
ESAIM: COCV 22 (2016) 236–266 ESAIM: Control, Optimisation and Calculus of Variations
DOI: 10.1051/cocv/2015009 www.esaim-cocv.org

ON THE ATTAINABLE SET FOR SCALAR BALANCE LAWS
WITH DISTRIBUTED CONTROL ∗

Marco Corghi
1

and Andrea Marson
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Abstract. The paper deals with the set of attainable profiles of a solution u to a scalar balance law
in one space dimension with strictly convex flux function

∂tu + ∂xf(u) = z(t, x).

Here the function z is regarded as a bounded measurable control. We are interested in studying the set
of attainable profiles at a fixed time T > 0, both in case z(t, ·) is supported in the all real line, and in
case z(t, ·) is supported in a compact interval [a, b] independent on the time variable t.
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1. Introduction

In this paper we consider a balance law in one space dimension, i.e.

∂tu+ ∂xf(u) = z(t, x) t ∈ [0, T ], x ∈ R, (1.1)

augmented with an initial datum
u(0, x) = u0(x), x ∈ R. (1.2)

Here u0 ∈ L1(R)∩L∞(R) is given, the flux f is a C2 function which is assumed to be uniformly strictly convex,
i.e. there holds

inf
u∈R

f ′′(u) > 0, (1.3)

and the source term z ∈ L∞(]0, T [×R) is regarded as a control. We are interested in studying the set of attainable
profiles at time T , i.e.

A(T,Z) .=
{
v ∈ L∞(R) : ∃z ∈ Z and a solution u to (1.1)−(1.2) : u(T, x) = v(x) a.e.

}
, (1.4)
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where Z ⊆ L∞(]0, T [×R) is a given set of admissible controls. In particular, we will focus our attention to the
cases

(1) Z = L∞(]0, T [×R);
(2) if a, b ∈ R, a < b, are given, then

Z = Za,b
.=

{
z ∈ L∞(]0, T [×R) : supp z(t, ·) ⊆ [a, b] ∀t ∈]0, T [

}
, (1.5)

where supp z(t, ·) denotes the essential support of the function x �→ z(t, x).

It is well known (see [7, 13]) that balance laws, in general, do not admit globally defined Lipschitz continuous
solutions, even in presence of smooth initial data. Hence, we will consider a framework of entropy weak solutions
(see Def. 2.1 below), that may well suffer from jump discontinuities.

Since the pioneering papers [5, 17], control problems for balance laws have received an increasing attention.
Regarding scalar conservation/balance laws, several papers appeared in recent year, e.g. see [11, 20–22]. In
particular, in [11] the author studied the attainability of C1 functions for classical solutions of a balance law (1.1)
in a bounded domain, say [0, T ] × [0, 1], when the distributed control z depends only on the time variable t.
In [20] the author dealt with a conservation law

∂tu+ ∂xf(u) = 0 (1.6)

with a flux function f with finitely many inflection points. The equation (1.6) is considered in a bounded domain
[0, T ] × [0, 1] and the initial datum u0 at (1.2) is assumed to belong to L∞(0, 1). The boundary data at x = 0
and x = 1 are regarded as controls, and it is proved the existence of controls steering the solution to (1.2)−(1.6)
to a constant state in a time T depending on the L∞-norm of u0. Both the papers [11,20] use the return method
by Coron ([9], Chap. 6). In particular, in [20] a viscous approximation of a conservation law is considered, i.e.

∂tu+ ∂xf(u) = ε∂2
xxu,

and a controllability result for the inviscid equation is obtained by letting ε→ 0. Instead, a distributed control is
considered in [14] for a viscous Burgers equation with Dirichlet conditions in the interval [0, 1]. Here the authors
give a precise estimate of the minimal time needed in order to drive to zero a given initial datum. In [21] the
author studied the attainable set at time t = T in a bounded domain [0, T ] × [0, 1], but in a context of weak
entropy solutions. Again, the author assumes to control the boundary data at x = 0 and x = 1, and the source
term, which is supposed to depend only on the time variable t. In [22] the same author obtained a stabilization
result around a given constant state in the same context of [21], but using a feedback control, which is explicitly
given.

Regarding systems of conservation/balance laws, to our knowledge only few papers appeared. In [3, 4], the
authors studied the attainable set for boundary controllable systems of conservation laws in the Temple class [13].
Other papers deal with controllability around a constant state [10, 15, 16], non controllability result [8], or
asymptotic stabilizability to a constant state [6].

In this paper we are interested in determining a sufficiently large subset of the set A(T,Z) at (1.4), with
Z = L∞(]0, T [×R) and Z = Za,b. In particular, such a set is expected to contain bounded functions suffering
jump discontinuities, and fulfilling an upper bound on the positive waves (and hence on the positive total
variation),

sup
x∈R

lim sup
h→0

v(x + h) − v(x)
h

< +∞, (1.7)

where v ∈ L1(R) ∩ BVloc(R) is given. Such a condition comes from Oleinik’s type estimate ([13], Chap. 8) on
the decay of positive waves. This will suffice to find a bounded control z supported in ]0, T [×R which drives
u0 to v in time T . Instead, if supp z ⊆ [0, T ]× [a, b], together with (1.7) more conditions will be needed on the
behavior of v outside [a, b].
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We will proceed by constructing at the same time a control z and a solution u to (1.1)−(1.2) with the
desired properties. In case Z = L∞(]0, T [×R), such a construction is performed by means of a suitably modified
front-tracking algorithm [7, 18], where the approximate solutions are piecewise Lipschitz continuous. This will
allow us to construct a bounded control z and a weak entropy solution to (1.1)−(1.2) steering u0 to zero. Then,
we will drive u = 0 to a final profile v by first solving backward (1.6) in a small time interval by means of
a locally Lipschitz function w = w(t, x), and then gluing u = 0 and w with a suitable control z. Instead, in
case Z = Za,b, we study the attainable set A(T,Za,b) for solutions to (1.1) with null initial datum, and hence
we take u0(x) ≡ 0 at (1.2). Inspired by [5], we will heavily use the theory of generalized characteristics by
Dafermos [12], in particular in order to reconstruct a solution outside the bounded domain [0, T ]× [a, b]. Indeed,
since supp z ⊆ [0, T ]× [a, b], a solution u to (1.1) satisfies (1.6) on [0, T ]× (R\ [a, b]). This is a key point in order
to understand how a compactly supported control z affects a solution u to (1.1) outside supp z.

The paper is organized as follows. In Section 2 we state the main Theorems and prove some preliminary
Lemmas on a boundary value problem for a scalar conservation law. In Section 3 we prove Theorem 2.2 on the
controllability for Z = L∞(]0, T [×R), while in Section 4 we consider the case Z = Za,b. Both these sections are
self-contained and can be read separately; only the Lemma 3.3 is used in both. Moreover, they are divided in
three subsections, each containing a step of the proofs. Finally, an Appendix is devoted to the proof of some
technical results that are used in proving Theorem 2.2 in Section 3. We inserted several figures all along the
paper in order to make the construction more clear.

2. Preliminaries and main results

First of all, let us introduce some notations that will be used all along the paper. Given a function v = v(x),
x ∈ R, we will adopt the usual notation

v(ξ±) = lim
x→ξ±

v(x),

whenever the limits exist. Moreover, since f is strictly convex, f ′ is strictly increasing, and hence it admits a
smooth inverse, that will be denoted by g, i.e.

g = (f ′)−1. (2.1)

As it was pointed out in the introduction, in general a Cauchy’s problem for a balance law does not admit
a globally defined classical solution. Moreover, in order to select the physically relevant solution among the
distributional ones, an admissibility criterion must be introduced [7, 13]. Hence, we need the definition of weak
entropy solution. For a more exhaustive treatment of such distributional solutions, we refer to [7, 13].

Definition 2.1. A function u ∈ L∞([0, T ] × R) is a weak entropy solution to (1.1)−(1.2) if

(1) [0, T ] � t �→ u(t, ·) ∈ L1
loc(R) is continuous;

(2) u(0, x) = u0(x) for a.e. x ∈ R;
(3) for all κ ∈ R there holds the entropy inequality∫ T

0

∫
R

|u− κ|∂tϕ+ sgn(u− κ)
(
f(u) − f(κ)

)
∂xϕdxdt+

∫ T

0

∫
R

sgn(u− κ)z(t, x)ϕdxdt ≥ 0 (2.2)

for all non negative ϕ ∈ C1(]0, T [×R) with compact support.

The entropy inequality (2.2) was introduced by Kruzkov [19], and it can be replaced by an equivalent smooth
version: in order u to be an entropy weak solution to (1.1)−(1.2), it is required that for any convex entropy
η ∈ C1(R) with entropy flux q, i.e. q′(u) = f ′(u)η′(u), there holds∫ T

0

∫
R

η(u)∂tϕ+ q(u)∂xϕdxdt+
∫ T

0

∫
R

η′(u)z(t, x)ϕdxdt ≥ 0 (2.3)
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for all nonnegative ϕ ∈ C1(]0, T [×R) with compact support. In case u = u(t, x) is a weak entropy solution
to (1.1)−(1.2), then along each Lipschitz curve x = η(t) in the (t, x)-plane along which u suffers from a jump
discontinuity, the Rankine−Hugoniot conditions hold,

f
(
u(t, η(t)+)

) − f
(
u(t, η(t)−)

)
= η̇(t)

[
u(t, η(t)+) − u(t, η(t)−)

]
, (2.4)

together with the admissibility conditions

u(t, x−) > u(t, x+), x = η(t), (2.5)

where, as usual, u(t, ξ−) and u(t, ξ+) are, respectively, the left and right limits of u(t, ·) at ξ.
The Definition 2.1 allows to use the “doubling variables technique” introduced by Kruzkov [19], so that it can

be proved that, if a weak entropy solution to (1.1)−(1.2) exists, then it is unique. Regarding a general existence
theorem for (1.1)−(1.2), we refer to [19] again, while systems of balance laws, e.g., are treated in [1]. Moreover, to
our knowledge, in literature smoothness assumptions on z are usually required in order to get a priori estimates
on the positive waves [23]. Indeed, such a priori estimate is the main ingredient of the following

Theorem 2.2. Let f ∈ C2(R) and (1.3) hold. Let u0 ∈ L1(R) ∩ L∞(R) and T > 0 be given, and v ∈ L1(R) ∩
BVloc(R) be such that (1.7) holds. Then, v ∈ A(T, L∞(]0, T [×R)), where A(T,Z) is defined at (1.4). Hence,
there exists z ∈ L∞(]0, T [×R) such that the weak entropy solution u to (1.1)−(1.2) satisfies u(T, ·) = v.

