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A VARIATIONAL APPROACH TO A STATIONARY FREE BOUNDARY
PROBLEM MODELING MEMS ∗

Philippe Laurençot1 and Christoph Walker2

Abstract. A variational approach is employed to find stationary solutions to a free boundary prob-
lem modeling an idealized electrostatically actuated MEMS device made of an elastic plate coated
with a thin dielectric film and suspended above a rigid ground plate. The model couples a non-local
fourth-order equation for the elastic plate deflection to the harmonic electrostatic potential in the free
domain between the elastic and the ground plate. The corresponding energy is non-coercive reflecting
an inherent singularity related to a possible touchdown of the elastic plate. Stationary solutions are
constructed using a constrained minimization problem. A by-product is the existence of at least two
stationary solutions for some values of the applied voltage.
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1. Introduction

Microelectromechanical systems (MEMS) play a key rôle in many electronic devices nowadays and include
micro-pumps, optical micro-switches, and sensors, to name but a few [19]. Idealized electrostatically actuated
MEMS consist of an elastic plate lying above a fixed ground plate and held clamped along its boundary. A
Coulomb force induced by the application of a voltage difference across the device deflects the elastic plate. It
is known from applications that a stable configuration is only obtained for voltage differences below a certain
critical threshold as above this value the elastic plate may “pull in” on the ground plate.

In a simplified and re-scaled geometry when presupposing zero variation in transversal direction (see Fig. 1),
the stationary problem can be described as finding the plate deflection u = u(x) ∈ (−1,∞) on the interval
I := (−1, 1) according to

β∂4
xu(x) −

(
τ + a‖∂xu‖2

L2(I)

)
∂2

xu(x) = −λ (ε2|∂xψ(x, u(x))|2 + |∂zψ(x, u(x))|2) , x ∈ I, (1.1)

u(±1) = ∂xu(±1) = 0, (1.2)
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Figure 1. Idealized electrostatic MEMS device.

along with the electrostatic potential ψ = ψ(x, z) satisfying

ε2∂2
xψ + ∂2

zψ = 0, (x, z) ∈ Ω(u), (1.3)

ψ(x, z) =
1 + z

1 + u(x)
, (x, z) ∈ ∂Ω(u), (1.4)

in the region
Ω(u) := {(x, z) ∈ I × R : −1 < z < u(x)}

between the two plates. In equation (1.1), the fourth-order term β∂4
xu with β > 0 reflects plate bending while

the linear second-order term τ∂2
xu with τ ≥ 0 and the non-local second-order term a‖∂xu‖2

L2(I)∂
2
xu with a ≥ 0

and

‖∂xu‖2
L2(I) :=

∫ 1

−1

|∂xu|2 dx

account for external stretching and self-stretching forces generated by large oscillations, respectively. The right-
hand side of (1.1) is due to the electrostatic forces exerted on the elastic plate with parameter λ > 0 proportional
to the square of the applied voltage difference and the device’s aspect ratio ε > 0. The boundary conditions (1.2)
mean that the elastic plate is clamped. According to (1.3)−(1.4), the electrostatic potential is harmonic in the
region Ω(u) enclosed by the two plates with value 1 on the elastic plate and value 0 on the ground plate. We
refer the reader e.g. to [6, 16, 19] and the references therein for more details on the derivation of the model.

A crucial feature of the model is the singularity arising in the term ∂zψ(x, u(x)) of (1.1) when u(x) = −1 (due
to ψ(x,−1) = 0 and ψ(x, u(x)) = 1), i.e. when the elastic plate touches down on the ground plate. The strength
of this instability is in some sense tuned by the parameter λ and it is thus expected that solutions to (1.1)−(1.4)
only exist for small values of λ below a certain threshold. Obviously, the stable operating conditions of MEMS
devices and hence the existence of stationary solutions are of utmost importance in applications. Questions
related to the pull-in threshold were the focus of a very active research in the recent past, however, almost
exclusively dedicated to the simplified small gap model obtained by formally setting ε = 0 in (1.1)−(1.4). This
reduces the problem to a singular nonlinear eigenvalue problem for u of the form

β∂4
xu(x) −

(
τ + a‖∂xu‖2

L2(I)

)
∂2

xu(x) = −λ 1
(1 + u(x))2

, x ∈ I, (1.5)
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subject to the boundary conditions (1.2) with explicitly given electrostatic potential

ψ(x, z) =
1 + z

1 + u(x)
·

For detailed results on the small gap model we refer the reader to [6, 10, 14, 17] and the references therein in
which also higher dimensional counterparts are investigated. Roughly speaking, in the one-dimensional (and two-
dimensional radially symmetric) fourth-order small gap model with clamped boundary conditions and a = 0 it
is known [14] that there is a threshold λ∗ > 0 such that there are (at least) two solutions to (1.5) for λ ∈ (0, λ∗),
one solution for λ = λ∗, and no solution for λ > λ∗.

A similar result might also be expected for the free boundary problem (1.1)−(1.4) with ε > 0. A first step in
this direction was made in Theorem 1.7 in [13], where the following result was shown for a = 0:

Proposition 1.1. Let a = 0.

(i) There is λs(ε) > 0 such that for each λ ∈ (0, λs(ε)) there exists a solution (Uλ, Ψλ) to (1.1)−(1.4) with
Uλ ∈ H4(I) satisfying −1 < Uλ < 0 in I and Ψλ ∈ H2(Ω(Uλ)). The mapping λ �→ (λ, Uλ) defines a smooth
curve in R ×H4(I) with Uλ −→ 0 in H4(I) as λ→ 0.

(ii) There are ε∗ > 0 and λc : (0, ε∗) → (0,∞) such that there is no solution (u, ψ) to (1.1)−(1.4) for ε ∈ (0, ε∗)
and λ > λc(ε).

Actually, (Uλ, Ψλ) for λ ∈ (0, λs) is an asymptotically stable steady state for the corresponding dynamic problem.
The proof of part (i) of Proposition 1.1 is based on the Implicit Function Theorem and readily extends to the
case a > 0. For part (ii) one may employ a nonlinear variant of the eigenfunction method involving a positive
eigenfunction in H4(I) associated to the fourth-order operator β∂4

x − τ∂2
x subject to the clamped boundary

condition (1.2). For further use we now state the extension of Proposition 1.1 (i) to a > 0.

Theorem 1.2. Let a ≥ 0. There is λs(a, ε) > 0 such that for each λ ∈ (0, λs(a, ε)) there exists a solution
(Uλ, Ψλ) to (1.1)−(1.4) with Uλ ∈ H4(I) satisfying −1 < Uλ < 0 in I and Ψλ ∈ H2(Ω(Uλ)). The mapping
λ �→ (λ, Uλ) defines a smooth curve in R ×H4(I) with Uλ −→ 0 in H4(I) as λ→ 0.

Theorem 1.2 in particular ensures the existence of stationary solutions for small values of λ. However, it
leaves open the question whether multiple solutions exist for such values of λ which is a remarkable feature of
the simplified small gap model as pointed out above. The purpose of the present paper is to give (partially) an
affirmative answer. More precisely, we shall prove herein:

Theorem 1.3. There is a one-parameter family (λρ, uρ, ψρ)ρ>2 with λρ > 0, uρ ∈ H4(I), and ψρ ∈ H2(Ω(uρ))
such that (uρ, ψρ) is a solution to (1.1)−(1.4) with λ = λρ for each ρ > 2. Both uρ = uρ(x) and ψρ = ψρ(x, z)
are even with respect to x ∈ I and −1 < uρ < 0 in I. Moreover, λρ → 0 as ρ → ∞ and uρ �= Uλρ for all ρ > 2
sufficiently large.

Theorem 1.3 provides multiple solutions to (1.1)−(1.4) for small values of λ and is derived by a variational
approach. It relies on the observation that (1.1) is the Euler-Lagrange equation of the total energy E given by
E(u) := Em(u) − λEe(u) with mechanical energy

Em(u) :=
β

2
‖∂2

xu‖2
L2(I) +

1
2

(
τ +

a

2
‖∂xu‖2

L2(I)

)
‖∂xu‖2

L2(I)

and electrostatic energy

Ee(u) :=
∫

Ω(u)

(
ε2|∂xψu|2 + |∂zψu|2

)
d(x, z),

where the electrostatic potential ψu is the solution to (1.3)−(1.4) associated to the given (sufficiently smooth)
deflection u. Note that E is the sum of terms with different signs. The possible pull-in instability thus manifests in
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the non-coercivity of the energy E , and due to this a plain minimization of the total energy is not appropriate.
In fact, it follows from Lemma 2.9 (ii) that E is not bounded from below for λ > 0 and we therefore take
an alternative route and minimize the mechanical energy Em constrained to (certain) deflections u with fixed
electrostatic energy Ee(u) = ρ. Each minimizer uρ of this constrained minimization problem together with the
corresponding electrostatic potential ψρ := ψuρ then yields a solution to (1.1)−(1.4) for the corresponding
Lagrange multiplier λ = λρ. Though lacking a continuity property with respect to ρ > 2, the observation that
Ee(Uλ) → 2 as λ→ 0 while λρ → 0 for Ee(uρ) = ρ→ ∞ yields multiplicity of solutions to (1.1)−(1.4) for small
values of λ in the sense that there is at least a sequence λj → 0 of voltage values for which there are two different
solutions (uj , ψj) (i.e. ρ = j in Thm. 1.3) and (Uλj , Ψλj ) (i.e. λ = λj in Thm. 1.2). Note that, by taking a
different sequence ρj → ∞ with ρj �= j, we obtain different solutions (uρj , ψρj ) – since the electrostatic energies
differ – but with possibly equal voltage values. We conjecture that, as in the simplified small gap model, the
solutions constructed in Theorem 1.3 actually lie on a smooth curve.

