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A REDUCED BASIS KALMAN FILTER FOR PARAMETRIZED PARTIAL
DIFFERENTIAL EQUATIONS ∗
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Abstract. The Kalman filter is a widely known tool in control theory for estimating the state of a
linear system disturbed by noise. However, when applying the Kalman filter on systems described by
parametrerized partial differential equations (PPDEs) the calculation of state estimates can take an
excessive amount of time and real-time state estimation may be infeasible. In this work we derive a
low dimensional representation of a parameter dependent Kalman filter for PPDEs via the reduced
basis method. Thereby rapid state estimation, and in particular the rapid estimation of a linear output
of interest, will be feasible. We will also derive a posteriori error bounds for evaluating the quality
of the output estimations. Furthermore we will show how to verify the stability of the filter using an
observability condition. We will demonstrate the performance of the reduced order Kalman filter and
the error bounds with a numerical example modeling the heat transfer in a plate.
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1. Introduction

When using a mathematical model to describe and predict the behavior of a system – be it of technical,
physical, biological or economic nature – we might make the experience that our predictions deviate considerably
from that what happens in the real world system. Although having elaborated this mathematical model to our
best knowledge, capturing the behavior of a phenomenon with a mathematical representation in every detail
is nearly impossible. These modeling errors can ultimately lead to a deviation between the model and the real
world system. Another source for errors are randomly occurring disturbances from the environment affecting
the system. Due to their random nature, they are impossible to predict and can not be included into the model.
An example is the modeling of weather phenomena, where it is obviously impossible to take into account every
detail on a global scale and clearly this system is subject to unpredictable disturbances.
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For some applications it is necessary to fill this gap of information between the predictions of a mathematical
model and the actual state of the system. The term “state” stands here for the entity of variables providing a
complete representation of the internal condition of the system. Note, that it is often infeasible or physically
impossible to measure the entire state of a system. However, it can be crucial to have knowledge about the
system’s state either for reasons of surveillance or for using the information to control the system. The process
of estimating the actual state of a system using measurement data is known as data assimilation.

The methods for data assimilation in evolution problems can be grouped into variational methods and
filtering. While in [16, 37, 40] variational methods are treated, we consider in this article the filtering. As we
will focus on linear time invariant systems being subject to normally distributed white noise, the Kalman filter
– first introduced in [32] – provides optimal state estimates. A brief historical overview over the development
towards this filter can be found in ([50], p. 485ff.). The Kalman filter is a well known and widely used tool
in control theory and plays a role in a large range of engineering applications, cf . [51] for examples. While
the filter was originally formulated in state space description for finite dimensional dynamical systems, there
exist also studies deriving this optimal filter for partial differential equations (PDEs). In particular, optimal
filters were derived in time-continuous and infinite dimensional analytic formulation [14, 15, 21, 24] and weak
formulation [2, 24]. Here, we will derive a time-discrete infinite dimensional Kalman filter in weak formulation
omitting semigroup theory.

However, when applying the Kalman filter to discretized PDEs, we face the difficulty of excessively large
computational costs for performing state estimations. This is due to the fact, that the discretization of PDEs
often results in very high dimensional dynamical systems and that the Kalman filter estimations require the
integration of an error covariance system with dimension equal to the square of the disturbed system’s dimension.
Consequently, it is often infeasible to perform real-time state estimations for systems described by PDEs.

To solve this problem we will derive a low dimensional Kalman filter using the reduced basis method. With
this Reduced Basis Kalman Filter (RBKF) rapid state estimations for linear parametrized partial differential
equations (PPDEs) will be possible. The reduced basis (RB) method is a model reduction technique particularly
suited for parameterized problems. An introduction can be found in [49] and RB for time dependent problems
is treated in [25, 28] for example. The reduced order Kalman filter estimation procedure will be divided into
two phases. In a preparative offline phase, the reduced basis is constructed and parameter independent operator
components are projected onto a low dimensional space. In the subsequent online phase, rapid state estimations
for given system parameters can be performed.

