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FULLY COUPLED FORWARD-BACKWARD SDES INVOLVING THE VALUE
FUNCTION AND ASSOCIATED NONLOCAL HAMILTON−JACOBI−BELLMAN
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Abstract. A new type of controlled fully coupled forward-backward stochastic differential equations
is discussed, namely those involving the value function. With a new iteration method, we prove an
existence and uniqueness theorem of a solution for this type of equations. Using the notion of extended
“backward semigroup”, we prove that the value function satisfies the dynamic programming principle
and is a viscosity solution of the associated nonlocal Hamilton−Jacobi−Bellman equation.
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1. Introduction

The main purpose of this work is to establish a new type of controlled fully coupled forward-backward
stochastic differential equations (FBSDEs), namely those involving the value function. We prove the existence
and uniqueness of a solution for this new type of equations and we study the related nonlocal second-order
quasi-linear Hamilton−Jacobi−Bellman (HJB) equations. Our work is inspired by the recent developments
in mean-field stochastic differential equations (SDEs), mean-field backward SDEs (BSDEs) and fully coupled
mean-field FBSDEs (see [5, 6, 12], etc.), and Hao and Li ([9]). Another motivation comes from the study of
control problems in the mean-field framework and the investigation of the associated nonlocal partial differential
equations of HJB type.

Models of large stochastic particle systems with mean-field interaction can be met in various fields such as
statistical mechanics and physics, quantum mechanics and quantum chemistry. Mean-field problems have been
studied by many authors (see, e.g., [2,3,7,11,18,19]). Due to these works we know that linear McKean−Vlasov
PDEs can be interpreted stochastically. In 2009, Buckdahn et al. [6] investigated in a purely stochastic approach
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fully nonlinear BSDEs of mean-field type, called mean-field BSDEs. In [5], Buckdahn et al. deepened the study
of mean-field BSDEs and gave a probability interpretation for the associated second-order quasi-linear nonlocal
partial differential equations (PDEs).

On the other hand, Antonelli [1] was the first to study the existence and the uniqueness for fully coupled
FBSDEs on a small time interval; he pointed out that the Lipschitz assumption is not sufficient for the existence
of the solution of fully coupled FBSDEs over an arbitrarily large time interval. Since then, the theory of fully
coupled FBSDEs has been developed very quickly. For instance, with PDE approaches combined with stochastic
methods, Ma et al. [15] showed the existence and the uniqueness for a type of fully coupled FBSDEs which
forward SDEs are non-degenerate. Another direction of generalization was considered by Hu and Peng [10]:
Under suitable monotonicity conditions they obtained the existence and the uniqueness for fully coupled FBSDEs
on an arbitrarily large time interval, but with forward and backward equation being of the same dimension. In
1999, Peng and Wu [17] overcame this strict restriction by considering a multiplicative full-rank matrix G with
which one solution of the forward equation is multiplied, and they proved the existence and the uniqueness for
general fully coupled FBSDEs under weaker monotonicity assumptions and discussed applications in optimal
control. Li and Wei [13] considered optimal control problems for fully coupled FBSDEs and the associated
second-order quasi-linear HJB equations. Unlike [13] we study the optimal control problem of fully coupled
mean-field FBSDEs, and the associated non-local HJB equation is mean-field type. Recently, fully coupled
mean-field FBSDEs were discussed by Min et al. [12]. The authors gave an existence and uniqueness theorem
of a solution for this type of equations by using a continuation method.

In [5] their original motivation is to give the stochastic interpretation of nonlocal PDE of mean-field type.
However, the formally associated SDE does not generate a flow. To overcome this difficulty in [5] the initial
condition was partially frozen, which leads to a system composed of decoupled mean-field FBSDE and a classical
decoupled FBSDE depending on the solution of the mean-field SDE. In this paper we adopt and extend this
approach to control problems, in order to give stochastic interpretation to nonlocal Hamilton−Jacobi−Bellman
equations of mean-field type. More precisely, let x0 ∈ Rn and v̄ ∈ V0,T be arbitrary but fixed, and let x ∈ Rn,
t ∈ [0, T ], v ∈ Vt,T , we consider the following fully coupled FBSDE:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXt,x;v
s = E′[b(s, (X0,x0;v̄

s )′,W (s, (X0,x0;v̄
s )′), Xt,x;v

s , Y t,x;v
s , Zt,x;v

s , vs)]ds
+ E′[σ(s, (X0,x0;v̄

s )′,W (s, (X0,x0;v̄
s )′), Xt,x;v

s , Y t,x;v
s , vs)]dBs,

dY t,x;v
s = −E′[f(s, (X0,x0;v̄

s )′,W (s, (X0,x0;v̄
s )′), Xt,x;v

s , Y t,x;v
s , Zt,x;v

s , vs)]ds
+ Zt,x;v

s dBs,

Xt,x;v
t = x, Y t,x;v

T = E′[Φ((X0,x0;v̄
T )′, Xt,x;v

T )],

W (t, x) = essinf
v∈Vt,T

Y t,x;v
t , (t, x) ∈ [0, T ]× Rn,

(1.1)

where the essential infimum is taken over all admissible stochastic control processes v over the time interval
[t, T ]. By (X0,x0;v̄)′ = (X0,x0;v̄

s )′s∈[t,T ] we denote an independent and identically distributed copy of the process
X0,x0;v̄ = (X0,x0;v̄

s )s∈[t,T ] which is supposed to be independent of the driving Brownian motion B and, thus also
of all processes X0,x0;v̄, Xt,x;v, Y t,x;v, Zt,x;v, and v̄, v adapted with respect to the filtration generated by B. By
E′[ ] we denote an expectation concerning only (X0,x0;v̄)′ but not the other processes (for more details the reader
is referred to [5]). In order to solve (1.1) involving the value function of the control problem itself, we replace
first W by any function W̃ (s, x), which is Lipschitz and of linear growth in x, and under suitable monotonicity
conditions we show the existence and the uniqueness of a solution (Xt,x;v, Y t,x;v, Zt,x;v) of (1.1), for all (t, x, v)
(and so, in particular, for (t, x, v) = (0, x0, v̄). In fact, beginning with choosing (t, x, v) = (0, x0, v̄) we find
(X0,x0;v̄, Y 0,x0;v̄, Z0,x0;v̄) which allows then to consider arbitrary (t, x, v) in (1.1)). Moreover, we will show that
there exists a constant L0 > 0 depending only on Lb in (H3.3) and the Lipschitz constants of b, σ, f and Φ in
(x, y, z) and x, such that the value function W (t, x) � essinf

v∈Vt,T

Y t,x;v
t is Lipschitz and of linear growth in x, both

with a constant L0 which is independent of W̃ . This means that, no matter what the Lipschitz and the linear
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growth constants of W̃ are, there is a common constant L0 > 0 such that W (t, x) is Lipschitz and of linear
growth in x with a Lipschitz and growth constant L0. With a new iteration method which is different from [9],
beginning with W̃ = W 0 = 0, we get four convergent sequences {X0,x0;v̄,i}, {Xt,x;v,i}, {Y t,x;v,i}, {Zt,x;v,i} and
the associated W i+1(t, x) = essinf

v∈Vt,T

Y t,x;v,i
t . We prove that all these sequences converge to the solution processes

(Thm. 3.7). Once having the existence and the uniqueness of a solution for (1.1) we prove the DPP for the value
function W . For this we use an extended “backward semigroup” (Thm. 4.2) generalizing Peng’s original one [16].
Using this DPP, it becomes easy to check that W (t, x) is Hölder continuous in t (Prop. 4.4). Furthermore, we
study the related nonlocal HJB equations associated with (1.1). Using a short and direct probabilistic argument
based on results by Li and Wei [13], we prove that the value function W is a viscosity solution of our nonlocal
HJB equation (5.1) (Thm. 5.2). In Theorem 5.3 we show the uniqueness of viscosity solution of our nonlocal
HJB equation (5.1) when σ doesn’t depend on y with the help of the uniqueness of the solution of fully coupled
FBSDE (1.1).

In comparison with [9] a main difficulty consists in the fact that we have to deal here with a fully coupled
FBSDE: Any iteration procedure also involves the solution of the forward equation Xt,x;v,i, and thus also
(X0,x0;v̄,i)′-the variable of W i−1. In order to get the convergence of the iteration sequence we have to suppose
that the coefficients b(s, x′, y′, x, y, z, v), σ(s, x′, y′, x, y, v) and f(s, x′, y′, x, y, z, v) are Lipschitz in y′ with a
sufficiently small Lipschitz constant.

Our paper is organized as follows. In Section 2, we recall some results on fully coupled mean-field FBSDEs,
which are used frequently in what follows. Section 3 introduces the fully coupled FBSDEs involving value
function and gives the proof of the existence and the uniqueness of solutions of equations. The DPP and the
regularity of the value function are shown in Section 4. In Section 5, for this new type of equation we show
that the value function is a unique viscosity solution of the associated nonlocal HJB equation. Some auxiliary
lemmas are proved in Section 6.

2. Fully coupled mean-field FBSDEs

Our setting is that of the classical Wiener space: Let T > 0 and Ω = C0([0, T ]; Rd) be the set of all continuous
functions from [0, T ] to Rd, beginning from 0; P is the Wiener measure under which the coordinate process B:
Bs(ω) = ωs, s ∈ [0, T ], ω ∈ Ω, is a d-dimensional Brownian motion. By F we denote the Borel σ-field over Ω,
completed by the set N of all P -null sets. We denote by F = {Fs, 0 ≤ s ≤ T } the natural filtration generated
by {Bs}0≤s≤T and completed by N .

We introduce the following spaces which will be often used:

• S2
F
(0, T ; Rn) �

{
(φt)0≤t≤T Rn-valued F-adapted càdlàg process : E[ sup

0≤t≤T
|φt|2] < +∞

}
;

• H2
F
(0, T ; Rn×d) �

{
(lt)t∈[0,T ]R

n×d-valued F-progressively measurable process:‖l‖2=E[
∫ T

0
|lt|2dt]< +∞

}
.

Let us first recall some notations used for the mean-field framework and for the fully coupled mean-field
FBSDEs in [12]; see also [5, 6].

By (Ω̄, F̄ , P̄ ) = (Ω × Ω,F ⊗ F , P ⊗ P ) we denote the product of (Ω,F , P ) with itself. The filtration in
this space we consider is F̄ = {F̄t = F ⊗ Ft, 0 ≤ t ≤ T }. By setting ξ′(ω′, ω) = ξ(ω′), (ω′, ω) ∈ Ω̄, we can
extend the real-valued random variables ξ from Ω to Ω̄. For any integrable random variable θ ∈ L1(Ω̄, F̄ , P̄ ),
θ(·, ω) : Ω → R is in L1(Ω,F , P ), P(dω)-a.s. Hence, we can define E′[θ(·, ω)] =

∫
Ω
θ(ω′, ω)P (dω′). Using Fubini’s

Theorem, the expectation of θ can be computed as follows:

Ē[θ] =
∫

Ω̄

θdP̄ =
∫

Ω

E′[θ(·, ω)]P (dω) = E[E′[θ]].