To prove Theorem 1.3 we first solve in Section 2 the elliptic problem (1.3)−(1.4) for the electrostatic potential
ψ = ψu for a given deflection u and investigate then its dependence and that of the corresponding electrostatic
energy Ee(u) with respect to u. Some technical details needed regarding continuity and differentiability properties
of Ee and the right-hand side of (1.1) are postponed to Section 4. The constrained minimization problem leading
to Theorem 1.3 is studied in Section 3.

2. Some properties of the electrostatic energy and potential

We first focus on the elliptic problem (1.3)–(1.4) and investigate its solvability and properties of the corre-
sponding electrostatic energy.

We shall use the following notation. To account for the clamped boundary conditions (1.2) we introduce, for
s ≥ 0 and p ≥ 2,

W s
p,D(I) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{v ∈ W s
p (I) ; v(±1) = ∂xv(±1) = 0}, s > 3

2
,

{v ∈ W s
p (I) ; v(±1) = 0}, 1

2
< s <

3
2
,

W s
p (I), s <

1
2
,

and write Hs
D(I) := W s

2,D(I). Similarly, H1
D(Ω(u)) := {v ∈ H1(Ω(u)) ; v = 0 on ∂Ω(u)}. For s ≥ 1 we set

Ss := {u ∈ Hs
D(I) : u > −1 on I} , Ks := {u ∈ Hs

D(I) : −1 < u ≤ 0 on I} ,

and given u ∈ S1 we define

bu(x, z) :=

⎧⎪⎪⎨
⎪⎪⎩

1 + z

1 + u(x)
for (x, z) ∈ Ω(u),

1 for (x, z) ∈ Ω(0) \Ω(u),

(2.1)

with Ω(0) = I× (−1, 0). Note that, if u ∈ K1, then the function bu belongs to H1(Ω(0))∩C(Ω(0)) which allows
us to define Bu ∈ H−1(Ω(0)) (i.e. the dual space of H1

D(Ω(0))) by setting

〈Bu, ϑ〉 := −
∫

Ω(0)

[
ε2∂xbu∂xϑ+ ∂zbu∂zϑ

]
d(x, z), ϑ ∈ H1

D(Ω(0)). (2.2)

2.1. Electrostatic potential

We first recall the existence and properties of weak solutions to (1.3)–(1.4) for u ∈ K1 which follow from
Theorem 8.3 in [7] and the Lax–Milgram theorem.
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Lemma 2.1. Given u ∈ S1, there is a unique weak solution ψu ∈ H1(Ω(u)) to (1.3)−(1.4) such that ψu − bu ∈
H1

D(Ω(u)). If, in addition, u ∈ K1, then ψu − bu satisfies the variational inequality

∫
Ω(u)

(
ε2|∂x(ψu − bu)|2 + |∂z(ψu − bu)|2) d(x, z) − 2〈Bu, ψu − bu〉

≤
∫

Ω(u)

(
ε2|∂xϑ|2 + |∂zϑ|2

)
d(x, z) − 2〈Bu, ϑ〉 (2.3)

for all ϑ ∈ H1
D(Ω(u)).

Replacing ϑ ∈ H1
D(Ω(u)) in (2.3) by ξ − bu, where ξ is an arbitrary function in H1(Ω(u)) satisfying ξ − bu ∈

H1
D(Ω(u)), one easily obtains the following consequence:

Lemma 2.2. Let u ∈ K1. For all ξ ∈ H1(Ω(u)) such that ξ − bu ∈ H1
D(Ω(u)) there holds

∫
Ω(u)

(
ε2|∂xψu|2 + |∂zψu|2

)
d(x, z) ≤

∫
Ω(u)

(
ε2|∂xξ|2 + |∂zξ|2

)
d(x, z). (2.4)

We collect additional properties of ψu in the next result when u is assumed to be more regular.

Proposition 2.3. Let α ∈ [0, 1/2). If u ∈ S2−α, then the weak solution ψu to (1.3)−(1.4) belongs to
H2−α(Ω(u)). In addition, if u ∈ K2−α, then

1 + z ≤ ψu(x, z) ≤ 1, (x, z) ∈ Ω(u), (2.5)
∂xψu(x, u(x)) = −∂zψu(x, u(x)) ∂xu(x), x ∈ I, (2.6)
∂zψu(x, u(x)) ≥ 0, x ∈ I. (2.7)

Proof. That ψu ∈ H2−α(Ω(u)) for u ∈ S2−α follows from Corollary 4.2 proved in Section 4. Next, if u ∈ K2−α,
then owing to the non-positivity of u, the functions (x, z) �→ 1 + z and (x, z) �→ 1 are a subsolution and a
supersolution to (1.3)−(1.4), respectively, and (2.5) follows from the comparison principle. To obtain (2.6),
we simply differentiate the boundary condition ψu(x, u(x)) = 1, x ∈ I, with respect to x. Finally, (2.7) is a
straightforward consequence of the boundary condition ψu(x, u(x)) = 1, x ∈ I, and (2.5). �

Thanks to the continuity of the normal trace of the gradient fromH2−α(Ω(u)) to H(1−2α)/2(I) for α ∈ [0, 1/2)
(see Thm. 1.5.2.1 in [8]), the regularity of the solution ψu ∈ H2−α(Ω(u)) to (1.3)–(1.4) for u ∈ S2−α provided
by Proposition 2.3 gives a meaning to the right-hand side of (1.1). We introduce the function g by

g(u)(x) := ε2|∂xψu(x, u(x))|2 + |∂zψu(x, u(x))|2, x ∈ I, u ∈ S2−α, (2.8)

and observe:

Proposition 2.4. If α ∈ [0, 1/2), then g ∈ C(S2−α, Hσ(I)) for all σ ∈ [0, 1/2).

Proof. This is proved in Corollary 4.2. �

Remark 2.5. The fact that g is a locally bounded map from S2 in Hσ(I) for all σ ∈ [0, 1/2) is already noticed
in Lemma 5.6 in [13].
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2.2. Electrostatic energy

We now study the properties of the electrostatic energy

Ee(u) =
∫

Ω(u)

(
ε2|∂xψu|2 + |∂zψu|2

)
d(x, z), u ∈ S1, (2.9)

where ψu ∈ H1(Ω(u)) is provided by Lemma 2.1. Alternatively, we may write for u ∈ K1

Ee(u) =
∫

Ω(u)

(
ε2|∂x(ψu − bu)|2 + |∂z(ψu − bu)|2) d(x, z)

− 2〈Bu, ψu − bu〉 +
∫ 1

−1

(
1 +

ε2

3
|∂xu|2

)
dx

1 + u
· (2.10)

We first establish a monotonicity property of Ee similar to Remark 4.7.14 in [11].

Proposition 2.6. Consider two functions u1 and u2 in K1 such that u1 ≤ u2. Then Ee(u2) ≤ Ee(u1).

Proof. Consider ξ ∈ H1(Ω(u1)) such that ξ − bu1 ∈ H1
D(Ω(u1)) and define

ξ̃(x, z) :=

⎧⎨
⎩
ξ(x, z) for (x, z) ∈ Ω(u1),

1 for (x, z) ∈ Ω(u2) \Ω(u1).

Note that this definition is meaningful since Ω(u1) ⊂ Ω(u2). Since bu1(x, u1(x)) = bu2(x, u2(x)) = 1 for x ∈ I,
the previous construction guarantees that ξ̃ ∈ H1(Ω(u2)) with

ξ̃ − bu2 ∈ H1
D(Ω(u2)) and ∇ξ̃ = 1Ω(u1) ∇ξ. (2.11)

We now infer from Lemma 2.2 and (2.11) that

Ee(u2) ≤
∫

Ω(u2)

(
ε2|∂xξ̃|2 + |∂z ξ̃|2

)
d(x, z)

=
∫

Ω(u1)

(
ε2|∂xξ|2 + |∂zξ|2

)
d(x, z).

The above inequality being valid for all ξ ∈ H1(Ω(u1)) satisfying ξ−bu1 ∈ H1
D(Ω(u1)), in particular for ξ = ψu1 ,

we conclude that Ee(u2) ≤ Ee(u1). �

We next turn to continuity and Fréchet differentiability of the functional Ee.

