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A CONVEX ANALYSIS APPROACH TO OPTIMAL CONTROLS
WITH SWITCHING STRUCTURE FOR PARTIAL DIFFERENTIAL EQUATIONS

Christian Clason1, Kazufumi Ito2 and Karl Kunisch3

Abstract. Optimal control problems involving hybrid binary-continuous control costs are challenging
due to their lack of convexity and weak lower semicontinuity. Replacing such costs with their convex re-
laxation leads to a primal-dual optimality system that allows an explicit pointwise characterization and
whose Moreau–Yosida regularization is amenable to a semismooth Newton method in function space.
This approach is especially suited for computing switching controls for partial differential equations. In
this case, the optimality gap between the original functional and its relaxation can be estimated and
shown to be zero for controls with switching structure. Numerical examples illustrate the effectiveness
of this approach.
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1. Introduction

In the context of control of differential equations, switching control refers to problems with two or more
controls of which only one should be active at every point in time. This is a challenging problem due to its
hybrid discrete-continuous nature.

To partially set the stage, consider the parabolic partial differential equation Ly = Bu on ΩT := [0, T ] × Ω,
where L = ∂t −A for an elliptic operator A defined on Ω ⊂ R

n, and B is defined by (Bu)(t, x) = χω1(x)u1(t) +
χω2(x)u2(t) for given control domains ω1, ω2 ⊂ Ω (which may include controls acting on the boundary). To
promote a switching structure, we propose to use the binary function

| · |0 : R → R, |t|0 :=

{
1 if t �= 0,

0 if t = 0,

to construct a cost functional which has the value 0 if and only if at most one control is active pointwise. To
guarantee coercivity, we also need to add an (in this case) quadratic term, i.e., we define for v = (v1, v2) ∈ R

2
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the pointwise control cost
g(v) =

α

2
(v2

1 + v2
2) + β|v1v2|0.

This term combines in a single functional both switching enhancement and a quadratic cost for the active
control(s), where the binary part naturally acts as a penalization of the switching constraint v1v2 = 0. In this
respect we shall consider the asymptotic behavior β → ∞ in Section 4.

For some ωT ⊂ ΩT we then consider the problem⎧⎪⎨
⎪⎩

min
u∈L2(0,T ;R2)

1
2
‖y − z‖2

L2(ωT ) +
∫ T

0

g(u(t)) dt,

s. t. Ly = Bu.

(1.1)

Using the solution operator S = L−1B : u �→ y, problem (1.1) can be expressed in reduced form as

min
u

F(u) + G(u), (1.2)

where F is smooth and convex, and G is neither smooth nor convex nor, in fact, weakly lower semicontinuous
(since this is the case if and only if g is lower semicontinous and convex, which is not the case; see, e.g., [4],
Cor. 2.14). This makes both its analysis and its numerical solution challenging; for example, one cannot rely on
standard techniques to guarantee existence of solutions. We therefore consider the relaxed problem

min
u

F(u) + G∗∗(u), (1.3)

where G∗∗ is the biconjugate of G, which is always convex. Existence and optimality conditions for the relaxed
problem can readily be obtained. However, as we shall see, these optimality conditions are not directly amenable
to numerical solution by Newton-type techniques. For this reason we consider a regularized optimality system{−pγ ∈ ∂F(uγ),

uγ = (∂G∗)γ(pγ),
(1.4)

where (∂G∗)γ is the Moreau–Yosida approximation of the subdifferential of the Fenchel conjugate G∗. Thus for
the numerical realization, only (∂G∗)γ is needed which can be computed without explicit knowledge of G∗∗. For
problem (1.1), the first relation of (1.4) coincides with the usual state and adjoint equations, while the second
relation allows a pointwise characterization; see (3.6) below.

The remainder of this work is organized as follows. In Section 2, we shall provide the abstract existence
results, derive optimality conditions, and prove the convergence of solutions to system (1.4) to minimizers of
problem (1.3). Section 3 is dedicated to giving an explicit pointwise characterization of the subdifferential ∂G∗

and its Moreau–Yosida (∂G∗)γ in the concrete case of switching control; two other functionals involving | · |0
(sparsity and multi-bang penalties) are discussed in Appendix A. These characterizations allow addressing the
significant questions related to the relaxation (1.3) of (1.2) in Section 4: We clarify the relation between the
value of the costs in (1.3) and in (1.2) in terms of the duality gap between G and G∗, and show that in certain
cases it can be guaranteed to be zero. If this is the case, then the solution to problem (1.3) is also a solution to
problem (1.2). Moreover, we analyze to which extent the choice of the functional (v1, v2) �→ |v1v2|0, when used
as part of control costs, in fact leads to optimal solutions of switching type. We shall be able to give a sufficient
condition on the relation of α and β for (1.3) that rule out free arcs, where |v1| and |v2| are both strictly
positive but not equal, whereas singular arcs, on which |v1| = |v2| > 0, may remain. Section 5 is concerned with
the numerical solution of (1.4) via a path-following semismooth Newton method. To guarantee convergence, a
globalization is required. This guarantees superlinear convergence of the semismooth Newton algorithm in spite
of the challenging cost, which combines continuous and discrete objectives. Finally, Section 6 contains numerical
tests for switching controls in the context of an elliptic and a parabolic partial differential equation.



A CONVEX ANALYSIS APPROACH TO OPTIMAL CONTROLS WITH SWITCHING STRUCTURE FOR PDES 583

Let us put our work into perspective with respect to the existing literature. Casting the problem of switching
controls as a nonconvex optimization problem involving the binary functional |·|0 is certainly new. Concerning the
convex relaxation of nonconvex problems, we can draw from existing works. We only mention the monograph [8],
where, however, the focus is on obtaining existence rather than on explicit optimality conditions and numerical
realization. The partial (Moreau–Yosida) regularization of nonsmooth convex finite-dimensional problems for
the purpose of efficiently applying first-order methods was investigated in [3]. Switching control has been studied
mainly for ordinary differential equations; here we refer to [21] for a survey with emphasis on stability of switching
systems. The Hamilton–Jacobi–Bellman equation for switching controls was extensively studied in [6] and [23].
Switching control in the context of partial differential equations was especially investigated with respect to their
improved flexibility over nonswitching controls for stabilization [9,18]. Controllability for systems with switching
controls were studied in [17, 24]. The hybrid nature of continuous and discrete phenomena when the system
switches among different modes is the focus of the work in [11, 12]. In [12] a relaxation technique combined
with rounding strategies is proposed to solve mixed-integer programming problems arising in optimal control of
partial differential equations. It is verified that the solution of the relaxed problems can be approximated with
arbitrary accuracy by a solution satisfying the integer requirements. In [14] optimal control of linear switched
systems are considered, and an algorithmic treatment is proposed that relies on an exhaustive search which
involves solving on the order of mk differential Riccati equations, where m denotes the number of possible
controller configurations and k the number of predefined switching times.

2. Convex relaxation and regularization approach

In this section we introduce the abstract framework and recall relevant concepts from convex analysis. Con-
sider the variational problem

min
u∈U

J (u) = min
u∈U

F(u) + G(u), (P)

where U is a Hilbert space and F : U → R is convex. If moreover G : U → R ∪ {∞} is convex, any minimizer
ū ∈ U satisfies (under a regularity assumption stated below) the following necessary optimality conditions:
There exists a p̄ ∈ −∂F(ū) ⊂ U∗ such that p̄ ∈ ∂G(ū) ⊂ U∗, which holds if and only if ū ∈ ∂G∗(p̄) (see,
e.g., [20], Prop. 4.4.4). Here,

G∗ : U∗ → R ∪ {∞}, G∗(p) = sup
u∈U

〈u, p〉 − G(u),

denotes the Fenchel conjugate of the convex functional G, and ∂G∗ denotes its convex subdifferential (in the
following, we identify the Hilbert space U with its dual U∗ and consider G∗ : U → R ∪ {∞}). We thus obtain
the primal-dual optimality system {

−p̄ ∈ ∂F(ū),

ū ∈ ∂G∗(p̄),
(2.1)

which is well-defined even for nonconvex G : U → R ∪ {∞} as in the situation we are interested in. To argue
existence of a solution, we will show that the system (2.1) is the necessary optimality condition for

min
u∈U

F(u) + G∗∗(u), (2.2)

where G∗∗ = (G∗)∗ is the biconjugate of G, and make the following standard assumptions:⎧⎪⎨
⎪⎩

F is convex and weakly lower-semicontinuous,
G is proper and non-negative,

F + G∗∗ is radially unbounded.
(A1)
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Proposition 2.1. Under assumption (A1), the system (2.1) admits a solution (ū, p̄) ∈ U × U . If F is strictly
convex, this solution is unique.

Proof. By assumption, G : U → R+∪{∞} is bounded from below by 0, which implies that G∗∗ ≥ 0 as well (see,
e.g. [2], Prop. 13.14). Furthermore, Fenchel conjugates are always lower semicontinuous and convex (see, e.g. [2],
Prop. 13.11). Together with assumption (A1) this implies that F +G∗∗ is convex, weakly lower semicontinuous,
and radially unbounded, and thus a standard subsequence argument yields existence of a minimizer ū ∈ U
to (2.2).

Since domF = U ensures that the stability condition⋃
λ≥0

λ(domF − domG∗∗) is a closed vector space

holds, we can apply the sum rule for the convex subdifferential from [1] and again appeal to [20], Proposition 4.4.4
for ∂G∗∗ to arrive at the necessary optimality conditions (2.1). �

Problem (2.2) can be seen a convex relaxation of problem (P). This approach is thus related to the Γ -
regularization in the calculus of variations (see, e.g., [8], Chap. IX), although here we consider a more specific
relaxation and pass to the biconjugate only in the nonconvex term rather than to the full biconjugate func-
tional J ∗∗, which allows us to obtain explicit optimality conditions in the primal-dual form (2.1) that are useful
for numerical computations.