Let b(ω̄, t, x′, y′, z′, x, y, z): Ω̄ × [0, T ]× Rn × Rm × Rm×d × Rn × Rm × Rm×d → Rn,
σ(ω̄, t, x′, y′, x, y) : Ω̄ × [0, T ]× Rn × Rm × Rn × Rm → Rn×d,
f(ω̄, t, x′, y′, z′, x, y, z) : Ω̄ × [0, T ]× Rn × Rm × Rm×d × Rn × Rm × Rm×d → Rm,
Φ(ω̄, x′, x) : Ω̄ × Rn × Rn → Rm
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satisfy the following assumptions:

(H2.1) (i) There exist L, L̃1, L̃2, L̃3 > 0 such that, for all t ∈ [0, T ], x1, x
′
1, x2, x

′
2 ∈ Rn, y1, y′1, y2, y

′
2 ∈ Rm,

z1, z
′
1, z2, z

′
2 ∈ Rm×d,

|h(t, x′1, y
′
1, z

′
1, x1, y1, z1) − h(t, x′2, y

′
2, z

′
2, x2, y2, z2)|

≤ L̃1|x′1 − x′2| + L̃2|y′1 − y′2| + L̃3|z′1 − z′2| + L(|x1 − x2| + |y1 − y2| + |z1 − z2|),
where h = b, σ, f, respectively, and b(·, λ′, λ) ∈ H2

F̄
(0, T ; Rn), σ(·, λ′, λ) ∈ H2

F̄
(0, T ; Rn×d), f(·, λ′, λ) ∈

H2
F̄
(0, T ; Rm), λ = (x, y, z), λ′ = (x′, y′, z′);

(ii) For (x′i, xi) ∈ Rn × Rn, i = 1, 2,
|Φ(x′1, x1) − Φ(x′2, x2)| ≤ L̃Φ|x′1 − x′2| + LΦ|x1 − x2|,

and for any x′, x ∈ Rn, Φ(x′, x) ∈ L2(Ω, F̄T ,R
m).

Given an m× n full-rank matrix G, we put

λ =

⎛⎝x
y
z

⎞⎠ , λ′ =

⎛⎝x′
y′
z′

⎞⎠ , B(t, λ′, λ) =

⎛⎝−GT f
Gb
Gσ

⎞⎠ (t, λ′, λ).

From (H2.1) we know that B(t, λ′, λ) is Lipschitz in λ′ and λ, uniformly with respect to t. Let us denote the
two Lipschitz constants by L̃B and LB, respectively.

(H2.2) (i) < B(t, λ′, λ) −B(t, λ′, λ̄), λ− λ̄ >≤ −β1|x̂|2;
(ii) < Φ(x′, x) − Φ(x′, x̄), G(x− x̄) >≥ μ1|x̂|2,
where λ = (x, y, z), λ′ = (x′, y′, z′), λ̄ = (x̄, ȳ, z̄), x̂ = x − x̄, ŷ = y − ȳ, ẑ = z − z̄, and β1, μ1 are nonnegative
constants with β1 > L̃B(1 + 2eβ̂T ); μ1 > L̃Φλ1 + 4(L̃2

Φ + L2
Φ)L̃Beβ̂T , where β̂ = 6L2+4L̃2

3+2L̃2
1+2L̃2+2L+1

(in particular, as h = b, σ, f is independent of (y′, z′), β̂ = 4L2 +2L̃2
1 +2L+1), and λ1 > 0 satisfies |Gl| ≤ λ1|l|,

for any vector l ∈ Rn.

For a ∈ Rn, we consider the following fully coupled mean-field FBSDE:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xt = a+

∫ t

0

E′[b(s,X ′
s, Y

′
s , Z

′
s, Xs, Ys, Zs)]ds+

∫ t

0

E′[σ(s,X ′
s, Y

′
s , Xs, Ys)]dBs,

Yt = E′[Φ((XT )′, XT )] +
∫ T

t

E′[f(s,X ′
s, Y

′
s , Z

′
s, Xs, Ys, Zs)]ds−

∫ T

t

ZsdBs, t ∈ [0, T ].
(2.1)

In [12], the authors proved that the fully coupled mean-field FBSDE (2.1) has a unique solution. Precisely
speaking, we have:

Lemma 2.1. Under the assumptions (H2.1) and (H2.2), the fully coupled mean-field FBSDE (2.1) admits a
unique solution (X,Y, Z) ∈ S2

F
(0, T ; Rn) × S2

F
(0, T ; Rm) ×H2

F
(0, T ; Rm×d).

Moreover, for any initial time t ∈ [0, T ], initial value ζ ∈ L2(Ω,Ft, P ; Rn) and given x0 ∈ Rn, also the
following fully coupled FBSDE:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt,ζ
s = ζ +

∫ s

t

E′[b(r, (X0,x0
r )′, (Y 0,x0

r )′, (Z0,x0
r )′, Xt,ζ

r , Y t,ζ
r , Zt,ζ

r )]dr

+
∫ s

t

E′[σ(r, (X0,x0
r )′, (Y 0,x0

r )′, Xt,ζ
r , Y t,ζ

r )]dBr,

Y t,ζ
s = E′[Φ((X0,x0

T )′, Xt,ζ
T )] +

∫ T

s

E′[f(r, (X0,x0
r )′, (Y 0,x0

r )′, (Z0,x0
r )′, Xt,ζ

r , Y t,ζ
r , Zt,ζ

r )]dr

−
∫ T

s

Zt,ζ
r dBr, s ∈ [t, T ],

(2.2)
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has a unique adapted solution, denoted by (Xt,ζ
s , Y t,ζ

s , Zt,ζ
s )s∈[t,T ] ∈ S2

F
(t, T ; Rn)×S2

F
(t, T ; Rm)×H2

F
(t, T ; Rm×d).

In fact, if (t, ζ) = (0, x0), then (2.2) changes to a fully coupled mean-field FBSDE. Thanks to Lemma 2.1, we
see that this equation has a unique adapted solution, denoted by (X0,x0

s , Y 0,x0
s , Z0,x0

s )s∈[0,T ] ∈ S2
F
(0, T ; Rn) ×

S2
F
(0, T ; Rm) × H2

F
(0, T ; Rm×d). Then, it can be checked that the coefficient h0(s, x, y, z) � E′[h(s, (X0,x0

s )′,
(Y 0,x0

s )′, (Z0,x0
s )′, x, y, z)] satisfies the assumptions for classical fully coupled FBSDEs, where h = b, σ, f , re-

spectively. Consequently, according to the existence and uniqueness theorem of classical fully coupled FBS-
DEs, the above equation (2.2) admits a unique solution (Xt,ζ

s , Y t,ζ
s , Zt,ζ

s )s∈[t,T ] ∈ S2
F
(t, T ; Rn) × S2

F
(t, T ; Rm) ×

H2
F
(t, T ; Rm×d) (see, e.g., Thm. 2.2 in [17] or Thm. 3.1 in [10]).
From standard estimates for classical fully coupled FBSDEs, we have (see, e.g., Prop. 6.1 in [13]) the following:

Lemma 2.2. Under the assumptions (H2.1) and (H2.2), there exists a constant C > 0 such that, for all t ∈ [0, T ]
and ζ, ζ′ ∈ L2(Ω,Ft, P ; Rn), P-a.s.,

(i) E

[
sup

t≤s≤T
|Xt,ζ

s −Xt,ζ′
s |2 + sup

t≤s≤T
|Y t,ζ

s − Y t,ζ′
s |2 +

∫ T

t

|Zt,ζ
s − Zt,ζ′

s |2ds|Ft

]
≤ C|ζ − ζ′|2;

(ii) E

[
sup

t≤s≤T
|Xt,ζ

s |2 + sup
t≤s≤T

|Y t,ζ
s |2 +

∫ T

t

|Zt,ζ
s |2ds|Ft

]
≤ C(1 + |ζ|2).

In particular,
(iii) |Y t,ζ

t | ≤ C(1 + |ζ|); (iv) |Y t,ζ
t − Y t,ζ′

t | ≤ C|ζ − ζ′|.

(2.3)

3. Fully coupled FBSDEs involving the value function

Let V be a compact metric space. An F-progressively measurable process v ∈ {vr, r ∈ [t, s]} taking its values
in V is called an admissible control process on the time interval [t, s] (0 ≤ t < s ≤ T ). By Vt,s we denote the
set of all admissible controls over [t, s].

In this section, we study the following fully coupled FBSDE involving the value function. For x0 ∈ Rn and
v̄ ∈ V0,T arbitrarily chosen but fixed, we consider⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXt,x;v
s = E′[b(s, (X0,x0;v̄

s )′,W (s, (X0,x0;v̄
s )′), Xt,x;v

s , Y t,x;v
s , Zt,x;v

s , vs)]ds
+ E′[σ(s, (X0,x0;v̄

s )′,W (s, (X0,x0;v̄
s )′), Xt,x;v

s , Y t,x;v
s , vs)]dBs,

dY t,x;v
s = −E′[f(s, (X0,x0;v̄

s )′,W (s, (X0,x0;v̄
s )′), Xt,x;v

s , Y t,x;v
s , Zt,x;v

s , vs)]ds
+ Zt,x;v

s dBs, s ∈ [t, T ],

Xt,x;v
t = x, Y t,x;v

T = E′[Φ((X0,x0;v̄
T )′, Xt,x;v

T )],

W (t, x) = essinf
v∈Vt,T

Y t,x;v
t , (t, x) ∈ [0, T ]× Rn.