Observe that not any L∞ function v can be attained. Indeed, there are a couple of obstructions. The first
one is that the obvious idea of considering

u(t, x) = u0(x) +
t

T
(v(x) − u0(x))

and next defining
z
.= ∂tu+ ∂xf(u),

where the derivatives are taken in distributional sense, does not work due to the regularity assumptions on z,
which is assumed to be a bounded function. Conversely, such a method works well for Lipschitz continuous
initial datum u0 and final profile v. The second obstruction comes from the definition of weak entropy solution,
and particularly from the admissibility condition (2.5) on the jump discontinuities of an admissible solution u.
Such a condition forces a candidate attainable profile v to suffer only from downward discontinuities, and not
from upward ones.

Remark 2.3. We point out that condition (1.7) can be weakened to a local version. Indeed, if v ∈ L1(R) ∩
BVloc(R) fulfills

sup
x∈K

lim sup
h→0

v(x+ h) − v(x)
h

< +∞, (2.6)

for any compact set K ⊂ R, we can still prove the existence of a bounded control z steering u0 to v in time T , but
at the price of technicalities, which we prefer to avoid. Indeed, the construction of a locally Lipschitz backward
solution u to (1.6) with u(T, ·) = v carried out at Lemma 4.1 can be performed locally in space thanks to (2.6),
and this suffice to prove that v ∈ A(T, L∞(]0, T [×R)). The only obstructions in getting v by a bounded control z
with our method are

(1) whether v has an upward jump, but in this case entropy conditions (2.5) would be violated, and hence v
can not be a weak entropy solution to (1.1), whatever z is chosen;

(2) or

lim
n→+∞ lim sup

h→0

v(xn + h) − v(xn)
h

= +∞

for a bounded sequence {xn}n∈N ⊂ R.
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It remains an open problem to establish if this last condition is a real obstruction to the attainability of the
function v.

Next, we address the same problem, but dealing with compactly supported controls z. As stated in the
Introduction, we consider an initial datum u0(x) ≡ 0 for the Cauchy problem (1.1)−(1.2).

Theorem 2.4. Let f ∈ C2(R) and (1.3) hold. Let a, b ∈ R, a < b, and T > 0 be given, and assume u0(x) ≡ 0.
Let v ∈ BV(R) satisfy the following conditions

(1) Condition (1.7) is fulfilled.
(2) If x �∈ [a, b], then

x < a and v(x−) �= 0 =⇒ f ′(v(x−)) ≤ x− a

T
, (2.7)

x > b and v(x+) �= 0 =⇒ f ′(v(x+)) ≥ x− b

T
, (2.8)

(3) Let α ≤ a < b ≤ β be such that

α = sup
{
x ≤ a : v(y) = 0 ∀y < x

}
, β = inf

{
x ≥ b : v(y) = 0 ∀y > x

}
. (2.9)

Then

v(α+) �= 0 =⇒
⎧⎨⎩f ′(v(α+)) <

α− a

T
if α < a,

f ′(v(α+)) ≤ 0 if α = a,
(2.10)

v(β−) �= 0 =⇒
⎧⎨⎩f ′(v(β−)) >

β − b

T
if β > b,

f ′(v(β−)) ≥ 0 if β = b.
(2.11)

(4) There hold

sup
{

lim sup
h→0

v(x+ h) − v(x)
h

− f ′(v(x))
(x − a)f ′′(v(x))

: x < a, v(x) �= 0
}
< 0, (2.12)

sup
{

lim sup
h→0

v(x+ h) − v(x)
h

− f ′(v(x))
(x− b)f ′′(v(x))

: x > b, v(x) �= 0
}
< 0. (2.13)

Then v ∈ A(T,Za,b), where A(T,Z) is defined at (1.4), and Za,b is defined at (1.5). Hence, there exists z ∈ Za,b

such that the weak entropy solution u to (1.1) and (1.2) with u0(x) ≡ 0 satisfies u(T, ·) = v.

Remark 2.5. Observe that, using conditions (2.7) and (2.8) and the fact that v is a bounded function, there
exist xa, xb ∈ R, xa < xb, such that v(x) = 0 for all x �∈ [xa, xb]. There follows that α and β at (2.9) are
well defined real numbers. Moreover, condition (1.7) ensures that, if v suffers a jump discontinuity at x, then
v(x−) > v(x+). Due to the monotonicity property of f ′, it follows that, if v(x+) �= 0 with x < a, then thanks
to (2.7)

f ′(v(x+)) ≤ f ′(v(x−)) ≤ x− a

T
·

Conversely, if x > b we get

f ′(v(x−)) ≥ f ′(v(x+)) ≥ x− b

T
·
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Using the theory of generalized characteristics [12] we can give a geometric interpretation of condi-
tions (2.7)−(2.13). In particular, conditions from (2.7) through (2.11) turn out to be also necessary for a
final profile v = v(x) to be attainable with a bounded control z = z(t, x) supported in [0, T ] × [a, b]. Indeed,
choose any bounded function z = z(t, x) such that z(t, x) = 0 whenever x �∈ [a, b]. Let u be an entropy solution
to (1.1)−(1.2) with u0 ≡ 0 and fulfilling u(t, x) = v(x) for a.e. x ∈ R. Then u is a weak entropy solution to

∂tu+ ∂xf(u) = 0, t ∈ [0, T ], x < a or x > b. (2.14)

Once a point (T, ξ) is fixed, say ξ < a, then the minimal and maximal backward characteristic from (T, ξ),
whose equations are

x = ξ + f ′(v(ξ−))(t − T ), x = ξ + f ′(v(ξ+))(t − T ), (2.15)

are genuine (true) characteristic. In particular, u is constant along such lines, and hence choosing t = 0, we get

v(ξ−) = u0

(
ξ − f ′(v(ξ−))T

)
, v(ξ+) = u0

(
ξ − f ′(v(ξ+))T

)
,

so that, whenever

ξ < a, f ′(v(ξ−)) >
ξ − a

T
,

there holds
v(ξ−) = u(ξ−) = u0

(
ξ − Tf ′(v(ξ−))

)
= 0,

and similarly for ξ > b.
Conditions (2.10) and (2.11) are related to configurations where we expect to have a shock discontinuity at

x = α or at x = β at time t = T . In such a case the maximal (resp. minimal) characteristic from (T, α) (resp.
(T, β)) must satisfy

α+ f ′(v(α+))(t − T )
∣∣∣
t=0

= α− f ′(v(α+))T > a(
resp. β + f ′(v(β+))(t − T )

∣∣∣
t=0

= β − f ′(v(β+))T < b
)
,

otherwise, with calculations similar to the previous ones, we find v(α+) = 0 (and, respectively, v(β−) = 0).
Regarding conditions (2.12) and (2.13), observe that, since (2.14) holds, minimal and maximal backward

characteristics cannot intersect in the regions ]0, T ]×] − ∞, a[ and ]0, T ]×]b,+∞[ (see again [12]). If (2.12)
and (2.13) hold for a final profile v, then we can prove that the candidate minimal and maximal backward
characteristics (2.15) from any point (T, ξ), ξ < a or ξ > b, enjoy this property. This allows us to construct a
desired bounded control z and an entropy solution u to (1.1)−(1.2), with u0(x) ≡ 0, fulfilling u(T, ·) = v (see
the proof of Prop. 4.5 at Sect. 4.2).

2.1. Technical lemmas

The lemma that follows will be used in the proof of Theorem 2.4 (see Lem. 4.1). The proof of the lemma is
entirely similar to the proof of ([5], Prop. 3.1), thus we will omit it.

Lemma 2.6. Let 
 < 0 and α < a be given. Assume that

f ′(0) ≥ 0, f ′(
) < (α− a)/T.

Call

τ� = T − α− a

f ′(
)
, (2.16)
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so that 0 < τ� < T . Fix τ ∈]0, τ�[. Then, there exists a Lipschitz function φ : [τ, T ] → R, such that the solution
w = w(t, x) to the initial boundary value problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tw + ∂xf(w) = 0

w(0, x) = 0

w(t, a) =

{
0 if 0 ≤ t < τ ,
φ(t) if τ ≤ t ≤ T ,

t ∈ [0, T ], x < a, (2.17)

satisfies

w(T, x) =

{
0 if x < α,

 if α ≤ x < a.

Moreover, the solution w is piecewise Lipschitz, and suffering only one shock departing from x = a at time
t = τ , and reaching x = α at time t = T .

Remark 2.7. Observe that τ� is the time at which the candidate maximal backward characteristic from (T, α)
reaches x = a. As regard as the function φ, as it can be easily deduced from the proof of ([5], Prop. 3.1), we
can choose the function φ at Lemma 2.6 so that φ(t) < 0 for any t ∈ [τ, T ], and φ(t) = 
 whenever t ∈ [τ�, T ].
Moreover, we can choose φ(τ) so that

|φ(τ)| ≤ C�,α, (2.18)

with C�,α > 0 depending only on 
 and α.

Next lemma, whose proof will be given, enters in proof of Theorem 2.4 by means of Lemma 4.2.

Lemma 2.8. Let 
′ < 
 < 0 and τ ∈]0, T [ be given, with

f(
′) − f(0)

′ < 0, f ′(
) = 0.

Then, there exist τ̃� ∈]τ, T [ and a Lipschitz function φ : [τ, T ] → R such that

φ(t) < 0 ∀t ∈ [τ, T ], φ(τ) = 
′,

φ(t) = 
 ∀t ∈ [τ̃�, T ],
(2.19)

and the solution w = w(t, x) to the initial boundary value problem (2.17) is piecewise Lipschitz continuous with
w(T, x) = 0 for x < a. Moreover, w suffers only one shock discontinuity departing from x = a at time t = τ ,
and reaching x = a at time t = T .

Proof. Let

ξ = a+
f(
′) − f(0)


′ (T − τ), (2.20)

and choose τ̃� so that (see Fig. 1)

T +
a− ξ

f ′(
′)
< τ̃� < T.