In general, a solution to system (2.1) is not necessarily a minimizer of (P), since for nonconvex G we cannot rely
on equality in the Fenchel–Young inequality (which requires the characterization of the convex subdifferential).
In fact, a solution to problem (P) may not even exist. However, for the class of penalties we are interested in, it
is possible to show that a solution to system (2.1) is suboptimal in the sense that the corresponding functional
value is within a certain distance of the infimum. This distance is given by the duality gap

δ(u, p) := G(u) + G∗(p) − 〈p, u〉 (2.3)

between G and its Fenchel dual G∗. This gap is always non-negative by the Fenchel–Young inequality, and
vanishes if G is convex and p ∈ ∂G(u).

Lemma 2.2. Let F satisfy (A1), and let (ū, p̄) satisfy (2.1). Then

J (ū) ≤ J (u) + δ(ū, p̄) for all u ∈ U.

Proof. Assume that (ū, p̄) is a solution to system (2.1) and let u ∈ U be arbitrary. Recall that the first relation
of (2.1) then implies that

F(u) − F(ū) − 〈−p̄, u − ū〉 ≥ 0.

Furthermore, by definition (2.3) and the Fenchel–Young inequality (which holds for any proper G) we have that

G(u) − G(ū) − 〈p̄, u − ū〉 = G(u) − 〈p̄, u〉 + G∗(p̄) − δ(ū, p̄) ≥ −δ(ū, p̄).

Hence,
J (u) − J (ū) = (F(u) + G(u)) − (F(ū) + G(ū))

= (F(u) −F(ū) − 〈−p̄, u − ū〉) + (G(u) − G(ū) − 〈p̄, u − ū〉)
≥ −δ(ū, p̄). �

Since the subdifferential ∂G∗ is in general multivalued and not Lipschitz continuous, system (2.1) is not
amenable to numerical solution. We therefore introduce the Moreau–Yosida regularization of ∂G∗:

u = (∂G∗)γ(p) :=
1
γ

(
p − proxγG∗(p)

)
, (2.4)
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where

proxγf (v) = arg min
w

f(w) +
1
2γ

‖w − v‖2

is the proximal mapping of f ; see [19]. We recall the following properties of proxγf and (∂f)γ (e.g., from [2],
Props. 12.29, 12.15, 23.10, 23.43, 12.9, 16.34; see also [15], Chap. 4.4).

Proposition 2.3. Let f : H → R ∪ {∞} be a proper convex function on a Hilbert space H. Then,

(i) (∂f)γ = (fγ)′, where

fγ(v) = f(proxγf(v)) +
1
2γ

‖proxγf(v) − v‖2

is the Moreau-envelope of f , which is real-valued and convex.
(ii) (∂f)γ is single-valued, maximally monotone and Lipschitz-continuous with constant γ−1;
(iii) ‖(∂f)γ(v)‖H ≤ infq∈∂f(v) ‖q‖H for all v ∈ H;
(iv) f

(
proxγf(v)

)
≤ fγ(v) ≤ f(v) for all γ > 0 and v ∈ H;

(v) proxγf = (Id +γ∂f)−1 (the resolvent of ∂f).

From the last property, we can see that

(∂f)γ =
1
γ

(
Id−(Id +γ∂f)−1

)
= ∂f ◦ (Id +γ∂f)−1,

i.e., (∂f)γ is indeed the Moreau–Yosida regularization of ∂f .
For brevity, we set G∗

γ := (G∗)γ and Hγ := (∂G∗)γ from here on and consider the regularized optimality
system {−pγ ∈ ∂F(uγ),

uγ = Hγ(pγ).
(2.5)

Arguing as in Proposition 2.1, existence of a solution follows from the fact that this system is the necessary
optimality condition for the problem

min
u

F(u) + (G∗
γ)∗(u),

using that G∗
γ ≤ G∗ implies that 0 ≤ G∗∗ ≤ (G∗

γ)∗ and that Hγ = (∂G∗)γ is single-valued by Proposition 2.3 (i,ii).

Proposition 2.4. Under assumption (A1), the system (2.5) admits a solution (uγ , pγ) ∈ U ×U . If F is strictly
convex, this solution is unique.

The convergence (uγ , pγ) → (ū, p̄) as γ → 0 requires additional assumptions on F and G:

{
(i) F is Fréchet differentiable, F ′ has weakly closed graph, and

(ii) {F(uγ)}γ>0 bounded implies {F ′(uγ)}γ>0 bounded,
(A2)

{pγ}γ>0 bounded implies
{

inf
q∈∂G∗(pγ)

‖q‖U

}
γ>0

bounded. (A3)

We point out that A2(ii) is generically satisfied for functionals of the type F(u) = F (S(u)), where

(i) F : Y → R is radially unbounded on a Banach space Y ,
(ii) F is Fréchet differentiable and F ′ is bounded on bounded sets,
(iii) S : U → Y is Fréchet differentiable and S′(u)∗ is uniformly bounded on U ,
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since in this case boundedness of F(uγ) implies boundedness of yγ := S(uγ) and hence boundedness of F ′(uγ) =
S′(uγ)∗F ′(yγ). In particular, it holds for many common tracking-type functionals of the form F (y) = 1

2‖y−z‖2
Y

and bounded linear control-to-state mappings S. In this case, F ′(u) = S∗(Su − z) and (A2 i) trivially holds.
Assumption (A3) is more restrictive but satisfied for the class of functionals we shall consider later on.

Proposition 2.5. If F and G satisfy assumptions (A1)–(A3), the family {(uγ , pγ)}γ>0 contains a subsequence
converging weakly as γ → 0 to a solution (ū, p̄) to system (2.1). If F is strictly convex, the whole sequence
converges weakly.

Proof. First, observe that
(G∗

γ)∗(0) = sup
p∈U

−G∗
γ(p) = inf

p∈U
G∗

γ(p) ≤ inf
p∈U

G∗(p)

by Proposition 2.3 (iii). By the optimality of uγ we thus have for any γ > 0 that

F(uγ) ≤ F(uγ) + (G∗
γ)∗(uγ) ≤ F(0) + inf

p∈U
G∗(p).

Hence, {F(uγ)}γ>0 is bounded, and Assumption (A2) yields that

{pγ}γ>0 = {−F ′(uγ)}γ>0

is bounded. From assumption (A3) together with Proposition 2.3 (iii) it then follows that for every γ > 0, we
have that

‖uγ‖U = ‖Hγ(pγ)‖U ≤ inf
q∈∂G∗(pγ)

‖q‖U ≤ C,

i.e., {Hγ(pγ)}γ>0 and {uγ}γ>0 are bounded. Hence, there exist subsequences {uγn}n∈N, {pγn}n∈N and
{Hγn(pγn)}n∈N converging weakly in U to some û, p̂, and ŷ, respectively. The weak closedness of F ′ then
yields

p̂ = −F ′(û).

For the second relation of system (2.1), we first observe that due to the monotonicity of F ′ and using both
relations of system (2.5), we have for any γ1, γ2 > 0 that

〈Hγ1(pγ1) − Hγ2(pγ2), pγ1 − pγ2〉 = −〈uγ1 − uγ2 ,F ′(uγ1) −F ′(uγ2)〉 ≤ 0,

and hence that for any sequence {γn}n∈N with γn → 0,

lim sup
n,m→∞

〈Hγn(pγn) − Hγm(pγm), pγn − pγm〉 ≤ 0.

Since Hγ is monotone, we can apply [5], Lemma 1.3(e) to obtain that û = ∂G∗(p̂), i.e., (û, p̂) satisfies system (2.1).
If F is strictly convex, the solution to system (2.1) is unique, and the claim follows from a subsequence-

subsequence argument. �

To conclude this section, we compare the Moreau–Yosida regularization with the following complementarity
formulation of the second relation of system (2.1): for any γ > 0, we have that

u ∈ ∂G∗(p) ⇔ p + γu ∈ (Id +γ∂G∗)(p)

⇔ p ∈ (Id +γ∂G∗)−1(p + γu)
⇔ p = proxγG∗(p + γu)

⇔ u =
1
γ

(
(p + γu)− proxγG∗(p + γu)

)
= (∂G∗)γ(p + γu) = (G∗

γ)′(p + γu)
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(see also [15], Thm. 4.41). The subdifferential inclusion can thus be equivalently expressed as a nonlinear equa-
tion. While the subdifferential inclusion is explicit with respect to u, the nonlinear equation is implicit. Moreover,
the appearance of u in the proximal mapping rules out the effective use of semismooth Newton methods for
the applications we have in mind. On the other hand, note that the Moreau–Yosida approximation (2.4) differs
only in the absence of γu on the right hand side of the last equality. Hence semismooth Newton methods will
be applicable.

3. Switching cost functional g

To make practical use of the proposed approach, we require an explicit, pointwise, characterization of ∂G∗

and (∂G∗)γ . For this, we exploit the integral nature of functionals of the type

G(u) =
∫

D

g(u(x)) dx

with D ⊂ R
d, for some d ≥ 1, which allows computing the Fenchel conjugate and its subdifferential pointwise

as well (see, e.g., [8], Props. IV.1.2, IX.2.1, [2], Prop. 16.50).
Specifically, we consider here the switching cost functional on R

2,

g(v) =
α

2
(v2

1 + v2
2) + β|v1v2|0. (3.1)

Other penalties of this class are discussed in Appendix A. The use of the term |v1v2|0 enhances switching
between the control variables v1 and v2 in such a manner that simultaneous nontriviality of both of them is
penalized. We shall give sufficient conditions which guarantee that in fact v1 and v2 are not simultaneously
nontrivial except for a singular set of controls for which |v1| = |v2| ≤

√
2β/α.