(3.1)

Let us introduce now the assumptions on the coefficients which we need. We suppose that the functions

b(t, x′, y′, x, y, z, v) : [0, T ]× Rn × R × Rn × R × Rd × V → Rn;
σ(t, x′, y′, x, y, v) : [0, T ]× Rn × R × Rn × R × V → Rn×d;
f(t, x′, y′, x, y, z, v) : [0, T ]× Rn × R × Rn × R × Rd × V → R;
Φ(x′, x) : Rn × Rn → R

satisfy:

(H3.1) (i) There exist L̃, L > 0 and α > 0 small enough (a precision for α will be given in Rem. 3.8) such that,
for all t ∈ [0, T ], x1, x

′
1, x2, x

′
2 ∈ Rn, y1, y′1, y2, y

′
2 ∈ R, z1, z2 ∈ Rd, v ∈ V ,

|h(t, x′1, y
′
1, x1, y1, z1, v) − h(t, x′2, y

′
2, x2, y2, z2, v)|

≤ L̃|x′1 − x′2| + α|y′1 − y′2| + L(|x1 − x2| + |y1 − y2| + |z1 − z2|),
where h = b, σ, f ;
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(ii) For h = b, σ, f, h(t, x′, y′, x, y, z, v) is continuous with respect to (t, v), uniformly in (x′, y′, x, y, z);
(iii) Φ(x′, x) is uniformly Lipschitz in (x′, x), i.e., there exist L̃Φ, LΦ > 0 such that, for x1, x

′
1, x2, x

′
2 ∈ Rn,

|Φ(x′1, x1) − Φ(x′2, x2)| ≤ L̃Φ|x′1 − x′2| + LΦ|x1 − x2|.

Further assumptions on the coefficients are made through the function

B(t, λ′, λ, v) =

⎛⎝−GT f
Gb
Gσ

⎞⎠ (t, λ′, λ, v), t ∈ [0, T ], v ∈ V, λ =

⎛⎝x
y
z

⎞⎠ , λ′ =
(
x′
y′

)
,

where GT ∈ Rn\{0}, |GT | = 1 is suitably chosen.
As indicated in Section 2, under the assumption (H3.1)-(i), B(t, λ′, λ, v) is Lipschitz in λ′ and λ. By L̃B and

LB we denote their respective Lipschitz constants. From Hölder inequality, we have

|B(t, λ′, λ̄, v) −B(t, λ′, λ, v)| ≤ √
3
√
L̃2 + α2|λ̂′| + 3L|λ̂|,

where λ̂′ = λ′ − λ′, λ̂ = λ̄− λ. Hence here we can set L̃B =
√

3
√
L̃2 + α2 and LB = 3L.

We suppose the following monotonicity conditions

(H3.2)] (i) < B(t, λ′, λ, v) −B(t, λ′, λ̄, v), λ− λ̄ >≤ −β1|x̂|2;
(ii) < GT (Φ(x′, x) − Φ(x′, x̄)), x− x̄ >≥ μ1|x̂|2,
where λ = (x, y, z), λ̄ = (x̄, ȳ, z̄), λ′ = (x′, y′, z′), x̂ = x − x̄, ŷ = y − ȳ, ẑ = z − z̄, x, x̄, x′ ∈ Rn, y, ȳ, y′ ∈
R, z, z̄, z′ ∈ Rd, β1 ≥ 0, μ1 ≥ 0, with β1 > L̃B(1 + 2eβ̄T ), μ1 > L̃Φ + 4L̃B(L̃2

Φ + L2
Φ)eβ̄T .

Here β̄ = 4L2 + 2L̃2 + 2L+ 2α+ 1, and L, L̃ and α are the Lipschitz constants of h = b, σ, f introduced in
(H3.1)-(i).

Moreover, we need the following assumption

(H3.3) h(t, x′, y′, 0, 0, 0, v) and Φ(x′, 0) are bounded, i.e., there is a constant Lb > 0 such that, for all t ∈
[0, T ], x′ ∈ Rn, y′ ∈ R, v ∈ V , |Φ(x′, 0)| ≤ Lb; |h(t, x′, y′, 0, 0, 0, v)| ≤ Lb, for h = b, σ, f , respectively.

Remark 3.1. Under the assumptions (H3.1) and (H3.3), h = b, σ, f and Φ are of linear growth with respect to
(x, y, z) and x, uniformly in (t, x′, y′, v) and x′, respectively: For t ∈ [0, T ], x′, x ∈ Rn, y′, y ∈ R, z ∈ Rd, v ∈ V ,
|Φ(x′, x)| ≤ (LΦ + Lb)(1 + |x|); |h(t, x′, y′, x, y, z, v)| ≤ (L+ Lb)(1 + |x| + |y| + |z|).

Let K > 0 be a given constant and W̃ : [0, T ] × Rn → R be a deterministic Borel function such that,
|W̃ (t, x)| ≤ K(1 + |x|), and |W̃ (t, x) − W̃ (t, x̄)| ≤ K|x − x̄|, for all t ∈ [0, T ], x, x̄ ∈ Rn. For arbitrarily chosen
but fixed x0 ∈ Rn, v̄ ∈ V0,T , and for (t, x) ∈ [0, T ] × Rn, v ∈ Vt,T , let us consider the following fully coupled
FBSDE: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dXt,x;v
s = E′[b(s, (X0,x0;v̄

s )′, W̃ (s, (X0,x0;v̄
s )′), Xt,x;v

s , Y t,x;v
s , Zt,x;v

s , vs)]ds

+ E′[σ(s, (X0,x0;v̄
s )′, W̃ (s, (X0,x0;v̄

s )′), Xt,x;v
s , Y t,x;v

s , vs)]dBs,

dY t,x;v
s = −E′[f(s, (X0,x0;v̄

s )′, W̃ (s, (X0,x0;v̄
s )′), Xt,x;v

s , Y t,x;v
s , Zt,x;v

s , vs)]ds
+ Zt,x;v

s dBs,

Xt,x;v
t = x, Y t,x;v

T = E′[Φ((X0,x0;v̄
T )′, Xt,x;v

T )].

(3.2)

Lemma 3.2. We suppose that the assumptions (H3.1)−(H3.3) hold true. Then the fully coupled FBSDE (3.2)
admits a unique solution (Xt,x;v

s , Y t,x;v
s , Zt,x;v

s )s∈[t,T ] ∈ S2
F
(t, T ; Rn) × S2

F
(t, T ; R) ×H2

F
(t, T ; Rd).
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Proof. For (s, x′, x, y, z) ∈ [0, T ] × Rn × Rn × R × Rd, we define h̃(s, x′, x, y, z) � h(s, x′, W̃ (s, x′), x, y, z, vs),
h = b, σ, f , respectively. Then, for s ∈ [0, T ], x′1, x

′
2, x1, x2 ∈ Rn, y1, y2 ∈ R, z1, z2 ∈ Rd,

|h̃(s, x′1, x1, y1, z1) − h̃(s, x′2, x2, y2, z2)| ≤ (L̃+ αK)|x′1 − x′2| + L(|x1 − x2| + |y1 − y2| + |z1 − z2|),
where L, L̃ and α are the Lipschitz constants given in (H3.1)-(i) and K is the Lipschitz and the linear growth
constant of W̃ .

We put

B̃(s, λ′, λ) �

⎛⎝−GT f̃

Gb̃
Gσ̃

⎞⎠ (s, λ′, λ), Φ̃(x′, x) � Φ(x′, x),

where λ = (x, y, z), λ′ = (x′, y′, z′).
By L̃B̃, LB̃ and L̃Φ̃, LΦ̃ we denote the Lipschitz constants of B̃ and Φ̃ with respect to λ′, λ and x′, x, respectively.
From Hölder’s inequality we can obtain

|B̃(s, λ′, λ̄) − B̃(s, λ′, λ)| ≤
√

3(L̃+ αK)|λ̂′| + 3L|λ̂|,
where k̂ = k̄− k, k = λ′, λ. Consequently, we can take L̃B̃ =

√
3(L̃+αK) and LB̃ = 3L. Notice that α is small

enough such that β1 > L̃B̃(1 + 2eβ̃T ), μ1 > L̃Φ̃ + 4L̃B̃(L̃2
Φ̃

+ L2
Φ̃
)eβ̃T , where β̃ = 4L2 + 2(L̃+ αK)2 + 2L+ 1,

L̃Φ̃ = L̃Φ, LΦ̃ = LΦ (see Rem. 3.8). According to Lemma 2.1, for (t, x) = (0, x0) and given v̄ ∈ V0,T , the
fully coupled FBSDE (3.2) with coefficients b̃, σ̃, f̃ , Φ̃ admits a unique solution, denoted by (X0

s , Y
0
s , Z

0
s )s∈[0,T ] ∈

S2
F
(0, T ; Rn) × S2

F
(0, T ; R) ×H2

F
(0, T ; Rd).

Hence we can define

h0(s, x, y, z) � E′[h(s, (X0
s )′, W̃ (s, (X0

s )′), x, y, z, vs)]; Φ0(x) � E′[Φ((X0
T )′, x)], (3.3)

where h = b, σ, f , respectively. Obviously, b0, σ0, f0 and Φ0 are Lipschitz with respect to (x, y, z) and x with the
same Lipschitz constants as b, σ, f and Φ in (x, y, z) and x, respectively, and satisfy the monotonicity condition
for classical fully coupled FBSDEs with the constants β1 and μ1 which do not depend on W̃ . Consequently, for
(t, x, v) ∈ [0, T ] × Rn × Vt,T , there is a unique triple (Xt,x;v

s , Y t,x;v
s , Zt,x;v

s )s∈[t,T ] ∈ S2
F
(t, T ; Rn) × S2

F
(t, T ; R) ×

H2
F
(t, T ; Rd) satisfying the fully coupled FBSDE (3.2) (see, Thm. 3.1 in [10] or Thm. 2.2 in [17]). �

Lemma 3.3. Let us suppose that (H3.1)−(H3.3) hold true and t ∈ [0, T ], x, x̄ ∈ Rn, v ∈ Vt,T . By
(Xt,x;v

s , Y t,x;v
s , Zt,x;v

s )s∈[t,T ] (resp., (Xt,x̄;v
s , Y t,x̄;v

s , Zt,x̄;v
s )s∈[t,T ]) we denote the solution of the fully coupled FB-

SDE (3.2) associated with initial value (t, x) ∈ [0, T ] × Rn (resp., (t, x̄) ∈ [0, T ] × Rn) and v ∈ Vt,T . Then, for
any p ≥ 2, there exists a constant L0 > 0 depending on L, LΦ, Lb and p such that P-a.s.,

(i) E

[
sup

t≤s≤T
(|Xt,x;v

s −Xt,x̄;v
s |2 + |Y t,x;v

s − Y t,x̄;v
s |2) +

∫ T

t

|Zt,x;v
s − Zt,x̄;v

s |2ds|Ft

]
≤ L2

0|x− x̄|2;

(ii) E

[
sup

t≤s≤T
(|Xt,x;v

s |p + |Y t,x;v
s |p) + (

∫ T

t

|Zt,x;v
s |2ds) p

2 |Ft

]
≤ Lp

0(1 + |x|p);

and, in particular,

(iii) |Y t,x;v
t − Y t,x̄;v

t | ≤ L0|x− x̄|; (iv) |Y t,x;v
t | ≤ L0(1 + |x|).