Proposition 2.7. If α ∈ [0, 1/2), then Ee ∈ C(K1) ∩C1(S2−α) with ∂uEe(u) = −g(u) for u ∈ S2−α.

Proof.
Step 1: Continuity. Let (un)n≥1 be a sequence in K1 and u ∈ K1 such that un −→ u in H1(I). We first
observe that, for all n ≥ 1, ψun − bun ∈ H1

D(Ω(un)) is a weak solution to

ε2∂2
x (ψun − bun) + ∂2

z (ψun − bun) = −Bun , (x, z) ∈ Ω(un), (2.12)

while the convergence of (un)n≥1 toward u in H1(I) entails that

lim
n→∞ ‖Bun −Bu‖H−1(Ω(0)) = 0, (2.13)
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where Ω(0) = I × (−1, 0). Next, denoting the Hausdorff distance between open subsets of Ω(0) by dH (see
Sect. 2.2.3 in [11] for instance), we realize that

dH(Ω(un), Ω(u)) ≤ ‖un − u‖L∞(I),

and deduce from the continuous embedding of H1(I) in L∞(I) that

lim
n→∞ dH(Ω(un), Ω(u)) = 0. (2.14)

Since Ω(0) \ Ω(un) has a single connected component for all n ≥ 1, it follows from (2.12), (2.13), (2.14),
Theorem 4.1 in [20], and (Cor. 3.2.6 in [11]) that

ψun − bun −→ ψu − bu in H1
D(Ω(0)). (2.15)

Therefore, since

lim
n→∞

∫ 1

−1

(
1 +

ε2

3
|∂xun|2

)
dx

1 + un
=
∫ 1

−1

(
1 +

ε2

3
|∂xu|2

)
dx

1 + u

thanks to the continuous embedding of H1(I) in L∞(I), we may pass to the limit as n → ∞ in (2.10) for un

and use (2.13) and (2.15) to complete the proof.

Step 2: Differentiability. Consider u ∈ S2−α and v ∈ H2−α
D (I). Owing to the continuous embedding of

H2−α(I) in L∞(I), u + sv still belongs to S2−α for s ∈ R small enough and the map s �→ Ee(u + sv) is thus
well-defined in a neighborhood of s = 0. We then argue as in the proof of Proposition 2.2 in [13], with the
help of a shape optimization approach (by transforming the electrostatic energy Ee to a fixed domain by means
of (4.1); see [11], for instance) to show that this map is differentiable at s = 0 with

d
ds

Ee(u+ sv)
∣∣∣
s=0

= −
∫ 1

−1

g(u)v dx.

Consequently, Ee is Gâteaux-differentiable with derivative ∂uEe(u) ∈ L (H2−α
D (I),R

)
. Since g ∈ C(S2−α, L2(I))

by Proposition 2.4, the Gâteaux-derivative ∂uEe is continuous as a mapping from S2−α to L (H2−α
D (I),R

)
. The

claim follows from Proposition 4.8 in [21]. �

We next derive additional properties of Ee and, in particular, the following lower and upper bounds which
have been established in Lemma 7 in [3] and Lemma 5.4 in [13], respectively.

Lemma 2.8. For u ∈ K1,

2 ≤
∫ 1

−1

dx
1 + u(x)

≤ Ee(u) ≤
∫ 1

−1

(
1 + ε2|∂xu(x)|2) dx

1 + u(x)
·

Proof. We recall the proof for the sake of completeness. We first deduce from (1.4) and the Cauchy−Schwarz
inequality that, for x ∈ I,

1
1 + u(x)

=
(ψu(x, u(x)) − ψu(x,−1))2

1 + u(x)
=

1
1 + u(x)

(∫ u(x)

−1

∂zψu(x, z) dz

)2

≤
∫ u(x)

−1

(∂zψu(x, z))2 dz.
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Integrating the above inequality with respect to x ∈ I readily gives the first inequality of Lemma 2.8. We next
infer from Lemma 2.2 with ξ = bu, the latter being defined in (2.1), that

Ee(u) ≤
∫

Ω(u)

(
ε2|∂xbu|2 + |∂zbu|2

)
d(x, z)

≤
∫

Ω(u)

[
ε2

(1 + z)2

(1 + u(x))4
|∂xu(x)|2 +

1
(1 + u(x))2

]
d(x, z),

from which the second inequality of Lemma 2.8 follows. �

Finally, we recall the existence of a non-positive eigenfunction of the linear operator β∂4
x − τ∂2

x ∈
L(H4

D(I), L2(I)) along with some of its properties.

Lemma 2.9.

(i) The linear operator β∂4
x−τ∂2

x ∈ L(H4
D(I), L2(I)) has a non-positive eigenfunction ϕ1 ∈ H4

D(I)∩C∞([−1, 1])
associated to a positive eigenvalue μ1. Moreover, ϕ1 is even and it can be chosen such that ϕ1 < 0 in I with
min[−1,1] ϕ1 = −1.

(ii) Given ρ ∈ (2,∞), there is ηρ ∈ (0, 1) such that Ee(ηρϕ1) = ρ and ηρ → 0 as ρ→ 2.

Proof. Part (i) follows from Theorem 4.7 in [15], which is a consequence of the version of Boggio’s principle [2]
established in [9, 15, 18]. As for part (ii), note that ηϕ1 ∈ K1 for η ∈ [0, 1) and

J(η) := Ee(ηϕ1) ≥
∫ 1

−1

dx
1 + ηϕ1(x)

, η ∈ [0, 1), (2.16)

by Lemma 2.8. We infer from Propositions 2.6 and 2.7 that J is a non-decreasing and continuous function on
[0, 1) with J(0) = 2. In addition, ϕ1 reaches necessarily its minimum −1 at some x0 ∈ I and thus satisfies
ϕ1(x0) = −1 and ∂xϕ1(x0) = 0. Therefore,

0 ≤ 1 + ϕ1(x) ≤ ‖∂2
xϕ1‖L∞(I) |x− x0|2 as x→ x0,

which implies that (1 + ϕ1)−1 �∈ L1(I). This property along with (2.16) entails that J(η) → ∞ as η → 1.
Recalling the continuity of J , we have thus shown that [2,∞) equals the range of J . The existence of ηρ for each
ρ ∈ (2,∞) such that Ee(ηρϕ1) = ρ now follows. That ηρ → 0 as ρ → 2 is a consequence of the fact that (2.16)
implies J(η) = 2 if and only if η = 0. �

3. A minimization problem with constraint

Recall that, for u ∈ H2
D(I), the mechanical energy Em is given by

Em(u) =
β

2
‖∂2

xu‖2
L2(I) +

1
2

(
τ +

a

2
‖∂xu‖2

L2(I)

)
‖∂xu‖2

L2(I).

Our goal is now to minimize Em on the set

Aρ :=
{
u ∈ K2 ; u is even and Ee(u) = ρ

}
for a given ρ ∈ (2,∞). Note that Aρ is non-empty as it contains ηρϕ1 according to Lemma 2.9. We set

μ(ρ) := inf
u∈Aρ

Em(u) ≥ 0

and first collect some properties of the function ρ �→ μ(ρ).
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Proposition 3.1. The function μ is non-decreasing on (2,∞) with

lim
ρ→2

μ(ρ) = 0 and μ∞ := lim
ρ→∞μ(ρ) <∞.

Proof. Let ρ ∈ (2,∞). Since ηρϕ1 ∈ Aρ and η2
ρ < 1, a straightforward computation gives

0 ≤ μ(ρ) ≤ Em(ηρϕ1) ≤ η2
ρEm(ϕ1).

Since Em(ϕ1) is finite, ηρ ∈ (0, 1), and ηρ → 0 as ρ→ 2 by Lemma 2.9, we readily obtain

lim
ρ→2

μ(ρ) = 0 and 0 ≤ μ(ρ) ≤ Em(ϕ1). (3.1)

Let us now check the monotonicity of μ. To this end, fix 2 < ρ1 < ρ2 and v ∈ Aρ2 . For all t ∈ [0, 1], the function
tv belongs to K2, and Propositions 2.6 and 2.7 imply that the function h : [0, 1] → R, defined by h(t) := Ee(tv),
is continuous and non-decreasing with h(0) = 2 and h(1) = ρ2. Since ρ1 ∈ (2, ρ2), there is t1 ∈ (0, 1) such that
h(t1) = ρ1, that is, t1v ∈ Aρ1 . Consequently,

μ(ρ1) ≤ Em(t1v) ≤ Em(v).

As v was arbitrarily chosen in Aρ2 , the above inequality allows us to conclude that μ(ρ1) ≤ μ(ρ2). Thus, μ is
a non-decreasing function on (2,∞) which is bounded from above by Em(ϕ1) according to (3.1). It then has a
finite limit μ∞ ∈ [0, Em(ϕ1)] as ρ→ ∞. �

We next show the existence of uρ ∈ Aρ such that

Em(uρ) = μ(ρ), (3.2)

that is, uρ is a minimizer of Em in Aρ.