An overview of existing work on the topic of reduced order Kalman filters, also known as suboptimal filtering
schemes, can be found in [50, 52]. Most suboptimal filters can be roughly grouped in two categories: either a
dimension reduction of the model is performed and subsequently a Kalman filter for that reduced order model is
derived (e.g. [22,45]) or a reduced rank approximation of the error covariance propagation is used in combination
with a full dimensional state propagation and update (e.g. [9, 13, 33, 52, 54]). A more refined categorization can
be found in [52].

One could argue, that model reduction of the Kalman filter was not necessary, as the stationary Kalman gain
could be calculated beforehand and then be used later for updates in the state estimations, cf . [44, 54]. Many
systems in engineering, however, are parameter dependent. Those parameters might change from situation to
situation and then the pre-calculated Kalman gain could be useless and even lead to an unstable filter, meaning
that the estimation error variance is unbounded for infinite time. Thus, we will derive here a parameter dependent
reduced order Kalman filter to allow rapid state estimations for parametrized systems with random disturbances.

The Kalman filter does not only give state estimations, but it also provides the estimation error covariances
and is thereby giving an information about the accuracy and the reliability of the estimates. While this infor-
mation is missing in other reduced order filter approaches, we will present here rigorous upper bounds for the
expectation and variance of the estimation error for linear outputs. Thereby the quality of the RBKF estima-
tions can be quantified. This verification is of importance as the use of suboptimal filters can possibly lead to
unstable filters, cf . [52]. See also [36] studying the effects of model errors on the Kalman filter considering a wave
equation. Note, that in [23] similar error bounds were derived, yet, calculating these bounds is computationally
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expensive, while the error bounds derived here will be rapidly computable online. To be more specific, the error
estimator will have a computational complexity polynomial in the reduced dimension and independent of the
dimension of the original PDE discretization. Furthermore, we will show that the stability of the RBKF can
be verified a priori via an observability condition. Note, that our error bounds will be given with respect to a
very high dimensional solution approximation, which we will call the “true” solution. In contrast to our error
bounds, the author in [1] derives bounds for the variance of the error between the infinite dimensional and the
discretized Kalman filter at infinite time. Besides error bounds for the RBKF, we will also obtain approximation
error bounds for linear reduced basis models being subject to noise. Compared to [4, 5, 29] we are considering
in the present work a less general problem setting as we restrict the randomness to a stochastic forcing of the
PPDE with Gaussian white noise. On the other hand, we are able to give, through this restriction, an ad-hoc
information on error bounds during the online simulations without the need to perform a sampling or to perform
Monte-Carlo simulations.

While in other projection based reduced order filters, the influence of the noise is not taken into account
when choosing the low dimensional subspace, we will propose a new method for building up a reduced basis
space taking into account information about the assumed stochastic forcing. Thereby, better approximations –
especially considering the error variance – can be achieved.

Recently, there have been advances in combining model reduction and other data assimilation techniques.
In [40] data assimilation for stationary problems via a variational formulation is proposed and an error analysis
is presented. In [39, 48] the empirical interpolation method is used for data assimilation and for parameter
estimation [48]. A reduced order Unscented Kalman filter is proposed in [42] demonstrating also the possibility
to estimate parameter values with reduced order filters. In [19] statistical modeling is used to improve error
bounds for reduced order models.

The new contributions in this article are the following: (I) we treat parameter dependent PDEs and derive a
parameter dependent reduced order Kalman filter using the reduced basis method; (II) we propose error bounds
for the stochastic moments of the output estimates; (III) we introduce a new reduced basis generation procedure
suited for linear systems corrupted by white noise.

The article is structured as follows. In Section 2 the problem setting and the fundamental definitions are
presented. Also the time discrete infinite dimensional Kalman filter in weak formulation is derived. This formu-
lation is the basis for the derivation of the RBKF in Section 3. In Section 4 a detailed error analysis is presented.
The numerical experiments in Section 5 illustrate the procedure of rapid state estimation with the RBKF and
show the performance. Finally, we summarize and conclude in Section 6.