(3.4)

Proof. From the proof of Lemma 3.2, we know that the fully coupled FBSDE (3.2) can be treated as a classical
fully coupled FBSDE with coefficients b0, σ0, f0 and Φ0. Thanks to the assumptions (H3.1) and (H3.3), it is easy
to get that b0, σ0, f0 (resp., Φ0) have the same Lipschitz and linear growth constants in (x, y, z) (resp., x) as
b, σ, f (resp., Φ), and these Lipschitz and linear growth constants do not depend on W̃ . According to standard
estimates of classical fully coupled FBSDEs (see [13]), we have that there exists a constant L0 depending only
on L, LΦ, Lb and p such that (3.4) holds. �
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Let us define W (t, x) � essinf
v∈Vt,T

Y t,x;v
t , (t, x) ∈ [0, T ] × Rn, where (Xt,x;v, Y t,x;v, Zt,x;v) is the solution of the

fully coupled FBSDE (3.2). Obviously, for the constant L0 given in Lemma 3.3, we have, for t ∈ [0, T ], x, x̄ ∈ Rn,
P-a.s.,

(i) |W (t, x)| ≤ L0(1 + |x|);
(ii) |W (t, x) −W (t, x̄)| ≤ L0|x− x̄|. (3.5)

This means, no matter what the Lipschitz and the linear growth constants of W̃ in fully coupled FBSDE (3.2)
are, the value function W (t, x) defined by the solution of fully coupled FBSDE (3.2) with W̃ always has the
same Lipschitz and linear growth constant L0 depending only on L, LΦ and Lb.

Notice that due to the definition as essential infimum over a family of Ft-measurable random variables,
W (t, x) is a priori a Ft-measurable random variable. However, we can even prove that the value function W is
deterministic with the Girsanov transformation.

Lemma 3.4. We suppose the assumptions (H3.1)−(H3.3) hold true. The value function W is deterministic and
can be characterized by E[W ], i.e., W (t, x) = E[W (t, x)], (t, x) ∈ [0, T ]× Rn, P-a.s.

The proof is similar to Proposition 3.1 in Li and Wei [13]. Thus we omit it.

Remark 3.5. The two inequalities for parameters β1, μ1 in assumption (H3.2) can be reduced to

β1 >
√

3L̃(1 + 2eβ̄T ), μ1 > L̃Φ + 4
√

3L̃(L̃2
Φ + L2

Φ)eβ̄T , (3.6)

where β̄ = 4L2 + 2L̃2 + 2L+ 1. In fact, what we really use in the proof of Lemma 3.2 are the two inequalities:

β1 >
√

3(L̃ + αK)(1 + 2eT{4L2+2(L̃+αK)2+2L+1}),

μ1 > L̃Φ + 4
√

3(L̃+ αK)(L̃2
Φ + L2

Φ)eT{4L2+2(L̃+αK)2+2L+1}.

Moreover, from Lemma 3.3, we also see that the Lipschitz and the linear growth constant L0 of W does not
depend on the choice of K. Consequently, let W̃ ≡ 0, i.e., K = 0, the same constant L0 can still be obtained.
Hence, the two inequalities for the parameters β1, μ1 in (H3.2) have only to satisfy (3.6).

However, in what follows, we use the following assumption instead of (H3.2).
(H3.2L0)] (i) < B(t, λ′, λ, v) −B(t, λ′, λ̄, v), λ− λ̄ >≤ −β1|x̂|2;
(ii) < GT (Φ(x′, x) − Φ(x′, x̄)), x− x̄ >≥ μ1|x̂|2,
where λ = (x, y, z), λ̄ = (x̄, ȳ, z̄), λ′ = (x′, y′, z′), x̂ = x − x̄, ŷ = y − ȳ, ẑ = z − z̄, x, x̄, x′ ∈ Rn, y, ȳ, y′ ∈
R, z, z̄, z′ ∈ Rd, β1 ≥ 0, μ1 ≥ 0, with β1 > 2(L̃+αL0 +α)(1+2eβT ), μ1 > L̃Φ +8(L̃+αL0 +α)(L̃2

Φ +L2
Φ)eβT ,

where β = 4L2 +2(L̃+αL0)2 +2L+2α+1, and L, L̃ and α are the Lipschitz constants of h = b, σ, f introduced
in (H3.1)-(i), and L0 > 0 is given in Lemma 3.3.

Obviously, under the assumption (H3.2L0), (3.6) holds true.
Let W � {W : [0, T ] × Rn → R measurable| |W (t, 0)| ≤ L0, |W (t, x) −W (t, x′)| ≤ L0|x − x′|, for all t ∈

[0, T ], x, x′ ∈ Rn}.
Let b, σ, f and Φ satisfy (H3.1), (H3.2L0) and (H3.3). From Lemma 3.2 we know that, for any W̃ ∈ W , the fully

coupled FBSDE (3.2) has a unique adapted solution (Xt,x;v
s , Y t,x;v

s , Zt,x;v
s )s∈[t,T ] ∈ S2

F
(t, T ; Rn) × S2

F
(t, T ; R) ×

H2
F
(t, T ; Rd). We define Ŵ (t, x) = essinf

v∈Vt,T

Y t,x;v
t , (t, x) ∈ [0, T ] × Rn. Due to Lemma 3.4, Ŵ is deterministic.

Moreover, from (3.4), for all t ∈ [0, T ], x, x̄ ∈ Rn,

(i) |Ŵ (t, x) − Ŵ (t, x̄)| ≤ L0|x− x̄|; (ii) |Ŵ (t, x)| ≤ L0(1 + |x|).
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Putting now ψ(W̃ ) � Ŵ , we define a mapping ψ : W → W . Let M > 0, KM � [0, T ] × BM (0), and let us
consider the following supremum norm of the restriction of W ∈ W to KM :

Definition 3.6. For W ∈ W we define

||W ||KM � sup
t∈[0,T ],|x|≤M

|W (t, x)|.

Now we state the existence and the uniqueness of the fully coupled FBSDE (3.1) involving the value function.

Theorem 3.7. We suppose that the assumptions (H3.1), (H3.2L0), (H3.3) hold true. Then the fully coupled
FBSDE (3.1) involving the value function has a unique solution {(Xt,x;v

s , Y t,x;v
s , Zt,x;v

s )s∈[t,T ] ∈ S2
F
(t, T ; Rn) ×

S2
F
(t, T ; R) ×H2

F
(t, T ; Rd), (t, x) ∈ [0, T ]× Rn, W ∈ W}.

Proof. Let W 0(t, x) ≡ 0, (t, x) ∈ [0, T ] × Rn. Obviously, W 0 ∈ W . Moreover, given W i ∈ W , W i+1 � ψ(W i)
belongs again to W . Thus, we get by iteration a sequence (W i)i≥0 ⊂ W .

For (t, x, v) ∈ [0, T ]×Rn×Vt,T , let (Xt,x;v,i, Y t,x;v,i, Zt,x;v,i) be the solution of the fully coupled FBSDE (3.2)
associated with W i:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dXt,x;v,i
s = E′[b(s, (X0,x0;v̄,i

s )′,W i(s, (X0,x0;v̄,i
s )′), Xt,x;v,i

s , Y t,x;v,i
s , Zt,x;v,i

s , vs)]ds
+ E′[σ(s, (X0,x0;v̄,i

s )′,W i(s, (X0,x0;v̄,i
s )′), Xt,x;v,i

s , Y t,x;v,i
s , vs)]dBs,

dY t,x;v,i
s = −E′[f(s, (X0,x0;v̄,i

s )′,W i(s, (X0,x0;v̄,i
s )′), Xt,x;v,i

s , Y t,x;v,i
s , Zt,x;v,i

s , vs)]ds
+ Zt,x;v,i

s dBs,

Xt,x;v,i
t = x, Y t,x;v,i

T = E′[Φ((X0,x0;v̄,i
T )′, Xt,x;v,i

T )].

(3.7)

In the particular case (t, x, v) = (0, x0, v̄), we write (X0,x0;v̄,i, Y 0,x0;v̄,i, Z0,x0;v̄,i) instead of (Xt,x;v,i, Y t,x;v,i,
Zt,x;v,i).

For any (t, x) ∈ [0, T ] × Rn and v ∈ Vt,T , we put, X̂t,x;v,i � Xt,x;v,i+1 − Xt,x;v,i, Ŷ t,x;v,i � Y t,x;v,i+1 −
Y t,x;v,i, Ẑt,x;v,i � Zt,x;v,i+1 − Zt,x;v,i, Ŵ i(t, x) � W i+1(t, x) −W i(t, x), i ≥ 0. In particular, X̂0,x0;v̄,i �
X0,x0;v̄,i+1 −X0,x0;v̄,i, Ŷ 0,x0;v̄,i � Y 0,x0;v̄,i+1 − Y 0,x0;v̄,i, Ẑ0,x0;v̄,i � Z0,x0;v̄,i+1 − Z0,x0;v̄,i.
We split the proof into the following two steps.

Step 1. We prove that the sequence (Xt,x;v,i, Y t,x;v,i, Zt,x;v,i,W i) converge in S2
F
(t, T ; Rn) × S2

F
(t, T ; R)

×H2
F
(t, T ; Rd) ×W to some quadruple (Xt,x;v, Y t,x;v, Zt,x;v,W ), such that (Xt,x;v, Y t,x;v, Zt,x;v) is the unique

solution of the fully coupled FBSDE (3.2) associated with W instead of W̃ .
We prove the existence of the solution with the help of an iteration method.
From Lemma A.3, we know that there exists a constant C0 > 0 independent of (t, x) ∈ [0, T ] × Rn (Indeed,

C0 depends only on L̃, L, L0 and LΦ, L̃Φ, α) such that

E[|Y t,x;v,i+1
t − Y t,x;v,i

t |2] ≤ αC0(||Ŵ i||2KM
+ ε).

From the Girsanov transformation argument (see Prop. 3.3 in [4]), we have

W i+1(t, x) = essinf
v∈Vt,T

Y t,x;v,i
t = inf v∈Vt,TE[Y t,x;v,i

t ], (t, x) ∈ [0, T ]× Rn, i ≥ 0.

Hence, for (t, x) ∈ [0, T ]× Rn, using that Ŵ i+1(t, x) = W i+2(t, x) −W i+1(t, x), we get, by Lemma A.3

|Ŵ i+1(t, x)|2 = |W i+2(t, x) −W i+1(t, x)|2 ≤ sup
v∈Vt,T

E|Ŷ t,x;v,i
t |2 ≤ αC0

(
||Ŵ i||2KM

+ ε
)
,

where C0 depends only on L̃, L, L0 and LΦ, L̃Φ, α. Therefore, for all i ≥ 0,

||Ŵ i+1||2∞ ≤ αC0

(
||Ŵ i||2KM

+ ε
)
≤ αC0(||Ŵ i||2∞ + ε).
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Letting ε ↓ 0, we get
||Ŵ i+1||2∞ ≤ αC0||Ŵ i||2∞, i ≥ 0. (3.8)

Notice that α is small sufficiently such that αC0 < 1 (see Rem. 3.8). Consequently, there exists a deterministic
W : [0, T ]× Rn → R such that ||W i −W ||∞ → 0, as i→ ∞. Moreover, as (W i)i≥0 ⊂ W , also W ∈ W .