Proposition 3.2. For each ρ ∈ (2,∞), there is at least one solution uρ ∈ Aρ to the minimization problem (3.2).

The first step of the proof of Proposition 3.2 is a pointwise lower bound for functions in Aρ.

Lemma 3.3. Given ρ > 2 and v ∈ Aρ, assume that there is K ≥ 2/ρ such that ‖∂2
xv‖L2(I) ≤ K. Then

min
[−1,1]

v ≥ 1
ρ3K2

− 1.

Proof. Thanks to the continuous embedding of H2
D(I) in C1([−1, 1]), the function v reaches its minimum m

at some point xm ∈ [−1, 1]. Since Ee(v) = ρ > 2 and v ∈ K2, we realize that v �≡ 0 and m ∈ (−1, 0) so that
xm ∈ I. Therefore, ∂xv(xm) = 0 and we may assume that xm ∈ [0, 1) since v is even. Using Taylor’s expansion
and Hölder’s inequality, we find, for x ∈ I,

v(x) = m−
∫ x

xm

(y − x)∂2
xv(y) dy ≤ m+

|x− xm|3/2

√
3

‖∂2
xv‖L2(I)

≤ m+K|x− xm|3/2. (3.3)

Next, since v ∈ Aρ, we infer from Lemma 2.8 and (3.3) that

ρ = Ee(v) ≥
∫ 1

−1

dx
1 + v(x)

= 2
∫ 1

0

dx
1 + v(x)

≥ 2
∫ 1

0

dx
1 +m+K|x− xm|3/2

· (3.4)
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If xm ∈ [1/2, 1), then xm − (ρK)−2 > 0, and it follows from (3.4) that

ρ ≥ 2
∫ xm

xm−(ρK)−2

dx
1 +m+K|x− xm|3/2

≥ 2(ρK)−2

1 +m+K(ρK)−3
,

hence m ≥ ρ−3K−2 − 1 as claimed. If xm ∈ [0, 1/2), then xm + (ρK)−2 < 1, and we deduce from (3.4) that

ρ ≥ 2
∫ xm+(ρK)−2

xm

dx
1 +m+K|x− xm|3/2

≥ 2(ρK)−2

1 +m+K(ρK)−3
,

and the same computation as in the previous case completes the proof. �

Proof of Proposition 3.2. Let (uk)k≥1 be a minimizing sequence of Em in Aρ satisfying

μ(ρ) ≤ Em(uk) ≤ μ(ρ) +
1
k
· (3.5)

A first consequence of Proposition 3.1 and (3.5) is that ‖∂2
xuk‖2

L2(I) ≤ 2(1+μ∞)/β for all k ≥ 1. Together with

Lemma 3.3 (with K = (2/ρ) + 2
√

(1 + μ∞)/β) this property ensures

0 ≥ uk(x) ≥ β

8ρ(β + (1 + μ∞)ρ2)
− 1, x ∈ [−1, 1], k ≥ 1. (3.6)

Also, owing to (3.1), (3.5), and Poincaré’s inequality, the sequence (uk)k≥1 is bounded in H2
D(I) and thus rela-

tively compact in C1([−1, 1]). Consequently, there are u ∈ H2
D(I) and a subsequence of (uk)k≥1 (not relabeled)

such that

uk −→ u in C1([−1, 1]),

uk ⇀ u in H2
D(I). (3.7)

Combining (3.6) and (3.7) we conclude that

0 ≥ u(x) ≥ β

8ρ(β + (1 + μ∞)ρ2)
− 1, x ∈ [−1, 1],

hence u ∈ K2. We then infer from Proposition 2.7 that

Ee(u) = lim
k→∞

Ee(uk) = ρ,

and so u ∈ Aρ. Since
Em(u) ≤ lim inf

k→∞
Em(uk) ≤ μ(ρ)

by (3.5) and (3.7), we deduce that Em(u) = μ(ρ) so that u is a minimizer of Em in Aρ. �

Theorem 3.4. Consider ρ ∈ (2,∞) and let u ∈ Aρ be an arbitrary minimizer of Em in Aρ. Then u ∈ H4
D(I)

and there is λu > 0 such that

β∂4
xu(x) −

(
τ + a‖∂xu‖2

L2(I)

)
∂2

xu(x) = −λu

(
ε2|∂xψu(x, u(x))|2 + |∂zψu(x, u(x))|2) (3.8)

for x ∈ I, where ψu ∈ H2(Ω(u)) denotes the associated solution to (1.3)−(1.4) given by Lemma 2.1 and
Proposition 2.3. Furthermore,

0 < λu ≤ 8μ∞
(√
β + ε2

√
μ∞
)

√
β(ρ− 2)2

· (3.9)
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Proof. Let u ∈ Aρ ⊂ K2 be a minimizer of Em. Recall from Proposition 2.7 that the derivative of Ee is given by

〈∂uEe(u), ϑ〉 = −
∫ 1

−1

g(u)ϑ dx, ϑ ∈ H2
D(I),

with g(u) ∈ L2(I) while clearly

〈∂uEm(u), ϑ〉 =
∫ 1

−1

(
β∂2

xu ∂
2
xϑ+

(
τ + a‖∂xu‖2

L2(I)

)
∂xu ∂xϑ

)
dx, ϑ ∈ H2

D(I).

Since u solves (3.2) and g(u) is non-negative, (4.14. Prop. 1 in [22]) implies that there is a Lagrange multiplier
λu ∈ R such that

〈∂uEm(u), ϑ〉 = λu〈∂uEe(u), ϑ〉, ϑ ∈ H2
D(I). (3.10)

We may then combine (3.10) and classical elliptic regularity to conclude that u ∈ H4
D(I) solves (3.8) in a strong

sense. In addition, taking ϑ = u in (3.10) gives

β‖∂2
xu‖2

L2(I) + τ‖∂xu‖2
L2(I) + a‖∂xu‖4

L2(I) = −λu

∫ 1

−1

ug(u) dx, (3.11)

hence λu > 0 since g(u) is non-negative and u is non-positive and different from zero.
We are left with the upper bound (3.9) on λu. On the one hand, multiplying (1.3) by (1 + u)ψu − (1 + z),

integrating over Ω(u), and using

(1 + u(x))ψu(x, z) − (1 + z) = 0, (x, z) ∈ ∂Ω(u),

we obtain from Green’s formula that

0 =
∫

Ω(u)

[
ε2∂xψu∂x ((1 + u)ψu) + ∂zψu ((1 + u)∂zψu − 1)

]
d(x, z)

=
∫

Ω(u)

[
(1 + u)

(
ε2|∂xψu|2 + |∂zψu|2

)
+ ε2ψu∂xψu ∂xu

]
d(x, z) − 2,

whence ∫
Ω(u)

[
u
(
ε2|∂xψu|2 + |∂zψu|2

)
+ ε2ψu∂xψu ∂xu

]
d(x, z) = 2 − Ee(u). (3.12)

On the other hand, we multiply (1.3) by uψu and integrate over Ω(u). Using again Green’s formula along with
the values of u and ψu on the boundary of Ω(u), we find

0 = −
∫

Ω(u)

[
ε2∂xψu∂x (uψu) + ∂zψu (u∂zψu)

]
d(x, z)

− ε2
∫ 1

−1

u(x)∂xu(x) ∂xψu(x, u(x)) dx +
∫ 1

−1

u(x)∂zψu(x, u(x)) dx

= −
∫

Ω(u)

[
u
(
ε2|∂xψu|2 + |∂zψu|2

)
+ ε2ψu∂xψu ∂xu)

]
d(x, z)

+
∫ 1

−1

u(x)
[
∂zψu(x, u(x)) − ε2∂xu(x) ∂xψu(x, u(x))

]
dx.

