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APPROXIMATION AND UNIFORM POLYNOMIAL STABILITY
OF C 0-SEMIGROUPS
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1
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Abstract. Consider the classical solutions of the abstract approximate problems

x′
n(t) = Anxn(t), t ≥ 0, xn(0) = x0n, n ∈ N,

given by xn(t) = Tn(t)x0n, t ≥ 0, x0n ∈ D(An), where An generates a sequence of C0-semigroups
of operators Tn(t) on the Hilbert spaces Hn. Classical solutions of this problem may converge to 0
polynomially, but not exponentially, in the following sense

‖Tn(t)x‖ ≤ Cnt−β‖Aα
nx‖, x ∈ D(Aα

n), t > 0, n ∈ N,

for some constants Cn, α and β > 0. This paper has two objectives. First, necessary and sufficient condi-
tions are given to characterize the uniform polynomial stability of the sequence Tn(t) on Hilbert spaces
Hn. Secondly, approximation in control of a one-dimensional hyperbolic-parabolic coupled system sub-
ject to Dirichlet−Dirichlet boundary conditions, is considered. The uniform polynomial stability of
corresponding semigroups associated with approximation schemes is proved. Numerical experimental
results are also presented.
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1. Introduction

One of the main issues in the theory of approximation of partial differential equations is to determine whether
the approximate solutions of these equations still converge to an equilibrium, when the continuous ones have
this property and if yes how fast do the approximate solutions converge to it. Consider the classical solutions
of the abstract approximate problems

x′n(t) = Anxn(t), t ≥ 0, xn(0) = x0n, n ∈ N (1.1)
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Cadi Ayyad, B.P. 2390, 40000 Marrakesh, Morocco. maniar@uca.ma; nafirisalim@gmail.com
∗ The second author like to thank Professor E. Zuazua for fruitful discussions and remarks during his internship, which lasted
three months in the center of BCAM in Bilbao, and the LMDP-UMMISCO for the financial support.

Article published by EDP Sciences c© EDP Sciences, SMAI 2016

http://dx.doi.org/10.1051/cocv/2015002
http://www.esaim-cocv.org
http://www.edpsciences.org


APPROXIMATION AND UNIFORM POLYNOMIAL STABILITY OF C0-SEMIGROUPS 209

given by xn(t) = Tn(t)x0n, t ≥ 0, x0n ∈ D(An), where the sequence An generates the family of C0-semigroups
Tn(t) on the Hilbert spaces Hn. We assume that 0 ∈ ρ(An) and

sup
n∈N

‖A−1
n ‖ <∞.

Recall that a sequence of C0-semigroups Tn(t) on the Hilbert spaces Hn is said to be uniformly exponentially
stable if there are positive constants M and ω independent of n such that

‖Tn(t)‖ ≤Me−ωt. (1.2)

Proving the existence of such constants M and ω is not easy in general, as the counterexample in [14] shows.
Even for semigroups Tn(t) = eAnt with An being an n × n matrix, uniform negative boundedness away from
zero of the spectrum σ(An) of An does not guarantee the existence of such constants, that is (1.2) could be
violated. To our knowledge, Banks et al. [3] were the first to investigate the lack of uniform exponential stability
for weakly damped wave equations. In [3] numerical simulations suggest that the exponential decay of the
discretized energy might not be uniform, with respect to the step size, for the classical finite difference, and
finite element schemes. To remedy this situation, the authors propose to use the mixed finite element method.
Later, several remedies have been proposed to overcome this difficulty: Tychonoff regularization in Glowinski
et al. [12], filtering of high frequencies in Infante and Zuazua [16]. We refer to the review paper Zuazua [27] for
more details and extensive references.

For some hyperbolic-parabolic coupled systems, the solutions may converge to 0 polynomially, and not ex-
ponentially. Moreover as far as numerical approximation of such systems is concerned, little is known about
the uniform (w.r.t. the mesh size) polynomial decay of the approximate energy. This motivates us to study the
question of uniform polynomial stability for the family of systems (1.1), i.e.

‖tTn(t)A−α
n ‖ ≤ C (1.3)

for all t > 0 and n, for some positive constants C and α.
Our main interest in this paper is to find necessary and sufficient conditions under which (1.3) holds. Recently,

in [1], the authors showed a similar result of uniform polynomial stability for a class of second order evolution
equations.

As in [8–11,21], our goal is to investigate the uniform polynomial stability of a family of semigroups, gener-
alizing the characterization of polynomial stability of Borichev−Tomilov [6] for a single semigroup, see also [4].

The outline of this paper is the following. In Section 2, we recall some fractional powers properties and prove
a uniform version of the moment inequality result, Lemma 2.4, that will be useful later. In Section 3, we prove
the main result of the paper Theorem 3.2, which characterize the uniform polynomial stability for a family of
semigroups on Hilbert spaces. In Section 4, the result is applied to the family of abstract thermoelastic system⎧⎪⎨

⎪⎩
ün + ρBnun − μBτ

nθn = 0,

θ̇n + κBnθn + σBτ
nu̇n = 0,

un(0) = u0n, u̇n(0) = u1n, θn(0) = θ0n,

where ρ, μ, κ and σ are positive constants, 0 ≤ τ < 1
2 . This system can be seen as a semi-discretization of the

following coupled hyperbolic/parabolic system⎧⎪⎪⎪⎨
⎪⎪⎪⎩
utt − uxx + γθ = 0 in Ω,
θt − θxx − γut = 0 in Ω,
u |∂Ω= 0 = θ |∂Ω ,

u(0) = u0, ut(0) = u1, θ(0) = θ0 on Ω.
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We introduce three semi-discrete schemes (finite difference, finite element and spectral element) and prove that
the approximate semigroup of the coupled hyperbolic/parabolic system decays uniformly polynomially to zero,
with α = 2 in (1.3). A convergence result is also proved thanks to the Trotter−Kato theorem. Finally, in
Section 5, we illustrate numerically the mathematical results.

2. Estimates of fractional powers of a sequence of operators

Proposition 2.1. Let a sequence of closed operators An, n ∈ N, with dense domains such that

[0,+∞) ⊂ ρ(An), n ∈ N,

M := sup
r>0, n∈N

‖rR(r, An)‖ <∞, (2.1)

and
c0 := sup

n∈N

‖(−An)−1‖ <∞. (2.2)

Then, there is 0 < φ < π
4 and 0 < C := C(c0,M, φ) (independent of n) such that

‖R(μ,An)‖ ≤ C

1 + |μ| (2.3)

for all n ∈ N and μ ∈ Σ := {z ∈ C, z �= 0 : |arg(z)| < φ}.

Proof. Let μ = r + is for r > 0 and |s| ≤ r
2M . We have

μ−An = r −An + is

=(I + isR(r, An))(r −An),

and since ‖is R(r, An)‖ ≤ 1
2 , one has

‖R(μ,An)‖ ≤ 2M
r

≤ 2M
cosφ

1
|μ| =:

M̂

|μ| (2.4)

for any φ ≤ 1
2M ≤ π

6 . From this, we can conclude that Σ ⊂ ρ(An) and (2.4) is satisfied for all μ ∈ Σ (in fact,
let φ ≤ 1

2M and μ = r + is ∈ Σ. Let α = argμ. Then |s|
r = tg|α| ≤ tgφ ≤ 1

2M . If we consider now μ ∈ Σ such
that |μ| > 1

2c0
, from (2.4), we have

‖R(μ,An)‖ ≤ M̂

|μ| =
M̂

1 + |μ|
1 + |μ|
|μ| ≤ M

1 + |μ| ,

where M := M̂ sup
t≥ 1

2c0

1 + t

t
. Finally, let μ ∈ B(0, 1

2c0
). One has

μ−An = (I + μ(−An)−1)(−An),

and since ‖μ(−An)−1‖ ≤ |μ|c0 ≤ 1
2 , μ ∈ ρ(An) and

‖R(μ,An)‖ ≤ 2c0 ≤ 2c0
1 + |μ| (1 + |μ|) ≤ 2c0 + 1

1 + |μ| ·

This achieves the proof. �
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Definition 2.2. We define the negative fractional powers of the sequence of operators An, according to ([7],
Def. 5.25, p. 137), by the formula

A−α
n =

1
2πi

∫
Γ

λ−αR(λ,An)dλ, 0 < α <∞, n ∈ N (2.5)

where λ−α = e−α log λ and R+ is taken as the cut branch of the complex log function and where the curve
Γ = Γ1 ∪ Γ2 is given by

Γ = {−ε+ teiφ, t ∈ [0,+∞)} ∪ {−ε+ te−iφ, t ∈ [0,+∞)},

where ε = 1
2c0

> 0 and φ = arctan( 1
2M ).

For α > 0, the operator Aα
n is defined as the inverse of A−α

n with domain D(Aα
n) = rg(A−α

n ).

Remark 2.3. Throughout this section, whenever A−α
n is mentioned, Proposition 2.1 is directly taken into

consideration since otherwise A−α
n is not well defined.

The sequence of operators A−α
n is uniformly bounded. In fact, when α is an integer, i.e. α = p ∈ N0, from (2.2)

we have

‖A−α
n ‖ = ‖A−p

n ‖ ≤ ‖A−1
n ‖p ≤ cp0.