3.1. Fenchel conjugate of g

To characterize
g∗(q) = sup

v∈R2
v · q − g(v), (3.2)

first note that the function v �→ g(v) − v · q is lower semicontinuous and radially unbounded. The supremum
in (3.2) is thus attained at some v̄ ∈ R

2. We then discriminate the following cases:

(i) v̄1 = 0, in which case g(v̄) = α
2 v̄2

2 . The supremum in (3.2) is attained if and only if the necessary optimality
condition q2 − αv̄2 = 0 holds. Solving for v̄2 and inserting into (3.2) yields

g∗(q) =
1
2α

q2
2 .

(ii) v̄2 = 0, in which case g(v̄) = α
2 v̄2

1 . By the same argument as in case (i) we obtain

g∗(q) =
1
2α

q2
1 .

(iii) v̄1, v̄2 �= 0, in which case g(v̄) = α
2 (v̄2

1 + v̄2
2) + β. Again, using the necessary optimality condition for the

supremum in (3.2) yields

g∗(q) =
1
2α

(q2
1 + q2

2) − β.

It remains to decide which of these cases is attained based on the value of q. For this purpose, define

g∗i (q) =

{
1
2αq2

i if i ∈ {1, 2},
1
2α (q2

1 + q2
2) − β if i = 0.
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Since all g∗i are finite, the supremum in (3.2) is attained at

g∗(q) = max
i∈{0,1,2}

g∗i (q).

From the definition, we have that g∗1(q) ≥ g∗2(q) if |v̄1| ≥ |v̄2| and g∗1(q) ≥ g∗0(q) if |v̄2| ≤
√

2αβ; similarly for
g∗2(q). Conversely, g∗0(q) ≥ g∗i (q) if |v̄j | ≤

√
2αβ, j = 1, 2. Summarizing the above, we have

g∗(q) =

⎧⎪⎪⎨
⎪⎪⎩

1
2αq2

1 if |q1| ≥ |q2| and |q2| ≤
√

2αβ,

1
2αq2

2 if |q1| ≤ |q2| and |q1| ≤
√

2αβ,

1
2α

(
q2
1 + q2

2

)
− β if |q1|, |q2| ≥

√
2αβ.

(3.3)

3.2. Subdifferential of g∗

Since g∗ is the maximum of a finite number of convex functions, its subdifferential is given by

∂g∗(q) = co

⎛
⎝ ⋃

{i:g∗(q)=g∗
i (q)}

{(g∗i )′(q)}

⎞
⎠ ,

where co denotes the closed convex hull (see, e.g., [13], Cor. 4.3.2). We make a case distinction based on all
possibilities for g∗(q) = g∗i (q), i ∈ {0, 1, 2}:
(i) g∗(q) = g∗1(q) only, which is the case if and only if

q ∈ Q1 :=
{
q ∈ R

2 : |q1| > |q2| and |q2| <
√

2αβ
}

.

Here the subdifferential is single-valued and given by

∂g∗(q) =
({

1
αq1

}
, {0}

)
.

(ii) g∗(q) = g∗2(q) only, which is the case if and only if

q ∈ Q2 :=
{
q ∈ R

2 : |q2| > |q1| and |q1| <
√

2αβ
}

.

Here,
∂g∗(q) =

(
{0} ,

{
1
αq2

})
.

(iii) g∗(q) = g∗0(q) only, which is the case if and only if

q ∈ Q0 :=
{

q ∈ R
2 : |q1|, |q2| >

√
2αβ

}
.

Here,
∂g∗(q) =

({
1
αq1

}
,
{

1
αq2

})
.

(iv) g∗(q) = g∗1(q) = g∗0(q) �= g∗2(q), which is the case if and only if

q ∈ Q10 :=
{
q ∈ R

2 : |q1| > |q2| =
√

2αβ
}

.

Here, the subdifferential is given by the convex hull of {(g∗1)′(q), (g∗0)′(q)}, i.e.,

∂g∗(q) =
({

1
αq1

}
,
[
0, 1

αq2

])
.

To keep the notation concise, we use the convention [a, b] := [min{a, b}, max{a, b}] here and below.
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q2

q1

Q0 Q0Q2 Q2

Q1Q1 Q12 Q12

Q10 Q10

Q20 Q20

√
2αβ−√

2αβ

√
2αβ

Figure 1. Subdomains Qi ⊂ R
2 for the definition of ∂g∗.

(v) g∗(q) = g∗2(q) = g∗0(q) �= g∗1(q), which is the case if and only if

q ∈ Q20 :=
{
q ∈ R

2 : |q2| > |q1| =
√

2αβ
}

.

Here,
∂g∗(q) =

([
0, 1

αq1

]
,
{

1
αq2

})
.

(vi) g∗(q) = g∗1(q) = g∗2(q), which is the case if and only if

q ∈ Q12 :=
{
q ∈ R

2 : |q1| = |q2| ≤
√

2αβ
}

.

Here,
∂g∗(q) =

{(
t
αq1,

1−t
α q2

)
: t ∈ [0, 1]

}
.

Note that this also includes the case g∗(q) = g∗1(q) = g∗2(q) = g∗0(q), since then (g∗0)′(q) ∈ ∂g∗(q).

Since R
2 is the disjoint union of the sets Qi defined above, see Figure 1, we thus obtain a complete characteri-

zation of the subdifferential ∂g∗(q).

3.3. Proximal mapping of g∗

For the Moreau–Yosida regularization or the complementarity formulation, we need to compute the proximal
mapping of g∗ or, equivalently, the resolvent of ∂g∗. For given γ > 0 and v ∈ R, the resolvent w := (Id +
γ∂g∗)−1(v) is characterized by the subdifferential inclusion

v ∈ (Id + γ∂g∗)(w) = {w} + γ∂g∗(w). (3.4)

Note that this implies

v ∈
[
w, (1 + γ

α )w
]

or equivalently that w ∈
[

α
α+γ v, v

]
, (3.5)

and hence that sign(vj) = sign(wj), j = 1, 2. We now follow the case discrimination in the characterization of
the subdifferential.
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(i) w ∈ Q1: In this case, the subdifferential inclusion (3.4) yields v1 = (1 + γ
α )w1 and v2 = w2; solving for

w1, w2 and inserting the result into the definition of Q1 yields

w =
(

α
α+γ v1, v2

)
and |v1| > (1 + γ

α )|v2|, |v2| <
√

2αβ.

(ii) w ∈ Q2: In this case, v1 = w1 and v2 = (1 + γ
α )w2, and as in case (i) we have that

w =
(
v1,

α
α+γ v2

)
and |v2| > (1 + γ

α )|v1|, |v1| <
√

2αβ.

(iii) w ∈ Q0: In this case, v1 = (1 + γ
α )w1 and v2 = (1 + γ

α )w2, and hence

w =
(

α
α+γ v1,

α
α+γ v2

)
and |v1| > (1 + γ

α )
√

2αβ, |v2| > (1 + γ
α )
√

2αβ.

(iv) w ∈ Q10: In this case, v1 = (1 + γ
α )w1 and v2 ∈ [w2, (1 + γ

α )w2]. Since sign(w2) = sign(v2), we have from
the definition of Q10 that w2 = sign(v2)

√
2αβ. Hence

w =
(

α
α+γ v1, sign(v2)

√
2αβ

)
and

√
2αβ ≤ |v2| ≤ (1 + γ

α )
√

2αβ, |v1| > (1 + γ
α )
√

2αβ.

(v) w ∈ Q20: In this case, v2 = (1 + γ
α )w2 and v1 ∈ [w1, (1 + γ

α )w1]. As in (iv), we have that

w =
(
sign(v1)

√
2αβ, α

α+γ v2

)
and

√
2αβ ≤ |v1| ≤ (1 + γ

α )
√

2αβ, |v2| > (1 + γ
α )
√

2αβ.

(vi) w ∈ Q12: In this case, v1 ∈ [w1, (1 + γ
α )w1] and v2 ∈ [w2, (1 + γ

α )w2]. This does not yield an explicit value
for w, although the definition of Q12 implies that |w1| = |w2| ≤

√
2αβ. We therefore turn to the equivalent

characterization of w via the proximal mapping

w = proxγg∗(v) = argmin
|z1|=|z2|≤

√
2αβ

1
2γ

|z − v|22 + g∗(z).

First, assume that z1 = z2 =: z (which implies sign(v1) = sign(z) = sign(v2)). The minimizer of the reduced
problem is then given by the projection of the unconstrained minimizer z = α

2α+γ (v1 + v2) to the (convex)
feasible set [−

√
2αβ,

√
2αβ], i.e.,

w =

⎧⎨
⎩
(

α
2α+γ (v1 + v2), α

2α+γ (v1 + v2)
)

if α
2α+γ |v1 + v2| ≤

√
2αβ,(

sign(v1)
√

2αβ, sign(v2)
√

2αβ
)

if α
2α+γ |v1 + v2| >

√
2αβ.