2. Problem setting

In the following we are interested in solutions to a parametrized parabolic partial differential equation on
a domain D ⊂ R

d with d ∈ N on a time interval [0, T ], T > 0. The domain D has a Lipschitz continuous
boundary Γ . The time interval is divided into K intervals of equal length Δt = T

K and at their intersections we
define the time steps tk = kΔt with k = 0, . . . ,K. The set of all time steps is T = {tk|k = 0, . . .K}.

Furthermore, we assume Z = Z(D) to be a real separable Hilbert space of functions over the domain D with
inner product (·, ·) and norm ‖ · ‖.

As the considered parametrized PDE will be stochastically forced, we consider (Ω,F ,Pr) to be a complete
probability space with the sure event Ω, the non-empty Borel field of events F and Pr a probability measure
on F . Then we use the standard definitions for random functions and random processes (see [15,34]): A Z-valued
random function is a map z : Ω → Z which is measurable with respect to the Pr-measure. If a random function z
is integrable (z ∈ L1(Ω,Pr;Z) cf .[38], p.161), its expectation is

E [z] :=
∫
Ω

z(ω)dω

with ω ∈ Ω. Note that the expectation of a Z-valued random function is a function in Z.



628 M. DIHLMANN AND B. HAASDONK

Let Z1, Z2 be two Hilbert space with inner products (·, ·)Z1
and (·, ·)Z2

. With v ∈ Z1 and w ∈ Z2 we define
the “◦” mapping · ◦ · : Z1 × Z2 → L(Z2, Z1) with L the set of linear bounded operators as

(v ◦ w)w1 := v (w,w1)Z2
∀w1 ∈ Z2.

The boundedness is a consequence of the Cauchy–Schwarz inequality. In the following we assume that all random
functions are square integrable with respect to Ω. We define the covariance operator cov(z1, z2) ∈ L(Z2, Z1) of
two Z1- and Z2-valued random functions z1 : Ω → Z1, z2 : Ω → Z2 as

cov(z1, z2) := E [(z1 − E [z1]) ◦ (z2 − E [z2])] .

We call cov(z) := cov(z, z) the autocovariance operator of a Z-valued random function z. The autocovariance
of a random function is a positive semidefinite self adjoint linear operator (cf . [17]). We define the space of
Z-valued square integrable random functions as Z := L∈(⊗,Pr;Z).

Let s ∈ Z ′ be a linear functional in the dual space of Z and sr ∈ Z its Riesz representation (cf . [57], p. 90ff.)
so that s(v) = (sr, v) for all v ∈ Z. We define the variance of s applied to a random function z ∈ Z as

Var (s(z)) := E
[
(s(z) − E [s(z)])2

]
.

Let cov(z) be the autocovariance operator of z, then one can easily prove (cf . [17]) that

Var (s(z)) = (sr, cov(z)sr) . (2.1)

Later in the error analysis, the definition of the trace of an operator will be a useful tool. Hence, let {ψi}H
i=1,

H ∈ N∪{∞} be an orthonormal basis of the H-dimensional Hilbert space Z1 ⊆ Z inheriting the scalar product
from Z and be A ∈ L(Z). Then the trace of the operator A with respect to Z1 is defined as

traceZ1 (A) :=
H∑

i=1

(ψi, Aψi) . (2.2)

The trace of an operator is invariant with the choice of the basis (cf . [17]). The trace in Euclidian space is
abbreviated tr (A) := traceRn (A) for matrices A ∈ R

n×n, n ∈ N.
The solution to the stochastically disturbed problem will be a time sequence of random functions. Therefore,

we define the notion of a stochastic process. A Z-valued stochastic process is a map η(·, ·) : T×Ω → Z which is
measurable on T×Ω with a uniform measure on T and the Pr-measure on Ω. For the elements of the stochastic
process we use the abbreviation η(tk, ω) =: ηk(ω). Further, we call η a white noise Z-valued random process if

E
[
ηk(ω)

]
= 0 and cov(ηk1(ω), ηk2(ω)) = δk1,k2Rηη (2.3)

for all k, k1, k2 = 0, . . . ,K, with Rηη a positive semidefinite linear self adjoint operator and δ the Kronecker
symbol so that δi,j = 1 for i = j and δi,j = 0 else. If additionally the ηk(ω) are normally distributed, we call η
a Gaussian white noise Z-valued random process.