Let now 0 < α < p+ 1, α /∈ N. In view of the estimate (2.3) and according to ([7], Thm. 5.27, p. 138), we have
the formula

A−α
n =

1
2πi

p!
(1 − α) . . . (p− α)

(1 − e−2πiα)
∫ ∞

0

sp−αR(s,An)p+1ds. (2.6)

If p = 0, i.e., α ∈ (0, 1), we obtain the following representation for A−α
n

A−α
n =

1
2πi

(1 − e−2πiα)
∫ ∞

0

s−αR(s,An)ds.

In view of (2.3) and using the same argument as in ([7], Thm. 5.29, p. 139), we conclude that A−α
n is uniformly

bounded.
Suppose now that 0 < α < 1. Consider the sequence of operators A−α

n λαAnR(λ,An). For every λ > 0, we
have

A−α
n =

1
2πi

(1 − e−2πiα)
∫ ∞

0

s−αR(λs,An)d(λs).

This implies

A−α
n λαAnR(λ,An) =

1
2πi

(1 − e−2πiα)
∫ 1

0

s−αAnR(λs,An)λR(λ,An)ds

+
1

2πi
(1 − e−2πiα)

∫ ∞

1

s−α−1λsR(λs,An)AnR(λ,An)ds.

For each λ > 0, we have

‖AnR(λ,An)‖ ≤M + 1 (2.7)

and due to (2.1) it follows that

‖A−α
n λαAnR(λ,An)‖ ≤M ′, (2.8)
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where M ′ = M(1+M)
π

[
1

1−α + 1
α

]
. For α = 0 or α = 1, M ′ = M or M ′ = M + 1 respectively. Thus the sequence

of operators A−α
n λαAnR(λ,An) is (uniformly) bounded.

At the end of this section, we use the above results to prove a uniform version of interpolation type inequalities,
that we called uniform moment inequality. It allows us to estimate ‖Aβ

n‖ (uniformly) in terms of ‖Aα
n‖ and ‖Aγ

n‖
if α < β < γ. For a single operator A we refer to ([7], Thm. 5.34, p. 141).

Lemma 2.4. (Uniform moment inequality). Let α < β < γ, then there exists a constant L = L(α, β, γ)
independent of n such that

‖Aβ
nx‖ ≤ L‖Aγ

nx‖
β−α
γ−α ‖Aα

nx‖
γ−β
γ−α , ∀x ∈ D(Aγ

n), ∀n ∈ N. (2.9)

Proof. Consider first the special case when γ = 0, α = −α0, β = −β0 (0 < β0 < α0) and p ≤ α0 < p+ 1. Then
β0 ∈ (0, p+ 1), and we know that

‖sp−β0R(s,An)p+1x0‖ ≤ sα0−β0−1‖A−p−1+α0sp+1−α0AnR(s,An)‖‖Ap
nR(s,An)p‖‖A−α0

n x0‖.

It follows from (2.7) and (2.8) that

‖sp−β0R(s,An)p+1x0‖ ≤ Ksα0−β0−1‖A−α0
n x0‖, (2.10)

and

‖sp−β0R(s,An)p+1x0‖ ≤ K ′sp−β0s−p−1 = K ′s−β0−1‖x0‖, (2.11)

where K = M(1+M)p+1

π

[
1

1−(p+1−α0)
+ 1

p+1−α0

]
and K ′ = Mp+1. Using (2.6), (2.10) and (2.11), we obtain

‖A−β0
n x0‖ ≤ C

∥∥∥∥
∫ ∞

0

sp−β0R(s,An)p+1x0ds
∥∥∥∥

= C

∥∥∥∥
∫ τ

0

sp−β0R(s,An)p+1x0ds+
∫ ∞

τ

sp−β0R(s,An)p+1x0ds
∥∥∥∥

≤ KC

∫ τ

0

sα0−β0−1‖A−α0
n x0‖ +K ′C

∫ ∞

τ

s−β0−1‖x0‖ds

=
KC

α0 − β0
τα0−β0‖A−α0

n x0‖ +
K ′C
β0

τ−β0‖x0‖

for all τ > 0. Taking τ := ‖A−α0
n x0‖

−1
α0 ‖x0‖

1
α0 yields

‖A−β0
n x0‖ ≤ L(α0, β0)‖x0‖

α0−β0
α0 ‖A−α0

n x0‖
β0
α0 ,

where L(α0, β0) =
(

KC
α0−β0

+ K′C
β0

)
. We now turn to the general case. Suppose that α < β < γ and x ∈ D(Aγ

n).
We apply the last inequality to the element Aγ

nx with α0 = γ − α and β0 = γ − β. Then, we obtain

‖Aβ
nx‖ = ‖A−β0

n Aγ
nx‖ ≤ L(γ − α, γ − β)‖Aγ

nx‖
β−α
γ−α ‖Aα

nx‖
γ−β
γ−α , ∀x ∈ D(Aγ

n), ∀n ∈ N.

This proves the lemma. �

3. Uniform polynomial stability of C0-semigroups

In this section we give a characterization of uniform polynomial stability in terms of the uniform growth of
the sequence of resolvent operators on the imaginary axis.
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Definition 3.1. Let Tn(t), n ∈ N, be a sequence of C0-semigroups of operators on Hilbert spaces Hn and let
An be their corresponding generators.

(i) The family Tn(·) is said to be uniformly bounded if there exists M > 0 (independent of n) such that

‖Tn(t)‖L (Hn) � M, t ≥ 0, n ∈ N.

(ii) The family Tn(·) is said to be uniformly polynomially stable of order α > 0 if it is uniformly bounded, if
iR ⊂ ρ(An) and if

‖tTn(t)A−α
n ‖ ≤ C, (3.1)

for all t > 0, n ∈ N and for some positive constant C (independent of n).

We give now the main result of the paper which gives necessary and sufficient conditions to characterize the
uniform polynomial stability of Tn(t), a sequence of C0-semigroups on Hilbert spaces Hn. For a single semigroup
T (t), the characteristic condition of polynomial stability was given by Borichev and Tomilov in [6], see also [4,5].

Theorem 3.2. Let Tn(t), n ∈ N, be a uniformly bounded sequence of C0-semigroups on the Hilbert spaces Hn

and let An be the corresponding infinitesimal generators, such that for all n ∈ N, iR ⊂ ρ(An). Then for a fixed
α > 0 the following conditions are equivalent

(1) sup
|s|≥1, n∈N

1
|s|α ‖R(is, An)‖ <∞.

(2) sup
t�0, n∈N

‖tTn(t)A−α
n ‖ <∞.

(3) sup
t�0, n∈N

‖t 1
αTn(t)A−1

n ‖ <∞.

Remark 3.3. The proof of Theorem 3.2 is based on the results found in [4–6] for a single semigroup. We adapt
such results, to obtain the (uniform) polynomial stability of a family of semigroups of operators.

To prove Theorem 3.2, we need first to characterize the uniform boundedness of a family of C0-semigroups,
which is the object of the following lemma found in [6] for a single semigroup. Here we set

C± := {z ∈ C : Re z ≷ 0}.

Lemma 3.4. Let Tn(t), n ∈ N, be a sequence of C0-semigroups on the Hilbert spaces Hn and let An be the
corresponding generators. Then Tn(·) is uniformly bounded if and only if

(i) C+ ⊂ ρ(An), ∀n ∈ N.
(ii) There exists C > 0 independent of n such that

sup ξ
ξ>0

n∈N

∫
R

(
‖R(ξ + iη, An)‖2 + ‖R(ξ + iη, A∗

n)‖2
)
dη ≤ C. (3.2)

Proof. First, we assume that Tn(t) is uniformly bounded, i.e., there exist M, α > 0 such that

‖Tn(t)‖L (Hn) � M, t ≥ 0, n ∈ N.

Then (i) holds by Hille−Yosida theorem (see [7], Thm. 3.5, p. 73). For (ii), by the uniform boundedness principle,
we only need to prove that

sup ξ
ξ>0

n∈N,‖xn‖≤1

∫
R

(
‖R(ξ + iη, An)xn‖2 + ‖R(ξ + iη, A∗

n

)
xn‖2

)
dη ≤ C.
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To have this, we consider the rescaled semigroup (T−ξ
n (t))n≥1 with T−ξ

n (t) := e−ξtTn(t). Then by ([7],
Thm 1.10.(i), p. 55) and for xn ∈ Hn, η ∈ R, we have

R(ξ + iη, An)xn = R(iη, An − ξ) =
∫ ∞

0

e−iηtT−ξ
n (t)xndt.