We let τ ≤ τ1 < τ2 ≤ τ̃� and call

φτ1,τ2(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

′ if τ ≤ t < τ1,

g

(
f ′(
′)

τ2 − t

τ2 − τ1

)
if τ1 ≤ t < τ2,


 if τ2 ≤ t,

(2.21)
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x = a

x = ξ

t = τ1

t = τ

w(t, x) =

x = ητ1,τ2(t)

t = T

w(t, x) = 0

t = τ = τ2

Figure 1. The case ητ1,τ2(T ) < a.

where g = (f ′)−1. Observe that for all τ ≤ τ1 < τ2 ≤ τ̃� the function φτ1,τ2 is Lipschitz continuous, and
satisfies conditions (2.19) with φ = φτ1,τ2 . Moreover, due to the monotonicity properties of f ′, φ is increasing.
Let wτ1,τ2 = wτ1,τ2(t, x) be the solution to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tw + ∂xf(w) = 0

w(0, x) = 0

w(t, a) =

{
0 if 0 ≤ t < τ ,
φτ1,τ2(t) if τ ≤ t,

x < a. (2.22)

It turns out that wτ1,τ2 is piecewise Lipschitz continuous and contains only one shock departing from x = a at
time t = τ . Let (t, ητ1,τ2(t)), ητ1,τ2(t) ≤ a, be the position of the shock at time t in the (t, x) plane. Moreover,
we call (see Fig. 2)

ζ(t) = a+ f ′(
′)(t− τ1), t ≥ τ1,

and set
Ω

.=
{
(t, x) : max{ητ1,τ2(t), ζ(t)} < x < a, t ≥ τ2

}
By using the method of characteristics, we get that

wτ1,τ2(t, x) = φτ1,τ2(s(t, x)), ητ1,τ2(t) < x < a, t ≥ τ1,

where

s(t, x) =

⎧⎪⎪⎨⎪⎪⎩
t+

a− x

f ′(
′)
if ητ1,τ2(t) < x < ζ(t),

t+ τ2 −
√
Δ(t, x)

2
if max{ητ1,τ2(t), ζ(t)} < x < a,

with
Δ(t, x) = (t− τ2)2 − 4

a− x

f ′(
′)
(τ2 − τ1).

We have

wτ1,τ2(t, x) = g

(
f ′(
′)

2(τ2 − τ1)
(
τ2 − t+

√
Δ(t, x)

))
, (t, x) ∈ Ω,
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x = a

t = τ

t = τ1

t = τ2

Ω

x = ητ1,τ2(t)

x = ζ(t)

Figure 2. The set Ω.

from which we get
lim

x→a−
(t,x)∈Ω

wτ1,τ2(t, x) = 
. (2.23)

Hence, due to the entropy condition (2.5) and to the strict convexity of f , there exists t̄τ1,τ2 ≥ τ1 such that

ητ1,τ2(t̄τ1,τ2) = a. (2.24)

We will prove that there exists a choice of τ1, τ2, and hence of a boundary datum φ = φτ1,τ2 , such that t̄τ1,τ2 = T .
First of all, let us prove that there exist τ1, τ2 such that ητ1,τ2(T ) < a, so that for the same choice of τ1, τ2 we
have t̄τ1,τ2 > T . Indeed, set

τ1 = T +
a− ξ

f ′(
′)
, τ2 = τ̃�,

with ξ defined as at (2.20). Then

ητ1,τ2(t) = a+
f(
′) − f(0)


′ (t− τ), τ ≤ t ≤ T,

and

wτ1,τ2(t, x) =

{
0 if x < ητ1,τ2(t),


′ if ητ1,τ2(t) < x < ξ + f ′(
′)(t− T ),
τ ≤ t ≤ T,

so that ητ1,τ2(T ) = ξ < a (see Fig. 1).
Now, let t̄τ1,τ2 satisfy (2.24), and assume, by absurd, that t̄τ1,τ2 ≥ T for any choice of τ1, τ2. Since (2.23), we

have
lim

x→a−
wτ1,τ2(t, x) = 
 ∀τ2 ≤ t < t̄τ1,τ2 ,

and hence the speed of the shock x = ητ1,τ2(t) fulfills

η̇τ1,τ2(t̄τ1,τ2) =
f(
) − f(0)



> 0. (2.25)
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Now, assume that τ1, τ2 → τ . Then φτ1,τ2 → 
 in L1(0, T ), and hence wτ1,τ2 → 0 in L1
loc([0, T ]×] − ∞, a[)

(see [5], Thm. 4). Due to (2.25) and being wτ1,τ2 Lipschitz continuous but along the shock curve x = ητ1,τ2(t),
there exist c, δ > 0 independent on τ1, τ2 such that we have

wτ1,τ2(t, x) ≤ −c ∀(t, x) : a+
f(
) − f(0)

2

(t− t̄τ1,τ2) ≤ x < a, τ + δ < t < t̄τ1,τ2 ,

contrary to the fact that wτ1,τ2 → 0 in L1
loc([0, T ]×]−∞, a[). It follows that there exists τ < τ1 < τ2 ≤ τ̃� such

that t̄τ1,τ2 < T .
Thanks to the continuous dependence of the solution to (2.22) on the boundary datum, t̄τ1,τ2 depends

continuously on τ1, τ2. It follows that there exist τ1, τ2 ∈]τ, τ̃�] such that t̄τ1,τ2 = T , and hence ητ1,τ2(T ) = a,
thus proving the lemma. �

3. Proof of Theorem 2.2

The proof of Theorem 2.2 is performed in three steps.

(1) First of all, in Lemma 3.1 we construct an L∞ control z that drives the initial datum u0 to zero in time
t = T/2. This is done by introducing suitable approximate solutions to a balance laws by means of an
adapted front tracking algorithm (see [7, 18] and the references therein).

(2) Next, we take into consideration the final profile v = v(x) at t = T . Using condition 1.7, we are able
to trace back the candidate generalized characteristics [12], and find τv > 0 and a function w = w(t, x),
T − τv ≤ t ≤ T , locally Lipschitz continuous for t < T , which is a solution to

∂tw + ∂xf(w) = 0

that fulfills w(T, x) = v(x) for a.e. x (see Lem. 3.3).
(3) Finally, in the time interval [T/2, T − τv] we glue together the solutions and the controls at Steps 1 and 2.

This is done by means of Lemma 3.4, whose proof is straightforward.

3.1. Step 1 − Driving u0 to zero

Let’s start with the first step, which is the more technical.

Lemma 3.1. Let u0 ∈ L1(R) ∩ L∞(R) be given. Then there exists ζ0 ∈ L∞(]0, T/2[×R) such that the solution
u to (1.1)−(1.2) with z(t, x) = ζ0(t, x) fulfills u(T/2, x) ≡ 0.

Proof. We will obtain u and ζ0 as limits of suitable approximations, say uε = uε(t, x) and ζε = ζε(t, x)
respectively, ε→ 0+. First of all, without loss of generality we can assume that u0 has bounded total variation.
Indeed, if not, we can take ζ0(t, x) ≡ 0 for t ∈ [0, 2δ[, δ > 0 suitably small, and consider the solution u to{

∂tu+ ∂xf(u) = 0

u(0, x) = u0(x),
0 ≤ t < 2δ.

Such a solution satisfies the classical Oleinik’s condition ([13], Chap. 8), and hence u(t, ·) ∈ BV(R) for any
t ∈]0, 2δ[. Hence, we can take u(δ, ·) as a new BV initial datum. Now, let uε

0, ε > 0, be a piecewise constant
approximation of u0 such that

Tot.Var. uε
0 ≤ Tot.Var. u0, ‖uε

0 − u0‖L1(R) ≤ ε.

We may assume that uε
0 as a finite number of points of jump, say x1 < x2 < . . . < xn be the points of jump of

uε
0. Denote by uε

0(xi−) and uε
0(xi+) the left and right limits of uε

0 at xi, respectively, i.e.

uε
0(xi±) .= lim

x→x±
i

uε
0(x).
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Moreover, without loss of generality, we assume that

uε
0(xi+) > uε

0(xi−) =⇒ ∣∣uε
0(xi+) − uε

0(xi−)
∣∣ < ε. (3.1)

Next, we let

Uε+
i (t) .=

T − 2t
T

uε
0(xi+),

Uε−
i (t) .=

T − 2t
T

uε
0(xi−),

t ∈ [0, T/2], i = 1, . . . , n. (3.2)

Observe that, being uε
0(xi+) = uε

0(xi+1−) and uε
0 ∈ L1(R), we can define

Uε
i (t) .= Uε+

i (t) = Uε−
i+1(t), i = 1, . . . , n− 1

U0(t)
.= Uε−

1 (t) ≡ 0, Un(t) .= Uε+
n (t) ≡ 0.

(3.3)

Now we define n curves ξi = ξi(t), i = 1, . . . , n, which may not be distinct in some non degenerate interval,
and which will be the candidate discontinuity lines in the approximate solution uε = uε(t, x) that we are
constructing. At first, we let ξi = ξi(t), i = 1, . . . , n, be the solution to the Cauchy’s problem⎧⎪⎨⎪⎩ξ̇i(t) =

f(Uε
i (t)) − f(Uε

i−1(t))
Uε

i (t) − Uε
i−1(t)

,

ξi(0) = xi.

(3.4)

Next, whenever two (or more) of these curves collide at time t = τ , say ξi, ξi+1, . . . ξi+p, p ≥ 1, for t > τ we let
ξi(t) = ξi+1 = . . . = ξi+p(t)

.= ξ(t) be the solution to the Cauchy’s problem⎧⎪⎨⎪⎩ξ̇(t) =
f(Uε

i+p(t)) − f(Uε
i−1(t))

Uε
i+p(t) − Uε

i−1(t)
,

ξ(τ) = ξi(τ) = . . . = ξi+p(τ)
)
.

(3.5)

In this way the condition
ξi(t) ≤ ξi+1(t) ∀t ∈ [0, T/2], i = 1, . . . , n− 1

is always fulfilled (see Fig. 3). In any case, since f is strictly convex, there holds

ξi, ξi+1 collide at time τ =⇒ min
{
Uε

i+1(τ−) − Uε
i (τ−), Uε

i (τ−) − Uε
i−1(τ−)

}
< 0, (3.6)

i.e. at least one of the quantities Uε
i+1(τ−)−Uε

i (τ−) and Uε
i (τ−)−Uε

i−1(τ−) is negative. In this way the strip
[0, T/2]× R is divided in a finite number of connected components Ω0, . . . , Ωn defined by (see Fig. 3)

Ω0 =
{
(t, x) ∈ [0, T/2]× R : x < ξ1(t)

}
,

Ωi =
{
(t, x) ∈ [0, T/2] : ξi(t) ≤ x < ξi+1(t)

}
, i = 1, . . . , n− 1,

Ωn =
{
(t, x) ∈ [0, T/2] : x ≥ ξn(t)

}
.