Inserting each of these values for w into the relation v ∈ [w, (1 + γ
α )w] yields (after some algebraic manip-

ulations)
α

α+γ |v2| ≤ |v1| ≤ (1 + γ
α )|v2|

and √
2αβ ≤ |v1|, |v2| ≤ (1 + γ

α )
√

2αβ,

respectively.
We argue similarly for z1 = −z2 (where sign(v1) = sign(z) = − sign(v2)). Combining the two cases, we
obtain

w =
(
sign(v1) α

2α+γ (|v1| + |v2|), sign(v2) α
2α+γ (|v1| + |v2|)

)
and α

α+γ |v2| ≤ |v1| ≤ (1 + γ
α )|v2|,

|v1| + |v2| ≤ (2 + γ
α )
√

2αβ,

and
w =

(
sign(v1)

√
2αβ, sign(v2)

√
2αβ

)
and

√
2αβ ≤ |v1|, |v2| ≤ (1 + γ

α )
√

2αβ,

|v1| + |v2| > (2 + γ
α )
√

2αβ.
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Inserting this into the definition of the Moreau–Yosida regularization

(∂g∗)γ(q) =
1
γ

(
q − proxγg∗(q)

)
and simplifying yields

(∂g∗)γ(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1

α+γ q1, 0
)

if q ∈ Qγ
1 ,(

0, 1
α+γ q2

)
if q ∈ Qγ

2 ,(
1

α+γ q1,
1

α+γ q2

)
if q ∈ Qγ

0 ,(
1

α+γ q1,
1
γ

(
q2 − sign(q2)

√
2αβ

))
if q ∈ Qγ

10,(
1
γ

(
q1 − sign(q1)

√
2αβ

)
, 1

α+γ q2

)
if q ∈ Qγ

20,(
1
γ

(
q1 − sign(q1)

√
2αβ

)
, 1

γ

(
q2 − sign(q2)

√
2αβ

))
if q ∈ Qγ

00,(
1
γ

(
α+γ
2α+γ q1 − sign(q1) α

2α+γ |q2|
)

, 1
γ

(
α+γ
2α+γ q2 − sign(q2) α

2α+γ |q1|
))

if q ∈ Qγ
12,

(3.6)

where

Qγ
1 =

{
q : |q1| > (1 + γ

α )|q2| and |q2| <
√

2αβ
}

,

Qγ
2 =

{
q : |q2| > (1 + γ

α )|q1| and |q1| <
√

2αβ
}

,

Qγ
0 =

{
q : |q1|, |q2| >

(
1 + γ

α

)√
2αβ

}
,

Qγ
10 =

{
q : |q1| ∈

[√
2αβ,

(
1 + γ

α

)√
2αβ

]
and |q2| >

(
1 + γ

α

)√
2αβ

}
,

Qγ
20 =

{
q : |q2| ∈

[√
2αβ,

(
1 + γ

α

)√
2αβ

]
and |q1| >

(
1 + γ

α

)√
2αβ

}
,

Qγ
00 =

{
q : |q1|, |q2| ∈

[√
2αβ,

(
1 + γ

α

)√
2αβ

]
and |q1| + |q2| > (2 + γ

α )
√

2αβ
}

,

Qγ
12 =

{
q : |q1| ∈

[
α

α+γ |q2|,
(
1 + γ

α

)
|q2|
]

and |q1| + |q2| ≤
(
2 + γ

α

)√
2αβ

}
,

see Figure 2.
This pointwise characterization allows obtaining expressions for the Moreau–Yosida approximation and the

complementarity formulation of u ∈ ∂G∗(p).

4. Optimality conditions and structure

We now discuss the properties of solutions (ū, p̄) to system (2.1). Specifically, let

U = L2(D; R2) and G : U → R, G(u) =
∫

D

g(u(x)) dx

with g given by (3.1). The functional F will be assumed to be a tracking term of the form

F(u) =
1
2
‖Su − z‖2

Y
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q2

q1

Qγ
0 Qγ

20

Qγ
00

Qγ
12 Qγ

12

Qγ
2 Qγ

2 Qγ
20

Qγ
00Qγ

10 Qγ
10

Qγ
0

Qγ
1Qγ

1

−√
2αβ− 1 + γ

α

√
2αβ

√
2αβ 1 + γ

α

√
2αβ

√
2αβ

1 +� �γ
α

√
2αβ

� � � �

Figure 2. Subdomains Qγ
i ⊂ R

2 for the definition of (∂g∗)γ .

for a Hilbert space Y = Y ∗ (e.g., Y = L2([0, T ]×Ω)), given z ∈ Y , and a bounded linear control-to-observation
mapping S : U → Y . We further assume the existence of a Banach space V ↪→ Lr(D; R2) with r > 2 such that
the adjoint S∗ : Y → U maps continuously into V . The optimality system (2.1) is then given by{

p̄ = −S∗(Sū − z),

ū ∈ ∂G∗(p̄).
(OS)

From (B.2) it follows that G∗∗ is radially unbounded. Hence, F and G satisfy assumption (A1), and Proposi-
tion 2.1 yields existence of a solution (ū, p̄) ∈ U × U (which is unique if S is injective).

Using Section 3.2 and the pointwise characterization of the subdifferential of integral functionals (see, e.g., [2],
Prop. 16.50), the second relation in (OS) implies that for almost all x ∈ D,

ū(x) ∈ [∂G∗(p)](x) = ∂g∗(p(x))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

({
1
α p̄1(x)

}
, {0}

)
if p̄(x) ∈ Q1 =

{
q : |q1| > |q2| and |q2| <

√
2αβ

}
,(

{0},
{

1
α p̄2(x)

})
if p̄(x) ∈ Q2 =

{
q : |q2| > |q1| and |q1| <

√
2αβ

}
,({

1
α p̄1(x)

}
,
{

1
α p̄2(x)

})
if p̄(x) ∈ Q0 =

{
q : |q1|, |q2| >

√
2αβ

}
,({

1
α p̄1(x)

}
,
[
0, 1

α p̄2(x)
])

if p̄(x) ∈ Q10 =
{
q : |q1| > |q2| and |q2| =

√
2αβ

}
,([

0, 1
α p̄1(x)

]
,
{

1
α p̄2(x)

})
if p̄(x) ∈ Q20 =

{
q : |q2| > |q1| and |q1| =

√
2αβ

}
,{(

t
α p̄1(x), 1−t

α p̄2(x)
)

: t ∈ [0, 1]
}

if p̄(x) ∈ Q12 =
{
q : |q1| = |q2| and |q1| ≤

√
2αβ

}
.

(4.1)

We define the switching arc (where at most one control is active, i.e., nonzero)

A = {x ∈ D : p̄(x) ∈ Q1 ∪ Q2 ∪ {(0, 0)}} ,

the free arc (where both controls are active)

I = {x ∈ D : p̄(x) ∈ Q0 ∪ Q10 ∪ Q20} ,
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and the singular arc

S = {x ∈ D : p̄(x) ∈ Q12 \ {(0, 0)}} .

In a slight abuse of notation, we also introduce

∂I = {x ∈ D : p̄(x) ∈ Q10 ∪ Q20} .

Clearly,
D = A ∪ I ∪ S.

Let us address the question when the solution to system (OS) will be optimal. For this purpose, we first
estimate the duality gap (2.3).

Lemma 4.1. If (ū, p̄) ∈ U × U satisfies ū ∈ ∂G∗(p̄), then

δ(ū, p̄) ≤ β|∂I| + 2β|S|.

Proof. We discriminate pointwise in the definition (2.3) based on the value of p̄(x) for almost every x ∈ D.

(i) p̄(x) ∈ Q1. In this case, the relation (4.1) yields ū1(x) = 1
α p̄1(x) and ū2(x) = 0, and thus

g(ū(x)) + g∗(p̄(x)) − p̄(x) · ū(x) =
1
2α

p̄1(x)2 +
1
2α

p̄1(x)2 − 1
α

p̄1(x)2 = 0.

(ii) p̄(x) ∈ Q2. In this case, the relation (4.1) yields ū1(x) = 0 and ū2(x) = 1
α p̄2(x), and thus

g(ū(x)) + g∗(p̄(x)) − p̄(x) · ū(x) =
1
2α

p̄2(x)2 +
1
2α

p̄2(x)2 − 1
α

p̄2(x)2 = 0.

(iii) p̄(x) ∈ Q0. In this case, the relation (4.1) yields ū1(x) = 1
α p̄1(x) and ū2(x) = 1

α p̄2(x), and thus

g(ū(x)) + g∗(p̄(x)) − p̄(x) · ū(x) =
1
2α

(p̄1(x)2 + p̄2(x)2) + β

+
1
2α

(p̄1(x)2 + p̄2(x)2) − β − 1
α

(p̄1(x)2 + p̄2(x)2) = 0.

(iv) p̄(x) ∈ Q10. In this case, the relation (4.1) yields ū1(x) = 1
α p̄1(x) and ū2(x) ∈ [0, 1

α p̄2(x)]. Assume first
that p̄2(x) is positive, and that 0 < ū2(x) < 1

α p̄2(x) (otherwise argue as in case (i) or (iii)). Then,

g(ū(x)) + g∗(p̄(x)) − p̄(x) · ū(x) =
1
2α

p̄1(x)2 +
α

2
ū2(x)2 + β +

1
2α

p̄1(x)2 − 1
α

p̄1(x)2 − p̄2(x)ū2(x)

=
α

2
u2(x)2 − p̄2(x)ū2(x) + β.

A simple calculus argument shows that the right-hand side is a monotonically decreasing function of ū2(x)
on (0, 1

α p̄2(x)) and hence attains its supremum for ū2(x) = 0, which implies that

g(ū(x)) + g∗(p̄(x)) − p̄(x)ū(x) < β

for all ū2(x) ∈ (0, 1
α p̄2(x)). For q̄2(x) negative, we argue similarly.

(v) p̄(x) ∈ Q20. In this case, the relation (4.1) yields ū1(x) ∈ [0, 1
α p̄1(x)] and ū2(x) = 1

α p̄2(x). Proceeding as in
case (iv) yields

g(ū(x)) + g∗(p̄(x)) − p̄(x)ū(x) < β.
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(vi) p̄(x) ∈ Q12. In this case, the relation (4.1) yields (ū1(x), ū2(x)) =
(

t
α p̄1(x), 1−t

α p̄2(x)
)

for some t ∈ [0, 1].
Furthermore, we have that |p̄1(x)| = |p̄2(x)| ≤

√
2αβ.

First, if p̄(x) = (0, 0) ∈ Q12, this implies that ū(x) = (0, 0) and hence

g(ū(x)) + g∗(p̄(x)) − p̄(x)ū(x) = 0.