Using the argument of Lemmas A.1−A.3 again, but now with E
∫ T

0
|Ŵ i(s,X0,x0;v̄,i

s )|2ds ≤ T ||Ŵ i||2∞ instead
of E

∫ T

0
|Ŵ i(s,X0,x0;v̄,i

s )|2ds ≤ T ||Ŵ i||2KM
+ ε, we get, for all i ≥ 0,

E

[
sup

0≤s≤T
|X̂0,x0;v̄,i

s |2 + sup
t≤s≤T

(|X̂t,x;v,i
s |2 + |Ŷ t,x;v,i

s |2) +
∫ T

t

|Ẑt,x;v,i
s |2ds

]
≤ αC0||Ŵ i||2∞. (3.9)

From (3.8) and (3.9) we see that

E

[
sup

0≤s≤T
|X̂0,x0;v̄,i

s |2 + sup
t≤s≤T

(|X̂t,x;v,i
s |2 + |Ŷ t,x;v,i

s |2) +
∫ T

t

|Ẑt,x;v,i
s |2ds

]
≤ (αC0)i||Ŵ 0||2∞. (3.10)

Notice that α is small enough such that αC0 < 1, thus there exists (X0,x0;v̄, Xt,x;v, Y t,x;v, Zt,x;v) ∈ S2
F
(0, T ; Rn)×

S2
F
(t, T ; Rn) × S2

F
(t, T ; R) ×H2

F
(t, T ; Rd) such that, as i→ ∞,

E

[
sup

0≤s≤T
|X0,x0;v̄,i

s −X0,x0;v̄
s |2 + sup

t≤s≤T
(|Xt,x;v,i

s −Xt,x;v
s |2 + |Y t,x;v,i

s − Y t,x;v
s |2) +

∫ T

t |Zt,x;v,i
s − Zt,x;v

s |2ds
]
→

0, uniformly in v̄ ∈ V0,T , v ∈ Vt,T .
Taking the limit in the fully coupled forward-backward SDE (3.7) we get⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dXt,x;v
s = E′[b(s, (X0,x0;v̄

s )′,W (s, (X0,x0;v̄
s )′), Xt,x;v

s , Y t,x;v
s , Zt,x;v

s , vs)]ds
+ E′[σ(s, (X0,x0;v̄

s )′,W (s, (X0,x0;v̄
s )′), Xt,x;v

s , Y t,x;v
s , vs)]dBs,

dY t,x;v
s = −E′[f(s, (X0,x0;v̄

s )′,W (s, (X0,x0;v̄
s )′), Xt,x;v

s , Y t,x;v
s , Zt,x;v

s , vs)]ds
+ Zt,x;v

s dBs,

Xt,x;v
t = x, Y t,x;v

T = E′[Φ((X0,x0;v̄
T )′, Xt,x;v

T )].

(3.11)

Finally, by Lemma 3.2 we know that the solution of the system (3.11) is unique.

Step 2. We prove W = W̄ � essinf
v∈Vt,T

Y t,x;v
t .

Recall that W i+1(t, x) = essinf
v∈Vt,T

Y t,x;v,i
t = inf v∈Vt,TE[Y t,x;v,i

t ], i ≥ 0. We conclude by observing that, for

(t, x) ∈ [0, T ]× Rn,

|W (t, x) − inf v∈Vt,TE[Y t,x;v
t ]| ≤ sup

v∈Vt,T

E[|Y t,x;v
t − Y t,x;v,i

t |] + |W i+1(t, x) −W (t, x)|

≤ sup
v∈Vt,T

E[|Y t,x;v
t − Y t,x;v,i

t |] + ||W i+1 −W ||∞ → 0, as i→ ∞. �

Remark 3.8. Indeed, from the proof of Lemma 3.2 and that of Theorem 3.7, we know that α in (H3.1) small
enough to satisfy the following conditions:⎧⎪⎪⎨⎪⎪⎩

1 > αC0,

β1 >
√

3(L̃ + αK)(1 + 2e(4L2+2(L̃+αK)2+2L+1)T ),

μ1 > L̃Φ + 4
√

3(L̃+ αK)(L̃2
Φ + L2

Φ)e(4L2+2(L̃+αK)2+2L+1)T ,

where C0 equals to C14 in Lemma A.3, L̃, L, L̃Φ, LΦ are the Lipschitz constants of h = b, σ, f and Φ with
respect to x′ and x, respectively, and K is the Lipschitz constant of W̃ .
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4. The dynamic programming principle

Peng [16] was the first to introduce the notion of “backward semigroup”. From then on, it has been widely
used to solve stochastic control problems. Here we extend Peng’s concept of “backward semigroups” to controlled
fully coupled FBSDEs involving their value function. Let x0 ∈ Rn, v̄ ∈ V0,T be chosen arbitrarily but fixed.
For (t, x, v) ∈ [0, T ] × Rn × Vt,T and 0 < δ ≤ T − t, we consider the following fully coupled FBSDE with time
horizon t+ δ, ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dX̃t,x;v
s = E′[b(s, (X0,x0;v̄

s )′,W (s, (X0,x0;v̄
s )′), X̃t,x;v

s , Ỹ t,x;v
s , Z̃t,x;v

s , vs)]ds

+ E′[σ(s, (X0,x0;v̄
s )′,W (s, (X0,x0;v̄

s )′), X̃t,x;v
s , Ỹ t,x;v

s , vs)]dBs,

dỸ t,x;v
s = −E′[f(s, (X0,x0;v̄

s )′,W (s, (X0,x0;v̄
s )′), X̃t,x;v

s , Ỹ t,x;v
s , Z̃t,x;v

s , vs)]ds

+ Z̃t,x;v
s dBs,

X̃t,x;v
t = x, Ỹ t,x;v

t+δ = E′[Ψ((X0,x0;v̄
t+δ )′, X̃t,x;v

t+δ )],

(4.1)

where Ψ : Rn × Rn → R is a Lipschitz function with < GT (Ψ(x′, x) − Ψ(x′, x̄)), x − x̄ >≥ 0, and W is defined
as in Theorem 3.7, and (X0,x0;v̄, Y 0,x0;v̄, Z0,x0;v̄) is the solution of the fully coupled FBSDE (3.1) involving the
value function, for our given x0 ∈ Rn and v̄ ∈ V0,T with time horizon T .

Lemma 4.1. Under the assumptions (H3.1), (H3.2L0) and (H3.3), there is a positive constant δ0 depending
on the Lipschitz constant L such that, for 0 ≤ δ ≤ δ0, the fully coupled FBSDE (4.1) admits a unique solution
(X̃t,x;v

s , Ỹ t,x;v
s , Z̃t,x;v

s )s∈[t,t+δ] ∈ S2
F
(t, t+ δ; Rn) × S2

F
(t, t+ δ; R) ×H2

F
(t, t+ δ; Rd).

Proof. From Theorem 3.7 we have the existence of W and (X0,x0;v̄
s )s∈[0,T ] ∈ S2

F
(0, T ; Rn). Hence, we can define

the (deterministic) functions hW (s, x, y, z, v) = E[h(s,X0,x0;v̄
s ,W (s,X0,x0;v̄

s ), x, y, z, v)], h = b, σ, f , respectively,
ΨW (x) = E[Ψ(X0,x0;v̄

t+δ , x)].
Obviously, hW is Lipschitz in (x, y, z), uniformly with respect to (s, v), with the same Lipschitz constant as

that of the functions b, σ, f ; and ΨW is Lipschitz in x. According to standard estimates for classical fully coupled
FBSDEs (or see Prop. 6.4 in [13] for the general case where σ depends on z), we know that there is a δ0 > 0 such
that, for s ∈ [t, t + δ] with 0 ≤ δ ≤ δ0, the fully coupled FBSDE (4.1) has a unique adapted solution on time
horizon [t, t+δ], denoted by (X̃t,x;v

s , Ỹ t,x;v
s , Z̃t,x;v

s )s∈[t,t+δ] ∈ S2
F
(t, t+δ; Rn)×S2

F
(t, t+δ; R)×H2

F
(t, t+δ; Rd). �

Now we can define the backward semigroup:

Gt,x;v
s,t+δ(E

′[Ψ((X0,x0;v̄
t+δ )′, X̃t,x;v

t+δ )]) � Ỹ t,x;v
s , s ∈ [t, t+ δ],

where (X̃t,x;v
s , Ỹ t,x;v

s , Z̃t,x;v
s )s∈[t,t+δ] is the solution of FBSDE (4.1).

Inspired by the work of Li, Wei [13], with the help of the notion of extended “backward semigroup”, we can
establish the DPP for the value function W defined through the fully coupled FBSDE (3.1).

Theorem 4.2. (DPP) Suppose the assumptions (H3.1), (H3.2L0) and (H3.3) hold. Then there is a positive δ0
depending on L such that, for all 0 ≤ t ≤ T − δ with 0 < δ ≤ δ0,

W (t, x) = essinf
v∈Vt,t+δ

Gt,x;v
t,t+δ(W (t+ δ, X̃t,x;v

t+δ )).

The proof of Theorem 4.2 uses the same argument as that of Buckdahn and Li [4] and is omitted here.

Remark 4.3. According to the definition of backward semigroup, we get, for t ≤ s ≤ t+ δ, v ∈ Vt,T , x ∈ Rn,

Gt,x;v
s,t+δ(W (t+ δ, X̃t,x;v

t+δ )) = Ỹ t,x;v
s ,

where (X̃t,x;v
s , Ỹ t,x;v

s , Z̃t,x;v
s )s∈[t,t+δ] is the solution of (4.1) with Ψ(x′, x) = W (t+ δ, x), (x′, x) ∈ Rn × Rn.
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Proposition 4.4. The value function W introduced in Theorem 3.7 has for some suitable constant L̄ the fol-
lowing property of Hölder continuity in t:

|W (t, x) −W (t̄, x)| ≤ L̄(1 + |x|)|t− t̄| 12 , t, t̄ ∈ [0, T ], x ∈ Rn.