Now, we define uε = uε(t, x) as follows

uε(t, x) =

{
Uε

i (t) if (t, x) ∈ Ωi, i = 1, . . . , n− 1,

0 if (t, x) ∈ Ω0 ∪Ωn,
(3.7)

so that uε is piecewise continuous, with jumps along the Lipschitz’s curves ξ1, . . . , ξn such that

Δuε(t, ξi(t)) = Uε
i (t) − Uε

i−1(t),
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Figure 3. The connected components Ωi.

and, due to (3.1) and (3.6),

Δuε(t, ξi(t)) > 0 =⇒ Δuε(t, ξi(t)) <
T − 2t
T

ε < ε. (3.8)

It turns out that in the approximate solution uε the jumps corresponding to a rarefaction wave,Δuε(t, ξi(t)) > 0,
have size at most ε. Regarding ζε = ζε(t, x), its definition goes as follows

ζε(t, x) .= ∂tu
ε(t, x) + ∂xf(uε(t, x)) =

⎧⎨⎩− 2
T
uε

0(xi+) if (t, x) ∈ Ωi, i = 1, . . . , n− 1,

0 if (t, x) ∈ Ω0 ∪Ωn.
(3.9)

With definitions (3.7)−(3.9) and due to (3.4) and (3.8), [0, T/2] � t �→ uε(t, ·) ∈ L1(R) is continuous,
uε(T/2, x) ≡ 0 for all ε > 0, and∫ T/2

0

∫
R

|uε − κ|∂tϕ+ sgn(uε − κ)
(
f(uε) − f(κ)

)
∂xϕdxdt

+
∫ T/2

0

∫
R

sgn(uε − κ)ζε(t, x)ϕdxdt ≥ O(1) · ε · Tot.Var. u0, (3.10)

holds for any nonnegative ϕ ∈ C1(]0, T/2[×R) with compact support, where O(1) is the usual Landau’s symbol
(e.g., see [7], Chap. 7 or [13], Chap. 14). Since by construction we have

Tot.Var. uε(t, ·) ≤ Tot.Var. u0, Tot.Var. ζε(t, ·) ≤ 2
T

Tot.Var. u0

for all t ∈ [0, T/2], using Helly’s theorem we get a sequence {εn}n≥1, εn > 0, such that εn → 0 and {uεn}n≥1

and {ζεn}n≥1 converge in L1
loc(]0, T/2[×R), to bounded functions u and ζ0, respectively, such that

Tot.Var. u(t, ·) ≤ Tot.Var. u0, Tot.Var. ζ0(t, ·) ≤ 2
T

Tot.Var. u0 ∀t ∈ [0, T/2].

Moreover, [0, T/2] � t �→ u(t, ·) is continuous w.r.t. the L1
loc topology, and u(0, ·) = u0 and u(T/2, ·) = 0. Now,

observe that u is a distributional solution of (1.1) and (1.2) in ]0, T/2[×R, i.e.∫ T/2

0

∫
R

u∂tφ+ f(u)∂xφdxdt+
∫ T/2

0

∫
R

ζ0φdxdt = 0,
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for any φ ∈ C1(]0, T/2[×R) with compact support. It follows that, since x �→ f(u(t, x)) has bounded total
variation, uniformly in t (see [2], Thm. 3.96), u ∈ BV([0, T/2]×R). Hence, due to Corollary A.4 in the Appendix,

ζ0(t, x) = 0 for a.e. (t, x) ∈ {(t, x) : u(t, x) = κ}
for any fixed κ ∈ R. Next, we have

• f(uεn) → f(u) in L1
loc(]0, T/2[×R);

• up to a subsequence, sgn(uεn − κ) → sgn(u− κ) a.e. in {(t, x) : u(t, x) �= κ};
• there exists w ∈ L∞(]0, T/2[×R) such that, up to a subsequence,

sgn(uεn − κ) �
⇀ w in L∞(]0, T/2[×R),

and
w(t, x) = sgn(u(t, x) − κ) a.e. in {(t, x) : u(t, x) �= κ}.

It follows that, up to a subsequence, passing to the limit in (3.10) as ε = εn → 0, we get that u fulfills∫ T/2

0

∫
R

|u− κ|∂tϕ+ sgn(u− κ)
(
f(u) − f(κ)

)
∂xϕdxdt +

∫ T/2

0

∫
R

sgn(u− κ)ζ0(t, x)ϕdxdt ≥ 0,

for any non negative smooth function ϕ with compact support, and hence is a weak entropy solution to (1.1)
and (1.2). �

Remark 3.2. Observe that, using (3.2), (3.3), (3.7) and (3.9) we have

ζε(t, x) = − 2
T − 2t

uε(t, x).

Hence, the control z appearing in Lemma 3.1 can be written in feedback form as

ζ0(t, x) = − 2
T − 2t

u(t, x),

and u = u(t, x) is the weak entropy solution solution of the singular balance law

∂tu+ ∂xf(u) = − 2
T − 2t

u, t ∈ [0, T/2[, x ∈ R,

augmented with the initial datum u(0, x) = u0(x). Since the control ζ0 turns out to be uniformly bounded, we
get that ∣∣u(t, x)

∣∣ ≤ C(T − 2t),

for some positive constant C, and hence u(t, ·) approaches uniformly zero as t→ T/2.

3.2. Step 2 − A locally Lipschitz continuous backward solution

Now we proceed with the second step of the proof of Theorem 2.2.

Lemma 3.3. Let v ∈ L1(R) ∩ BVloc(R) satisfy (1.7). Then there exist τv > 0 and a weak entropy solution
w = w(t, x) to

∂tw + ∂xf(w) = 0, T − τv ≤ t < T, (3.11)

such that

• w(t, ·) is locally Lipschitz continuous for any t ∈ [T − τv, T [;
• w(t, ·) → v in L1

loc(R) as t→ T .
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Proof. In order to construct w, we follow an idea introduced in [5], and draw the candidate generalized backward
characteristics [12]. In the following, being v ∈ BVloc(R), without loss of generality, we assume that v is right
continuous, i.e.

v(ξ) = lim
x→ξ+

v(x) ∀ξ ∈ R.

First of all, we observe that (1.7) implies that

v(x) − v(y) ≤ C(x− y), ∀x > y, (3.12)

for some positive constant C. and hence the positive total variation of v is bounded on bounded intervals. Let

ξ(t, x) = x+ (t− T )f ′(v(x)),

so that t �→ ξ(t, x) is a candidate backward characteristic originated at (T, x). We claim that there exists
τv ∈]0, T [ such that x �→ ξ(t, x) is increasing for any t ∈ [T − τv, T [, i.e. there holds

x1 < x2 =⇒ ξ(t, x1) < ξ(t, x2) ∀ ∈ [T − τv, T [.

Indeed, if v(x1) ≥ v(x2), then f ′(v(x1)) ≥ f ′(v(x2)), being f strictly convex, and hence

ξ(t, x1) − ξ(t, x2) = x1 − x2 + (t− T )
[
f ′(v(x1)) − f ′(v(x2))

] ≤ x1 − x2 < 0.

Otherwise, let Lv a Lipschitz constant for f ′ in the interval [−‖v‖∞, ‖v‖∞]. Then, using (3.12), we have

ξ(t, x1) − ξ(t, x2) = x1 − x2 + (t− T )
[
f ′(v(x1)) − f ′(v(x2))

]
≤ x1 − x2 + Lv(t− T )

[
v(x1) − v(x2)

]
≤ (x1 − x2)

[
1 + LvC(t− T )

]
.

If we choose 0 < τv < T − 1/(2LvC), we get that ξ(t, x1) < ξ(t, x2) for all t ∈ [T − τv, T [, as we claimed. Since
x �→ ξ(t, x) is increasing, it has at most countably many points of jump, say x1 < x2 < . . . < xn < . . ., that, by
construction, do not depend on t. We let

ξ−(t, xn) = xn + (t− T )f ′(v(xn−)),

En =
{
(t, x) ∈ [T − τv, T ]× R : x ∈ [

ξ−(t, xn), ξ(t, xn)
[}
.

Now define

w(t, x) =

⎧⎪⎨⎪⎩
v(y) if x = ξ(t, y) ∃y ∈ R,

g

(
x− xn

t− T

)
if (t, x) ∈ En,

(t, x) ∈ [T − τv, T ] × R,

where, as usual, g = (f ′)−1. By construction w → v in L1
loc(R) as t→ T and it is constant along the characteristic

lines of (3.11). Moreover, with the same arguments used in ([5], Proof of Thm. 1), it can be proved that w(t, ·)
is locally Lipschitz continuous for any t ∈ [T − τv, T [. Hence, w is a weak entropy solution to (3.11). �

3.3. Step 3 − Conclusion of the proof of Theorem 2.2

Now we are ready to glue together the solutions and the controls constructed at Lemmas 3.1 and 3.3

Lemma 3.4. Let 0 < t1 < t2 and u1, u2 be Lipschitz continuous functions. Then, there exists ζ1 ∈
L∞(]0, T [×R) such that the weak entropy solution u to{

∂tu+ ∂xf(u) = ζ1(t, x)

u(t1, x) = u1(x),
t ∈ [t1, t2],

is Lipschitz continuous and satisfies u(t2, x) = u2(x) for all x ∈ R.
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Figure 4. The domains of determinacy of u.

Proof. The proof is straightforward: let

u(t, x) = u1(x) +
[
u2(x) − u1(x)

] t− t1
t2 − t1

, ζ1(t, x) .= ∂tu(t, x) + ∂xf(u(t, x)).

Then, ζ1 ∈ L∞(]0, T [×R) and u fulfills the requirements. �

Now, let τv ∈]0, T/2[ and w be as in Lemma 3.3. Let ζ0 be as in Lemma 3.1 and ζ1 as in Lemma 3.4 with
t1 = T/2, t2 = T − τv, u1(x) ≡ 0 and u2(x) = w(T − τv, x). Set

z(t, x) =

⎧⎪⎨⎪⎩
ζ0(t, x) if t ∈ [0, T/2],

ζ1(t, x) if t ∈]T/2, T − τv],

0 if t ∈]T − τv, T ].