For p̄(x) �= (0, 0), we obtain

g(ū(x)) + g∗(p̄(x)) − p̄(x) · ū(x) =
α

2
ū1(x)2 +

α

2
ū2(x)2 + β +

1
2α

p̄1(x)2

− p̄1(x)ū1(x) − p̄2(x)ū2(x)

=
1
2α

(t2 − t + 1)p̄1(x)2 +
1
2α

(t2 − t)p̄2(x)2 + β.

Both expressions in parentheses are convex quadratic functions of t ∈ [0, 1] and hence attain their supremum
at t = 0 and t = 1. Together with |p̄1(x)| ≤

√
2αβ this implies that

g(ū(x)) + g∗(p̄(x)) − p̄(x)ū(x) ≤ 2β.

Integrating over D now yields the claim. �

From Lemma 2.2 we obtain the following characterization of (sub)optimality of solutions.

Theorem 4.2. If (ū, p̄) ∈ U × U satisfies (OS), then for any u ∈ U ,

J (ū) ≤ J (u) + β(|∂I| + 2|S|).

Hence if ∂I and S are sets of Lebesgue measure zero, ū is a solution to (P).

We next investigate the behavior of I and S as β → ∞. For this purpose, we denote by (uβ, pβ) the solution
to (OS) for given β > 0, with corresponding free arc Iβ . Note that the value of β does not appear in the
relation (3.5) except as part of the case distinction, and hence β → ∞ does not necessarily imply that uβ → 0.

Theorem 4.3. Let α > 0 be fixed and let (uβ, pβ) satisfy (OS). Then, |Iβ | → 0 as β → ∞.

Proof. We use the minimizing properties of uβ with respect to F + G∗∗ by making use of g∗∗ computed in
Appendix B; see (B.1). Note that from the subdifferential inclusion (4.1), we can see that uβ(x) ∈ D0 if and
only if pβ(x) ∈ Q0. Since g∗∗(0) = 0, we have that

G∗∗(uβ) ≤ F(uβ) + G∗∗(uβ) ≤ F(0) =: K,

i.e., the family {G∗∗(uβ)}β>0 is bounded. We thus have for the free arc

Iβ =
{

x ∈ D : |pβ,1(x)|, |pβ,2(x)| ≥
√

2αβ
}

=
{

x ∈ D : |uβ,1(x)|, |uβ,2(x)| ≥
√

2β
α

}

that
K ≥

∫
D

g∗∗(uβ(x)) dx ≥
∫
Iβ

α

2
(
|uβ,1(x)|2 + |uβ,2(x)|2

)
+ β dx ≥ β|Iβ |, (4.2)

where the right-hand side remains bounded as β → ∞ if and only if the second term goes to zero as claimed. �

Note that ∂Iβ ⊂ Iβ and hence, from the estimate (4.2), the corresponding optimality gap β|∂Iβ | remains
bounded for β → ∞.

If pβ is uniformly bounded pointwise almost everywhere, we can deduce that Iβ must vanish for some
sufficiently large (finite) value of β.
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Theorem 4.4. If V ↪→ L∞(D), then there exists a β0 > 0 such that |Iβ | = 0 for all β ≥ β0.

Proof. Due to the estimate (4.2) and the definition of G∗∗, the family {uβ}β>0 is bounded in U . Hence {Suβ}β>0

and thus {F ′(Suβ)}β>0 are bounded in Y and Y ∗, respectively. Since S∗ maps continuously to L∞(D), this
implies that {pβ}β>0 = {−S∗F ′(Suβ)}β>0 is uniformly bounded pointwise almost everywhere by a constant
M > 0. Choosing β0 such that M >

√
2αβ0, we obtain from the subdifferential inclusion (4.1) that Q0 = Q10 =

Q20 = ∅, which yields the claim. �

Remark 4.5. The above theorem is a result in the spirit of exact penalization as in, e.g., [10]. However, it does
not yield an exact penalization of the switching condition u1u2 = 0 almost everywhere since the singular set S
cannot be controlled fully. It appears difficult to give a sufficient condition for S to be empty, since on this set
neither F(u) nor G(u) yield enough information to decide which component of u should be active. On the other
hand, since |p̄1(x)| = |p̄2(x)| has to hold on the singular arc, we can expect |S| to be small. We shall comment
on the cardinality of S for the numerical examples. Direct extensions of the concepts in [10] are not possible,
since sparsity-promoting or exact penalty functionals of the type | · |p with p ∈ [0, 1] on the controls do not lead
to well-posed optimal control problems.

5. Numerical solution

We return to the Moreau–Yosida regularization of the optimality system (OS): For given γ > 0, find (uγ , pγ) ∈
U × U satisfying {

pγ = −S∗(Suγ − z),

uγ = Hγ(pγ).
(OSγ)

Since F ′(u) = S∗(Su − z) is linear and bounded, Assumption (A2) is clearly satisfied; in addition, the explicit
characterization of ∂G∗ in Section 3 immediately yields that infq∈∂G∗(p) ‖q‖U ≤ 1

α‖p‖U , and hence assump-
tion (A3) holds. From Propositions 2.4 and 2.5, we thus obtain existence of a solution (which is unique if S
is injective) and convergence to a solution of (OS) as γ → 0. For later reference, we note that the mapping
properties of S∗ imply that pγ ∈ V .

The solution to (OSγ) can be computed using a semismooth Newton method. We first show that Hγ is
Newton-differentiable. Recall that Hγ is defined pointwise almost everywhere by

[Hγ(p)](x) = hγ(p(x)) := (∂g∗)γ(p(x)),

and that hγ is globally Lipschitz continuous with constant γ−1 by Proposition 2.3 (iii). Hence, hγ is directionally
differentiable almost everywhere. In addition, hγ is piecewise differentiable, and hence its directional derivative

h′
γ(q; δq) := lim

t→0

1
t
(hγ(q + tδq) − hγ(q))

at q in direction δq satisfies

lim
|δq|→0

1
|δq| |h

′
γ(q + δq; δq) − h′

γ(q; δq)| = 0 for almost all q.

Together we obtain that hγ is semismooth (see, e.g., [15], Thm. 8.2 or [22], Prop. 2.7; see also [22], Prop. 2.26).
This implies that the superposition operator Hγ is Newton-differentiable from V ↪→ Lr(D; R2) to L2(D; R2)

for any r > 2 (see, e.g., [15], Example 8.12 or [22], Thm. 3.49). Its Newton derivative will be denoted by
DNHγ : V → U , and it is given pointwise almost everywhere at p in direction δp by a measurable selection

[DNHγ(p)δp](x) ∈ ∂Chγ(p(x))δp(x),
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where ∂Chγ(q) is the Clarke derivative, which for piecewise differentiable functions is given by the convex
hull of the piecewise derivatives at each point. Specifically, for hγ given in Section 3.3, a Newton derivative
DNhγ(q) ∈ ∂Chγ(q) is given by

DNhγ(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

diag
(

1
α+γ , 0

)
if q ∈ Qγ

1 ,

diag
(
0, 1

α+γ

)
if q ∈ Qγ

2 ,

diag
(

1
α+γ , 1

α+γ

)
if q ∈ Qγ

0 ,

diag
(

1
α+γ , 1

γ

)
if q ∈ Qγ

10,

diag
(

1
γ , 1

α+γ

)
if q ∈ Qγ

20,

diag
(

1
γ , 1

γ

)
if q ∈ Qγ

00,

1
γ(2α+γ)

(
(α + γ) sign(q1q2)α

sign(q1q2)α (α + γ)

)
if q ∈ Qγ

12,

where diag(·, ·) denotes the 2 × 2 diagonal matrix with the given entries.
In the sequel, we shall require the following two properties of the Newton derivative.

Lemma 5.1. For all p ∈ V and δp ∈ V , we have

〈DNHγ(p)δp, δp〉U ≥ 0,

‖DNHγ(p)δp‖U ≤ 1
γ
‖δp‖U .

Proof. Recall from Proposition 2.3 that hγ is the derivative of the convex functional (g∗)γ and hence is monotone.
Therefore we have for all t > 0, almost all q, and all δq that

0 ≤ (hγ(q + tδq) − hγ(q)) · (q + tδq − q) =
1
t

(h(q + tδq) − hγ(q)) · (t2δq).

Dividing by t2 > 0 and taking the limit as t → 0 yields

h′
γ(q; δq) · δq ≥ 0. (5.1)

Similarly, since hγ is globally Lipschitz with constant γ−1, we have for all t > 0, almost all q, and all δq that

1
t
|hγ(q + tδq) − hγ(q)| ≤ 1

γ
|δq|.

Taking again the limit as t → 0 yields

|h′
γ(q; δq)| ≤ 1

γ
|δq|. (5.2)

As a consequence, all elements in the Clarke derivative satisfy the inequalities (5.1) and (5.2). Since
DNHγ(p) is taken as a measurable selection from ∂Chγ(p(·)), the claim follows by substitution and integration
over D. �

To apply a semismooth Newton method to (OSγ), we first introduce the state yγ := S(uγ) ∈ Y and eliminate
uγ , thus obtaining the equivalent optimality system{

yγ = SHγ(pγ),

pγ = −S∗(yγ − z).
(5.3)
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Considering the system (5.3) as an operator equation from Y × V to Y × V , a semismooth Newton step for its
solution consists in computing (δy, δp) ∈ Y × V for given (yk, pk) ∈ Y × V such that⎧⎨

⎩
δy − SDNHγ(pk)δp = −yk + SHγ(pk),

δp + S∗δy = −pk − S∗(yk − z),
(5.4)

and setting yk+1 = yk + δy and pk+1 = pk + δp.
To show superlinear convergence of this iteration, it remains to show uniform solvability of each Newton step.

Proposition 5.2. For any (y, p) ∈ Y × V and (w1, w2) ∈ Y × V , the system{
δy + SDNHγ(p)δp = w1,

δp − S∗δy = w2,
(5.5)

has a solution (δy, δp) ∈ Y × V which satisfies

‖δy‖Y + ‖δp‖V ≤ C(‖w1‖Y + ‖w2‖V ).