Combining (3.12) with the above identity and (2.6) we end up with

−
∫ 1

−1

u(x)
(
1 + ε2|∂xu(x)|2) ∂zψu(x, u(x)) dx = Ee(u) − 2. (3.13)
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Now it follows from (2.6), (3.2), (3.11), (3.13), Jensen’s inequality, the bounds −1 < u ≤ 0, and the non-
negativity (2.7) of x �→ ∂zψu(x, u(x)) that

4μ(ρ) ≥ β‖∂2
xu‖2

L2(I) + τ‖∂xu‖2
L2(I) + a‖∂xu‖4

L2(I)

= −λu

∫ 1

−1

u(x)
(
1 + ε2|∂xu(x)|2) |∂zψu(x, u(x))|2 dx

≥ λu

(∫ 1

−1

|u(x)| (1 + ε2|∂xu(x)|2) ∂zψu(x, u(x)) dx
)2

∫ 1

−1

|u(x)| (1 + ε2|∂xu(x)|2) dx

≥ λu
(Ee(u) − 2)2

2 + ε2‖∂xu‖2
L2(I)

·

We finally observe that Ee(u) = ρ as u ∈ Aρ while

‖∂xu‖2
L2(I) = −

∫ 1

−1

u ∂2
xu dx ≤

∫ 1

−1

|∂2
xu| dx ≤

√
2‖∂2

xu‖L2(I) ≤ 2

√
μ(ρ)
β

,

since u ∈ K2 solves (3.2). Therefore,

4μ(ρ) ≥ λu

√
β(ρ− 2)2

2
(√

β + ε2
√
μ(ρ)

) ,
which gives (3.9) after using Proposition 3.1. �

Proof of Theorem 1.3. Clearly, Proposition 3.2 and Theorem 3.4 imply that for each ρ > 2 there are λρ > 0,
uρ ∈ H4

D(I), and ψρ ∈ H2(Ω(uρ)) such that (uρ, ψρ) is a solution to (1.1)−(1.4) with λ = λρ. We recall that
λ �→ (λ, Uλ) defines a smooth curve in R×H4(I) starting at (0, 0) according to Theorem 1.2 so that Ee(Uλ) → 2
as λ→ 0 due to Proposition 2.7. Consequently, since Ee(uρ) = ρ and λρ → 0 as ρ→ ∞, we realize that uρ �= Uλρ

for large ρ. Finally, since uρ is even and uniquely determines ψρ, it readily follows that ψρ = ψρ(x, z) is even
with respect to x ∈ I. �

4. Regularity of solutions to (1.3)–(1.4)

In this section we provide the technical proofs of Propositions 2.3 and 2.4 that were postponed. That is, we
shall improve the regularity of the weak solution ψu to (1.3)−(1.4) given in Lemma 2.1 for smoother deflec-
tions u and prove continuity properties of the function g defined in (2.8). In order to do so we introduce the
transformation

Tu(x, z) :=
(
x,

1 + z

1 + u(x)

)
, (x, z) ∈ Ω(u),

mapping Ω(u) onto the fixed rectangle Ω := I × (0, 1). We then transform the elliptic problem (1.3)–(1.4) for
ψu in the variables (x, z) ∈ Ω(u) to the elliptic problem

LuΦu = fu in Ω, Φu = 0 on ∂Ω, (4.1)

for Φu(x, η) = ψu ◦ T−1
u (x, η) − η in the variables (x, η) = Tu(x, z) ∈ Ω, where the operator Lu is given by

Luw := ε2 ∂2
xw − 2ε2 η

∂xu(x)
1 + u(x)

∂x∂ηw +
1 + ε2η2(∂xu(x))2

(1 + u(x))2
∂2

ηw

+ ε2 η

[
2
(
∂xu(x)

1 + u(x)

)2

− ∂2
xu(x)

1 + u(x)

]
∂ηw (4.2)
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and the right-hand side fu is given by

fu(x, η) := ε2η

[
∂x

(
∂xu(x)

1 + u(x)

)
−
(
∂xu(x)

1 + u(x)

)2
]
, (x, η) ∈ Ω. (4.3)

The goal is then to obtain uniform estimates for Φu in the anisotropic space

X(Ω) := {w ∈ H1(Ω) ; ∂ηw ∈ H1(Ω)}
in dependence of deflections u belonging to certain open subsets

Ss
p(κ) :=

{
u ∈ W s

p,D(I) ; u > −1 + κ in I and ‖u‖W s
p,D(I) <

1
κ

}
of W s

p,D(I), where p ≥ 2, s > 1/p, and κ ∈ (0, 1). Note that the closure of Ss
p(κ) in W s

p,D(I) is

S
s

p(κ) =
{
u ∈ W s

p,D(I) ; u ≥ −1 + κ in I and ‖u‖W s
p,D(I) ≤ 1

κ

}
and Ss = ∪κ∈(0,1)S

s
2(κ). More precisely, we shall prove the following result regarding the problem (4.1):

Proposition 4.1. Let α ∈ [0, 1/2), ν ∈ (α, 1/2), κ ∈ (0, 1), and u ∈ S
2−α

2 (κ). There is a unique solution
Φu ∈ X(Ω) ∩H2−ν(Ω) to (4.1) which satisfies

‖Φu‖X(Ω) + ‖Φu‖H2−ν (Ω) ≤ c1(κ) (4.4)

for some positive constant c1(κ) depending only on ε, α, ν, and κ. In addition, the distribution qu, defined for
ϑ ∈ C∞

0 (Ω) by

〈qu, ϑ〉 := −
∫

Ω

[∂xΦu(x, η) − ηU(x)∂ηΦu(x, η)] ∂xϑ(x, η) d(x, η)

+
∫

Ω

ηU(x)∂x∂ηΦu(x, η)ϑ(x, η) d(x, η) (4.5)

with U := ∂x ln (1 + u), belongs to the dual space H−α(Ω) of Hα(Ω), and there is c2(κ) depending only on ε,
α, and κ such that

‖qu‖H−α(Ω) ≤ c2(κ). (4.6)

Furthermore, if (un)n≥1 is a sequence in S
2−α

2 (κ) converging weakly in H2−α(I) toward u ∈ S
2−α

2 (κ), then

Φun ⇀ Φu in X(Ω) ∩H2−ν(Ω) (4.7)

and (Φun)n≥1 converges strongly to Φu in H1(Ω).

The proof of Proposition 4.1 requires several steps which will be given in the next subsection, the actual
proof of Proposition 4.1 being contained in Section 4.2. From Proposition 4.1 we may in particular derive more
regularity for the solution ψu to (1.3)–(1.4) and the continuity of the function g defined in (2.8) as stated in the
next corollary.

Corollary 4.2. Given α ∈ [0, 1/2) and u ∈ S2−α, the corresponding solution ψu to (1.3)−(1.4) belongs to
H2−α(Ω(u)). In addition, g ∈ C(S2−α, Hσ(I)) for all σ ∈ [0, 1/2).

It is worth pointing out here that, though the elliptic boundary-value problem (4.1) for Φu is equivalent to
the elliptic boundary-value problem (1.3)–(1.4) for ψu through the transformation

Φu(x, η) = ψu ◦ T−1
u (x, η) − η,

a striking discrepancy appears with respect to regularity: indeed, if u belongs to S2−α, then ψu belongs to
H2−α(Ω(u)) whereas Φu only lies in H2−ν(Ω) for ν ∈ (α, 1/2).

As already indicated, Propositions 2.3 and 2.4 are now consequences of Corollary 4.2 which is proved in
Subsection 4.2.
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4.1. Auxiliary results

The starting point for the proof of Proposition 4.1 is the solvability of the Dirichlet problem for Lu in H−1(Ω)
for u ∈ S

2−α

2 (κ) and in L2(Ω) for u ∈ S
2

p(κ) with p > 2.

Lemma 4.3. Let α ∈ [0, 1/2), p > 2, and κ ∈ (0, 1).

(i) Given u ∈ S
2−α

2 (κ) and h ∈ H−1(Ω) there is a unique weak solution Φ ∈ H1
D(Ω) to

LuΦ = h in Ω, Φ = 0 on ∂Ω. (4.8)

Moreover, there is c3(κ) depending only on ε, α, and κ such that

‖Φ‖H1(Ω) ≤ c3(κ)‖h‖H−1(Ω). (4.9)

(ii) Given u ∈ S
2

p(κ) and h ∈ L2(Ω) there is a unique solution Φ ∈ H1
D(Ω) ∩H2(Ω) to (4.8).

Proof. The proof of Lemma 4.3 (i) is similar to that of the first statement of Lemma 2.2 in [5], thanks to
the continuous embedding of H2−α(I) in W 1

∞(I). Next, Lemma 4.3 (ii) follows from the second statement of
Lemma 6 in [4]. �

We next provide continuity properties with respect to u and h of the solution Φ to (4.8).

Lemma 4.4. Let α ∈ [0, 1/2) and κ ∈ (0, 1). Consider sequences (un)n≥1 in S
2−α

2 (κ) and (hn)n≥1 in H−1(Ω)
such that

un ⇀ u in H2−α(I) and hn ⇀ h in H−1(Ω).

Denoting the solution to (4.8) with (un, hn) by Φn and that of (4.8) by Φ there holds

Φn ⇀ Φ in H1(Ω).

Proof. Let n ≥ 1 and ϑ ∈ H1
D(Ω). Setting Un := ∂x ln (1 + un), the weak formulation of (4.8) for Φn reads

ε2
∫

Ω

[∂xΦn − ηUn∂ηΦn] ∂xϑ d(x, η)

+
∫

Ω

[
−ε2ηUn∂xΦn +

(
1

(1 + un)2
+ ε2η2U2

n

)
∂ηΦn

]
∂ηϑ d(x, η)

−ε2
∫

Ω

[
Un∂xΦn − ηU2

n∂ηΦn

]
ϑ d(x, η) = −

∫
Ω

hnϑ d(x, η). (4.10)

Owing to the compactness of the embedding of H2−α(I) in W 1
∞(I), there is a subsequence (unk

)k≥1 of (un)n≥1

such that (unk
)k≥1 converges toward u in W 1

∞(I) as k → ∞. This implies in particular that (Unk
)k≥1 and

(U2
nk

)k≥1 converge, respectively, toward U := ∂x ln (1 + u) and U2 in L∞(I). Furthermore, it follows from (4.9)

and the boundedness of (hn)n≥1 in H−1(Ω) and that of (un)n≥1 in S
2−α

2 (κ) that (Φn)n≥1 is bounded in H1
D(Ω).