Then, thanks to Lemmas 3.1−3.4, the solution u to (1.1)−(1.2) fulfills u(T, x) = v(x) for a.e. x ∈ R. This ends
the proof of Theorem 2.2.

4. Proof of Theorem 2.4

Observe that if u is a weak entropy solution to (1.1) with z supported in [0, T ] × [a, b], then u is a weak
entropy solution to the conservation law (1.6) in [0, T ]× (R\]a, b[). In particular, if u(T, ·) = v, with v satisfying
the assumptions of Theorem 2.4, the (t, x)-plane is divided in domains of determinacy of u by the maximal and
minimal backward characteristic from (T, α) and (T, β), respectively, with α and β defined at (2.9) (see Fig. 4).
For instance, consider the strip [0, T ]×]−∞, a], and let 
 = v(α+). To fix the ideas, assume α < a, and trace
the candidate maximal backward characteristic form (T, α), i.e. the line

x = α+ f ′(
)(t− T ), 
 = v(α+). (4.1)

Let τ� ∈]0, T [ be as at 2.16, so that τ� is the time at which the line (4.1) intersects the line x = a. Since u0 ≡ 0
and since we exert a control on [0, T ] × [a, b], we can affect the behavior of a solution u to (1.1) at the left of
the line (4.1) for x < a by controlling u in the region [0, τ�]× [a, b]. Conversely, we can affect the behavior of u
at the right of (4.1) for x < a by controlling its behavior in the region [τ�, T ]× [a, b].

Using the above hints, the proof of Theorem 2.4 is done in three steps too.
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1) In Section 4.1 we construct a control z = zχ supported in the strip [0, T ]× [a,+∞[ that drives u0 ≡ 0 to

χ(x) =

{
0 if x < α,

 if x ≥ α,

(4.2)

where α ≤ a and 
 < 0 are given. In this way we construct a solution uχ to (1.1), with uχ(0, ·) ≡ 0 and
uχ(T, α+) = 
.

2) In Section 4.2 we consider again controls supported in the strip [0, T ] × [a,+∞[, but a more general final
profile v fulfilling conditions (1.7), (2.7), (2.10) and (2.12), with α defined at (2.9). We will use the results
of Section 4.1 with 
 = v(α+) in order to obtain a control z for t < τ�. Indeed, letting uχ as above, the
solution u that we will obtain in Section 4.2 will satisfy u(t, x) = uχ(t, x) whenever t < τ� or (t, x) is at the
left of the line (4.1). Then, we will use the theory of generalized characteristics by Dafermos [12] to construct
a control z and a solution u for τ� < t < T and (t, x) at the right of (4.1).

3) It is straightforward that the results obtained in Sections 4.1 and 4.2 can be extended to controls supported
in the strip [0, T ]×] − ∞, b]. In the final step of the proof of Theorem 2.4 we suitably merge together the
solutions and the controls obtained in the previous steps, and construct a bounded control z supported in
[0, T ]× [a, b] driving u0 ≡ 0 to a final profile v fulfilling the assumptions of the theorem.

We point out that we will construct in the meantime the control z and the solution u to (1.1) driving u0 ≡ 0
to v in time T .

4.1. Step 1 − Preliminary results

We start by constructing a control driving u0 ≡ 0 to the function χ at (4.2). Recall the definitions of A(T,Z)
and Za,b, a, b ∈ R, at (1.4) and (1.5), respectively, and Lemmas 2.6 and 2.8 that will be used in the following.

Lemma 4.1. Let 
 < 0 and α ≤ a be given with

f ′(
) <
α− a

T
·

Then the function χ at (4.2) belongs to A(T,Za,+∞). More precisely, we can find a measurable bounded func-
tion zχ supported in [0, T ]× [a,+∞[ such that the weak entropy solution u = uχ to (1.1) and (1.2) with u0 ≡ 0
and z = zχ satisfies uχ(T, ·) = χ. Moreover, zχ can be chosen so that uχ is piecewise Lipschitz continuous
suffering a discontinuity along a single Lipschitz continuous curve.

Proof. First of all, observe that it suffices to prove the lemma assuming α < a. Indeed, if α = a, we can choose
δ > 0 such that

f ′(
) <
α− (a+ δ)

T
,

and prove that χ ∈ A(T,Za+δ,+∞) ⊆ A(T,Za,+∞). We recall the definition of g = (f ′)−1 at (2.1). Moreover,
we will let and τ� be defined as at (2.16) (see also Rem. 2.7). We distinguish four cases, depending on f ′(0).

1) f ′(0) ≤ (α − a)/T .
We observe preliminarily that [f(
) − f(0)]/
 < (α− a)/T , being 
 < 0. We let

τ0 = T − α− a

f ′(0)
, (4.3)

so that τ0 is the time at which the (candidate) minimal characteristics from (T, α) reaches x = a. We will
construct a function u containing a compression wave that generates a shock at x = α and t = T with left
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Figure 5. The case [f(
) − f(0)]/
 < (α − a)/T and f ′(0) ≤ (α− a)/T .

and right states 0 and 
 respectively (see Fig. 5). Then, z is defined in order to let u satisfy a balance law.
We set

ua(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t < τ0,

g

(
α− a

T − t

)
if τ0 ≤ t < τ�,


 if t ≥ τ�.

Then we let

uχ(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if x < α+ f ′(0)(t− T ) and x < a,

g

(
α− x

T − t

)
if α+ f ′(0)(t− T ) ≤ x < α+ f ′(
)(t − T ) and x < a,


 if α+ f ′(
)(t− T ) ≤ x < a,

ua(t) if x ≥ a.

It is straightforward that u = uχ(t, x) is locally Lipschitz continuous for t < T and that uχ(T, ·) = χ.
Moreover, by construction u fulfills (1.1)−(1.2) with u0 ≡ 0, and z = zχ where

zχ(t, x) =

⎧⎪⎨⎪⎩
0 if x < a or x ≥ a and t �∈ [τ0, τ�[,

∂tua(t) = − 1
(T − t)2

g′
(
α− a

T − t

)
if x ≥ a and τ0 ≤ t < τ�.

2) (α − a)/T < f ′(0) < 0 and [f(�) − f(0)]/� < (α − a)/T .
In this case the characteristic from (T, α) with speed f ′(0) does not reach x = a in time T . We construct a
control z and a solution u to (1.1) and (1.2) in a way similar to the previous case. We will use a compression
wave that generates a shock issuing from the point of intersection in the (t, x) plane between the characteristic
from (0, a) with speed f ′(0) and the line

x = α+
f(
) − f(0)



(t− T ),
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slope [f( ) − f(0)]

slope f (0)

slope f ( )
u ≡

u ≡ 0

a

α

x

t

u(t, x) = ua(t)

u ≡
T

τ

Figure 6. The case (α− a)/T < f ′(0) < 0 and [f(
) − f(0)]/
 < (α− a)/T .

i.e. the point (τ, ξ) with

τ =




f ′(0) − f(
) + f(0)

[
α− a− T

f(
) − f(0)



]
,

ξ = a+
f ′(0)



f ′(0) − f(
) + f(0)

[
α− a− T

f(
) − f(0)



]
·

Since the construction is entirely similar to the previous one, we omit it and refer to Figure 6, where

τ� = τ − ξ − a

f ′(
)

is the time at which the characteristic from (τ, ξ) with speed f ′(
) reaches the line x = a.

3) f ′(0) > 0.
Recall the definition of τ� at (2.16), and fix τ ∈]0, τ�[. Let φ : [τ, T ] → R the function appearing in
Lemma 2.6, and assume that φ is chosen according to Remark 2.7. Let η1 : [0, τ ] → [a,+∞[ be any C2,
concave function such that (see Fig. 7).

η1(0) = η1(τ) = a, η′1(0) = f ′(0), η′1(τ) =
f(φ(τ)) − f(0)

φ(τ)
,

so that we have η1(t) > a for any t ∈]0, τ [. Since f is strictly convex, the function

] −∞, 0] � v �→ F (v) .=

⎧⎨⎩
f(v) − f(0)

v
if v �= 0,

f ′(0) if v = 0,
(4.4)

is strictly increasing, and hence injective. Call B its inverse, so that

B = F−1. (4.5)

Observe that, being f ∈ C2(R), F is a C1 function with F ′(v) > 0 for any v, and that its inverse B inherits
the same regularity. For any t ∈ [0, τ ] we set

v(t) = B(η′1(t)), (4.6)
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a

T

τ

τ

x = η1(t)

u ≡

u ≡ 0

x = η2(t)

x

t

u = w

slope f ( )
α

Figure 7. The case f ′(0) > 0.

so that [0, τ ] � t �→ v(t) is a C1 function, due to the regularity properties of B and η1. Moreover, observe
that by construction v(t) < 0 whenever t > 0, and t �→ η1(t) fulfills

η′1(t) =
f(v(t)) − f(0)

v(t)
, (4.7)

so that v(τ) = φ(τ). Now, let w = w(t, x) be the solution to the initial boundary value problem (2.17), as it
appears at Lemma 2.6. Call

x = η2(t), t ∈ [τ, T ]

the shock wave suffered by w (see Fig. 7). Let

η(t) .=

{
η1(t) if t ∈ [0, τ [,
η2(t) if t ∈ [τ, T ],

(4.8)

and set

uχ(t, x) .=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w(t, x) if x < a,

0 if a ≤ x < η1(t) and t ∈ [0, τ [,

v(t) if x ≥ η1(t) and t ∈ [0, τ [,

φ(t) if x ≥ a and t ∈ [τ, T ],

t ∈ [0, T ].

Then, uχ is piecewise Lipschitz continuous, suffering a shock discontinuity at x = η(t), and uχ(0, x) ≡ 0. By
construction the Rankine−Hugoniot conditions

η′(t) =
f(uχ(t, η(t)+) − f(uχ(t, η(t)−)
uχ(t, η(t)+) − uχ(t, η(t)−)

are satisfied, together with the entropy conditions (2.5) at x = η(t). Moreover, u fulfills a.e. the balance
equation (1.1) with z = zχ given by

zχ(t, x) .=

⎧⎪⎨⎪⎩
0 if x < a,

v′(t) if x ≥ a and t ∈ [0, τ [,

φ′(t) if x ≥ a and t ∈ [τ, T ].