Using the Fourier Transform F : L2(R, Hn) → L2(R, Hn) we obtain

R(ξ + iη, An) = F (T−ξ
n (·))(η),

where we extend T−ξ
n (·) to R by setting T−ξ

n (t) := 0 for t < 0. Since T−ξ
n (t) is uniformly bounded, we have

T−ξ
n (·)xn ∈ L2(R, Hn). Now, we conclude, from Plancherel’s Theorem, that∫ +∞

−∞
‖R(ξ + iη, An)xn‖2dη = 2π

∫ ∞

0

‖T−ξ
n (t)xn‖2 � πM2

ξ
‖xn‖2,

thus
sup ξ
ξ>0

n∈N,‖xn‖≤1

∫
R

‖R(ξ + iη, An)xn‖2dη � πM2. (3.3)

Since ‖Tn(t)‖ = ‖T ∗
n(t)‖ for every Tn(t) ∈ L (Hn), by symmetry the same estimate is true for the resolvent of

the generator A∗
n of the adjoint semigroup T ∗

n(t), i.e.,

sup ξ
ξ>0

n∈N,‖xn‖≤1

∫
R

‖R(ξ + iη, A∗
n)xn‖2dη � πM2. (3.4)

Thus the proof of the ”only if” part is complete. For the converse implication, we use the inversion formula in
([7], Cor. 5.16, p. 234)

Tn(t)xn =
1

2πit
lim

ω→∞

∫ ξ+iω

ξ−iω

eλtR2(λ,An)xndλ, t > 0.

Hence, for ξ = 1
t , t > 0, in (3.2) it follows that

∣∣〈Tn(t)xn, x
∗
n

〉∣∣ � e

2πt
lim

ω→∞

∫ 1
t +iω

1
t −iω

∣∣∣∣
〈
R

(
1
t

+ iη, An

)
xn, R

(
1
t
− iη, A∗

n

)
x∗n

〉∣∣∣∣ dη
=

e

2πt

(∫ +∞

−∞

∥∥∥∥R
(

1
t

+ iη, An

)
xn

∥∥∥∥
2

dη

) 1
2
(∫ +∞

−∞

∥∥∥∥R
(

1
t

+ iη, A∗
n

)
x∗n

∥∥∥∥
2

dη

) 1
2

.

Thus, the integral converges absolutely by the Hölder inequality and our assumptions.
Furthermore,

∣∣(Tn(t)xn, x
∗
n

)∣∣ � e

4π

(
1
t

∫ +∞

−∞
‖R(λ,An)xn‖2dβ +

1
t

∫ +∞

−∞
‖R(λ,A∗

n)x∗n‖2dβ
)

� eC

4π
‖xn‖.‖x∗n‖,

We conclude that ‖Tn(t)‖ � eC
4π , t ≥ 0, n ∈ N. �

To prove Theorem 3.2, we use the following lemma relating the order of growth of the resolvent operators of An

on the imaginary axis to its behavior in the right half-plane of C. It is worth noting that for a single operator A,
this lemma has been shown in [15,18] by more complicated arguments. Inspired by the proof of Proposition 2.2
in Weiss [26], we will consider a proof which is much easier.
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Lemma 3.5. Let Tn(t), n ∈ N, be a uniformly bounded sequence of C0-semigroups on the Hilbert spaces Hn

and let An be the corresponding infinitesimal generators, such that for all n ∈ N, iR ⊂ ρ(An). Then for a fixed
α > 0 the following conditions are equivalent.

(i) sup
Re λ>0, n∈N

‖R(λ,An)‖
1+|λ|α <∞.

(ii) sup
Re λ>0, n∈N

‖R(λ,An)A−α
n ‖ <∞.

(iii) sup
|s|≥1, n∈N

1
|s|α ‖R(is, An)‖ <∞.

Proof. To show the equivalence of (i) and (ii), let S be any subset of ρ(An). There exists an ε > 0 such that
R(λ,An) is bounded on D = {λ ∈ C/|λ| < ε}. From now on, we suppose that D ∩S = ∅. By induction we have

R(λ,An)A−p
n =

R(λ,An)
λp

+
p−1∑
k=0

(−1)kA
−(p−k)
n

λk+1

for all p ∈ N. Here the operators
p−1∑
k=0

(−1)kA
−(p−k)
n

λk+1
are uniformly bounded with respect to λ ∈ S and n ∈ N.

Further, for all α > 0, we have

R(λ,An)
|λ|α =

1 + |λ|α
|λ|α

R(λ,An)
1 + |λ|α , 1 ≤ 1 + |λ|α

|λ|α ≤ dα

for all λ ∈ S and a positive constant dα. Hence we have proved that

‖R(λ,An)A−α
n ‖ ≤ dα

‖R(λ,An)‖
1 + |λ|α + c (3.5)

and

‖R(λ,An)‖
1 + |λ|α ≤ ‖R(λ,An)A−α

n ‖ + c (3.6)

for α = p and positive constants c and dα. If α is any non-integer positive number, take p ∈ N such that
p < α < p+ 1. Since

R(λ,An)A−α
n = R(λ,An)A−p

n A−(α−p)
n

=
R(λ,An)A−(α−p)

n

λp
+

p−1∑
k=0

(−1)kA
k−α
n

λk+1
,

we see that it is sufficient to prove the relations (3.5) and (3.6) for 0 < α < 1. To this end we apply Lemma 2.4
with exponents 0 < α < 1 and we get

‖R(λ,An)x‖ = ‖Aα
nR(λ,An)A−α

n x‖

≤ L(1, 1 − α)‖R(λ,An)A−α
n x‖1−α‖AnR(λ,An)A−α

n x‖α

≤ L(1, 1 − α)‖R(λ,An)A−α
n ‖1−α‖(I − λR(λ,An)A−α

n ‖α‖x‖

≤ L(1, 1 − α)(1 + |λ|α)
(
‖R(λ,An)A−α

n ‖ + dα

)
‖x‖.
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In order to obtain the converse inequality, we use Lemma 2.4 again with exponents
−1 < −α < 0,

‖R(λ,An)A−α
n x‖ ≤ L(1, α)‖A−1

n R(λ,An)x‖α‖R(λ,An)x‖1−α

≤ L(1, α)‖ 1
λ
A−1

n −R(λ,An))‖α‖R(λ,An)‖1−α‖x‖

≤ L(1, α)
(
dα

‖R(λ,An)‖
1 + |λα| + c

)
‖x‖.

Then, the equivalence is proved. It remains to prove that (i) and (iii) are equivalent. For this purpose, suppose
that ‖R(λ,An)‖ ≤ C1(1 + |λ|α) for all n ∈ N. Hence,

‖R(is, An)‖ = lim
β→0+

‖R(β + is, An)‖ ≤ C1 lim
β→0+

(1 + |β + is|α)

≤ C1(1 + |is|α)
≤ C1(1 + |s|α)
≤ C2|s|α

for all n ∈ N and |s| > C0 for a positive constant C0. We get that for any n ∈ N and s too large

‖R(is, An)‖ < C2|s|α,

where C2 = C1(1+Cα
0 )

Cα
0

. For the converse, let B � 1 and n ∈ N. Consider the holomorphic function

F : D := {λ ∈ C : Re(λ) � 0, 1 � |λ| � B} −→ Hn, λ �−→ R(λ,An)λ−α

(
1 +

λ2

B2

)
·

Let λ = Beiϕ for ϕ ∈ [−π
2 ,

π
2 ]. If ϕ �= ±π

2 , using the estimate ‖R(λ,An)‖ ≤ M
Re(λ) , we obtain

‖F (λ)‖ = ‖R(λ,An)‖|λ|−α|1 + ei2ϕ|

� 2 cosϕ
M

B cosϕ
B−α

=
2C
Bα+1

� 2M.

Moreover, ‖F (±iB)‖ = 0. For λ = eiϕ, we get

‖F (λ)‖ = ‖R(λ,An)‖
∣∣∣∣1 +

ei2ϕ

B2

∣∣∣∣
� 2C,
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where we used that R(·, An) is continuous on a compact and |λ| < B. Using (iii), we obtain

‖F (is)‖ = ‖R(is, An)‖|s|−α

∣∣∣∣1 − s2

B2

∣∣∣∣
� 2C′

for 1 < |s| < B. The maximum principle implies that ‖F (λ)‖ � 2max{M,C,C′} for all λ ∈ D. Letting B → ∞,
we deduce that

‖R(λ,An)‖ ≤ C∗(1 + |λ|α)

for n ∈ N and C∗ = 2max{M,C,C′}. This completes the proof. �

In our situation, estimate (i) allows to control the rate of approach of σ(An) to the imaginary axis at ±i∞. In
what follows we give the proof of Theorem 3.2.