Proof. The functions bW , σW , fW , ΨW defined in the proof of Lemma 4.1 are jointly continuous and Lipschitz
with respect to (x, y, z) and x, respectively, with the same Lipschitz constants as those of b, σ, f and Ψ . Moreover,
from (H3.3) we know that for s ∈ [0, T ], v ∈ V , |hW (s, 0, 0, 0, v)| ≤ Lb. Hence, from standard conclusions for
classical fully coupled FBSDEs (see Thm. 3.2 in [13]), we have the above estimate. �

5. Viscosity solution of the associated nonlocal HJB equation

In this section, we discuss the associated nonlocal HJB equation and give its probability interpretation in
term of the solution of FBSDE (3.1).

Let us consider the PDE{
∂tW (t, x) +H(t, x,W (t, ·),W (t, x), DW (t, x), D2W (t, x)) = 0, (t, x) ∈ [0, T )× Rn,

W (T, x) = E[Φ(X0,x0;v̄
T , x)], x ∈ Rn,

(5.1)

where the Hamiltonian H is defined by

H(t, x, ψ(t, ·), y, p,X)

= inf v∈V

{
1
2
tr(σ̄σ̄T (t, x, ψ(t, ·), y, v)X) + p · b̄(t, x, ψ(t, ·), y, p · σ̄, v) + f̄(t, x, ψ(t, ·), y, p · σ̄, v)

}
, (5.2)

for t ∈ [0, T ], y ∈ R, x, p ∈ Rn, X ∈ Sd (by Sd we denote all the d × d symmetric matrix), and ψ(·) is a
deterministic Lipschitz function, and

b̄(t, x, ψ(t, ·), y, z, v) = E[b(t,X0,x0;v̄
t , ψ(t,X0,x0;v̄

t ), x, y, z, v)];

σ̄(t, x, ψ(t, ·), y, v) = E[σ(t,X0,x0;v̄
t , ψ(t,X0,x0;v̄

t ), x, y, v)];

f̄(t, x, ψ(t, ·), y, z, v) = E[f(t,X0,x0;v̄
t , ψ(t,X0,x0;v̄

t ), x, y, z, v)].

(5.3)

Here (X0,x0;v̄, Y 0,x0;v̄, Z0,x0;v̄) is the solution of the fully coupled FBSDE (3.1) involving the value function for
initial time t = 0, initial value x = x0 and fixed v̄ ∈ V0,T .

Let us recall the definition of a viscosity solution of the associated HJB equation (5.1) (see [8] for details).

Definition 5.1. A real-valued continuous function V ∈ C([0, T ]× Rn) is called
(i) a viscosity subsolution of equation (5.1), if V (T, x) ≤ E[Φ(X0,x0;v̄

T , x)], for all x ∈ Rn, and if for all function
φ ∈ C1,2([0, T ]× Rn) and (t, x) ∈ [0, T )× Rn such that V − φ attains a local maximum at (t, x),

∂tφ(t, x) +H(t, x, V (t, ·), V (t, x), Dφ(t, x), D2φ(t, x)) ≥ 0;

(ii) a viscosity supersolution of equation (5.1), if V (T, x) ≥ E[Φ(X0,x0;v̄
T , x)], for all x ∈ Rn, and if for all

function φ ∈ C1,2([0, T ]× Rn) and (t, x) ∈ [0, T )× Rn such that V − φ attains a local minimum at (t, x),

∂tφ(t, x) +H(t, x, V (t, ·), V (t, x), Dφ(t, x), D2φ(t, x)) ≤ 0;

(iii) a viscosity solution of equation (5.1) if it is both a viscosity subsolution and supersolution of
equation (5.1).

Now we state the main result of this section.
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Theorem 5.2. Assume that the assumptions (H3.1), (H3.2L0) and (H3.3) hold true. Then the value function
W (t, x) ∈ C([0, T ]× Rn) given in Theorem 3.7 is a viscosity solution of HJB equation (5.1).

Proof. According to Theorem 3.7 and Proposition 4.4, we know that the deterministic function W is Lipschitz
in x and 1

2 -Hölder continuous in t. More precisely, there exists a positive constant L̃ such that, for x, x̄ ∈ Rn,
t, t̄ ∈ [0, T ],

(i) |W (t, x) −W (t, x̄)| ≤ L̃|x− x̄|; (ii) |W (t, x) −W (t̄, x)| ≤ L̃(1 + |x|)|t − t̄| 12 .
Consequently, W (t, x) ∈ C([0, T ]× Rn) is of linear growth.

The coefficients b̄(t, x,W (t, ·), y, z, v), σ̄(t, x,W (t, ·), y, v), f̄(t, x,W (t, ·), y, z, v) and Φ̄(x) =E[Φ(X0,x0;v̄
T , x)]

are Lipschitz in (x, y, z), uniformly in (t, v), and x, respectively, and satisfy the monotonicity condition of
classical fully coupled FBSDEs. Hence, our fully coupled FBSDE (3.1) involving its value function W can be
written as ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dXt,x;v
s = b̄(s,Xt,x;v

s ,W (s, ·), Y t,x;v
s , Zt,x;v

s , vs)ds+ σ̄(s,Xt,x;v
s ,W (s, ·), Y t,x;v

s , vs)dBs,

dY t,x;v
s = −f̄(s,Xt,x;v

s ,W (s, ·), Y t,x;v
s , Zt,x;v

s , vs)ds+ Zt,x;v
s dBs,

Xt,x;v
t = x, Y t,x;v

T = Φ̄(Xt,x;v
T ),

W (t, x) = essinf
v∈Vt,T

Y t,x;v
t .

From the probability interpretation for HJB equations associated with controlled fully coupled FBSDEs (see
Thm. 4.1 in Li and Wei [13]), we know that W is a viscosity solution of HJB equation (5.1). �

Theorem 5.3. When σ also does not depend on y, under the assumptions (H3.1), (H3.2L0), (H3.3) the value
function W (t, x) defined in Theorem 3.7 is the unique viscosity solution of HJB equation (5.1) in the class
Θ = {ϕ ∈ C([0, T ] × Rn) : ∃Ã > 0 such that lim

|x|→∞
|ϕ(t, x)|exp{−Ã[log((|x|2 + 1)

1
2 )]2} = 0, uniformly in

t ∈ [0, T ]}.
Proof. Let W i ∈ Θ, i = 1, 2, be two viscosity solutions of HJB equation (5.1). We define

b̃(s, x,W i(s, ·), y, z, v) = E[b(s,X0,x0;v̄
s , x,W i(s,X0,x0;v̄

s ), y, z, v)],
σ̃(s, x,W i(s, ·), v) = E[σ(s,X0,x0;v̄

s , x,W i(s,X0,x0;v̄
s ), v)],

f̃(s, x,W i(s, ·), y, z, v) = E[f(s,X0,x0;v̄
s , x,W i(s,X0,x0;v̄

s ), y, z, v)],

Φ̃(x) = E[Φ(X0,x0;v̄
T , x)],

(s, x, y, z, v) ∈ [0, T ]×Rn×R×Rd×V. Hence W i(t, x) ∈ Θ is a viscosity solution of the following HJB equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tW
i(t, x) + inf v∈V

{
1
2
tr(σ̃σ̃T (t, x,W i(t, ·), v)D2W i(t, x))

+DW i(t, x) · b̃(t, x,W i(t, ·),W i(t, x), DW i(t, x) · σ̃(t, x,W i(t, ·), v), v)

+ f̃(t, x,W i(t, ·),W i(t, x), DW i(t, x) · σ̃(t, x,W i(t, ·), v), v)
}

= 0, (t, x) ∈ [0, T )× Rn,

W i(T, x) = Φ̃(x), x ∈ Rn.

Since b̃, σ̃, f̃ and Φ̃ satisfy all the assumptions for classical FBSDEs and W i(t, x) ∈ Θ, i.e., W i(t, x) is of at
most linear growth, W i(t, x) possesses the stochastic interpretation as the value function

W i(t, x) = essinf
v∈Vt,T

Y i,t,x;v
t , (t, x) ∈ [0, T ]× Rn,
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of the optimal control problem for system driven by⎧⎪⎨⎪⎩
dX i,t,x;v

s = b̃(s,X i,t,x;v
s ,W i(s, ·), Y i,t,x;v

s , Zi,t,x;v
s , vs)ds+ σ̃(s,X i,t,x;v

s ,W i(s, ·), vs)dBs,

dY i,t,x;v
s = −f̃(s,X i,t,x;v

s ,W i(s, ·), Y i,t,x;v
s , Zi,t,x;v

s , vs)ds+ Zi,t,x;v
s dBs, s ∈ [t, T ],

X i,t,x;v
t = x, Y i,t,x;v

T = Φ̃(X i,t,x;v
T ), (t, x) ∈ [0, T ]× Rn, v ∈ Vt,T

(5.4)

(see, e.g., Thms. 4.1 and 5.1 in Li and Wei [14]). Recall the definitions of b̃, σ̃, f̃ and Φ̃, and W i(t, x) is Lipschitz
and of linear growth in x, (5.4) is in fact the following equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX i,t,x;v
s = E′[b(s, (X i,0,x0;v̄

s )′, X i,t,x;v
s ,W i(s, (X i,0,x0;v̄

s )′), Y i,t,x;v
s , Zi,t,x;v

s , vs)]ds
+ E′[σ(s, (X i,0,x0;v̄

s )′, X i,t,x;v
s ,W i(s, (X i,0,x0;v̄

s )′), vs)]dBs,

dY i,t,x;v
s = −E′[f(s, (X i,0,x0;v̄

s )′, X i,t,x;v
s ,W i(s, (X i,0,x0;v̄

s )′), Y i,t,x;v
s , Zi,t,x;v

s , vs)]ds

+ Zi,t,x;v
s dBs, s ∈ [t, T ],

X i,t,x;v
t = x, Y i,t,x;v

T = E′[Φ((X i,0,x0;v̄
T )′, X i,t,x;v

T )], (t, x) ∈ [0, T ]× Rn, v ∈ Vt,T ,

W i(t, x) = essinf
v∈Vt,T

Y i,t,x;v
t , (t, x) ∈ [0, T ]× Rn.