Hence uχ is an entropy admissible solution to (1.1) and (1.2) with u0(x) ≡ 0. Being uχ(T, x) = χ(x) for any
x ∈ R, it follows that zχ is a control we were looking for.
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τ̄

x = η2(t)

x

tslope f ( )
α

x = η1(t)

s(t)
t

slope f (v(t))

Figure 8. The case f ′(0) = 0.

4) f ′(0) = 0.
The procedure is similar to the ones described in the previous cases, thus we omit the details, and refer to
Figure 8. Let τ� be as at (2.16), and 0 < τ < τ�, φ, w and η2 be as above. We construct a candidate shock
curve x = η(t),

η(t) .=

{
η1(t) if t ∈ [0, τ̄ [,
η2(t) if t ∈ [τ̄ , T ].

(4.9)

Here τ̄ ∈]τ, τ�[ is chosen arbitrarily, and t �→ η1(t), t ∈ [0, τ̄ ] is a strictly concave function, such that

η1(0) = a, η1(τ̄) = η2(τ̄ ), η′1(0) = 0, η′1(τ̄ ) = η′2(τ̄ ).

Define t �→ v(t), t ∈ [0, τ̄ ], as at (4.4)−(4.6), and observe that v(τ̄ ) = w(τ̄ , η(τ̄ )+). It turns out that v is a C1

function, and, due to the monotonicity property of the function B at (4.4) and (4.5), it is strictly decreasing.
Moreover, v(0) = a and (4.7) is satisfied for any t ∈ [0, τ̄ ]. This allows us to draw back the candidate
maximal characteristics from (t, η1(t)), and to reconstruct the trace at x = a of a candidate solution u to an
appropriate balance law. We let

s(t) =

⎧⎪⎨⎪⎩t+
a− η1(t)
f ′(v(t))

if t �= 0,

0 if t = 0,

i.e. s(t) is the time at which the candidate maximal backward characteristic from (t, η1(t)),

x = η1(t) + f ′(v(t))(s − t),

intersects the line x = a. Such a function s turns out to have a continuous inverse, which is defined on a time
interval [0, τ̃ ], and which is continuously differentiable but at t = 0. By letting ψ(t) = v(s−1(t)), t ∈ [0, τ̃ ],
one can prove that the control

zχ(t, x) =

⎧⎪⎨⎪⎩
0 if x < a,

ψ′(t) if x ≥ a and t ∈]0, τ̃ [,

φ′(t) if x ≥ a and t ∈ [τ̃ , T ],

steers u0(x) ≡ 0 to χ in time T . �

The next lemma deals with the case f ′(
) = 0 and α = a.
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Lemma 4.2. Let 
 < 0 be given with f ′(
) = 0. Then the function

χ̃(x) =

{
0 if x < a,

 if x ≥ a,

(4.10)

belongs to A(T,Za,+∞). More precisely, we can find a measurable bounded function zχ̃ supported in [0, T ] ×
[a,+∞[ such that the weak entropy solution u = uχ̃ to (1.1)−(1.2) with u0 ≡ 0 and z = zχ̃ satisfies uχ̃(T, ·) = χ̃.
Moreover, zχ̃ can be chosen so that uχ̃ is piecewise Lipschitz continuous suffering a discontinuity along a single
Lipschitz continuous curve.

Proof. Observe that, being 
 < 0 and f ′ strictly increasing, we have f ′(0) > 0. We can proceed as in the proof
of case 3) of Lemma 4.1, but we use Lemma 2.8, instead of Lemma 2.6. Since the proof is entirely similar, we
omit it. �

Remark 4.3. Since Lemma 2.8 and the construction in the proof of case 3) of Lemma 4.1, we can assume that
the weak entropy solution uχ̃ of Lemma 4.2 satisfies

uχ̃(t, x) = 
 ∀t ∈ [τ̃�, T ], x ≥ a,

with τ̃� as in the statement of Lemma 2.8.

In the following remark we summarize the construction carried out in the above Lemmas. This will be useful
in Section 4.3 which contains the conclusion of the proof of Theorem 2.4.

Remark 4.4. As pointed out in the statement of Lemmas 4.1 and 4.2, in order to attain the final profile χ
at (4.2) we constructed a bounded control z and a weak entropy solution u to (1.1) which is piecewise Lipschitz
continuous, suffering at most a shock discontinuity along a Lipschitz continuous curve x = η(t). Along such a
curve u satisfies the Rankine−Hugoniot conditions (2.4) and the entropy conditions (2.5). Whenever f ′(0) ≥ 0,
it may happen that η(t) ∈ [a, b] for t ∈ [0, τ ], with τ ∈]0, T [ suitably chosen. In any case, by construction there
exists a constant C = C(τ, α,
) > 0 depending on τ , α and 
 such that

lim
τ→0

C(τ, α,
) = 0, max
t∈[0,τ ]

η(t) ≤ C(τ, α,
). (4.11)

Moreover, observe that the L∞ norm of the control z satisfies

‖z‖∞ = O(1) · 1
τ
, (4.12)

where O(1) is the usual Landau’s symbol. This is a key property of the control z that we constructed, as it will
be clear when completing the proof of Theorem 2.4 (see Rem. 4.8).

4.2. Step 2 − Controls supported in a half-line

In this section we consider controls supported in the strips [0, T ]× [a,−∞[ and [0, T ]×]−∞, b], with a, b ∈ R

given. We will give attainability results for general final profiles v, and the results of the previous subsection
will play a key role.

Proposition 4.5. Let u0 ≡ 0 in (1.1) and (1.2), v ∈ BV(R), and α be defined as in (2.9). Assume that
conditions (1.7), (2.7), (2.10) and (2.12) are fulfilled. Then v ∈ A(T,Za,+∞), and hence we can find a measurable
bounded function z = za,+∞ supported in [0, T ]× [a,+∞[ such that the weak entropy solution u = ua,+∞ to (1.1)
and (1.2) with u0 ≡ 0 and z = za,+∞ satisfies ua,+∞(T, ·) = v. Moreover, za,+∞ can be chosen so that ua,+∞
is piecewise Lipschitz continuous suffering a discontinuity along a single Lipschitz continuous curve.
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Proof. Similarly to what we observed in Remark 2.5, assumptions (1.7) and (2.7) imply that there exists α ∈ R

such that v(x) �= 0 only if x ≥ α. If α > a, then, by using the same technique contained in the proof of
Theorem 2.2, we obtain a bounded control z driving u ≡ 0 to v such that z(t, x) = 0 for any x ≤ a. Hence,
without loss of generality, we can assume that α ≤ a. Moreover, it is not restrictive to assume that v is right
continuous. In order to prove the proposition we distinguish three cases, depending on α and



.= v(α+) = lim

x→α+
v(x). (4.13)

We will mostly focus on the case 
 < 0 and f ′(
) < (α− a)/T , since the other ones can be treated in a similar
way. Preliminarily, observe that the case 
 > 0 can not occur, otherwise

lim sup
h→0

v(α+ h) − v(α)
h

= +∞,

and condition (1.7) would be violated.

1) � < 0 and f ′(�) < (α − a)/T .
First of all, as in the proof of Lemma 4.1, without loss of generality we can assume that α < a. Otherwise
we can choose δ > 0 such that

f ′(
) <
α− (a+ δ)

T
,

and prove that v ∈ A(T,Za+δ,+∞) ⊆ A(T,Za,+∞). Let τ� and χ be defined as at (2.16) and (4.2),
respectively, and let τv be as in Lemma 3.3. In order to construct the control z we follow the same ideas
of the proof of ([5], Thm. 1). We divide the time interval [0, T ] in three subintervals, [0, τ�[, [τ�, T − τv[,
[T − τv, T ]. In [0, τ�[ and [T − τv, T ] we will perform the same constructions of Lemmas 4.1 and 3.3,
respectively. Next, we will let

ξ(t, x) = x+ (t− T )f ′(v(x)) (4.14)

be the candidate backward characteristic from (T, x). In the time interval ]τ�, T − τv] we construct a
Lipschitz continuous trace ua = ua(t) of the candidate solution at x = a by using the fact that the solution
to (1.1) and (1.2) is constant along genuine characteristics for x < a. Finally, we will define a candidate
Lipschitz solution u in ]τ�, T − τv] having ua as trace at x = a, and find a corresponding control z such
that u is a solution to a system of balance laws. We will then obtain za,+∞ and ua,+∞ by piecing together
the contribution in suitable regions of the (t, x)-plane (see Fig. 9).
By Lemma 4.1 there exists a control zχ driving u0 ≡ 0 to χ in time T . We let z(t, x) = zχ(t, x) whenever
t ≤ τ� and x ≥ a and u(t, x) = uχ(t, x) whenever

t ∈ [0, τ�] or t ∈]τ�, T ] and x < α+ f ′(
)(t− T ).

In this way we obtain a solution u to (1.1) and (1.2) for t ≤ τ� which is Lipschitz continuous in [0, τ�]×R,
but a Lipschitz curve where it suffers a jump discontinuity. Moreover, u(τ�, x) = 
 for all x ≥ a. In order to
go further with the construction for t ∈]τ�, T ], and particularly with the construction of the trace ua = ua(t)
at x = a for t ∈]τ�, T − τv], we proceed in three steps.

Step 1. First of all, observe that the function

[α, a[� x �→ ϕ(x) .=
f ′(v(x))
a− x

is strictly decreasing. Indeed, it suffices to prove that

lim sup
h→0

ϕ(x+ h) − ϕ(x)
h

< 0 ∀x ∈ [α, a[.
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But this follows easily from (2.12), being

lim sup
h→0

ϕ(x + h) − ϕ(x)
h

=
f ′′(v(x))
a− x

[
lim sup

h→0

v(x + h) − v(x)
h

− f ′(v(x))
f ′′(v(x))(x − a)

]
≤ − c

a− α
inf
u∈R

f ′′(u), (4.15)

where

sup
{

lim sup
h→0

v(x+ h) − v(x)
h

− f ′(v(x))
(x− a)f ′′(v(x))

: x < a, v(x) �= 0
}

= −c < 0.

From the monotonicity properties of ϕ there follows that the lines (4.14) do not intersect each other in the
strip [0, T ]×]−∞, a]. Indeed, let α ≤ x1 < x2 < a be such that

x1 + (t− T )f ′(v(x1)) = x2 + (t− T )f ′(v(x2))
.= ξ.