Note, that R usually symbolizes the correlation operator. However, the letter R will be referred to as “co-
variance operator” in the case of white noise, as for white noise the covariance and the correlation operator
coincide.

2.1. The stochastically forced parametrized parabolic PDE

Assuming a given parameter μ stemming from a p-dimensional parameter domain P ⊂ R
p, we consider the

parabolic parametrized time discrete partial differential equation with stochastic forcing in weak formulation

m
(
zk(μ, ω), v ; μ

)
+Δta0

(
zk(μ, ω), v ; μ

)
= (2.4)

m
(
zk−1(μ, ω), v ; μ

)
+Δt b(v; μ)uk +

(
ηk(ω), v

)
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for all k ∈ K := {k ∈ N|1 ≤ k ≤ K} with solution zk(μ, ω) := z(tk; μ, ω) ∈ Z := {v | v ∈ Z, v|Γ = 0},
(random) initial condition z0(μ, ω) and test functions v ∈ Z. Here, m (·, · ; μ) and a0 (·, · ; μ) are parametrized
symmetric continuous bilinear forms and a0 (·, · ; μ) is additionally coercive with coercivity constant α0(μ) :=
infv∈Z a0 (v, v ; μ)/‖v‖2 with lower bound ᾱ0 ≤ α0(μ) and b(·; μ) is a parametrized continuous linear form. The
scalar input at time step tk is denoted uk := u(tk) ∈ R and ηk are elements of a Gaussian white noise Z-valued
random process η with auto-covariance cov(ηk) = Rηη. The bilinear forms a0 and m as well as the linear form
b are assumed to be parameter affine, hence, they can be represented by linear combinations

a0 (v, w ; μ) =
Qa∑
q=1

Θq
a(μ)aq

0(v, w), m (v, w ; μ) =
Qm∑
q=1

Θq
m(μ)mq(v, w), (2.5)

b(v; μ) =
Qb∑
i=1

Θq
b (μ)bq(v) (2.6)

of parameter dependent coefficients Θq
a(μ), Θq

m(μ), Θq
b (μ) : P → R and parameter independent bilinear and

linear forms aq
0(v, w),mq(v, w), bq(v). In the remainder of this work we will often omit the realization ω and the

parameter dependence μ of z in the notation and write zk = zk(μ, ω). The context will determine, if we note
random variables or realization of random variables.

We assume that we can obtain and collect data from the system via measurements. Hence, we assume the
existence of a (noise corrupted) scalar “measurement” output

yk = s(zk) + ϑk (2.7)

for all k ∈ K where s ∈ Z ′ is a continuous linear output functional and ϑk are elements of the Gaussian white
noise R-valued stochastic process ϑ with covariance Rϑϑ. The two stochastic processes η and ϑ are considered
to be independent. We denote with sr ∈ Z the Riesz representation of s.

In contrast to the available measurement data, we assume that we are interested in an “output of interest”

yk
int = o(zk)

with o ∈ Z ′ and Riesz representation or ∈ Z. This output of interest can not be measured directly.
Note, that the extension to multiple inputs and outputs poses no conceptual difficulties for the following

work. Yet, for the sake of readability we consider single input and single output systems.

2.2. The optimal filter in weak formulation

As the time-discrete infinite dimensional Kalman filter in weak formulation is a crucial ingredient in our theory
and the foundation for the model reduction of the filter, we will outline shortly the derivation of the filter in
this particular form. Also, in literature the Kalman filter for PDEs is often derived via infinite dimensional
dynamical systems and semi groups (e.g. [24]). Here, we propose a different approach, which we consider to be
more natural and better suited to the time-discrete and weak formulation of the PDE.

