
theorem 1.1 will be proved if we show that (0, T∗) is a bifurcation point for the zero level set of G. In fact, it is
easy to prove that the curve

Γ = {(v‖, T ) ∈ KerHT∗ × (0,+∞) : v‖ = 0}

is a solution of G(v‖, T ) = 0 with v⊥(0, T ) = 0. Then, the fact that (0, T∗) is a bifurcation point of Γ for the
zero level set of G means that every neighborhood of (0, T∗) in KerHT∗ × (0,+∞) contains solutions of the
equation G(v‖, T ) = 0 which are not in Γ , i.e. there exists a sequence (v‖i , Ti) ∈ KerHT∗ × (0,+∞) with v‖i 	= 0
such that G(v‖i , Ti) = 0. Hence

Q ◦ F
(
v
‖
i + v⊥(v‖i , Ti), Ti

)
= 0

and

(I −Q) ◦ F
(
v
‖
i + v⊥(v‖i , Ti), Ti

)
= 0

that imply

F
(
v
‖
i + v⊥(v‖i , Ti), Ti

)
= 0

and vi := v
‖
i + v⊥(v‖i , Ti) 	= 0.

Let us prove that (0, T∗) is a bifurcation point of Γ for the zero level set of G. We start by recalling a useful
result about bifurcation (see [14,30] for details). Let L be an operator on B1 × Λ into B2, where B1 and B2 are
Banach spaces (or subspaces) and Λ is an interval of R. Thus suppose that Γ = (0, s) is a curve of solutions of the
equation L(x, s) = 0. A necessary condition for bifurcation at (0, s0) is that 0 is an isolated eigenvalue of finite
algebraic multiplicity, say l, of the operator obtained by linearizing L with respect to x at (0, s0), which can be
denoted by DxL(0, s0). It is possible to show (see [13]) that the generalized eigenspace Es0 of the eigenvalue 0
of DxL(0, s0) having dimension l is perturbed to an invariant space Es of DxL(0, s) of dimension l too, and all
perturbed eigenvalues near 0 (the so-called 0-group) are eigenvalues of the finite-dimensional operator DxL(0, s)
restricted to the l-dimensional invariant space Es. Moreover the eigenvalues in that 0-group depend continuously
on s. Let us give the definition of odd crossing number:

Definition 8.3. We set Θ(s) to be equal to 1 if there are no negative real eigenvalues in the 0-group of
DxL(0, s). Otherwise

Θ(s) = (−1)l1+...+lh

if μ1, . . . , μh are all the negative real eigenvalues of the 0-group having algebraic multiplicity l1, . . . , lh, respec-
tively. If DxL(0, s) is regular in a neighborhood of s0 (naturally except in the point s0) and Θ(s) changes the
sign at s0 then DxL(0, s) is said to have an odd crossing number at s0.



DELAUNAY TYPE DOMAINS FOR AN OVERDETERMINED ELLIPTIC PROBLEM 27

In presence of an odd crossing number, a standard result known as the Krasnosel’skii Bifurcation Theorem
(see [14] for the proof) applies:

Theorem 8.4. If DxL(0, s) has an odd crossing number at s0, then (0, s0) is a bifurcation point for L(x, s) = 0
with respect to the curve {(0, s) | s in a neighborhood of s0}.

In our case, L is given by the operator G defined above. The fact that (0, T∗) is a bifurcation point for the
operator G follows then from the Krasnosel’skii Bifurcation Theorem and the following:

Proposition 8.5. Dv‖G(0, T ) has an odd crossing number at T∗.

Proof. We observe that we can write

v‖ =
l∑

i=1

aki cos(ki t)

where 1 = k1 < . . . < kl. It is clear, from the definition of G, that Dv‖G(0, T ) preserves the eigenspaces, and

Dv‖G(0, T ) = HT |Vj1⊕...⊕Vjl
.

Then the 0-group of eigenvalues is given by σj1(T ), . . . , σjl
(T ), where σj1(T ) = σ(T ). For T = T∗ they are all

equal to 0. Moreover, by the Proposition 8.1 only σj1 (T ) changes sign at T∗, and the corresponding eigenspace
has dimension 1. This means that Dv‖G(0, T ) has a crossing number at T∗ and completes the proof of the
proposition. �
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