Being ϕ(x1) < ϕ(x2), we have

ξ − a

x1 − a
= 1 + (T − t)ϕ(x1) < 1 + (T − t)ϕ(x2) =

ξ − a

x2 − a
,

from which we deduce that ξ > a.

Step 2. Due to the previous step, we deduce that f ′(v(x)) < 0 for all x ∈ [α, a[. Indeed, if f ′(v(x̄)) ≥ 0 for
some x̄ ∈]α, a[, being f ′(
) ≤ (α− a)/T < thanks to (2.7), the lines

x = x̄+ (t− T )f ′(v(x̄)), x = α+ (t− T )f ′(
)

would intersect in the strip [0, T ]×]−∞, a]. It follows that we can define a function

[α, a[� x �→ τ(x), τ(x) ≥ 0,

such that ξ(τ(x), x) = a, i.e.

τ(x) .= T +
a− x

f ′(v(x))
= T +

1
ϕ(x)

, (4.16)

that turns out to be strictly increasing, being ϕ strictly decreasing. Hence, x �→ τ(x) has at most countably
many points of discontinuity, say

α ≤ x1 < x2 < . . . < xn < . . . < a,

where it has finite left and right limits, say τ(xk−) and τ(xk+), respectively, k ≥ 1. Moreover, observe
that, since (4.15) and recalling the definition of τv at Lemma 3.3, whenever τ(x) ≤ T − τv (and hence
τv ≤ −1/ϕ(x)) we have

τ(x2) − τ(x1) ≥ γ(x2 − x1) ∀x1 < x2 ∈ [α, a[, (4.17)

where

γ =
τ2
v c

a− α
inf
u∈R

f ′′(u).

Step 3. Let τ−1 be the inverse function of τ(·). Observe that τ−1 is strictly increasing and, moreover,
since (4.17), there holds

τ−1(t2) − τ−1(t1) ≤ 1
γ

(t2 − t1) ∀t1, t2 ∈]τ�, T − τv], t1 < t2,
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and hence τ−1 is Lipschitz continuous on ]τ�, T − τv]. In oder to produce a candidate Lipschitz trace
ua = ua(t) of u = u(t, x) at x = a in the time interval ]τ�, T − τv], we let

T
.= sup

x∈[α,a[

τ(x), (4.18)

and we distinguish two cases. We recall the notation g = (f ′)−1.
(a) T ≥ T − τv. For t ∈]τ�, T − τv] we define

ua(t) .=

⎧⎪⎨⎪⎩
v(τ−1(t)) if τ(xk−1+) < t < τ(xk−) for some k ≥ 1,

g

(
a− xk

t− T

)
if τ(xk−) < t < τ(xk+) for some k ≥ 1.

Such a map turns out to be Lipschitz continuous. Indeed, since (4.16), if τ(xk−1+) < t < τ(xk−), we
have

v(τ−1(t)) = g

(
a− τ−1(t)
t− T

)
. (4.19)

Now the Lipschitz continuity of t �→ ua(t) follows easily, being t− T bounded away from zero.
(b) T < T − τv. Observe that in this case there holds f ′(v(a−)) = 0. Indeed, we have

f ′(v(a−)) = lim
x→a−

f ′(v(x)) = lim
x→a−

a− x

T − τ(x)
= 0, (4.20)

since
lim

x→a−
τ(x) = T , (4.21)

being τ(·) strictly increasing. We define

ua(t) .=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v(τ−1(t)) if τ(xk−1+) < t < τ(xk−) for some k ≥ 1,

g

(
a− xk

t− T

)
if τ(xk−) < t < τ(xk+) for some k ≥ 1,

v(a−) if T ≤ t ≤ T − τv.

Again, t �→ ua(t) is Lipschitz continuous. Indeed, the Lipschitz continuity in ]τ�, T ] stems from what
we have observed in the previous case. Hence, it suffices to prove that u(·) is continuous at t = T .
Since (4.19) and (4.20), it suffices to prove that

lim
t→T

τ−1(t) = sup
t∈]τ�,T [

τ−1(t) = a.

But this holds true thanks to (4.21).
Now, in order to construct a control z and a solution u to (1.1) with u(0, x) ≡ 0 and u(T, ·) = v, we
proceed as follows. The idea is to patch together suitable controls z and the corresponding solutions to
(1.1) (see Fig. 9).
(a) Following the same guidelines contained in the proof of Lemma 3.3, we can construct a solution w =

w(t, x) to (3.11) in the time interval [T − τv, T ] which is Lipschitz continuous in [T − τv, T [×R, and such
that w(t, ·) → v in L1

loc(R) as t→ T . Observe that by construction we have

w(T − τv, a) = ua(T − τv).
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x = a
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u = uχ
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u = wa

z = 0

z = 0

u = U

z = ∂tU + ∂xf(U)

Figure 9. The construction of z and u.

(b) Consider the strip S .= [τ�, T − τv] × [a,+∞[, and the function U = U(t, x) defined on ∂S by

U(t, x) =

⎧⎪⎨⎪⎩

 if t = τ� and x ≥ a,

w(t, x) if t ∈ [T − τv, T ] and x ≥ a,

ua(t) if t ∈]τ�, T − τv[ and x = a.

By construction U is Lipschitz continuous, and hence, using McShane−Whitney extension lemma (e.g.,
see [2], Prop. 2.12), it can be extended to a Lipschitz function, that we call again U = U(t, x) defined in
the all strip S.

(c) We let wa = wa(t, x) the solution to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tu+ ∂xf(u) = 0

u(t, a) = ua(t) if t ∈ [τ�, T − τv[,

u(t, a) = w(t, a)) if t ∈]T − τv, T ],


 if t = τ�,

t ∈ [τ�, T ], x ≤ a.

Observe that, by construction,

wa(t, x) = w(t, x) ∀t ∈ [T − τv, T ], α+ f ′(
)(t− T ) < x ≤ a.

(d) Recalling the definition of uχ and zχ at Lemma 4.1, we let (see Fig. 9)

za,+∞(t, x) =

⎧⎪⎨⎪⎩
zχ(t, x) if t ∈ [0, τ�],

∂tU(t, x) + ∂xf(U(t, x)) if t ∈]τ�, T − τv[ and x ≥ a,

0 otherwise,

and

ua,+∞(t, x) =

⎧⎪⎨⎪⎩
uχ(t, x) if t ∈ [0, τ�] or x ≤ α+ f ′(
)(t− T ),

U(t, x) if t ∈]τ�, T ] and x ≥ a,

wa(t, x) if t ∈]τ�, T ] and α+ f ′(
)(t− T ) < x < a.
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By construction, it turns out that ua,+∞ solves (1.1) and (1.2) with u0(x) ≡ 0 and z = za,+∞, it fulfills
u(T, ·) = v and za,+∞ is supported in the half line [a,+∞[.

2) � < 0, α = a and f ′(�) = 0.
Let τ and τ̃� be as in the statement of Lemma 2.8, and zχ̃ and uχ̃ be as at Lemma 4.2. As above, we let τv
and w = w(t, x) be as at Lemma 3.3. Moreover, let x = η(t) the Lipschitz curve along which uχ̃ suffers
a shock discontinuity, so that η(0) = η(τ) = a by construction. Using the McShane−Whitney extension
lemma we call

U = U(t, x), t ∈ [τ, T ], x ≥ a,

a Lipschitz continuous extension of the function

(t, x) �→

⎧⎪⎨⎪⎩
uχ̃(τ, x) if t = τ and x > a,

uχ̃(t, a) if t ∈ [τ,max{T − τv, τ̃�}, T [ and x = a,

w(t, x) if t ∈ [max{T − τv, τ̃�}, T ] and x ≥ a.

Then, we let

za,+∞(t, x) =

⎧⎪⎨⎪⎩
zχ̃(t, x) if t ∈ [0, τ ],

∂tU(t, x) + ∂xf(U(t, x)) if t ∈]τ,max{T − τv, τ̃�}] and x ≥ a,

0 otherwise,

and

ua,+∞(t, x) =

⎧⎪⎨⎪⎩
uχ̃(t, x) if t ∈ [0, τ ] or x ≤ a,

U(t, x) if t ∈]τ,max{T − τv, τ̃�}] and x ≥ a,

w(t, x) if t ∈] max{T − τv, τ̃�}, T ] and x ≥ a.

It turns out that by construction u = ua,+∞ and z = za,+∞ fulfill the desired requests.

3) � = 0.
Observe that thanks to (2.7) there holds

f ′(
) ≤ α− a

T − t
.

Two cases may happen.
(a) α < a.

Let τ� be defined as at (2.16), so that τ� ∈ [0, T [. We let u(t) = u(t, a) = 0 for 0 ≤ t ≤ τ�, and then
we proceed as in case 
 < 0 for constructing u(t) for τ� < t ≤ T − τv.

(b) α ≥ a.
We let w = w(t, x) be as at Lemma 3.3, and call U = U(t, x) a Lipschitz continuous function such that
U(t, x) = 0 for x < α or t = 0 and U(T − τv, x) = w(t, x) for x ≥ α. Then, we proceed as at cases 1)
and 3) to produce the control z and the solution u we were looking for. �

Remark 4.6. Observe that condition (2.12) ensures that the profile of the candidate solution that we con-
structed at x = a is Lipschitz continuous, and hence the control z be L∞. Indeed, consider Burgers’s equation

∂tu+ ∂x(u2/2) = 0,

and let τ = τ(x) ∈ [1, 3/2[, x ∈ [−1, 0[, be the solution to

−√
3 − 2τ (2 − τ) = x. (4.22)
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Then it can be easily seen that

v(x) =

{
0 if x < −1 or x > 0,

−√
3 − 2τ(x) if −1 ≤ x < 0,

fulfills conditions (1.7), (2.7) with a = 0 and T = 2. Moreover, it satisfies

lim sup
h→0

v(x+ h) − v(x)
h

<
f ′(v(x))
xf ′′(v(x))

(4.23)

for x ∈ [−1, 0[. Indeed, from (4.22) we get

τ ′(x) =

√
3 − 2τ(x)

5 − 3τ(x)
,

so that for x ∈ [−1, 0[ we obtain

lim sup
h→0

v(x+ h) − v(x)
h

=
1

5 − 3τ(x)
·

In order that (4.23) be fulfilled, we must check that

1
5 − 3τ(x)

< −
√

3 − 2τ(x)
x

,

and this is true thanks to (4.22) and being τ(x) < 3/2. Nevertheless, using the construction contained in the
proof of Proposition 4.5, we get that the candidate solution u = u(t, x) at x = 0 and for t ∈ [1, 3/2[ satisfies

u(t, 0) = −√
3 − 2t,

so that we do not get a Lipschitz profile. Hence, we do not obtain an L∞ control z(t, x) = ∂tu(t, 0), x ≥ 0,
supported in [0, 2]× [0,+∞[ and steering to v the solution u to (1.1) and (1.2) with f(u) = u2/2 and u0 = 0.