(5.5)

However, from Theorem 3.7 we know that (5.5) has a unique solution. It means W 1(t, x) = W 2(t, x), (t, x) ∈
[0, T ]× Rn. The proof is complete. �

Example 5.4. Let n = d = 1, G = 1 and V = [0, π
2 ]. Frozen x0 ∈ R and v̄ ∈ V0,T , for (t, x) ∈ [0, T ] × R and

v ∈ Vt,T , we first consider the controlled fully coupled mean-field FBSDE:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dX̄t,x;v

s = (−βȲ t,x;v
s + vs)ds− (βX̄t,x;v

s + vs)dBs,

−dȲ t,x;v
s = (αE[arctanX̄0,x0;v̄

s ] + βX̄t,x;v
s − βZ̄t,x;v

s − vs)ds− Z̄t,x;v
s dBs,

X̄t,x;v
t = x,

Ȳ t,x;v
T = X̄t,x;v

T ,

(5.6)

where β and α satisfy ⎧⎨⎩ β > 4α
(
1 + 2eT{4β2+2α2+2β+2α+1}

)
,

1 > 16αeT{4β2+2α2+2β+2α+1}.
(5.7)

We remark that (5.6) does not involve the value function itself. According to Remark 3.5, we know that under
the assumption (5.7), the fully coupled FBSDE (5.6) has a unique solution (X̄t,x;v, Ȳ t,x;v, Z̄t,x;v). We define
W̄ (t, x) � essinf

v∈Vt,T

Ȳ t,x;v
t . Applying standard estimate technique for classical fully coupled FBSDEs, we obtain for

t ∈ [0, T ], x, x̄ ∈ R,

(i) |W̄ (t, x) − W̄ (t, x̄)| ≤ L1|x− x̄|; (ii) |W̄ (t, x)| ≤ L2(1 + |x|),

where L1 = (C1C3eC2C3T )
1
2 , L2 = {(C4C8) ∨ (C5C8 + C7)} 1

2 e
1
2C6C8T and

C1 = 3 + 36Tβ2e3Tβ2
, C2 = 3Tβ2 + 36T 2β4e3Tβ2

, C3 =
1
2
(2 + T )e(4β2+1)T ,

C4 = 3 + 72Tβ2e6Tβ2
, C5 =

3
2
π2T 2 + 6π2T + 36β2π2(T 3 + T 2)e6Tβ2

, C6 = 144T 2β4e6Tβ2
+ 6Tβ2,

C7 = T e(4β2+2π2+1)T , C8 =
1
2
(2 + T )e(4β2+2π2+1)T .
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Taking L0 = L1 ∨ L2 and choosing α and β with⎧⎨⎩β > 2(2 + L0)α
(
1 + 2eT{4β2+2α2(1+L0)

2+2β+2α+1}
)
,

1 > 8(2 + L0)αeT{4β2+2α2(1+L0)
2+2β+2α+1},

(5.8)

from Theorem 3.7, the following FBSDE involving the value function:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dXt,x;v
s = (−αE[arctanW (s,X0,x0;v̄

s )] − βY t,x;v
s + vs)ds− (βXt,x;v

s + vs)dBs,

−dY t,x;v
s = (αE[arctanX0,x0;v̄

s ] + βXt,x;v
s − βZt,x;v

s − vs)ds− Zt,x;v
s dBs,

Xt,x;v
t = x, Y t,x;v

T = Xt,x;v
T ,

W (t, x) = essinf
v∈Vt,T

Y t,x;v
t ,

(5.9)

has a unique solution, denoted by (Xt,x;v, Y t,x;v, Zt,x;v,W ). Moreover, from Theorem 5.2 the value function W
is a viscosity solution of the nonlocal HJB equation:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tW + inf v∈[0, π
2 ]

{
1
2
(βx + v)2∂xxW − (αE[arctanW (t,X0,x0;v̄

t )] + βW − β2x− (β + 1)v)∂xW

+αE[arctanX0,x0;v̄
t ] + βx− v

}
= 0, (t, x) ∈ [0, T ]× R,

W (T, x) = x, x ∈ R.

Appendix

In this section we prove some auxiliary lemmas for Theorem 3.7.
Let W i ∈ W . In order to make notations concisely, we denote by (X i, Y i, Zi) (resp., (X0,i, Y 0,i, Z0,i)) the

solution of the fully coupled FBSDE (3.7) for (t, x, v) ∈ [0, T ]× Rn × Vt,T (resp., for (t, x, v) = (0, x0, v̄)).
For any (t, x) ∈ [0, T ]×Rn and v ∈ Vt,T , we set, X̂ i � X i+1−X i, Ŷ i � Y i+1−Y i, Ẑi � Zi+1−Zi, Ŵ i(t, x) �

W i+1(t, x) −W i(t, x), i ≥ 0. Accordingly, X̂0,i � X0,i+1 −X0,i, Ŷ 0,i � Y 0,i+1 − Y 0,i, Ẑ0,i � Z0,i+1 − Z0,i.

Lemma A.1. Under the assumptions (H3.1), (H3.2L0) and (H3.3), for any ε > 0, there exists some M large
enough such that, for all i ∈ N,

E

∫ T

0

|Ŵ i(s,X0,i
s )|2ds ≤ T ||Ŵ i||2KM

+ ε.

Proof. For arbitrarily given M > 0, we have, for all i ≥ 0,

E

∫ T

0

|Ŵ i(s,X0,i
s )|2ds ≤

∫ T

0

||Ŵ i||2
KM

ds+ E

∫ T

0

|Ŵ i(s,X0,i
s )|2I{|X0,i

s |>M}ds

≤ T ||Ŵ i||2KM
+ 8L2

0E

∫ T

0

(1 + |X0,i
s |2)I{|X0,i

s |>M}ds ≤ T ||Ŵ i||2KM
+

8L2
0

M
E

∫ T

0

(|X0,i
s | + |X0,i

s |3)ds.
(A.1)

From Lemma 3.3 (ii), for (t, x, v) = (0, x0, v̄), sup
i≥0

E[
∫ T

0
(|X0,i

s | + |X0,i
s |3)ds] ≤ TL3

0(1 + |x0| + |x0|3).
Hence, for any ε > 0, there exists some M enough large such that, for all i ∈ N ,

E

∫ T

0

|Ŵ i(s,X0,i
s )|2ds ≤ T ||Ŵ i||2KM

+ ε. �
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Lemma A.2. We suppose that the assumptions (H3.1), (H3.2L0), (H3.3) hold true. Then there exists a constant
C0 > 0 depending only on L̃, L, L0, LΦ, L̃Φ, α such that

E

[
sup

0≤s≤T
(|X̂0,i

s |2 + |Ŷ 0,i
s |2) +

∫ T

0

|Ẑ0,i
s |2ds

]
≤ αC0

(
||Ŵ i||2KM

+ ε
)
.

Proof. For the forward SDE of (3.7) and (t, x, v) = (0, x0, v̄), i ≥ 0, we have from standard estimates and
Lemma A.1 that

E

[
sup

0≤s≤T
|X̂0,i

s |2
]
≤ C0Tα

2
(
||Ŵ i||2KM

+ ε
)

+ C0L
2E

∫ T

0

(|Ŷ 0,i
s |2 + |Ẑ0,i

s |2)ds, (A.2)

where C0 = (10T + 32)(1 + κeκ) and κ = (10T + 8){(L̃+ αL0)2 + L2}T .
To estimate the backward SDE of (3.7) for (t, x, v) = (0, x0, v̄), we apply the Itô’s formula to eβs|Ŷ 0,i

s |2 (Recall
that β = 4L2 + 2(L̃+αL0)2 + 2L+ 2α+ 1). Then, thanks to Lemma (A.1) and to standard estimates we have,
for 0 ≤ s ≤ T , i ≥ 0,

E[|Ŷ 0,i
s |2 +

∫ T

s

(|Ŷ 0,i
r |2 + |Ẑ0,i

r |2)dr] ≤ 4(L̃2
Φ +L2

Φ)eβTE|X̂0,i
T |2 + 2eβTE

∫ T

s

|X̂0,i
r |2dr+αT eβT

(
||Ŵ i||2KM

+ ε
)
.

(A.3)
On the other hand,

E
[〈
X̂0,i

T , GT Ŷ 0,i
T

〉]
=E

[
E′

[〈
X̂0,i

T , GT (Φ((X0,i+1
T )′, X0,i+1

T ) − Φ((X0,i
T )′, X0,i

T ))
〉]]

≥ (μ1 − L̃Φ)E
∣∣∣X̂0,i

T

∣∣∣2 .
We denote

B̂0,i(s) =

⎛⎝−GT f̂0,i
s

Gb̂0,i
s

Gσ̂0,i
s

⎞⎠ ,

where
f̂0,i

s =E′[f(s, (X0,i+1
s )′,W i+1(s, (X0,i+1

s )′), X0,i+1
s , Y 0,i+1

s , Z0,i+1
s , v̄s)]

− E′[f(s, (X0,i
s )′,W i(s, (X0,i

s )′), X0,i
s , Y 0,i

s , Z0,i
s , v̄s)],

b̂0,i
s =E′[b(s, (X0,i+1

s )′,W i+1(s, (X0,i+1
s )′), X0,i+1

s , Y 0,i+1
s , Z0,i+1

s , v̄s)]
− E′[b(s, (X0,i

s )′,W i(s, (X0,i
s )′), X0,i

s , Y 0,i
s , Z0,i

s , v̄s)],
σ̂0,i

s =E′[σ(s, (X0,i+1
s )′,W i+1(s, (X0,i+1

s )′), X0,i+1
s , Y 0,i+1

s , v̄s)]
− E′[σ(s, (X0,i

s )′,W i(s, (X0,i
s )′), X0,i

s , Y 0,i
s , v̄s)].

Then, due to (H3.1) and (H3.2L0),∣∣∣E [〈
B̂0,i(s),

(
X̂0,i

s , Ŷ 0,i
s , Ẑ0,i

s

)〉]∣∣∣
≤ E

[
−β1|X̂0,i

s |2
]

+ E

[√
3
{

(L̃ + αL0)E′| ̂(X0,i
s )′| + αE′|Ŵ i

(
s, (X0,i

s )′
) |}√

|X̂0,i
s |2 + |Ŷ 0,i

s |2 + |Ẑ0,i
s |2

]
.

Hence, we have, for 0 ≤ s ≤ T ,

E
[〈
X̂0,i

s , GT Ŷ 0,i
s

〉]
= E

[〈
X̂0,i

T , GT Ŷ 0,i
T

〉]
− E

[∫ T

s

〈
B̂0,i(r),

(
X̂0,i

r , Ŷ 0,i
r , Ẑ0,i

r

)〉
dr

]
≥ (μ1 − L̃Φ)E|X̂0,i

T |2 + (β1 − 2(L̃+ αL0 + α))E
∫ T

s
|X̂0,i

r |2dr
− 1

2 (L̃+ αL0 + α)E
∫ T

s
(|Ŷ 0,i

r |2 + |Ẑ0,i
r |2)dr − 3

2αT
(
||Ŵ i||2KM

+ ε
)
. (A.4)
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From (A.3) and (A.4),

E
[〈
X̂0,i

s , GT Ŷ 0,i
s

〉]
≥

(
μ1 − L̃Φ − 2(L̃+ αL0 + α)(L̃2

Φ + L2
Φ)eβT

)
E|X̂0,i

T |2

+
{
β1 − 2(L̃+ αL0 + α)

(
1+

1
2
eβT

)}
E

∫ T

s

|X̂0,i
r |2dr − α

(
3
2
T+

1
2
T

(
L̃+αL0 + α

)
eβT

) (
||Ŵ i||2KM

+ ε
)
,

(A.5)
where β is given in (H3.2L0).