Proof. We start by proving the equivalence (2) ⇔ (3): assuming (2), we have

‖Tn(t)A−pα
n ‖ = ‖[Tn

(
t

p

)
A−α

n ]p‖

≤ (C2p)pt−p

for t > 0, p ∈ N and C2 := sup
t�0, n∈N

‖tTn(t)A−α
n ‖. Lemma 2.4 now yields

‖Tn(t)A−pαν
n ‖ = ‖Apα(1−ν)

n Tn(t)A−pα
n ‖

≤ L(pα, pαν)‖Apα
n Tn(t)A−pα

n ‖1−ν .‖Tn(t)A−pα
n ‖ν

≤ L(pα, pαν)‖Tn(t)‖1−ν .‖Tn(t)A−pα
n ‖ν

≤ ‖L(pα, pαν).M1−ν(C2p)pνt−pν

for ν ∈ (0, 1). Choosing ν = 1
pα and p > 1

α , we obtain

‖Tn(t)A−1
n ‖ ≤ C3t

− 1
α ,

where C3 = L(ν, 1)M1−ν(C2p)
1
α is a constant independent of n. Assume now that (3) is satisfied, i.e., ∃C3 > 0:

‖Tn(t)A−1
n ‖ < C3t

− 1
α for all t > 0 and n ∈ N. Hence,

‖Tn(t)A−p
n ‖ = ‖[Tn

(
t

p

)
A−1

n ]p‖ ≤ Cp
3 t

− p
α

for t > 0 and p ∈ N. We deduce from Lemma 2.4 that

‖Tn(t)A−pν
n ‖ = ‖Ap(1−ν)

n Tn(t)A−p
n ‖

≤ L(p, pν)‖Ap
nTn(t)A−p

n ‖1−ν .‖Tn(t)A−p
n ‖ν

≤ L(p, pν)M1−νCpν
3 t−

pν
α

for ν ∈ (0, 1): ν = α
p and α < p, we deduce that ‖Tn(t)A−α

n ‖ ≤ C2t
−1, where C2 = L(p, α)M1−νCα

3 is
independent of n. We assume now (1) and show (2). Let Hn = Hn ×Hn. Consider the sequence of operators
An on Hn given by the sequence of matrix

An =
(
An A

−α
n

0 An

)
(3.7)
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with the diagonal domain D(An) = D(An) × D(An). Then σ(An) = σ(An), and the sequence of resolvents
R(λ,An) of An are given by

R(λ,An) =
(
R(λ,An) R2(λ,An)A−α

n

0 R(λ,An)

)
, λ ∈ ρ(An). (3.8)

The sequence of operators An are the generators of the sequence of C0-semigroups (Tn(t))t�0 on Hn defined by

Tn(t) =
(
Tn(t) tTn(t)A−α

n

0 Tn(t)

)
, (3.9)

because the resolvents of An and of the generator of Tn(t) coincide. By the assumption (1) and Lemma 3.4, one
has

sup
Re λ>0, n∈N

‖R(λ,An)A−α
n ‖ <∞.

Hence, for every xn = (xn1, xn2) ∈ Hn and λ ∈ C+,

‖R(λ,An)xn‖2 ≤ C
(
‖R(λ,An)xn1‖2 + ‖R(λ,An)xn2‖2

)
,

and similarly
‖R(λ,A∗

n)xn‖2 ≤ C′ (‖R(λ,A∗
n)xn1‖2 + ‖R(λ,A∗

n)xn2‖2
)
,

where C and C′ are constants independent of n. By Lemma 3.4, we have

sup ξ
ξ>0

n∈N,‖xn‖≤1

∫
R

(
‖R(ξ + iη, An)xn‖2 +

∥∥R(ξ + iη, A∗
n

)
xn

∥∥2) dη <∞,

and thus
sup ξ

ξ>0

n∈N,‖xn‖≤1

∫
R

(
‖R(ξ + iη,An)xn‖2 + ‖R(ξ + iη,A∗

n

)
xn‖2

)
dη <∞.

Therefore, again by Lemma 3.4, Tn(·) is uniformly bounded. Since Tn(·) is uniformly bounded, the definition of
Tn(t) implies that

sup
t�0, n∈N

‖tTn(t)A−α
n ‖ <∞.

For the converse, (it was proved in [5] for a single semigroup) we set

m1(t) := sup
s�t, n∈N

‖Tn(s)A−1
n ‖ ≤ C

t
1
α

for α > 0 and a positive constant C independent of n. Let u0n ∈ D(An), τ ∈ R and f0n = (iτ − An)u0n. Let
vn(t) = eitτu0n. Then

∂tvn = Anvn + eitτ (iτ −An)u0n = eitτf0n, v(0) = u0n.

By Duhamel formula

vn(t) = Tn(t)u0n +
∫ t

0

Tn(t− s)eisτ f0nds.

Thus, by the boundedness of the sequence Tn(t), we obtain that

‖u0n‖ = ‖vn(t)‖ ≤ m1(t)‖Anu0n‖ +Mt‖f0n‖
≤ m1(t) (|τ |‖u0n‖ + ‖f0n‖) +Mt‖f0n‖

≤ C

t
1
α

‖f0n‖ +
C|τ |
t

1
α

‖u0n‖ +Mt‖f0n‖.
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If we choose C|τ | ≤ t
1
α

2 , then

‖u0n‖ ≤
(
C

t
1
α

+Mt

)
‖f0n‖ +

1
2
‖u0n‖,

‖u0n‖ ≤
(

2C
t

1
α

+ 2Mt

)
‖f0n‖.

Taking t = 2αCα|τ |α yields that
‖R(iτ, An)‖ ≤ C′|τ |α

for all n ∈ N and |τ | > 1, which completes the proof of Theorem 3.2. �
Proposition 3.6. Let Tn(t), n ∈ N, be a uniformly bounded sequence of C0-semigroups on Hilbert spaces Hn

and let An be the corresponding infinitesimal generators, such that

iR ⊂ ρ(An), n ∈ N,

sup
n∈N

‖A−1
n ‖ <∞,

and
sup

ρ∈R, n∈N

‖R(iρ, An)A−α
n ‖ <∞,

for a constant α > 0. Then there exist a positive constant δ independent of n such that [0, δ] ⊂ ρ(An) and we
have

sup
Reλ≥−δ, n∈N

{
|Imλ|−α

|Reλ| , λ ∈ σp(An)

}
<∞. (3.10)

Proof. Due to the uniform boundedness of the sequence Tn(t), Lemma 3.4 yields that for all n ∈ N, σ(An) ⊂ C−.
In particular for all n ∈ N and λ ∈ σp(An): Re(λ) � 0. From the uniform boundedness of ‖A−1

n ‖, we get that
sup
n∈N

Reλ < 0, then there exists δ > 0 independent of n such that for all λ ∈ σp(An): Reλ � −δ.

As in the proof of Theorem 3.2, we see that (λ − An)−1A−α
n is uniformly bounded for n ∈ N and Reλ > 0.

Lemma 3.5 and the continuity of the resolvent operators then yield

1
|Reλ| ≤

1
dist(iImλ, σ(An))

≤ ‖(iImλ−An)−1‖ ≤ C1(1 + |Imλ|α) ≤ C2|Imλ|α

for all n ∈ N, for all λ ∈ σ(An) with −δ ≤ Reλ < 0 and constants Ck not depending on n and λ. �
Remark 3.7. To show that δ is independent of n, we have restricted the statement of Proposition 3.7 found
in [4] for a single operator, to the point spectrum. Otherwise, we could not show the independence of δ with
respect to n, for a family of operators An. Proposition 3.6 claims that in general one cannot deduce uniform
polynomial stability from the pure spectral criterion (3.10). In [4], the authors showed that for normal single
C0-semigroups, the spectral estimate (3.10) is necessary and sufficient to ensure polynomial stability. Their
result can be adapted for a sequence of normal C0-semigroups.

4. Applications

4.1. Application 1: Abstract thermoelastic models

In order to illustrate our result of uniform polynomial stability, we consider the family of abstract hyperbolic-
parabolic systems related to thermoelastic models⎧⎪⎨

⎪⎩
ün + ρBnun − μBτ

nθn = 0,

θ̇n + κBnθn + σBτ
nu̇n = 0,

un(0) = u0n, u̇n(0) = u1n, θn(0) = θ0n,

(4.1)
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where ρ, μ, κ and σ are positive constants, 0 ≤ τ < 1
2 . The superscript ˙ denotes partial differentiation with

respect to time, i.e. ˙ = ∂ · /∂t. We assume that Hn is a family of separable Hilbert spaces equipped with the
inner product 〈., .〉 and norm ||.||. We suppose that the sequence of operators Bn : D(Bn) ⊂ Hn → Hn is
self-adjoint positive definite with the power B−s

n of Bn is a compact linear operator in Hn for a positive real

number s, that 0 ∈ ρ(Bn), the resolvent set of Bn, and that sup
n∈N

||B
−1
2

n || <∞. Let D(B
1
2
n ) be the completion of

D(Bn), we introduce the state spaces Hn = D(B
1
2
n ) ×Hn ×Hn with the inner product

〈
(un, vn, θn), (ũn, ṽn, θ̃n)

〉
Hn

=
〈
B

1
2
n un, B

1
2
n ũn

〉
Hn

+
1
ρ
〈vn, ṽn〉Hn +

μ

ρσ
〈θn, θ̃n〉Hn

and the induced norm

||(un, vn, θn)||2Hn
=
∣∣∣∣∣∣B 1

2
n un

∣∣∣∣∣∣2
Hn

+
1
ρ
||vn||2Hn

+
μ

ρσ
||θn||2Hn

.

We define the energy of system (4.1) by

En(t) =
1
2

{∣∣∣∣∣∣B 1
2
n un

∣∣∣∣∣∣2
Hn

+
1
ρ
||vn||2Hn

+
μ

ρσ
||θn||2Hn

}
.

We also consider the sequence of linear operators Aτ,n : D(Aτ,n) ⊂ Hn → Hn

Aτ,n =

⎛
⎝ 0 In 0

−ρBn 0 μBτ
n

0 −σBτ
n −κBn

⎞
⎠ , (4.2)

whose domain is given by D(Aτ,n) = D(Bn) × D(B
1
2
n ) × D(Bn). So that the family of systems (4.1) can be

rewritten as the following initial value problem

dUn

dt
= Aτ,nUn, Un(0) = U0n, (4.3)

with Un = (un, u̇n, θn) and U0n = (u0n, u1n, θ0n).