Proof. Eliminating δp = S∗δy + w2 ∈ V , we obtain that (5.5) is equivalent to

δy + SDNHγ(p)S∗δy = w1 + SDNHγ(p)w2. (5.6)

Since S∗ is linear and bounded from Y to V and DNHγ is monotone on V from Lemma 5.1, the operator
SDNHγ(p)S∗ is maximally monotone from Y to Y (see, e.g., [2], Props. 20.10, 20.24). Minty’s theorem thus
yields existence of a solution δy ∈ Y and hence of a corresponding δp ∈ V (see, e.g., [2], Prop. 21.1).

Taking the inner product of equation (5.6) with δy and using Lemma 5.1 with S∗δy ∈ V ↪→ U implies that

‖δy‖2
Y ≤ 〈δy, δy〉Y + 〈DNHγ(p)(S∗δy), S∗δy〉U

= 〈w1, δy〉Y + 〈DNHγ(p)w2, S
∗δy〉U

≤ ‖w1‖Y ‖δy‖Y + ‖DNHγ(p)w2‖U‖S∗δy‖U

≤
(
‖w1‖Y +

C

γ
‖w2‖V

)
‖δy‖Y ,

using the boundedness of S∗ from Y to V and Lemma 5.1 with w2 ∈ V ↪→ U . The second equation of (5.5)
then yields

‖δp‖V ≤ C‖w1‖Y +
(

1 +
C2

γ

)
‖w2‖V . �

As a consequence of the Newton differentiability of Hγ and of Proposition 5.2, we obtain the following result
(see, e.g., [15], Thm. 8.16, [22], Chap. 3.2).
Theorem 5.3. The semismooth Newton iteration (5.4) converges locally superlinearly in Y × V .

Since the right-hand side of the Newton system (5.4) is linear apart from the term Hγ(pk), we can use the
following termination criterion for the Newton iteration: If all active sets Ai(p) = {x ∈ Ω : p(x) ∈ Qγ

i } coincide
for pk and pk+1, and the control is computed as uk+1 = Hγ(pk+1), then (uk+1, pk+1) satisfies (OSγ) (see,
e.g., [15], Rem. 7.1.1).

This can be used as part of a continuation strategy to deal with the local convergence behavior of Newton
methods: Starting with γ0 large and (y0, p0) = (0, 0), we solve the regularized optimality system (OSγ) using
the semismooth Newton iteration (5.4). If the iteration converges for some γm (in the sense that all active
sets coincide), we reduce γm+1 = 1

10γm and solve the system (OSγ) again with the solution for γm as the
starting point. This procedure is terminated if the Newton iteration converges in a single step (assuming that
the corresponding iterate then satisfies the system for smaller values of γ as well) or if the Newton iteration
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ω1

ω2

Figure 3. Elliptic problem, target z and control domains ω1, ω2.

fails to converge within a given number of steps (assuming that the system has then become too ill-conditioned
for a stable numerical solution). In any case, the continuation is stopped when γm ≤ 10−16 is reached.

While this strategy has proved robust for problems with scalar L1- and L0-type penalties, see e.g. [7,16], the
situation is more delicate for the vector functional considered here; this is in particular the case when the singular
arc S is non-negligible and DNHγ is not a diagonal matrix, where the continuation strategy failed in some cases
to provide a good initial guess for the next Newton iteration. We thus combine the semismooth Newton method
with a backtracking line search along the Newton direction. In principle, this requires computation of (G∗

γ)∗

(or F∗ and G∗
γ); however, if the tracking term F is strictly convex (as will be the case in the examples considered

below), the system (OSγ) is a sufficient as well as necessary condition and hence we can equivalently backtrack
according to the residual norm of (OSγ). This was sufficient to achieve a robust and superlinear convergence in
all examples.

6. Numerical examples

We illustrate the behavior of the proposed approach and the structure of the resulting controls with two
numerical examples. First, we consider an elliptic problem where the two control components each act along a
strip in one coordinate direction. Specifically, we set Ω = [0, 1]2, D = [0, 1],

ω1 =
{
(x1, x2) ∈ Ω : x2 < 1

4

}
, ω2 =

{
(x1, x2) ∈ Ω : x2 > 3

4

}
,

and consider the control-to-state mapping S : u �→ y ∈ Y = L2(Ω) satisfying

−Δy = Bu = χω1(x1, x2)u1(x1) + χω2(x1, x2)u2(x1).

The target is
z(x) = x1 sin(2πx1) sin(2πx2),

see Figure 3.
The state y and adjoint p are discretized using piecewise linear finite elements based on a uniform triangula-

tion Th of the domain Ω with Nh = 128× 128 nodes. Since the control is eliminated, this can be interpreted as
a variational discretization. Integration over the piecewise defined functions Hγ(ph) and DNHγ(ph)δph in the
weak formulation of (5.4) is approximated by applying the mass matrix to the vector of nodal values; see [7].
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(d) α = 10−5, β = 10−8

Figure 4. Elliptic problem, effect of α, β on structure of control uγ (left: switching, right: no
switching).

The control operator B is approximated by forming the tensor product of the discrete indicator function of ωi

with the nodal values of ui; the adjoint operator B∗ is approximated by the transpose of this matrix in order
to preserve symmetry. The “globalized” semismooth Newton method with continuation and line searches de-
scribed above is applied to the discretized system. The continuation is started at γ0 = 1 and the backtracking is
performed in steps of τi = 2−i for i = 0, . . . , 40; if τi < 10−12, the Newton iteration is restarted with reduced γ.
Since we no longer perform full Newton steps, we augment the termination criterion for the Newton iteration
with an additional check for the residual norm in the optimality system, i.e., we terminate if all active sets
coincide and the residual is smaller than 10−6. A Matlab implementation of the described algorithm can be
downloaded from https://github.com/clason/switchingcontrol.

We begin by illustrating the effects of the values of α and β on the structure of the resulting controls. Figure 4
shows the final computed controls uγ for the same target z and different combinations of control costs. For the

https://github.com/clason/switchingcontrol
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choice α = β = 10−3 (Fig. 4a), the control has a pure switching structure, with 80 nodes (out of 128) having
values in the active set Qγ

1 and 48 nodes in the set Qγ
2 (the remaining sets being empty); in particular, the

singular arc S is empty. Furthermore, the effect of the L2 costs on the active control components can be observed
clearly. Decreasing β to 10−8 results in a control that is no longer purely switching (Fig. 4b), although some
switching behavior still obtains in parts of D; the resulting active sets have 51 nodes in Qγ

1 , 25 nodes in Qγ
2 ,

and 52 nodes in the regularized free arc Qγ
0 . Since α is unchanged, the magnitude of the active controls is the

same as before. Decreasing α, on the other hand, allows for controls of larger magnitude, but results in the
appearance of singular arcs. For α = 10−5 and β = 10−3 (Fig. 4c), we observe a control which is almost purely
switching (66 and 59 nodes in Qγ

1 and Qγ
2 , respectively) but still has a non-negligible singular arc with 3 nodes

in Qγ
12. The control shows a chittering behavior on part of the switching arc, which can be attributed to the

weak but not pointwise convergence of the regularized controls. For the smaller value of β (Fig. 4d), the singular
arc disappears at the expense of the appearance of a large free arc (5 nodes in Qγ

1 , 3 nodes in Qγ
2 , and 120 nodes

in Qγ
0 ).

Let us briefly comment on the convergence behavior of the “globalized” Newton method. For γ > 10−9, the
semismooth Newton iteration shows the typical superlinear behavior, converging within two or three (full) steps
to a solution of the system (OSγ). For smaller values of γ, backtracking becomes necessary after one full step,
but, depending on the presence of singular arcs, often enters into a superlinear phase again where full steps are
taken to convergence. Specifically, in the case of α = β = 10−3, the iteration terminates successfully at γ = 10−12

with only a few reduced steps necessary. For α = 10−5 and β = 10−3, more line searches are performed, but
the final superlinear phase is still observed for γ > 10−13, after which the Newton iteration terminated since no
sufficient decrease in the residual was possible. However, restarting with smaller γ still allowed some successful
steps before terminating again, which continued until the specified terminal value of γ = 10−16 was reached.
For β = 10−8, no backtracking was necessary, and the algorithm showed the typical behavior of a semismooth
Newton method with continuation (terminating successfully at γ = 10−9 for α = 10−3 and at γ = 10−10 for
α = 10−5).

To demonstrate the applicability of the proposed approach to switching control of parabolic equations, we
also show results for the one-dimensional heat equation, where S : u �→ y satisfying

yt − Δy = Bu = χω1(x)u1(t) + χω2(x)u2(t)

with Ω = [−1, 1], D = [0, 2], ΩT = D × Ω,

ω1 =
{
x ∈ Ω : x < − 1

2

}
, ω2 =

{
x ∈ Ω : x > 1

2

}
.

As a target, we choose the trajectory of the heat equation with the right-hand side

f(t, x) =

{
63 if |t − 1 − x| < 1

10 ,

0 otherwise,

see Figure 5. The discretization is similar as in the elliptic case, using a full space-time discontinuous Galerkin
discretization corresponding to a backward Euler method with Nh = 128 spatial grid points and Nt = 512 time
steps.