A statement which is symmetric to Proposition 4.5 can be proved.

Proposition 4.7. Let u0 ≡ 0 in (1.1) and (1.2), v ∈ BV(R), and β be defined as in (2.9). Assume that
conditions (1.7), (2.8), (2.11) and (2.13) are fulfilled. Then v ∈ A(T,Z−∞,b), and hence we can find a measurable
bounded function z = z−∞,b supported in [0, T ]×]−∞, b] such that the weak entropy solution u = u−∞,b to (1.1)
and (1.2) with u0 ≡ 0 and z = z−∞,b satisfies u−∞,b(T, ·) = v. Moreover, z−∞,b can be chosen so that u−∞,b is
piecewise Lipschitz continuous suffering a discontinuity along a single Lipschitz continuous curve.

It is obvious that the proof is entirely similar to the one of Proposition 4.5, and thus we omit it.

4.3. Step 3 − Conclusion of the proof of Theorem 2.4

We will obtain the control z and the solution u by patching together the controls and the solutions at
Propositions 4.5 and 4.7. To fix the ideas, let f ′(0) ≥ 0. We will deal only with the case

v(α+) < 0 < v(β−), α < a, β > b,

the other ones being similar. Let za,+∞, ua,+∞ and z−∞,b and u−∞,b be as in Propositions 4.5 and 4.7, respec-
tively. Then, ua,+∞ is Lipschitz continuous out of a Lipschitz’s curve x = η(t) fulfilling (4.11), where

η(0) = η(τ) = a and η(t) ≥ a ∀t ∈ [0, τ ],
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x = a x = bx = a+ δ x = b− δ

t = T

t = T − τv

u = U

z = ∂tU + ∂xf(U)

u = w z = 0

u = ua,+∞ u = u−∞,b

z = za,+∞ z = z−∞,b

Figure 10. Conclusion of the proof of Theorem 2.4.

for a given τ ∈]0, T [. Hence, since Remark 4.4 we can choose τ such that

max
t∈[0,τ ]

η(t) < b.

Let δ > 0 be such that
b− δ > max

t∈[0,τ ]
η(t) + δ.

As usual, we let τv and w be as in Lemma 3.3. Using again the McShane−Whitney extension lemma, call
U = U(t, x) the Lipschitz continuous extension to the whole rectangle

[0, T − τv] × [a+ δ, b− δ]

of the function defined by

(t, x) �→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if t = 0 and x ∈ [a+ δ, b− δ],

ua,+∞(t, a+ δ) if t ∈]0, T − τv[ and x = a+ δ,

u−∞,b(t, b− δ) if t ∈]0, T − τv[ and x = b− δ,

w(T − τv, x) if, t = T − τv and x ∈ [a+ δ, b− δ].

Then, let (see Fig. 10)

z(t, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
za,+∞(t, x) if x ≤ a+ δ,

∂tU(t, x) + ∂xf(U(t, x)) if t ∈ [0, T − τv] and x ∈ [a+ δ, b− δ],

z−∞,b(t, x) if x ≥ b− δ,

0 otherwise,

and

u(t, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ua,+∞(t, x) if x ≤ a+ δ,

U(t, x) if t ∈ [0, T − τv] and x ∈ [a+ δ, b− δ],

w(t, x) if t ∈]T − τv, T ] and x ∈ [a+ δ, b− δ],

u−∞,b(t, x) if x ≥ b − δ.
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It turns out that by construction z is supported in [0, T ]× [a, b], u is a weak entropy solution to (1.1) and (1.2)
with u0(x) ≡ 0, and u(t, ·) = v.

Remark 4.8. In view of Remark 4.4 and of the above construction, we point out that (4.11) and (4.12) are
key properties in order to construct a bounded control z steering u0 = 0 to v in time T , independently on the
amplitude b− a > 0 of the interval [a, b]. Conversely, using the above construction we obtain a control z = za,b

such that
‖za,b‖∞ → +∞ as (b− a) → 0.

Appendix A.

In this section we state and prove some technical lemmas that were used in Section 3. In the following, if
B ⊂ R

n is a measurable set, we denote by |B| its Lebesgue’s measure. Moreover, we let Bp = π(p)/2/Γ (n/2+1)
be the Lebesgue’s measure of the unit ball in R

p.

Lemma A.1. Let k ∈ R
n, k �= 0, and r > 0. Then, if

Ck
.=

{
x ∈ Br(0) : |〈k,x〉| ≥ ‖k‖‖x‖/2

}
,

there holds

|Ck| = rn

[
Bn−1

3(n−1)/2

n2n−1
+

∫ 1

1/2

(1 − t2)(n−1)/2 dt

]
.

Proof. It is not restrictive to assume that k = ke1, where {e1, . . . , en} is the canonical basis of R
n. Then

Ck =
{
(x1, . . . , xn) ∈ R

n : x2
2 + . . .+ x2

n ≤ min{3x2
1, r

2 − x2
1}

}
.

There follows that

|Ck| =
∫ r

−r

Bn−1

∣∣min{3x2, r2 − x2}∣∣(n−1)/2 dx

= 2Bn−1

[
3(n−1)/2

∫ r/2

0

xn−1 dx+
∫ r

r/2

(r2 − x2)(n−1)/2 dx

]
,

from which the conclusion easily follows. �

Now, we recall the following definition (see [2], Def. 3.70).

Definition A.2. Let u ∈ L1
loc(R

n). We say that u is approximatively differentiable at x0 ∈ R
n if there exist

L ∈ R
n such that

lim
r→0

1∣∣Br(x0)
∣∣
∫

Br(x0)

∣∣u(x) − u(x0) − 〈L,x − x0〉
∣∣

‖x − x0‖ dx = 0,

where 〈·, ·〉 denotes the usual scalar product in R
n. In such a case, we write L = ∇u(x0).

By a theorem due to Calderón and Zygmund (e.g., see [2], Thm. 3.83), if Ω ⊆ R
n is open and u ∈ BVloc(Ω),

then u is almost everywhere approximately differentiable.

Proposition A.3. Let Ω ⊆ R
n be open, and u ∈ BVloc(Ω). Let ∇u(x) be the approximate differential of u

at x. If u is constant on a measurable set A ⊆ Ω, then ∇u(x) = 0 for a.e. x ∈ A.
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Proof. Let |A| > 0, otherwise nothing has to be proved, and assume that u(x) = κ for all x ∈ A. Let x0 ∈ A be
a point of approximate differentiability of u such that

lim
r→0

∣∣Br(x0) ∩A
∣∣∣∣Br(x0)

∣∣ = 1, (A.1)

which holds for a.e. x0 ∈ A. Then we have

0 = lim
r→0

1∣∣Br(x0)
∣∣
∫

Br(x0)

∣∣u(x) − u(x0) − 〈∇u(x0),x − x0〉
∣∣

‖x− x0‖ dx

= lim
r→0

1∣∣Br(x0)
∣∣
∫

Br(x0)∩A

∣∣〈∇u(x0),x − x0〉
∣∣

‖x− x0‖ dx

+
1∣∣Br(x0)

∣∣
∫

Br(x0)\A

∣∣u(x) − u(x0) − 〈∇u(x0),x − x0〉
∣∣

‖x− x0‖ dx,

and hence there holds

lim
r→0

1∣∣Br(x0)
∣∣
∫

Br(x0)∩A

∣∣〈∇u(x0),x − x0〉
∣∣

‖x− x0‖ dx = 0. (A.2)

Now, assume by contradiction that ∇u(x0) = k �= 0, and let

Ck =
{
x ∈ R

n :
∣∣〈k,x − x0〉

∣∣ ≥ ‖k‖‖x− x0‖/2
}
.

Then, due to lemma A.1, we have

lim
r→0

∣∣Br(x0) ∩Ck

∣∣∣∣Br(x0)
∣∣ =

1
Bn

[
Bn−1

3(n−1)/2

n2n−1
+

∫ 1

1/2

(1 − t2)(n−1)/2 dt

]
.= γ > 0.

Since (A.1), there holds

lim
r→0

∣∣Br(x0) \A
∣∣∣∣Br(x0)

∣∣ = 0,

and hence

lim
r→0

∣∣(Br(x0) ∩ Ck

) \A∣∣∣∣Br(x0)
∣∣ = 0,

so that ∣∣Br(x0) ∩A ∩ Ck

∣∣∣∣Br(x0)
∣∣ ≥ γ

2

whenever r > 0 is sufficiently small. But this implies that for the same values of r > 0 there holds

1∣∣Br(x0)
∣∣
∫

Br(x0)∩A

∣∣〈∇u(x0),x − x0〉
∣∣

‖x− x0‖ dx ≥ 1∣∣Br(x0)
∣∣
∫

Br(x0)∩A∩Ck

∣∣〈k,x − x0〉
∣∣

‖x − x0‖ dx

≥ ‖k‖
2

∣∣Br(x0) ∩A ∩ Ck

∣∣∣∣Br(x0)
∣∣ ≥ 1

4
‖k‖γ,

thus contradicting (A.2). �

Corollary A.4. Let Ω ⊆ R
n be open, F : R → R

n a C1 function, u ∈ BVloc(Ω), and z ∈ L1
loc(Ω). Assume that

u is a distributional solution to
div F(u(x)) = z(x), x ∈ Ω.

If u is constant on a measurable set A ⊆ Ω, then z(x) = 0 for a.e. x ∈ A.
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Proof. By ([2], Thm. 3.96), F(u) ∈ BVloc(Ω), and its approximate differential DF(u) satisfies

DF(u(x)) = F′(u(x))∇u(x) for a.e. x ∈ Ω.

Being, in the assumptions of the corollary, div F(u(x)) a measure absolutely continuous w.r.t. the Lebesgue’s
measure of R

n, and since ∇u(x) = 0 for a.e. x ∈ A thanks to proposition A.3, we easily get the conclusion. �
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