2.2.1. The filtering problem

The parametrized PDE in (2.4) could describe a real world engineering problem of a process being influenced
by random disturbances ηk. Hence, the actual state of the system is unknown. In particular there is no way to
evaluate the output of interest, as we assume it to be not directly measurable. The only information available
about the system is the measurement data yk which is also subject to noise ϑk. The overall objective is to find
optimal estimates ẑk for the noisy state zk of the system and optimal estimates ŷk

int := o(ẑk) for the output
of interest o(zk) at every time step tk using the noisy measurements yk. Here, optimality is understood in the
sense that the variance, or more specific the autocovariance cov(z̃k, z̃k) of the estimation error z̃k := zk − ẑk, is
minimized. Hence, we are interested in minimizing the uncertainty in the state estimation. This requirement is
formulated in the filtering problem.
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Problem 2.1 (The filtering problem). Given the outputs yj for j = 1, . . . , k from (2.7), find an estimate ẑk for
the solution zk of (2.4) of the form

ẑk =
k∑

j=1

Ajyj, Aj ∈ Z (2.8)

with the property that (
E
[
z̃k ◦ z̃k

]
v, v
)

(2.9)

is minimized for all v ∈ Z.

Note, that (2.9) can be reformulated to: E
[
v∗(z̃k)2

]
is minimized for all v∗ ∈ Z ′. By this formulation it gets

obvious, that the optimal filter provides output estimates v∗(ẑk) with a minimal expected squared estimation
error for every linear functional. Note also, that this is the filtering problem for linear time-discrete filters in
Hilbert spaces. The equivalent filtering problem for linear time continuous filters in Hilbert spaces can be found
in ([21], p. 124). The time discrete filtering problem, which is stated above, can be derived by discretizing the
time continuous formulation in [21] in time.

The following Lemma will provide us with the necessary and sufficient condition to solve the filtering problem.
In this Lemma we recognize the orthogonal projection Lemma, where the best approximation ẑk is obtained by
an orthogonal projection of zk onto an approximation space.

Lemma 2.2. The function ẑk ∈ Z is a solution to the filtering problem if and only if

E
[(
zk − ẑk

)
yj
]

= 0 (2.10)

∀j = 1, . . . , k where zk is the solution to (2.4) and yj ∈ R is the output (2.7).

Proof. The proof can be found in Appendix A.1. �

Remark 2.3. We would like to comment on the equivalence to the orthogonal projection lemma. As shown
in ([38], p. 163) the space of random functions with finite second moments together with the inner product
(·, ·)Pr = E [··] form a Hilbert space. Hence, the space Y k spanned by the observations {y1, . . . , yk} with (·, ·)Pr

is a k-dimensional Hilbert space. While the random functions zk stem from the infinite dimensional Hilbert
space of random functions Z. Interpreting the Lemma above, the estimation ẑk of the optimal filter (the
Kalman filter) can be seen as the orthogonal projection of the solution zk from the infinite dimensional Space
Z into the approximation space Y k.

2.2.2. Derivation of the Kalman filter in weak formulation

For better readability of the following text, we introduce a new bilinear form

a (v, w; μ) := m (v, w ; μ) +Δta0 (v, w ; μ)

being coercive. Then, there exist unique operators A,M ∈ L(Z) defined by

(A(μ)v, w) := a (v, w; μ) (2.11)
(M(μ)v, w) := m (v, w ; μ) ∀v, w ∈ Z. (2.12)

(This is a consequence of the Riesz representation theorem cf . [57], p. 90ff.). In the following we will often
omit the parameter dependence of A = A(μ) and M = M(μ). With a being a coercive and continuous
bilinear form, we know by the Lax–Milgram Theorem that there is a unique inverse operator A−1 ∈ L(Z)
with A−1A = I with I the identity. The operator A is self adjoint as the bilinear form a (·, ·; μ) is symmetric:
(Av,w) = a (v, w; μ) = a (w, v; μ) = (Aw, v) = (v,Aw) . As the solution zk as well as the estimation ẑk are
random functions for all k = 0, . . . ,K, the estimation error z̃k = zk − ẑk is also a Z-valued random function.
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As the noise η is assumed to be a Gaussian white noise random process and in the evolution equation only
linear operations are applied, the estimation error z̃k will also be normally distributed. Furthermore, we will
see later, that in the case of an optimal filter the expectation of the estimation error will be zero. We define the
estimation error covariance operator as