The resulting controls for α = 10−1 are shown in Figure 6. For β = 1 (Fig. 6a), the control is again of
purely switching type with 256 nodes each in Qγ

1 and Qγ
2 . No backtracking was necessary, and the continuation

terminated successfully at γ = 10−9. The control for β = 10−1 (Fig. 6b) shows a free arc, with 77 nodes in
Qγ

1 , 110 nodes in Qγ
2 , and 325 nodes in Qγ

0 . The convergence behavior is now different due to the intermittent
appearance of singular arcs: Although the first continuation step with γ = 10−2 shows the usual superlinear
convergence with full steps, the resulting iterate contains nodes in Qγ

10 and Qγ
20. Subsequently, the iterations for

γ > 10−5 suffer from progressively smaller steps until no sufficient decrease is possible. At γ = 10−5, however,
the corresponding singular arc ∂I is empty and the iteration returns to superlinear convergence with full steps,
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Figure 5. Parabolic problem, target z and control domains ω1, ω2.
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Figure 6. Parabolic problem, effect of α, β on structure of control uγ (left: switching, right:
no switching).

terminating successfully at γ = 10−9. The difference to the elliptic case can be attributed to the lower regularity
of the adjoint state p with respect to the control dimension (here: time) and the corresponding smaller norm
gap in the regularized subdifferential Hγ(p).

7. Conclusion

A framework for optimal control problems was presented that promotes controls of switching type. While
switching is promoted by a sparsity-enhancing part of the cost functional, the active controls are weighted with
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quadratic cost. Analysis of the proposed approach is carried out by techniques from convex analysis, while
its numerical solution is achieved using a semismooth Newton method with continuation and line searches.
Numerical results support the theoretical findings.

There are many interesting follow-up topics, including the treatment of problems with nonlinear control-to-
state mappings, a more detailed analysis of the influence of the control cost parameters on the structure of the
controls, and problems with multiple controls exhibiting generalized switching structures.

Appendix A. Application to other binary penalties

This appendix demonstrates the application of the approach of Section 3 to other functionals involving
the binary functional |v|0. While the Fenchel conjugates and subdifferentials have already been obtained in
the previous works cited below, the proximal mappings and corresponding Moreau–Yosida regularizations and
complementarity formulations are new.

A.1. Sparse control

We first consider the functional

G(u) =
α

2
‖u‖2

L2 + β

∫
Ω

|u(x)|0 dx,

which promotes sparsity in optimal control and, contrary to L1-type penalties, allows separate penalization of
magnitude and support; see [16]. Setting

g(v) =
α

2
v2 + β|v|0 :=

{
α
2 v2 + β if v �= 0,

0 if v = 0,

we compute the Fenchel conjugate
g∗(q) = sup

v∈R

v · q − g(v) (A.1)

by case distinction. Assume that the supremum is attained for some v̄ ∈ R. Then we discriminate the following
two cases:

(i) v̄ = 0, in which case g(v̄) = 0 and hence g∗(q) = 0;
(ii) v̄ �= 0, in which case g(v̄) = α

2 v̄2 + β. Since g is differentiable at v̄, the necessary condition for v̄ to attain
the maximum is q = αv̄. Solving for v̄ and inserting in (A.1) yields

g∗(q) =
1
2α

q2 − β.

It remains to decide which of these cases is attained for a given q, i.e., whether

g∗0(q) := 0 <
1
2α

q2 − β =: g∗1(q).

This directly yields

g∗(q) = max
i∈{0,1}

g∗i (q) =

{
0 if |q| ≤

√
2αβ,

if 1
2αq2 − β if |q| >

√
2αβ.

as well as

∂g∗(q) = co

⎛
⎝ ⋃

{i:g∗(q)=g∗
i (q)}

{(g∗i )′(q)}

⎞
⎠ =

⎧⎪⎪⎨
⎪⎪⎩

0 if |q| <
√

2αβ,[
0, 1

αq
]

if |q| =
√

2αβ,

1
αq if |q| >

√
2αβ.

(A.2)
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We now turn to the computation for given γ > 0 and v ∈ R of the proximal mapping w = proxγg∗(v) of g∗ or,
equivalently, the resolvent of ∂g∗, which is characterized by the relation v ∈ (Id+γ∂g∗)(w). We now distinguish
all possible cases in (A.2):

(i) |w| <
√

2αβ: in this case v = w, which implies that |v| <
√

2αβ.
(ii) |w| >

√
2αβ: In this case v = (1 + γ

α )w, which implies that |v| > (1 + γ
α )

√
2αβ.

(iii) |w| =
√

2αβ: in this case v ∈ [w, (1 + γ
α )w], which implies that

√
2αβ ≤ |v| ≤ (1 + γ

α )
√

2αβ.

Inserting this into the definition of the Moreau–Yosida regularization and simplifying yields

(∂g∗)γ(q) =

⎧⎪⎪⎨
⎪⎪⎩

0 if |q| <
√

2αβ,

1
γ

(
q −

√
2αβ sign(q)

)
if |q| ∈

[√
2αβ, (1 + γ

α )
√

2αβ
]
,

1
α+γ q if |q| > (1 + γ

α )
√

2αβ,

which can be interpreted as a soft-thresholding operator.
Since hγ := (∂g∗)γ is Lipschitz continuous and piecewise differentiable, it is semismooth, and its Newton-

derivative at q in direction δq is given by

DNhγ(q)∂q =

⎧⎪⎪⎨
⎪⎪⎩

0 if |q| <
√

2αβ,

1
γ δq if |q| ∈

[√
2αβ, (1 + γ

α )
√

2αβ
]
,

1
α+γ δq if |q| > (1 + γ

α )
√

2αβ.

A.2. Multi-bang control

We now consider the multi-bang functional

g(v) =
α

2
v2 + β

d∏
i=1

|v − ui|0 + δ[u1,ud](v),

where u1, . . . , ud are given desired control states and δC denotes the indicator function of the convex set C. In
optimal control problems, the binary term (together with the pointwise constraints) promotes controls which,
for β sufficiently large, take on only the desired values almost everywhere except possibly on a singular set;
see [7].

Proceeding as in Appendix A.1 yields the Fenchel conjugate

g∗(q) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qu1 − α
2 u2

1 if q − αu1 ≤
√

2αβ and q ≤ α
2 (u1 + u2),

qui − α
2 u2

i if |q − αui| ≤
√

2αβ and α
2 (ui−1 + ui) ≤ q ≤ α

2 (ui + ui+1), 1 < i < d,

qud − α
2 u2

d if q − αud ≥
√

2αβ and α
2 (ud + ud−1) ≤ q,

1
2αq2 − β if |q − αuj | ≤

√
2αβ for all j ∈ {1, . . . , d} and αu1 ≤ q ≤ αud,

whose subdifferential is

∂g∗(q) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{ui} if q ∈ Qi, 1 ≤ i < d,

{ 1
αq} if q ∈ Q0,[
ui,

1
αq
]

if q ∈ Qi0, 1 ≤ i ≤ d,

[ui, ui+1] if q ∈ Qi,i+1, 1 ≤ i < d,



604 C. CLASON ET AL.

where

Q1 =
{
q : q − αu1 <

√
2αβ and q < α

2 (u1 + u2)
}

,

Qi =
{
q : |q − αui| <

√
2αβ and α

2 (ui−1 + ui) < q < α
2 (ui + ui+1)

}
for 1 < i < d,

Qd =
{
q : q − αud >

√
2αβ and α

2 (ud + ud−1) < q
}

,

Q0 =
{
q : |q − αuj | >

√
2αβ for all j ∈ {1, . . . , d} and αu1 < q < αud

}
Qi0 =

{
q : |q − αui| =

√
2αβ

}
for 1 ≤ i ≤ d,

Qi,i+1 =
{
q : q = α

2 (ui + ui+1)
}

for 1 ≤ i < d,

Note that some of these sets can be empty. In fact, for β sufficiently large, Q0 and hence Qi0, i = 1, . . . , d, can
be guaranteed to vanish (see [7], Sect. 2.3).

To compute for given γ > 0 and v ∈ R the resolvent w = (Id + γ∂g∗)−1(v) of ∂g∗, we again use the relation
v ∈ {w} + γ∂g∗(w) and follow the case differentiation in the subdifferential.

(i) w ∈ Qi for some i ∈ {1, . . . , d}: In this case, v = w + γui, which implies that

|v − (α + γ)ui| ≤
√

2αβ

and
α
2

(
ui−1 +

(
1 + 2γ

α

)
ui

)
< v < α

2

((
1 + 2γ

α

)
ui + ui+1

)
(with the first and last condition being void for i = 1 and i = d, respectively).

(ii) w ∈ Q0: In this case, v =
(
1 + γ

α

)
w, which implies that

| α
α+γ v − αuj | >

√
2αβ for all j ∈ {1, . . . , d}

and
(α + γ)u1 < v < (α + γud).

(iii) w ∈ Qi0 for some i ∈ {1, . . . , d}: In this case, v ∈ [w, (1 + γ
α )w] and w = αui +

√
2αβ, which implies that

√
2αβ ≤ v − (α + γ)ui ≤

(
1 +

γ

α

)√
2αβ.

(iv) w ∈ Qi,i+1 for some i ∈ {1, . . . , d− 1}: In this case, v ∈ [w + γui, w + γui+1] and w = α
2 (ui + ui+1), which

implies that
α
2

((
1 + 2γ

α

)
ui + ui+1

)
≤ v ≤ α

2

(
ui +

(
1 + 2γ

α

)
ui+1

)
.

Inserting this into the definition of the Moreau–Yosida regularization and simplifying, we obtain

(∂g∗)γ(q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ui if q ∈ Qγ
i for some i ∈ {1, . . . , d},

1
α+γ q if q ∈ Qγ

0 ,

1
γ

(
q − (αui +

√
2αβ)

)
if q ∈ Qγ

i0 for some i ∈ {1, . . . , d},
1
γ

(
q − α

2 (ui + ui+1)
)

if q ∈ Qγ
i,i+1 for some i ∈ {1, . . . , d − 1},
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where

Qγ
1 =

{
q : q − (α + γ)u1 <

√
2αβ and q < α

2

((
1 + 2γ

α

)
u1 + u2

)}
,

Qγ
i =

{
q : |q − (α + γ)ui| <

√
2αβ and

α
2

(
ui−1 +

(
1 + 2γ

α

)
ui

)
< q < α

2

((
1 + 2γ

α

)
ui + ui+1

) }
for 1 < i < d,

Qγ
d =

{
q : q − (α + γ)ud >

√
2αβ and α

2

(
ud−1 +

(
1 + 2γ

α

)
ud

)
< q

}
,

Qγ
0 =

{
q : |q − (α + γ)uj| >

√
2αβ for all j ∈ {1, . . . , d} and (α + γ)u1 < q < (α + γ)ud

}
,

Qγ
i0 =

{
q :
√

2αβ ≤ q − (α + γ)ui ≤
(
1 +

γ

α

)√
2αβ

}
for 1 ≤ i ≤ d,

Qγ
i,i+1 =

{
q : α

2

((
1 + 2γ

α

)
ui + ui+1

)
≤ q ≤ α

2

(
ui +

(
1 + 2γ

α

)
ui+1

)}
for 1 ≤ i < d.