Proposition 4.1. The sequence of operators Aτ,n generates a family of C0-semigroups of contractions denoted
by Sτ,n(t).

Proof. We will show that the sequence of operators Aτ,n(n = 0, 1, . . .) is dissipative and 0 ∈ ρ(Aτ,n), then our
conclusion will follow using the well known Lumer−Phillips theorem (see [7,23]). For the density of D(Aτ,n) in
Hn we use also ([7], Cor. 3.20, p. 86) (see also [23], Thm. 4.6, p. 16). Let Un = (un, vn, θn) ∈ D(Aτ,n), then

〈Aτ,nUn, Un〉Hn
= 〈(vn,−ρBnun + μBτ

nθn,−κBnθn − σBτ
nvn), (un, vn, θn)〉Hn

=
〈
B

1
2
n vn, B

1
2
n un

〉
+

1
ρ
〈−ρBnun + μBτ

nθn, vn〉 −
μ

ρσ
〈κBnθn + σBτ

nvn, θn〉

=
〈
B

1
2
n vn, B

1
2
n un

〉
−
〈
B

1
2
n un, B

1
2
n vn

〉
+
μ

ρ
〈Bτ

nθn, vn〉 −
μκ

ρσ

∥∥∥B 1
2
n θn

∥∥∥2 − μ

ρ
〈vn, B

τ
nθn〉 .

Therefore, taking the real part in the equation above, we conclude that

Re
〈
Aτ,nUn, Un

〉
Hn

= −μκ
ρσ

∥∥∥B 1
2
n θn

∥∥∥2 ≤ 0, (4.4)
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and then the sequence of operators Aτ,n is dissipative. On the other hand, given Fn = (fn, gn, hn) ∈ Hn, there
exists only one vector Un = (un, vn, θn) ∈ D(Aτ,n) such that Aτ,nUn = Fn or

vn = fn in D(B
1
2
n ), (4.5)

−ρBnun + μBτ
nθn = gn in Hn, (4.6)

−κBnθn − σBτ
nvn = hn in Hn. (4.7)

In fact, taking vn = fn in (4.7), we obtain the equation

Bnθn =
−σ
κ
Bτ

nfn − 1
κ
hn. (4.8)

Since σ
κB

τ
nfn + 1

κhn ∈ Hn and 0 ∈ ρ(Bn) there exists only one function θn ∈ D(Bn) that satisfies (4.8).
From (4.6), we find that

Bnun =
μ

ρ
Bτ

nθn − 1
ρ
gn, (4.9)

and since that μ
ρB

τ
nθn − 1

ρgn ∈ Hn, there exists only one solution un for (4.9) with un ∈ D(Bn). Therefore
Un = (un, vn, θn) ∈ D(Aτ,n), which achieves the proof. �

Lemma 4.2. The family of semigroups Sτ,n(t) verifies iR ⊂ ρ(Aτ,n), n ∈ N.

Proof. We show this result by a contradiction argument. That is, let us suppose that there exist n0 ∈ N and
0 �= β ∈ R, such that iβ is in the spectrum of Aτ,n0 . Since 0 ∈ ρ(Bn) and the power B−s

n of Bn compact in Hn

for any positive real number s, then the sequence of operators A−1
τ,n0

is compact and iβ must be an eigenvalue
of Aτ,n0 . Thus there is a sequence of vector function Un0 = (un0 , vn0 , θn0) ∈ D(Aτ,n0), ‖Un0‖Hn0

= 1, such that
iβUn0 −Aτ,nUn0 = 0 or equivalently

iβun0 − vn0 = 0,

iβvn0 + ρBn0un0 − μBτ
n0
θn0 = 0,

iβθn0 + κBn0θn0 + σBτ
n0
vn0 = 0.

Taking the real part of the inner product of iβUn0 −Aτ,n0Un0 = 0 with Un0 , we obtain

Re 〈Aτ,nUn0 , Un0〉Hn0
= −μκ

ρσ

∥∥∥B 1
2
n0θn0

∥∥∥2 = 0.

Thus θn0 = 0 and then un0 = vn0 = 0, which give the contradiction. �

Remark 4.3. The following theorem shows that the family of operators Sτ,n(t) associated to system (4.1) is
uniformly polynomially stable with rate t−1/2(1−2τ). Moreover, this rate is optimal. The proof is based on the
ideas in [19, 21] and on a recent paper [13] in which the authors gave a detailed review about the region of
stability and optimality of such kind of systems.

Theorem 4.4. Assume now that 0 ≤ τ < 1
2 . Then, the semigroups generated by Aτ,n defined in (4.2) is

uniformly polynomially stable with order no less than α = 2(1 − 2τ).

Proof. First of all, we show that sup
n∈N

||A−1
τ,n|| <∞. Simple calculation shows that

A−1
τ,n =

⎛
⎝−μσ

ρκB
2τ−2
n − 1

ρB
−1
n − μ

ρκB
τ−2
n

In 0 0
−σ

κB
τ−1
n 0 − 1

κB
−1
n

⎞
⎠ . (4.10)

By hypothesis on τ , 0 ∈ ρ(Bn) and since sup
n∈N

||B
−1
2

n || <∞, it follows that sup
n∈N

||A−1
τ,n|| <∞.
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Since Aτ,n verifies the hypothesis of Theorem 3.2, it is sufficient to show that

sup
|β|≥1, n∈N

1
|β|2(1−2τ)

‖(iβI3n −Aτ,n)−1‖ <∞. (4.11)

This will be done by contradiction, so suppose (4.11) is not true, then there exists a sequence βm ∈ R, βm → ∞
(as m→ ∞), a sequence Um ∈ D(Aτ,n), m = 0, 1, . . . , with

‖Um‖2
Hn

= ‖B
1
2
n um‖2 + ‖vm‖2 + ‖θm‖2 = 1, (4.12)

and a subsequence of Aτ,n, still denoted by Aτ,n such that

lim
m→∞ ‖β2(1−2τ)

m (iβmI3n −Aτ,n)Um‖Hn = 0, (4.13)

that is,

β2(1−2τ)
m

(
iβmB

1
2
n um −B

1
2
n vm

)
→ 0, in Hn (4.14)

β2(1−2τ)
m (iβmvm + ρBnum − μBτ

nθm) → 0, in Hn (4.15)
β2(1−2τ)

m (iβmθm + κBnθm + σBτ
nvm) → 0 in Hn. (4.16)

Our goal is to obtain ‖Um‖Hn → 0 as m→ ∞, thus a contradiction.
By the dissipativeness of the operator Aτ,n

Re〈β2(1−2τ)
m (iβmI −Aτ,n)Um, Um〉Hn =

μκ

ρσ

∥∥∥β1−2τ
m B

1
2
n θm

∥∥∥2
Hn

, (4.17)

then it follows
lim

m→∞

∥∥∥β1−2τ
m B

1
2
n θm

∥∥∥
Hn

= 0, (4.18)

which further leads to ∥∥∥B 1
2
n θm

∥∥∥→ 0, ‖θm‖ → 0 (4.19)

since 0 � τ < 1
2 and sup

n∈N

‖B
−1
2

n ‖ <∞.

Next, we show that vm also converges to zero. Acting a bounded operator λ−(1−2τ)
m B

− 1
2

n on (4.16) and
applying (4.18), we have

iβ2−2τ
m B

− 1
2

n θm + σβ1−2τ
m B

τ− 1
2

n vm → 0, in Hn. (4.20)

Since 0 < 1 − 2τ � 1, by Lemma 2.4, we have

∥∥∥β−(1−2τ)
m B

1
2−τ
n vm

∥∥∥ =
∥∥∥∥(β−1

m B
1
2
n

)1−2τ

vm

∥∥∥∥ � L
∥∥∥β−1

m B
1
2
n vm

∥∥∥1−2τ

‖vm‖2τ � L. (4.21)

Here, we have used the (uniform) boundedness of ‖β−1
m B

1
2
n vm‖ which can be obtained from (4.14) and the

(uniform) boundedness of ‖B
1
2
n um‖. Taking inner product of (4.20) with β−(1−2τ)

m B
1
2−τ
n vm in Hn yields

〈iβmB
−τ
n θm, vm〉 + ‖vm‖2 → 0. (4.22)

Therefore, we only need to show
‖βmB

−τ
n θm‖ → 0. (4.23)
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By the facts that − 1
2 < −τ � 0, we apply Lemma 2.4 again

‖βmB
−τ
n θm‖ � L‖βmθm‖1−2τ‖βmB

− 1
2

n θm‖2τ � C‖βmθm‖, (4.24)

where C = Lsup
n∈N

‖B
−1
2

n ‖2τ <∞. Thus, (4.23) follows from (4.18) and the (uniform) boundedness of ‖B
−1
2

n ‖. We

have obtained
‖vm‖ → 0. (4.25)

Finally, we take inner product of (4.14) with ρβ−2(1−2τ)−1B
1
2
n um in Hn and take inner product of (4.15) with

β−2(1−2τ)−1vm in Hn, respectively. Thus, the imaginary part of their difference yields(∥∥∥vm

∥∥2 − ρ
∥∥B 1

2
n um

∥∥∥2)− μIm〈β−1
m Bτ

nθm, vm〉 → 0. (4.26)

From (4.18) and the boundedness of ‖vm‖, we have

〈β−1
m Bτ

nθm, vm〉 → 0. (4.27)

Then, it follows from (4.26) and (4.27) that

∥∥vm‖2 − ρ
∥∥B 1

2
n um‖2 → 0. (4.28)

Therefore, together with (4.25) and (4.28), we get

∥∥∥B 1
2
n um

∥∥∥2
Hn

→ 0. (4.29)

Combining (4.19), (4.25) and (4.29), we have the promised contradiction. Theorem 3.2 allows us to conclude
that the family of semigroups Sτ,n(t) is uniformly polynomially stable of order α = 2(1 − 2τ). �

Remark 4.5. Throughout the proof of Theorem 4.4, we have used the uniform boundedness of the family of
operators B

−1
2

n . However, due to Lemma 2.4, we can show that this hypothesis is equivalent to the fact that
B−1

n is uniformly bounded. This observation will be useful in the following.