We may therefore assume that (Φnk
)k≥1 converges weakly toward some Ψ in H1

D(Ω). Combining the previous
weak convergences we realize that all terms in (4.10) converge and letting nk → ∞ in (4.10) shows that Ψ is a
weak solution to (4.8). According to Lemma 4.3 (i), Ψ coincides with the unique solution Φ to (4.8). This, in
turn, implies the convergence of the whole sequence (Φn)n≥1 and completes the proof. �

We next derive additional estimates on the solution to (4.8) for some specific choices of the right-hand side
h and begin with the case h ∈ L2(Ω).
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Lemma 4.5. Let α ∈ [0, 1/2), ν ∈ (α, 1/2), κ ∈ (0, 1), u ∈ S
2−α

2 (κ), and h ∈ L2(Ω). The unique solution Φ
to (4.8), given by Lemma 4.3 (i), belongs to X(Ω) ∩ H2−ν(Ω), and there is c4(κ) depending only on ε, α, ν,
and κ such that

‖Φ‖X(Ω) + ‖Φ‖H2−ν(Ω) ≤ c4(κ)‖h‖L2(Ω). (4.11)

Furthermore, the distribution q, defined for ϑ ∈ C∞
0 (Ω) by

〈q, ϑ〉 := −
∫

Ω

[∂xΦ(x, η) − ηU(x)∂ηΦ(x, η)] ∂xϑ(x, η) d(x, η)

+
∫

Ω

ηU(x)∂x∂ηΦ(x, η)ϑ(x, η) d(x, η) (4.12)

with U := ∂x ln (1 + u), belongs to L2(Ω), and there is c5(κ) depending only on ε, α, and κ such that

‖q‖L2(Ω) ≤ c5(κ)‖h‖L2(Ω). (4.13)

Proof.
Step 1. We first assume that u ∈ S

2−α

2 (κ) ∩ W 2
p (I) for some p > 2. Clearly, there is κ′ ∈ (κ, 1) such that

u ∈ S
2

p(κ
′). Thus, by Lemma 4.3 (ii), the solution Φ to (4.8) belongs to H2(Ω). Set ζ := ∂2

ηΦ and ω := ∂x∂ηΦ.
We multiply (4.8) by ζ and integrate over Ω to find∫

Ω

hζ d(x, η) = ε2
∫

Ω

∂2
xΦ∂

2
ηΦ d(x, η) − 2ε2

∫
Ω

ηUωζ d(x, η)

+
∫

Ω

[
1

(1 + u)2
+ ε2η2U2

]
ζ2 d(x, η) + ε2

∫
Ω

η
[
U2 − ∂xU

]
ζ∂ηΦ d(x, η).

Using the identity ∫
Ω

∂2
xΦ∂

2
ηΦ d(x, η) =

∫
Ω

ω2 d(x, η)

from Lemmas 4.3.1.2 and 4.3.1.3 in [8], we deduce

ε2‖ω − ηUζ‖2
L2(Ω) +

∥∥∥∥ ζ

1 + u

∥∥∥∥
2

L2(Ω)

=
ε2

2
R1 +R2 (4.14)

with

R1 := 2
∫

Ω

η(∂xU − U2)∂ηΦ∂
2
ηΦ d(x, η), (4.15)

R2 :=
∫

Ω

hζd(x, η). (4.16)

Introducing the trace γ(x) := ∂ηΦ(x, 1) for x ∈ I, we infer from Green’s formula and U(±1) = 0 that

R1 =
∫ 1

−1

(∂xU − U2)γ2 dx−
∫

Ω

(∂xU − U2)(∂ηΦ)2 d(x, η)

=
∫ 1

−1

(∂xU − U2)γ2 dx+
∫

Ω

U2(∂ηΦ)2 d(x, η) + 2
∫

Ω

Uω∂ηΦ d(x, η)

=
∫ 1

−1

(∂xU − U2)γ2 dx+
∫

Ω

U2(∂ηΦ)2 d(x, η)

+ 2
∫

Ω

U∂ηΦ(ω − ηUζ) d(x, η) + 2
∫

Ω

U2η∂ηΦ∂
2
ηΦ d(x, η).
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Using once more Green’s formula, we end up with

R1 =
∫ 1

−1

∂xUγ
2 dx+ 2

∫
Ω

U∂ηΦ(ω − ηUζ) d(x, η). (4.17)

Since α ∈ [0, 1/2), H1−α(I) is an algebra and it follows from the fact that u ∈ S
2−α

2 (κ) and the Lipschitz
continuity of r �→ (1 + r)−1 in [κ− 1,∞) that

‖∂xU‖H−α(I) ≤ c‖U‖H1−α(I) ≤ c‖∂xu‖H1−α(I)

∥∥∥∥ 1
1 + u

∥∥∥∥
H1−α(I)

≤ c(κ)

while the continuity of pointwise multiplication (see Thm. 4.1 and Rem. 4.2 (d) in [1])

H1/2(I) ·Hν(I) −→ Hα(I), 0 ≤ α < ν <
1
2
,

gives ∥∥γ2
∥∥

Hα(I)
≤ c‖γ‖H1/2(I)‖γ‖Hν(I).

Since the trace operator maps Hs(Ω) continuously in Hs−1/2(I) for all s ∈ (1/2, 1] by Theorem 1.5.2.1
in [8], and since the complex interpolation space

[
L2(Ω), H1

D(Ω)
]
(2ν+1)/2

coincides up to equivalent norms

with H
(2ν+1)/2
D (Ω) we further obtain∥∥γ2

∥∥
Hα(I)

≤ c‖∂ηΦ‖H1(Ω)‖∂ηΦ‖H(2ν+1)/2(Ω)

≤ c‖∂ηΦ‖(3+2ν)/2
H1(Ω) ‖∂ηΦ‖(1−2ν)/2

L2(Ω) .

We now combine the above estimates, (4.17), Young’s inequality, and the continuous embedding of H2−α(I) in
W 1

∞(I) to obtain, for δ ∈ (0, 1),

|R1| ≤ ‖∂xU‖H−α(I)

∥∥γ2
∥∥

Hα(I)
+

1
2
‖ω − ηUζ‖2

L2(Ω) + 2‖U‖2
L∞(I) ‖∂ηΦ‖2

L2(Ω)

≤ c(κ)‖∂ηΦ‖(3+2ν)/2
H1(Ω) ‖∂ηΦ‖(1−2ν)/2

L2(Ω)

+
1
2
‖ω − ηUζ‖2

L2(Ω) + c‖∂xu‖2
L∞(I)

∥∥∥∥ 1
1 + u

∥∥∥∥
2

L∞(I)

‖∂ηΦ‖2
L2(Ω)

≤ δ‖∂ηΦ‖2
H1(Ω) + c(κ, δ)‖∂ηΦ‖2

L2(Ω) +
1
2
‖ω − ηUζ‖2

L2(Ω).

Since

‖∂ηΦ‖H1(Ω) ≤ ‖∂ηΦ‖L2(Ω) + ‖ω‖L2(Ω) + ‖ζ‖L2(Ω)

≤ ‖∂ηΦ‖L2(Ω) + ‖ω − ηUζ‖L2(Ω) + ‖∂xu‖L∞(I)

∥∥∥∥ ζ

1 + u

∥∥∥∥
L2(Ω)

+ ‖1 + u‖L∞(I)

∥∥∥∥ ζ

1 + u

∥∥∥∥
L2(Ω)

≤ ‖∂ηΦ‖L2(Ω) + ‖ω − ηUζ‖L2(Ω) + c(κ)
∥∥∥∥ ζ

1 + u

∥∥∥∥
L2(Ω)

(4.18)

and
‖∂ηΦ‖L2(Ω) ≤ c3(κ)‖h‖H−1(Ω)



VARIATIONAL APPROACH TO A STATIONARY MEMS MODEL 433

by (4.9), we further obtain

|R1| ≤
(

2δ +
1
2

)
‖ω − ηUζ‖2

L2(Ω) + c(κ)δ
∥∥∥∥ ζ

1 + u

∥∥∥∥
2

L2(Ω)

+ c(κ, δ)‖h‖2
H−1(Ω).