Since β1 and μ1 satisfy

β1

〉
2(L̃+ αL0 + α)(1 + 2eβT )

〉
2(L̃+ αL0 + α)

(
1 +

1
2
eβT

)
,

μ1〉L̃Φ + 8
(
L̃+ αL0 + α

) (
L̃2

Φ + L2
Φ

)
eβT 〉L̃Φ + 2

(
L̃+ αL0 + α

) (
L̃2

Φ + L2
Φ

)
eβT ,

we have, for s = 0,

E

∫ T

0

|X̂0,i
r |2dr ≤ αC1

(
||Ŵ i||2KM

+ ε
)

(A.6)

and
E|X̂0,i

T |2 ≤ αC2

(
||Ŵ i||2KM

+ ε
)
, (A.7)

where

C1 =
3
2T + 1

2T (L̃+ αL0 + α)eβT

β1 − 2(L̃+ αL0 + α)(1 + 1
2eβT )

, C2 =
3
2T + 1

2T (L̃+ αL0 + α)eβT

μ1 − L̃Φ − 2(L̃+ αL0 + α)(L̃2
Φ + L2

Φ)eβT
·

According to (A.6), (A.7) and (A.3), for 0 ≤ s ≤ T ,

E|Ŷ 0,i
s |2 + E

∫ T

s

(|Ŷ 0,i
r |2 + |Ẑ0,i

r |2)dr ≤ αC3

(
||Ŵ i||2KM

+ ε
)
, (A.8)

where C3 = 4(L̃2
Φ + L2

Φ)eβTC2 + 2eβTC1 + T eβT .
From (A.2) it follows

E

[
sup

0≤s≤T
|X̂0,i

s |2
]
≤ αC4

(
||Ŵ i||2KM

+ ε
)
, (A.9)

where C4 = C0(Tα+ C3L
2). Estimating the backward SDE in (3.7), we have

E

[
sup

0≤s≤T
|Ŷ 0,i

s |2 +
∫ T

0

|Ẑ0,i
s |2ds

]
≤ 6(L̃2

Φ + L2
Φ)E|X̂0,i

T |2 + 15T {(L̃+ αL0)2 + L2}E
[∫ T

0

|X̂0,i
s |2ds

]

+ (15TL2 + 13)E[
∫ T

0

(|Ŷ 0,i
s |2 + |Ẑ0,i

s |2)ds] + 15T 2α2
(
||Ŵ i||2KM

+ ε
)
.

(A.10)

From (A.6)−(A.10),

E

[
sup

0≤s≤T
(|X̂0,i

s |2 + |Ŷ 0,i
s |2) +

∫ T

0

|Ẑ0,i
s |2ds

]
≤ αC5

(
||Ŵ i||2KM

+ ε
)
, (A.11)

where C5 = 6(L̃2
Φ + L2

Φ)C2 + 15T {(L̃+ αL0)2 + L2}C1 + (15TL2 + 13)C3 + 15T 2α+ C4. �

For the difference of solution (X i, Y i, Zi), we have the similar estimate.
In the following lemma, we still use the notations C1 to C5 in Lemma A.2.



536 T. HAO AND J. LI

Lemma A.3. We make the same assumptions as in Lemma A.2. Then there exists a C0 > 0 depending only
on L̃, L, L0, LΦ, L̃Φ, α such that, for (t, x) ∈ [0, T ]× Rn and v ∈ Vt,T ,

E

[
sup

t≤s≤T
(|X̂ i

s|2 + |Ŷ i
s |2) +

∫ T

t

|Ẑi
s|2ds

]
≤ αC0

(
||Ŵ i||2KM

+ ε
)
.

Proof. From (3.7) and Lemma A.2 we have, for 0 ≤ t ≤ s ≤ T , i ≥ 0,

E

[
sup

t≤s≤T
|X̂ i

s|2
]
≤ αC6

(
||Ŵ i||2KM

+ ε
)

+ C7E

∫ T

t

(|Ŷ i
r |2 + |Ẑi

r|2)dr, (A.12)

and

E|Ŷ i
s |2 + E

∫ T

s

(|Ŷ i
r |2 + |Ẑi

r|2)dr ≤ 4eβTL2
ΦE|X̂ i

T |2 + 2eβTE

∫ T

s

|X̂ i
r|2dr + αC8

(
||Ŵ i||2KM

+ ε
)
, (A.13)

where
C6 = (10T + 32)T {(L̃+ αL0)2C4 + α+ L2e(10T+8)L2T (10T + 8)T [(L̃+ αL0)2C4 + α]},
C7 = (10T + 32)L2[1 + (10T + 8)L2T e(10T+8)L2T ], C8 = T eβT + 4eβT L̃2

ΦC2 + eβTC4T.

Furthermore, from our assumption (H3.1) and (H3.2L0) as well as (A.7) we obtain, for i ≥ 0,

E
[
〈X̂ i

T , Ŷ
i
T 〉

]
= E

[
E′

[
〈X̂ i

T , Φ((X0,i+1
T )′, X i+1

T ) − Φ((X0,i
T )′, X i

T )〉
]]

≥ μ1E[|X̂ i
T |2] − L̃ΦE[|X̂0,i

T |]E[|X̂ i
T |] ≥ (μ1 − L̃Φ)E

[
|X̂ i

T |2
]
− 1

4 L̃ΦE
[
|X̂0,i

T |2
]

≥ (μ1 − L̃Φ)E
[
|X̂ i

T |2
]
− 1

4 L̃ΦC2α
(
||Ŵ i||2KM

+ ε
)
. (A.14)

Let us put

B̂i(s) �

⎛⎝−GT f̂ i
s

Gb̂is
Gσ̂i

s

⎞⎠ ,

where f̂ i, b̂i, σ̂i are defined as follows:

f̂ i
s =E′[f(s, (X0,i+1

s )′,W i+1(s, (X0,i+1
s )′), X i+1

s , Y i+1
s , Zi+1

s , vs)]
− E′[f(s, (X0,i

s )′,W i(s, (X0,i
s )′), X i

s, Y
i
s , Z

i
s, vs)],

b̂is =E′[b(s, (X0,i+1
s )′,W i+1(s, (X0,i+1

s )′), X i+1
s , Y i+1

s , Zi+1
s , vs)]

− E′[b(s, (X0,i
s )′,W i(s, (X0,i

s )′), X i
s, Y

i
s , Z

i
s, vs)],

σ̂i
s =E′[σ(s, (X0,i+1

s )′,W i+1(s, (X0,i+1
s )′), X i+1

s , Y i+1
s , vs)]

− E′ [σ(s, (X0,i
s )′,W i(s, (X0,i

s )′), X i
s, Y

i
s , vs)

]
.

Then, due to assumptions (H3.2L0) and (H3.1) (Recall that W i ∈ W , i ≥ 0),∣∣∣E [
〈B̂i(s), (X̂ i

s, Ŷ
i
s , Ẑ

i
s)〉

]∣∣∣ ≤− β1E[|X̂ i
s|2] + E

[√
3{(L̃+ αL0)E′

[
| ̂(X0,i

s )′|
]

+αE′|Ŵ i(s, (X0,i
s )′)|}

√
|X i

s|2 + |Y i
s |2 + |Zi

s|2
]
.
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Consequently, from (A.14) we have, for t ≤ s ≤ T , i ≥ 0,

E
[
〈X̂ i

s, Ŷ
i
s 〉

]
= E

[
〈X̂ i

T , Ŷ
i
T 〉

]
− E

[∫ T

s

〈B̂i(r), (X̂ i
r , Ŷ

i
r , Ẑ

i
r) > dr

]

≥ (μ1 − L̃Φ)E|X̂ i
T |2 + (β1 − 2(L̃+ αL0 + α))E

∫ T

s

|X̂ i
r|2dr

− 2(L̃+ αL0 + α)E
∫ T

s

(|Ŷ i
r |2 + |Ẑi

r|2)dr − αC9

(
||Ŵ i||2KM

+ ε
)
,

(A.15)

where C9 = 1
4 L̃ΦC2 + 3

8 (L̃ + αL0)C1 + 3
8T.

Thanks to (A.13) and (A.15), it follows

E[〈X̂ i
s, Ŷ

i
s >] ≥

(
μ1 − L̃Φ − 8(L̃+ αL0 + α)L2

ΦeβT
)
E|X̂ i

T |2

+ {β1 − 2(L̃+ αL0 + α)
(
1 + 2eβT

)}E ∫ T

s

|X̂ i
r|2dr − αC10

(
||Ŵ i||2KM

+ ε
)
,

(A.16)

where β and β1, μ1 are given in (H3.2L0), respectively, and C10 = 2(L̃+ αL0 + α)C8 + C9.
Therefore, as s = t, for i ≥ 0, ⎧⎪⎪⎨⎪⎪⎩

E|X̂ i
T |2 ≤ αC11

(
||Ŵ i||2KM

+ ε
)
,

E

∫ T

t

|X̂ i
r|2dr ≤ αC12

(
||Ŵ i||2KM

+ ε
)
,

(A.17)

where
C11 =

C10

μ1 − L̃Φ − 8(L̃+ αL0 + α)L2
ΦeβT

, C12 =
C10

β1 − 2(L̃+ αL0 + α)(1 + 2eβT )
·

From the backward SDE of (3.7), we obtain

E

[
sup

t≤s≤T
|Ŷ i

s |2 +
∫ T

t

|Ẑi
s|2ds

]

≤6L2
ΦE|X̂ i

T |2 + αC13

(
||Ŵ i||2KM

+ ε
)

+ 15TL2E

[∫ T

t

|X̂ i
s|2ds

]
+ (15TL2 + 13)E

[∫ T

t

|Ŷ i
s |2 + |Ẑi

s|2ds
]
,

(A.18)
where C13 = 6L̃2

ΦC2 + 15T (L̃ + αL0)2C1 + 15T 2α. Finally, combining (A.12), (A.13), (A.17) and (A.18), we
conclude that, for i ≥ 0,

E

[
sup

t≤s≤T
(|X̂ i

s|2 + |Ŷ i
s |2) +

∫ T

t

|Ẑi
s|2ds

]
≤ αC14

(
||Ŵ i||2KM

+ ε
)
,

where C14 = (15TL2 + 13 + C7)(C8 + 4L2
ΦeβTC11 + 2eβTC12) + 6L2

ΦC11 + 15TL2C12 + C13 + C6. �
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