4.2. Application 2: Semi-discrete hyperbolic/parabolic systems

We consider a weakly coupled hyperbolic/parabolic 1 − d system on the bounded domain Ω = (0, π)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

utt(x, t) − uxx(x, t) + γθ(x, t) = 0 in (0, π) × (0,∞),
θt(x, t) − kθxx(x, t) − γut(x, t) = 0 in (0, π) × (0,∞),
u(x, t) |x=0,π= 0 = θ(x, t) |x=0,π on (0,∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x) on (0, π),

(4.30)

where u is proportional to the displacement and θ is the relative temperature. The constants γ > 0 and k > 0
represent, respectively, the coupling parameter and thermal diffusivity. For simplicity, we take k = 1, without
affecting the proof of our result. By introducing a new variable v = ut, (4.30) can be reduced to the following
abstract first order evolution equation {

dz
dt = Az
z(0) = z0,

(4.31)

with
z =

(
z1
z2
z3

)
=
(

u
v
θ

)
(4.32)
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and

A =

⎛
⎝ 0 I 0
D2 0 −γI
0 γI D2

⎞
⎠ . (4.33)

Let the state space
H = H1

0 (Ω) × L2(Ω) × L2(Ω) (4.34)

equipped with the norm

‖z‖H =
(
‖Dz1‖2

L2 + ‖z2‖2
L2 + ‖z3‖2

L2

) 1
2
, (4.35)

and D(A) = H2 ∩H1
0 × H1

0 × H2 ∩H1
0 . Here we have used the notation D = ∂/∂x, D2 = ∂2/∂x2. It is well

known (see [2]) that the semigroup operator etA associated to (4.31) is not exponentially stable. However, it
has been shown in [19] that the C0-semigroups generated by A is polynomially stable.

Remark 4.6. System (4.30) turns out to be a concrete realization of (4.1) (without the index n), corresponding
to the choice ρ = κ = 1, μ = σ = −γ, τ = 0, H = L2(Ω) and

B = −D2 with domain D(B) = H2 ∩H1
0 (Ω).

According to Theorem 4.4, we can show that system (4.30) is polynomially stable of optimal order α = 2.

Inspired from the work done in [19,21], and by means of a particular approximate scheme that is often referred
to as the Galerkin method, we formulate (4.30) as an abstract approximate problem (1.1). Afterwards, we will
show that the approximate scheme of (4.30) is uniformly polynomially stable. We also provide a convergence
proof of this scheme. Let H1

n(Ω), H2
n(Ω) and H3

n(Ω) be the n-dimensional subspace of H1
0 (Ω), L2(Ω) and L2(Ω)

with basis {φ1, . . . , φn}, {ψ1, . . . , ψn} and {ξ1, . . . , ξn}, respectively (see [22]). Since H2 ∩H1
0 is dense in L2, we

can choose φi ∈ H2 ∩H1
0 , ψi ∈ H1

0 and ξi ∈ H1
0 . Let Hn = Hn

1 (Ω) ×Hn
2 (Ω) ×Hn

3 (Ω) with a basis

Ej =

⎛
⎝φj

0
0

⎞
⎠, En+j =

⎛
⎝ 0
ψj

0

⎞
⎠, E2n+j =

⎛
⎝ 0

0
ξj

⎞
⎠, j = 1, . . . , n. (4.36)

The inner product on Hn is the one induced by the H product. We consider the approximation to the solution
of (4.31) in the form

zn =
3n∑

j=1

z̃j(t)Ej(x), (4.37)

which is required to satisfy the following variational system{
(żn, Ej)H = (Azn, Ej)H, j = 1, . . . , 3n
zn(0) = z0

n,
(4.38)

where z0
n is the approximation of z0 with respect to the basis {Ej}3n

j=1. Then, we have

Mn
˙̃yn =

⎡
⎢⎣M

(1)
n

M
(2)
n

M
(3)
n

⎤
⎥⎦
⎡
⎢⎣

˙̃z(1)
n

˙̃z(2)
n

˙̃z(3)
n

⎤
⎥⎦

=

⎡
⎣ 0 D̃T

n 0
−D̃n 0 −γF̃n

0 γF̃T
n −Gn

⎤
⎦
⎡
⎢⎣ z̃

(1)
n

z̃
(2)
n

z̃
(3)
n

⎤
⎥⎦ = Ãnỹn (4.39)
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with

(M (1)
n )ij = (Dφi, Dφj)L2 , (M (2)

n )ij = (ψi, ψj)L2 , (M (3)
n )ij = (ξi, ξj)L2 ,

(D̃n)ij = (Dφi, Dψj)L2 , (F̃n)ij = (ξi, ψj)L2 , (Gn)ij = (Dξi, Dξj)L2 (4.40)

and
z̃(i)

n = (z̃(i−1)n+1(t), . . . , z̃in(t))T , i = 1, 2, 3. (4.41)

By construction, the matrix M
(i)
n is symmetric and positive definite. Therefore, there exists a lower triangle

matrix L
(i)
n such that M (i)

n = (L(i)
n )(L(i)

n )T . Let Ln = diag(L(1)
n , L

(2)
n , L

(3)
n ) and denote LT

n ỹn by ȳn. Then, to
obtain approximate solution zn, we are led to solve ordinary differential equations{

˙̄yn = Anȳn

ȳn(0) = ȳ0
n := LT

nz
0
n,

(4.42)

with

An =

⎡
⎣ 0 (LT

1 )−1D̃T
nL

−1
2 0

−(LT
2 )−1D̃nL

−1
1 0 −γ(LT

2 )−1F̃nL
−1
3

0 γ(LT
3 )−1F̃T

n L
−1
2 −(LT

3 )−1GnL
−1
3

⎤
⎦ . (4.43)

It is easy to see that

Re(Anȳn, ȳn)C3n = −(GnL
−1
3 z̄(3)

n , L−1
3 z̄(3)

n )Cn ≤ 0, (4.44)

provided that Gn is semipositive definite. In that case, An generates a C0-semigroup Tn(t) of contraction on Hn.

4.2.1. Finite difference method

Given n ∈ N, we set Δ =
π

n
and introduce the net

x0 = 0 < x1 = Δ < . . . < xn−1 = (n− 1)Δ < xn = π

with xj = jΔ, j = 0, . . . , n. We then introduce the following finite-difference semi-discretization of system (4.30)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

üj(t) + 1
Δ2 [uj+1(t) − 2uj(t) + uj−1(t)] + γθj(t) = 0, t > 0, j = 1, . . . , n− 1

θ̇j(t) + 1
Δ2 [θj+1(t) − 2θj(t) + θj−1(t)] − γu̇j(t) = 0, t > 0, j = 1, . . . , n− 1

u0(t) = un(t) = θ0(t) = θn(t) = 0, t > 0
uj(0) = u0j , u̇j(0) = u1j , θj(0) = θ0j , j = 0, . . . , n

(4.45)

which is equivalent to the following system⎧⎪⎨
⎪⎩

ün +Bnun + γθn = 0,

θ̇n +Bnθn − γu̇n = 0,
un(0) = u0n, u̇n(0) = u1n, θn(0) = θ0n,

(4.46)

with un = (u1(t), u2(t), . . . , un−1(t))T , u̇n = (u̇1(t), u̇2(t), . . . , u̇n−1(t))T , θn = (θ1(t), θ2(t), . . . , θn−1(t))T , u0n,
u1n, θ0n are an approximation of the initial data in (4.30), and

Bn =
1
Δ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0

−1 2
. . .

. . . . . . . . .
. . . 2 −1

0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.47)
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is symmetric, positive definite. Moreover, the eigenvalues associated to Bn can be computed explicitly. We have
(see [17], p. 456)

λBn

k (Δ) =
4
Δ2

sin2

(
kΔ

2

)
, k = 1, . . . , n− 1,

and verify

0 < λBn
1 < λBn

2 < . . . < λBn
n−1.

From the expression above, we have

λBn
n−1Δ

2 → 4, as Δ→ 0.

Indeed,

λBn
n−1Δ

2 = 4 sin2

(
kΔ

2

)

= 4 sin2

(
π

2
− Δ

2

)

= 4 cos2
(
Δ

2

)
→ 4, as Δ→ 0.

It is also easy to see that, for j fixed,

λBn

j → j2, as Δ→ 0.