Choosing δ ∈ (0, 1/4) such that c(κ)δ < 1/(2ε2), we conclude that

|R1| ≤ ‖ω − ηUζ‖2
L2(Ω) +

1
2ε2

∥∥∥∥ ζ

1 + u

∥∥∥∥
2

L2(Ω)

+ c(κ)‖h‖2
H−1(Ω). (4.19)

Next, by Cauchy−Schwarz’ and Young’s inequalities,

|R2| ≤ ‖1 + u‖L∞(I)‖h‖L2(Ω)

∥∥∥∥ ζ

1 + u

∥∥∥∥
L2(Ω)

≤ 1
4

∥∥∥∥ ζ

1 + u

∥∥∥∥
2

L2(Ω)

+ c(κ)‖h‖2
L2(Ω). (4.20)

We then infer from (4.14), (4.19), and (4.20) that

ε2‖ω − ηUζ‖2
L2(Ω) +

∥∥∥∥ ζ

1 + u

∥∥∥∥
2

L2(Ω)

≤ c(κ)
(
‖h‖2

H−1(Ω) + ‖h‖2
L2(Ω)

)
≤ c(κ)‖h‖2

L2(Ω).

Using once more that u ∈ S
2−α

2 (κ) together with (4.9) and the definition of ω and ζ, we finally obtain

Φ ∈ X(Ω) with ‖∂ηΦ‖H1(Ω) ≤ c(κ)‖h‖L2(Ω). (4.21)

Therefore, recalling the definition (4.12), the regularity of u and Φ and (4.8) allow us to write

ε2q = ε2∂2
xΦ− ε2η∂xU∂ηΦ = h+ 2ε2ηUω −

[
1

(1 + u)2
+ ε2η2U2

]
ζ − ε2ηU2∂ηΦ, (4.22)

and it follows from (4.21) and the continuous embedding of H2−α(I) in W 1
∞(I) that the right-hand side of the

above identity belongs to L2(Ω) with
‖q‖L2(Ω) ≤ c(κ)‖h‖L2(Ω). (4.23)

Since
η∂xU∂ηΦ = ∂x (ηU∂ηΦ) − ηUω

and pointwise multiplication
H1−α

D (Ω) ·H1
D(Ω) −→ H1−ν

D (Ω)

is continuous [1], we deduce from (4.21) and the continuous embedding of H2−α(I) in W 1
∞(I) that

[(x, η) �→ η∂xU∂ηΦ] ∈ H−ν(Ω) with ‖η∂xU∂ηΦ‖H−ν (Ω) ≤ c(κ)‖h‖L2(Ω).

This last property together with (4.21), (4.22), and (4.23) entails that Φ ∈ H2−ν(Ω) with

‖Φ‖H2−ν(Ω) ≤ c(κ)‖h‖L2(Ω).

We have thus shown that Lemma 4.5 holds true for u ∈ S
2−α

2 (κ) ∩W 2
p (I) with p > 2.

Step 2. Let now u ∈ S
2−α

2 (κ). Classical density arguments ensure that there is a sequence (un)n≥1 such that
un ∈ W 2

3 (I) for each n ≥ 1 and
lim

n→∞ ‖un − u‖H2−α(I) = 0. (4.24)
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Furthermore, owing to the continuous embedding of H2−α(Ω) in W 1∞(I) and the convergence (4.24), we may
assume that un ∈ S

2−α

2 ((1 + κ)/2) for each n ≥ 1. Denoting the solution to (4.8) with un instead of u by Φn, it
follows from the analysis performed in Step 1 that Φn ∈ X(Ω) ∩H2−ν(Ω) satisfies

‖Φn‖X(Ω) + ‖Φn‖H2−ν(Ω) ≤ c(κ)‖h‖L2(Ω). (4.25)

Owing to the compactness of the embeddings of H2−ν(Ω) in H1(Ω), Lemma 4.4 together with (4.24) and (4.25)
imply that

Φn −→ Φ in H1(Ω) and Φn ⇀ Φ in X(Ω) ∩H2−ν(Ω),

where Φ ∈ H1
D(Ω) is the weak solution to (4.8) which also belongs to X(Ω)∩H2−ν(Ω) and satisfies (4.25). �

We next consider the case where the right-hand side h of (4.8) is less regular but is a derivative with respect
to x.

Lemma 4.6. Let α ∈ [0, 1/2), α1 ∈ [0, 1/2), ν ∈ (α, 1/2) ∩ [α1, 1/2), κ ∈ (0, 1). Let u ∈ S
2−α

2 (κ) and suppose
that h ∈ H−1(Ω) is of the form

h(x, η) = ∂xh1(x)h2(η), (x, η) ∈ Ω, with h1 ∈ H1−α1(I) and h2 ∈ H1(0, 1). (4.26)

Then the unique solution Φ to (4.8), given by Lemma 4.3 (i), belongs to X(Ω) ∩H2−ν(Ω) and there is c6(κ)
depending only on ε, α, α1, ν, and κ such that

‖Φ‖X(Ω) + ‖Φ‖H2−ν(Ω) ≤ c6(κ)‖h1‖H1−α1 (I) ‖h2‖H1(0,1). (4.27)

Moreover, the distribution q defined in (4.12) belongs to H−α1(Ω) and there is c7(κ) depending only on ε, α,
α1, and κ such that

‖q‖H−α1 (I) ≤ c7(κ)‖h1‖H1−α1 (I) ‖h2‖H1(0,1). (4.28)

Proof. The proof of Lemma 4.6 follows closely that of Lemma 4.5, the main difference being the analysis of the
terms involving h.
Step 1. We additionally assume that u ∈W 2

p (I) for some p > 2 and that h1 ∈ H1(I). In that case the solution
Φ to (4.8) belongs to H2(Ω) according to Lemma 4.3 (ii). We then proceed as in the proof of Lemma 4.5 and
observe that (4.14) as well as the estimate (4.19) on R1, defined in (4.15), are still valid. To estimate R2, defined
in (4.16), we argue differently. We use twice Green’s formula to get

R2 =
∫

Ω

h2∂xh1∂
2
ηΦ d(x, η)

=
∫ 1

−1

h2(1)∂xh1(x)∂ηΦ(x, 1) dx−
∫ 1

−1

h2(0)∂xh1(x)∂ηΦ(x, 0) dx−
∫

Ω

∂xh1∂ηh2∂ηΦ d(x, η)

= h2(1)
∫ 1

−1

∂xh1(x)∂ηΦ(x, 1) dx− h2(0)
∫ 1

−1

∂xh1(x)∂ηΦ(x, 0) dx+
∫

Ω

h1∂ηh2∂x∂ηΦ d(x, η)

−
∫ 1

0

h1(1)∂ηh2(η)∂ηΦ(1, η) dη +
∫ 1

0

h1(−1)∂ηh2(η)∂ηΦ(−1, η) dη.

Recalling that Φ(1, η) = Φ(−1, η) = 0 for η ∈ (0, 1) due to (4.8), we realize that the last two terms on the
right-hand side of the above identity vanish and thus

R2 = h2(1)
∫ 1

−1

∂xh1(x)∂ηΦ(x, 1) dx− h2(0)
∫ 1

−1

∂xh1(x)∂ηΦ(x, 0) dx+
∫

Ω

h1∂ηh2∂x∂ηΦ d(x, η).
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Using again the notation U = ∂x ln (1 + u), ω = ∂x∂ηΦ, and ζ = ∂2
ηΦ, we deduce from the continuity of the

trace operator from H1(Ω) to Hα1(I) and the continuous embedding of H1−α1(I) in L∞(I) that

|R2| ≤ |h2(1)|‖∂xh1‖H−α1 (I)‖∂ηΦ(., 1)‖Hα1 (I) + |h2(0)|‖∂xh1‖H−α1 (I)‖∂ηΦ(., 0)‖Hα1 (I)

+ ‖h1‖L∞(I)‖∂ηh2‖L2(0,1)‖ω‖L2(Ω)

≤ c‖h2‖H1(0,1) ‖h1‖H1−α1 (I)

(
‖∂ηΦ‖H1(Ω) + ‖ω − ηUζ‖L2(Ω) + ‖∂xu‖L∞(I)

∥∥∥∥ ζ

1 + u

∥∥∥∥
L2(Ω)

)
.

Since
‖∂ηΦ‖L2(Ω) ≤ c(κ)‖h‖H−1(Ω) ≤ c(κ)‖h1h2‖L2(Ω)

by Lemma 4.3 (i), we deduce from (4.18) that

|R2| ≤ c(κ)‖h1‖H1−α1 (I) ‖h2‖H1(0,1)

(
‖h1h2‖L2(Ω) + ‖ω − ηUζ‖L2(Ω) +

∥∥∥∥ ζ

1 + u

∥∥∥∥
L2(Ω)

)
.