Since hγ := (∂g∗)γ is Lipschitz continuous and piecewise differentiable, it is semismooth, and its Newton-
derivative at q in direction δq is given by

DNhγ(q)δq =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if q ∈ Qγ
i for some i ∈ {1, . . . , d},

1
α+γ δq if q ∈ Qγ

0 ,

1
γ δq if q ∈ Qγ

i0 for some i ∈ {1, . . . , d},
1
γ δq if q ∈ Qγ

i,i+1 for some i ∈ {1, . . . , d − 1}.

Appendix B. Biconjugate of g

We now compute the biconjugate g∗∗ used in Theorem 4.3. As in Section 3.1, we proceed by a casewise
maximization based on the definition of g∗; however, we need to take into account the restrictions q ∈ Qi. We
assume that v1, v2 ≥ 0, the remaining cases following by symmetry. Consider first

g∗∗1 (v) = sup
q∈Q1

v · q − 1
2α

q2
1

and note that the supremum can only be attained for q1, q2 ≥ 0. Introducing Lagrange multipliers λ, μ ≥ 0 for
the constraints q1 − q2 ≥ 0 and

√
2αβ − q2 ≥ 0, we obtain the KKT system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 −
1
α

q̄1 + λ̄ = 0,

v2 − λ̄ − μ̄ = 0,

λ̄(q̄1 − q̄2) = 0,

μ̄
(√

2αβ − q̄2

)
= 0.

We now make a case differentiation based on the optimal value of the multipliers λ̄, μ̄.

(i) μ̄ = 0: Adding the first two equations then yields

v1 + v2 =
1
α

q̄1.
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To obtain an equation for q̄2, we further discriminate based on the value of λ̄:
(a) λ̄ = 0: The second equation yields the condition v2 = 0. In this case, the value of q̄2 is irrelevant to the

supremum and we obtain for any admissible q̄2

g∗∗1 (v) =
α

2
v2
1 .

(b) λ̄ �= 0: In this case, q̄1 = q̄2 = α(v1 + v2) and we obtain

g∗∗1 (v) =
α

2
(v1 + v2)2,

while the condition q̄2 ≤
√

2αβ translates into

v1 + v2 ≤
√

2β

α
·

(ii) μ �= 0: This implies q̄2 =
√

2αβ. For the value of q̄1, we again further discriminate based on the value of λ̄:
(a) λ̄ = 0: The first equation then yields v1 = 1

α q̄1 and we obtain

g∗∗1 (v) =
α

2
v2
1 +

√
2αβv2,

while the condition q̄1 ≥ q̄2 =
√

2αβ translates into

v1 ≥
√

2β

α
·

(b) λ̄ �= 0: In this case, q̄1 = q̄2 =
√

2αβ, which yields

g∗∗1 (v) =
√

2αβ(v1 + v2) − β.

Note that no conditions on v1, v2 are obtained.

Collecting these cases, we obtain

g∗∗1 (v) ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α
2 (v1 + v2)2 if v1 + v2 ≤

√
2β
α ,

α
2 v2

1 +
√

2αβv2 if v1 ≥
√

2β
α ,

√
2αβ(v1 + v2) − β,

We proceed similarly for

g∗∗2 (v) = sup
q∈Q2

v · q − 1
2α

q2
2

to obtain the possible values and conditions

g∗∗2 (v) ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α
2 (v1 + v2)2 if v1 + v2 ≤

√
2β
α ,

α
2 v2

2 +
√

2αβv1 if v2 ≥
√

2β
α ,

√
2αβ(v1 + v2) − β,

where the case (i) a) has been absorbed into the first and second case (which for v1 = 0 are exhaustive).
For

g∗∗0 (v) = sup
q∈Q0

v · q − 1
2α

(
q2
1 + q2

2

)
+ β,
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we use the fact that the optimality conditions for the maximizer are given by q̄ = PQ0(αv), where PQ0 denotes the
projection onto the convex feasible set Q0 = {q : q1, q2 ≥

√
2αβ}. Inserting the possible cases q̄i ∈ {αvi,

√
2αβ},

i = 1, 2, yields

g∗∗0 (v) ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
2 (v2

1 + v2
2) + β if v1, v2 ≥

√
2β
α ,

α
2 v2

1 +
√

2αβv2 if v1 ≥
√

2β
α ≥ v2,

α
2 v2

2 +
√

2αβv1 if v2 ≥
√

2β
α ≥ v1,

√
2αβ(v1 + v2) − β, if v1, v2 ≤

√
2β
α ·

It remains to decide for a given v ∈ R
2 which is the maximal of the feasible values.

(i) For v1, v2 ≥
√

2β
α , we have the three possible values

g∗∗(v) ∈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α
2 v2

1 +
√

2αβv2,

α
2 v2

2 +
√

2αβv1,

α
2

(
v2
1 + v2

2

)
+ β,

√
2αβ(v1 + v2) − β.

Since
√

2αβ ≤ αvi, i = 1, 2, and β > 0, the first two are clearly smaller than the third. For the last case,
we consider(α

2
(
v2
1 + v2

2

)
+ β

)
−
(√

2αβ(v1 + v2) − β
)

=
(α

2
v2
1 −

√
2αβv1

)
+
(α

2
v2
2 −

√
2αβv2

)
+ 2β.

For these values of v1, v2, the terms in parentheses are monotonously increasing functions of v1 and v2,

respectively; the minimimum is thus attained for v1 = v2 =
√

2β
α at 2β > 0. Hence, g∗∗(v) = α

2 (v2
1 +v2

2)+β.

(ii) For v1 ≥
√

2β
α ≥ v2, the only two distinct cases are

g∗∗(v) ∈
{

α
2 v2

1 +
√

2αβv2,
√

2αβ(v1 + v2) − β.

Considering the difference of these functions as above, we conclude that g∗∗(v) = α
2 v2

1 +
√

2αβv2.

(iii) We argue similarly for v2 ≥
√

2β
α ≥ v1 to conclude g∗∗(v) = α

2 v2
2 +

√
2αβv1.

(iv) For v1 + v2 ≤
√

2β
α , we have to compare the two cases

g∗∗(v) ∈
{

α
2 (v1 + v2)2,
√

2αβ(v1 + v2) − β.

We have
α

2
(v1 + v2)2 −

(√
2αβ(v1 + v2) − β

)
=
(√

α

2
(v1 + v2) −

√
β

)2

≥ 0

and thus g∗∗(v) = α
2 (v1 + v2)2.

(v) In the remaining case v1, v2 ≤
√

2β
α and v1 + v2 ≥

√
2β
α , the only possible value is

g∗∗(v) =
√

2αβ(v1 + v2) − β.
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v2

v1

D0 D0

D1D1

D2 D2

D4D4

D3D3

− 2β
α

√
2β
α

√

2β
α

√

Figure B.1. Subdomains Di ⊂ R
2 for the definition of g∗∗.

Arguing similarly for the three remaining quadrants of R
2, we obtain

g∗∗(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
2

(
|v1|2 + |v2|2

)
+ β if v ∈ D0 :=

{
v : |v1|, |v2| ≥

√
2β
α

}
,

α
2 |v1|2 +

√
2αβ|v2| if v ∈ D1 :=

{
v : |v1| ≥

√
2β
α ≥ |v2|

}
,

α
2 |v2|2 +

√
2αβ|v1| if v ∈ D2 :=

{
v : |v2| ≥

√
2β
α ≥ |v1|

}
,

√
2αβ(|v1| + |v2|) − β if v ∈ D3 :=

{
v : |v1|, |v2| ≤

√
2β
α , |v1| + |v2| ≥

√
2β
α

}
,

α
2 (|v1| + |v2|)2 if v ∈ D4 :=

{
v : |v1| + |v2| ≤

√
2β
α

}
,

(B.1)

see Figure B.1.
A short calculation shows that

g∗∗(v) ≥ α

2
(
|v1|2 + |v2|2

)
for all v ∈ R

2. (B.2)

This is obvious for v ∈ D0 and v ∈ D4. For v ∈ D1, we have
√

2αβ ≥ α|v2| and hence

g∗∗(v) ≥ α

2
|v1|2 + α|v2|2 ≥ α

2
|v1|2 +

α

2
|v2|2,

and similarly for v ∈ D2. For v ∈ D3, we consider the difference

r(v) :=
(√

2αβ (|v1| + |v2|) − β
)
− α

2
(
|v1|2 + |v2|2

)
=
(√

2αβ|v1| −
α

2
|v1|2

)
+
(√

2αβ|v2| −
α

2
|v2|2

)
− β.
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On D3, the terms in parentheses are monotonically increasing functions of |v1| and |v2| respectively, and thus
the minimum is attained at the boundard |v1|+ |v2| =

√
2β/α, i.e., for |v1| = t

√
2β/α and |v2| = (1− t)

√
2β/α

for some t ∈ [0, 1]. Inserting this and simplifying yields

r(v) = β
(
2t − 2t2

)
,

which is a concave quadratic function of t and thus attains its minimum at t = 0 or t = 1, yielding r(v) ≥ 0 as
desired.
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