As we deal with finite dimensional space, due to Tikhonov Theorem, see [25], it is sufficient to show that B−1
n

is uniformly bounded for one norm, and hence for every norm on R
(n−1)×(n−1). We have

‖ B−1
n ‖2 = max

1≤k≤n−1

⎛
⎝ 1∣∣∣λBn

k

∣∣∣
⎞
⎠

=
1

min
1≤k≤n−1

∣∣∣λBn

k

∣∣∣
� 1.

It follows that sup
n∈N

||B−1
n || < ∞. Therefore, Theorem 4.4 states that the approximate system (4.70) decays

uniformly polynomially to zero, with α = 2.

4.2.2. Finite element method

The classical finite element method is to divide the domain Ω = [0, π] into subintervals, usually in equal
length, and use spline functions for the approximation. Here, we choose φj , ψj , and ξj to be the linear spline
functions

hj(x) =

⎧⎨
⎩1 − 1

Δ
| x− jΔ |, x ∈ [(j − 1)Δ, (j + 1)Δ],

0, otherwise
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for all j = 1, . . . , n− 1, with Δ =
π

n
. A straightforward calculation following (4.40) yields

M (1)
n =

1
Δ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0

−1 2
. . .

. . . . . . . . .
. . . 2 −1

0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, M (2)

n = M (3)
n = Δ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2
3

1
6 0

1
6

2
3

. . .
. . . . . . . . .

. . . 2
3

1
6

0 1
6

2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.48)

D̃n = M (1)
n , F̃n = M (2)

n , Gn = M (1)
n . (4.49)

Both M
(1)
n and M

(2)
n are symmetric and positive definite. Since M (i)

n , i = 1, 2 is invertible and by introducing
a new matrix Bn = (M (2)

n )−1M
(1)
n , (4.39) can be written in the following form⎧⎨
⎩

ün +Bnun + γθn = 0,
θ̇n +Bnθn − γu̇n = 0,
un(0) = u0n, u̇n(0) = u1n, θn(0) = θ0n,

(4.50)

where un = z̃
(1)
n , u̇n = z̃

(2)
n and θn = z̃

(3)
n , defined as in (4.41), provided the initial data u0n, u1n, θ0n are an

approximation of the initial data in (4.30).
To show that system (4.50) fits in the abstract setting of Theorem 4.4, we need to establish some properties

of the sequence Bn. Let us check that Bn is symmetric, positive definite and that sup
n∈N

||B−1
n || <∞.

Bn is symmetric: according to the invertibility of M (2)
n , we only have to check that M (1)

n and M (2)
n commute.

Taking

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

1 0
. . .

. . . . . . . . .
. . . 0 1

0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (4.51)

We have M (1)
n = 1

Δ (2I − J) and M (2)
n = Δ

3 (2I + 1
2J). Thus matrix M (1)

n and M (2)
n commute.

Bn is positive definite: we consider a nonsingular matrix P such that P−1M
(1)
n P = D, D being a diagonal

matrix. From the expressions above, we have

P−1JP = (2I −ΔD) and P−1M (2)
n P = Δ

(
I − Δ

6
D

)

which are diagonal matrix. Thus, matrix Bn and M
(1)
n have the same eigenvectors. Moreover, eigenvalues of

matrix M (1)
n can be computed explicitly

λ
M(1)

n

k =
4
Δ

sin2

(
kΔ

2

)
, k = 1, . . . , n− 1 (4.52)

which implies that

λBn

k =
λ

M(1)
n

k

Δ− Δ2

6 λ
M

(1)
n

k

=
6
Δ2

[
sin2(kΔ

2 )
3
2 − sin2(kΔ

2 )

]
=

6
Δ2

[
1 − cos(kΔ)
2 + cos(kΔ)

]
· (4.53)

It is clear that λBn

k > 0 for all k = 1, . . . , n− 1. Thus, Bn is positive definite.
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B−1
n is uniformly bounded: From the expressions above, and especially (4.53), we have

λBn
n−1Δ

2 → 12, as Δ→ 0.

Indeed,

λBn
n−1Δ

2 = 6

[
1 − cos((n− 1)Δ)
2 + cos((n− 1)Δ)

]

= 6

[
1 − cos(π −Δ)
2 + cos(π −Δ)

]

= 6

[
1 + cos(Δ)
2 − cos(Δ)

]
→ 12, as Δ→ 0.

It is also easy to see that, for j fixed,
λBn

j → j2, as Δ→ 0.

Indeed,

lim
Δ→0

λBn

j = 2 lim
Δ→0

1 − cos(jΔ)
Δ2

= j lim
Δ→0

sin(jΔ)
Δ

= j2.

Thus, we have

‖ B−1
n ‖2 = max

1≤k≤n−1

⎛
⎝ 1∣∣∣λBn

k

∣∣∣
⎞
⎠

=
1

min
1≤k≤n−1

∣∣∣λBn

k

∣∣∣
� 1.

It follows that sup
n∈N

||B−1
n || <∞. Therefore, Theorem 4.4 allows to conclude that system (4.50) decays uniformly

polynomially to zero, with α = 2.

Remark 4.7. The spectral analysis used above is inspired from the one in [16], where the authors used a similar
analysis to investigate the observability property for the space semi-discretizations of the 1− d wave equations.

Remark 4.8. When the coupling terms (γθ and γut) are replaced by (γθx and γutx), system (4.30) becomes
exponentially stable (see [20]). However, the question of showing the uniform exponential decay of solutions
associated to the finite element scheme still remains open as has been mentioned in [21].

4.2.3. Spectral element method

Spectral element method is to choose the eigenvectors of the system as the basis vectors. Here, we will use
the eigenvectors of the uncoupled hyperbolic parabolic system, i.e., γ = 0 in (4.33). Let

φj = ψj = ξj =

√
2
π

sin jx, j = 1, . . . , n (4.54)

we can choose the finite dimensional subspaces Hn
j (Ω) ⊂ H1

0 (Ω), j = 1, 2, 3, as lin{φi : i = 1, . . . , n}. A
straightforward calculation following (4.40) and (4.43) yields

An =

⎡
⎣ 0 Dn 0
−Dn 0 −γIn

0 γIn −D2
n

⎤
⎦ (4.55)
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with

Dn =

⎡
⎢⎣

1
. . .

n

⎤
⎥⎦ . (4.56)

Notice that with the previous choice of basis in Hn, (4.37) defines an isomorphism between Hn and R3n which
is equipped with the usual inner product. Let

An = PnAPn, (4.57)

where Pn is the orthogonal projection from H to Hn. Then (4.38) can be considered as an evolution equation
in Hn {

dzn

dt = Anzn,

zn(0) = z0
n.

Notice that for zn ∈ Hn, we have (Anzn, zn)Hn = (Anȳn, ȳn)R3n .

Lemma 4.9. The family of generators An satisfies iR ⊂ ρ(An), n ∈ N, and sup
n∈N

||A−1
n || <∞.

Proof. We show this result by a contradiction argument. That is, let us suppose that there exist a fixed m ∈ N

and 0 �= β ∈ R, such that iβ is in the spectrum of Am. Since the operator Am is of finite rank, it is compact,
thus iβ is an eigenvalue of Am. Therefore, there exists a sequence of vector function zm ∈ Hm, ‖zm‖Hm = 1
and by (4.37) there exists ym = (um, vm, θm) ∈ R3m, ‖ym‖R3m = 1, accordingly. It follows from the definition
of An that iβzm −Amzm = 0 is equivalent to iβym −Amym = 0, i.e.

iβum −Dmvm = 0,

iβvm +Dmum + γθm = 0,

iβθm − γvm +D2
mθm = 0.

Taking the inner product of iβzm −Amzm = 0 with zm, we obtain

(Amzm, zm)Hm = (Amȳm, ȳm)R3m = −‖Dmθm‖2 = 0.

Hereafter we also denote by ‖ · ‖ the l2 norm in Rm or Cm when no confusion occurs. Since Dm is invertible,
θm = 0 and then um = vm = 0, which gives the contradiction. Therefore, iR ⊂ ρ(An) for all n ∈ N. As Am is
the matrix representation of the operator Am, it is sufficient to show that sup

n∈N

||A−1
n || <∞. Simple calculations

show that

A−1
n =

⎡
⎢⎣
−γ2D−4

n −D−1
n γD−3

n

D−1
n 0 0

γD−3
n 0 −D−2

n

⎤
⎥⎦ . (4.58)

Therefore,
‖A−1

n ‖∞ = γ2 + γ + 1,

and this ends the proof. �

The following theorem claims that the approximate system still decays to zero with an order no less than
α = 2.
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Theorem 4.10. The semigroups generated by An, n ∈ N, defined in (4.57) are uniformly polynomially stable
with α = 2.