Young’s inequality finally gives

|R2| ≤ δ‖ω − ηUζ‖2
L2(Ω) + δ

∥∥∥∥ ζ

1 + u

∥∥∥∥
2

L2(Ω)

+ c(κ, δ)‖h1‖2
H1−α1 (I) ‖h2‖2

H1(0,1) (4.29)

for δ ∈ (0, 1). Choosing δ appropriately small in (4.29), we derive from (4.14), (4.19), and (4.29) that

ε2‖ω − ηUζ‖2
L2(Ω) +

∥∥∥∥ ζ

1 + u

∥∥∥∥
2

L2(Ω)

≤ c(κ)
(
‖h‖2

H−1(Ω) + ‖h1‖2
H1−α1 (I)‖h2‖2

H1(0,1)

)
≤ c(κ)‖h1‖2

H1−α1 (I)‖h2‖2
H1(0,1).

Therefore, since u ∈ S
2−α

2 (κ), we conclude as in the proof of Lemma 4.5 that Φ belongs to X(Ω) with

‖Φ‖X(Ω) ≤ c(κ)‖h1‖H1−α1 (I)‖h2‖H1(0,1). (4.30)

Recalling the definition (4.12) and arguing as in the proof of (4.23), we infer from (4.8) and (4.30) that

‖ε2q − h‖L2(Ω) ≤ c(κ)‖h1‖H1−α1 (I)‖h2‖H1(0,1). (4.31)

On the one hand, the regularity (4.26) of h ensures that h ∈ H−α1(Ω) and we deduce from (4.31) that

‖q‖H−α1(Ω) ≤ c(κ)‖h1‖H1−α1 (I)‖h2‖H1(0,1). (4.32)

On the other hand, arguing as in the proof of Lemma 4.5, we obtain from (4.29) that

[(x, η) �→ η∂xU∂ηΦ] ∈ H−ν(Ω) with ‖η∂xU∂ηΦ‖H−ν(Ω) ≤ c(κ)‖h1‖H1−α1 (I)‖h2‖H1(0,1),

while the regularity (4.26) of h and the choice of ν ≥ α1 entail that h ∈ H−ν(Ω). We combine these facts
with (4.30) and (4.32) to conclude that Φ ∈ H2−ν(Ω) satisfies

‖Φ‖H2−ν(Ω) ≤ c(κ)‖h1‖H1−α1 (Ω)‖h2‖H1(0,1).

We have thereby established Lemma 4.6 for all functions u ∈ S
2−α

2 (κ) and h ∈ H−1(Ω) satisfying (4.26) under
the additional assumption that u ∈W 2

p (I) and h1 ∈ H1(I).

Step 2. We now consider u ∈ S
2−α

2 (κ) and h ∈ H−ν(Ω) satisfying (4.26). Classical approximation arguments
guarantee that there are sequences (un)n≥1 in W 2

3 (I) and (h1,n)n≥1 in H1(I) such that

lim
n→∞ ‖un − u‖H2−α(I) = lim

n→∞ ‖h1,n − h1‖H1−α1 (I) = 0.

We then proceed as in the second step of the proof of Lemma 4.5 to complete the proof of Lemma 4.6. �
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4.2. Proof of Proposition 4.1 and Corollary 4.2

We are now in a position to complete the proof of Proposition 4.1 by considering the particular right-hand
side fu of (4.1) given in (4.3). For the remainder of this subsection, we set

U(x) :=
∂xu(x)

1 + u(x)
, x ∈ I,

so that
fu(x, η) = ε2η

[
∂xU(x) − U(x)2

]
, (x, η) ∈ Ω.

Proof of Proposition 4.1. Let u ∈ S
2−α

2 (κ). We handle the cases α = 0 and α ∈ (0, 1/2) separately.
Case 1: α = 0. In that case, u ∈ H2(I) from which we readily infer that

fu ∈ L2(Ω) and ‖fu‖L2 ≤ c(κ).

Fix ν ∈ (0, 1/2). It follows from Lemmas 4.3 and 4.5 with h = fu that (4.1) has a unique solution Φu ∈
X(Ω)∩H2−ν(Ω) which satisfies (4.4). Moreover, the distribution qu defined by (4.5) belongs to L2(Ω) according
to Lemma 4.5, and (4.6) follows from (4.13).

Now, if (un)n≥1 is a sequence in S
2

2(κ) converging weakly in H2(I) toward u ∈ S
2

2(κ), the compactness
of the embedding of H2(I) in W 1∞(I) entails that (fun)n≥1 converges weakly toward fu in L2(Ω). Hence,
due to Lemma 4.4, (Φun)n≥1 converges weakly toward Φu in H1(Ω). Since (Φun)n≥1 is actually bounded in
X(Ω) ∩ H2−ν(Ω) by (4.4), the above convergence can readily be improved to (4.7). The compactness of the
embedding of H2−ν(Ω) in H1(Ω) finally guarantees the strong convergence of (Φun)n≥1 toward Φu in H1(Ω).
Case 2: α ∈ (0, 1/2). In that case the space H1−α(I) is an algebra so that both U and U2 belong to H1−α(I).
Introducing

f1(x) := ε2
[
U(x) −

∫ x

0

U2(x′) dx′
]
, x ∈ I,

we realize that
fu(x, η) = η∂xf1(x) with ‖f1‖H1−α ≤ c(κ)

for some positive constant c(κ) depending only on ε, α, and κ. Fix ν ∈ (α, 1/2). We infer from Lemma 4.3 and
Lemma 4.6 with h = fu and α1 = α that (4.1) has a unique solution Φu ∈ X(Ω)∩H2−ν(Ω) which satisfies (4.4).
Also the distribution qu defined in (4.5) belongs to H−α(Ω) by Lemma 4.6, and (4.6) follows from (4.28). The
proof of the continuity property stated in Proposition 4.1 is the same as in the previous case α = 0. �

Finally, we may apply the information gathered on the equation (4.1) for Φu to the problem (1.3)−(1.4) for
ψu and prove Corollary 4.2.

Proof of Corollary 4.2. Let α ∈ [0, 1/2) and u ∈ S2−α. Since H2−α(I) embeds continuously in C([−1, 1]) there
clearly is some κ ∈ (0, 1) such that u ∈ S2−α

2 (κ). Let Φu and ψu be the unique solution to (4.1) and (1.3)−(1.4),
respectively, and recall that

ψu(x, z) = Φu(x, η) + η

for (x, z) ∈ Ω(u) and (x, η) ∈ Ω with (x, z) = (x,−1 + (1 + u(x))η). Straightforward computations then give

∂2
xψu(x, z) = ∂2

xΦu(x, η) − η∂xU(x)∂ηΦu(x, η) − 2ηU(x)∂x∂ηΦu(x, η)

+η2U(x)2∂2
ηΦu(x, η) + ηU(x)2∂ηΦu(x, η) + η

[
U2 − ∂xU

]
(x),

∂x∂zψu(x, z) =
1

1 + u(x)
∂x∂ηΦu(x, η) − η

U(x)
1 + u(x)

∂2
ηΦu(x, η) − U(x)

1 + u(x)
[1 + ∂ηΦu(x, η)] ,

∂2
zψu(x, z) =

1
(1 + u(x))2

∂2
ηΦu(x, η),
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where U := ∂x ln (1 + u). It readily follows from the regularity of u and Proposition 4.1 that ∂x∂zψu and ∂2
zψu

both belong to L2(Ω(u)). As for ∂2
xψu, it also reads

∂2
xψu = qu + ru + su

with

ru(x, η) := −2ηU(x)∂x∂ηΦu(x, η) + η2U(x)2∂2
ηΦu(x, η) + ηU(x)2∂ηΦu(x, η),

su(x, η) := η
[
U(x)2 − ∂xU(x)

]
,

for (x, η) ∈ Ω, the distribution qu being defined in (4.5). The regularity of u and Proposition 4.1 imply ru ∈
L2(Ω) while the distributions qu and su both belong to H−α(Ω). Consequently, ψu ∈ H2−α(Ω(u)).

As for the continuity of g recall that g(u) may be written alternatively as

g(u)(x) =
1 + ε2|∂xu(x)|2

(1 + u(x))2
|∂ηΦu(x, 1)|2, x ∈ I.

Let (un)n≥1 be any sequence in S2−α
2 (κ) with un → u in H2−α(I). Then, for each s ∈ (0, 1/2), the conver-

gence (4.7) and the compactness of the embedding of H1(Ω) in H1−s(Ω) imply that

∂ηΦun → ∂ηΦu in H1−s(Ω)

and thus, according to Theorem 1.5.1.2 in [8],

∂ηΦun(·, 1) → ∂ηΦu(·, 1) in H1/2−s(I).

Since pointwise multiplication

H1−α(I) ·H1−α(I) ·H1/2−s(I) ·H1/2−s(I) ↪→ Hσ(I)

is continuous for each σ ∈ [0, 1/2 − 2s) according to Theorem 4.1 and Remark 4.2 (d) in [1], we conclude that
g(un) → g(u) in Hσ(I) and thus the continuity of g : S2−α

2 (κ) → Hσ(I) for all σ ∈ [0, 1/2) as s ∈ (0, 1/2) is
arbitrary. �
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