Proof. The family An, n ∈ N, satisfies the hypothesis of our abstract result. Let us verify that

sup
|β|≥1, n∈N

1
|β|2 ‖(iβI3n −An)−1‖ <∞. (4.59)

This will be done by a contradiction argument. If (4.59) is not true, then there must exist a subsequence of An,
still denoted by An, a sequence βm ∈ R+, βm → ∞ (as m → ∞), and a sequence zm ∈ Hn with ‖zm‖Hn = 1
such that as m→ ∞

lim
m→∞ ‖β2

m(iβmI3n −An)zm‖ = 0. (4.60)

Let ym = (um, vm, θm) ∈ R3n be the corresponding coordinate vector to zm. Then (4.60) is equivalent to

lim
m→∞ ‖β2

m(iβmI3n −An)ym‖ = 0,

that is,

‖β2
m(iβmum −Dnvm)‖ → 0, (4.61)

‖β2
m(iβmvm + γθm +Dnum)‖ → 0, (4.62)

‖β2
m((iβmIn +D2

n)θm − γvm)‖ → 0. (4.63)

Our goal is to obtain ‖ym‖R3n → 0 as m→ ∞, thus a contradiction. Since ‖ym‖R3n = 1, one has

|Re(β2
m(iβmI3n −An)ym, ym)| ≤ ‖β2

m(iβmI3n −An)ym‖. (4.64)

Hence
‖βmDnθm‖2 = Re(β2

m(iβmI3n −An)ym, ym) → 0, (4.65)

then, it follows
‖βmθm‖ ≤ ‖βmDnθm‖ → 0, (4.66)

which further leads to
‖θm‖ → 0. (4.67)

It follows from ‖ym‖R3n = 1 and (4.67) that ∥∥∥∥
(
um

vm

)∥∥∥∥
2

R2n

→ 1. (4.68)

Next, we show that ‖vm‖ also converges to zero. Taking the inner product of (4.63) with vm yields

i(βmθm, vm) + (Dnθm, Dnvm) − γ‖vm‖2 → 0. (4.69)

It follows from (4.66) and (4.68) that
|(βmθm, vm)| → 0.

The inner product of (4.61) by Dnθm, (4.66) and (4.68) yields

(Dnθm, Dnvm) → 0,

and thus
‖vm‖ → 0. (4.70)

On the other hand, using the difference between the inner product of (4.61) with D−1
n vm and the inner product

of (4.62) with D−1
n um, we obtain

‖um‖2 + ‖vm‖2 + γ(θm, D
−1
n um) → 0,
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since (θm, D
−1
n um) → 0 due to (4.67) and (4.68). We deduce from (4.70) that

‖um‖ → 0. (4.71)

Thus, we have the promised contradiction, and the proof of Theorem 4.10 is complete. �
Remark 4.11. Due to Theorem 4.4, we can still show that the spectral element scheme still decays uniformly
polynomially to zero. Moreover, as we deal with the Laplace operator basis, system (4.30) can be diagonalized,
and Tn(t) = PnT (t)Pn, where Pn is the projection on the space of the n first eigenfunctions of the Laplace
operator. This makes the polynomial stability of the semigroup Tn(t) a straightforward consequence of the
polynomial stability of T (t).

Now we will prove the strong convergence of the approximating semigroups Tn(t) of (4.42) to T (t) := etA

and T ∗
n(t) to T ∗(t). This is obtained with the help of a general version of the Trotter−Kato Theorem proved in

([23], Thm. 4.5, p. 88) that is appropriated when the approximated semigroups are defined in proper subspaces.
The basic idea is that the convergence of the approximated semigroups is equivalent to the convergence of their
generators, hence we prove such a convergence result for both examples of the previous section.

As mentioned before, the matrix An in (4.55) is the matrix representation of the operator An. It is easy to see
that D := D(A)∩ (H4 ×H3 ×H4) is dense in H. Since (I −A)D(A) = H, we also know that (I −A)D is dense
in H. With the dissipativeness of A and An, by the Trotter–Kato theorem, we only need to show Anz → Az in
H for all z ∈ D for the strong convergence of the approximation semigroups Tn(t) to T (t).

Theorem 4.12. Tn(t), T ∗
n(t) s−→T (t), T ∗(t) in H, respectively. Moreover, the convergence is uniform in bounded

t-intervals.

Proof. Let z ∈ D. Then

z =
∞∑

j=1

⎡
⎢⎣aj

⎛
⎜⎝

1
j

sin jx

0
0

⎞
⎟⎠+ bj

⎛
⎝ 0

sin jx
0

⎞
⎠+ cj

⎛
⎝ 0

0
sin jx

⎞
⎠
⎤
⎥⎦

with {ajj
3, bjj

3, cjj
4}j≥1 being l2 sequences. Furthermore, we have

Az =

⎛
⎜⎝

∑∞
i=1 bi sin ix∑∞

i=1(−aii− γci) sin ix∑∞
i=1(γbi − cii

2) sin ix

⎞
⎟⎠

and

Anz =

⎛
⎜⎝

∑n
i=1 bi sin ix∑n

i=1(−aii− γci) sin ix∑n
i=1(γbi − cii

2) sin ix

⎞
⎟⎠ .

Now, computing Az −Anz, we obtain⎛
⎜⎝

∑∞
i=n+1 bi sin ix∑∞

i=n+1(−aii− γci) sin ix∑∞
i=n+1(γbi − cii

2) sin ix

⎞
⎟⎠ := Rn.

It follows from Az ∈ H that ‖Rn‖ → 0 as n→ ∞. Thus, we have proved

lim
n→+∞ ‖Az −Anz‖H = 0, ∀z ∈ D.

The convergence of approximate adjoint semigroups can be verified in a similar way, since A and A∗ only differ
by the sign in front of the coupling coefficient γ. �
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5. Numerical experiments

As has been demonstrated in Sections 3 and 4, preserving polynomial stability for the general approximation
schemes of thermoelastic system (4.1) can be a complicated problem, due to the structure of the matrix An

defined in (4.43). On the other hand, for any given approximation scheme, we can compute the eigenvalues
of An to observe the trends in their location, as well as the stability behavior. For systems with polynomial
decay, it is well known that the eigenvalues are approaching the imaginary axis at ±∞.

In this section, we consider the three approximation schemes presented in Section 4.2. For each of them,
the matrix An is constructed and its eigenvalues are computed. Due to Proposition 3.6 we will show that for
the three approximation schemes, we have a uniform spectral estimate (3.10). Finally, we show numerically
the effect of the smoothness of the initial data on the rate of decay of energy associated to the finite element
scheme (4.50), a fact which has been shown in Theorem 3.2. In all the following examples, we take γ = 0.1. Since
the real eigenvalues of the matrix An are much smaller than the imaginary part of the complex eigenvalues, it is
enough to observe the complex ones only. Otherwise, due to scaling, there are several negative real eigenvalues
which are not plotted.

5.1. Uniform spectral estimate
It has been shown in Section 4 that the approximate schemes of thermoelastic system (4.30), either by finite

difference, finite element or spectral element method are uniformly polynomially stable with α = 2. In what
follows, we set d to be the spectral distance (3.10) defined in Proposition 3.6,

d = sup
Reλ≥−δ, n∈N

{
|Imλ|−2

|Reλ| , λ ∈ σ(An)

}
,

with δ = −min(Re(λ)) > 0.
Throughout Table 1, we notice that for the three approximate schemes, these distances are uniform. The

location of the eigenvalues derived from these approximation schemes are also plotted for n = 8, 16, 24, 32.
We observe from Figures 1−3, that for the three approximate schemes, for fixed n, the eigenvalues of higher
frequency modes are closer to the imaginary axis, which is in perfect agreement with our theory.

5.2. Role of smoothness of the initial data on the rate of decay of energy

It has been demonstrated in Theorem 3.2 ((2) ⇔ (3)) that the rate of decay of energy can be improved
according to the smoothness of the initial data. To show this fact, we use a uniform mesh with n = 8 elements,
fix the final time in T = 100, use Δt = 10−2 and consider the following initial conditions for u and θ

u(x, 0) = 0, θ(x, 0) = 0, ut(x, 0) =

√
2
π

sin(jx), j = 1, 2, 3.

In the following, we present the graphics of energy of the thermoelastic model (4.30), Ej
n(t), j = 1, 2, 3, associated

to the finite element method studied in Section 4.

Table 1. Uniform spectral estimate for the finite difference method (fdm), finite element
method (fem) and spectral element method (sem) in the case of Dirichlet−Dirichlet boundary
conditions.

n d (fdm) d (fem) d (sem)

8 2.062779×102 2.022197×102 2.031240×102

16 2.015359×102 2.005207×102 2.007812×102

24 2.006796×102 2.002283×102 2.003472×102

32 2.003816×102 2.001278×102 2.001953×102
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Figure 1. Location of the complex eigenvalues of the matrix An for the finite difference method
in the case of Dirichlet−Dirichlet boundary conditions.
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Figure 2. Location of the complex eigenvalues of the matrix An for the finite element method
in the case of Dirichlet−Dirichlet boundary conditions.
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Figure 3. Location of the complex eigenvalues of the matrix An for the spectral element
method in the case of Dirichlet−Dirichlet boundary conditions.

Figure 4. Role of smoothness of the initial data on the rate of decay of energy of the linear
thermoelastic system (4.30).

Through Figure 4, we notice that for j = 1, the approximate energy E1
n(t) decays to zero as the time t

increases. Moreover, we can observe that the decay rate of energy decreases as j increases, that is, the initial
data is very oscillating. This means that the rate of decay of the approximated energy En(t) is very sensitive
to the choice of the initial data. This fact is consistent with the main result of this paper.
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