P k := cov
(
z̃k, z̃k

)
. (2.13)

Using Lemma 2.2 we can derive the time-discrete Kalman filter for parabolic partial differential equations in
weak formulation (omitting the parameter dependence μ in auxilliary quantities):

Proposition 2.4 (Optimal filter). The solution ẑk to the time discrete PDE in weak formulation

m
(
ẑk, v ; μ

)
+Δt a0

(
ẑk, v ; μ

)
= m

(
ẑk−1, v ; μ

)
+Δt b(v; μ)uk + lk(v)

(
yk − s(ẑk

p )
)

(2.14)

for all v ∈ Z and for all k = 1, . . . , k with an initial estimate ẑ0 = E
[
z0
]

is the unique solution to the filtering
problem. Here, the propagated estimate ẑk

p is the solution to

m
(
ẑk

p , v ; μ
)

+Δt a0

(
ẑk

p , v ; μ
)

= m
(
ẑk−1, v ; μ

)
+Δt b(v; μ)uk ∀v ∈ Z (2.15)

with ẑ0
p = ẑ0 and the Kalman gain lk(v) is a linear form defined by

lk(v) :=
(
v, P k

p sr

) · ((A−1sr, P
k
p sr

)
+Rϑϑ

)−1 ∀v ∈ Z (2.16)

with the propagated error covariance(
w,P k

p v
)

:=
(
Mw,P k−1MA−1v

)
+
(
w,RηηA

−1v
) ∀v, w ∈ Z (2.17)

and the evolution of the error covariance(
w,P kv

)
=
(
A−1w,P k

p v
)− lk(A−1w)

(
A−1sr, P

k
p v
) ∀v, w ∈ Z (2.18)

with an initial error covariance P 0 = E
[
z̃0 ◦ z̃0

]
and the Riesz representation sr ∈ Z of the output functional.

Proof. The proof can be found in the Appendix A.2. �

3. Reduced basis Kalman filter

After stating the Kalman filter in weak formulation in infinite dimensional Hilbert spaces, we will now handle
the issue of numerical approximation in finite dimensional Hilbert spaces and present a rapidly computable
approximation of the optimal filter in algebraic form. We introduce a finite dimensional Hilbert space Zh ⊂ Z
of very high dimension H = dim(Zh), where Zh inherits the scalar product and norm from Z. Performing a
Galerkin projection of (2.4) onto Zh we obtain

m
(
zk

h(μ, ω), v ; μ
)

+Δta0

(
zk

h(μ, ω), v ; μ
)

= (3.1)

m
(
zk−1

h (μ, ω), v ; μ
)

+Δt b(v; μ)uk +
(
ηk(ω), v

)
for all v ∈ Zh and for k = 1, . . . ,K. The solution zk

h could be a finite element solution for example, and
we assume this “true” solution to be sufficiently accurate, such that the finite element discretization error is
negligible compared to our reduction error in the following. The measurement output of the “true” system is
modeled by

yk
h := s(zk

h) + ϑk (3.2)

and the output of interest is simply yk
h,int := o(zk

h).
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The optimal filter for the high dimensional stochastically forced system (3.1), (3.2) can be obtained by project-
ing the infinite dimensional Kalman filter (2.14)–(2.18) onto the finite dimensional space Zh. However, then we
would obtain very high dimensional matrix equations. Performing state estimations using this high dimensional
Kalman filter could be computationally very expensive. In order to allow rapid state estimations, we will instead
use a reduced basis approximation of the Kalman filter. For that purpose, let ZN = span{ϕ1, . . . , ϕN} ⊆ Zh

be the reduced basis approximation space of dimension dim(ZN ) = N 
 dim(Zh) spanned by the orthonormal
basis {ϕ1, . . . , ϕN} with ϕi ∈ Zh and (ϕi, ϕj) = δi,j for all i, j = 1, . . . , N . The ansatz for the RBKF estimation
is ẑk

N =
∑N

i=1 ẑ
k
N,iϕi with coefficients ẑk

N,i ∈ R. We define the coefficient vector ẑk
N := (ẑk

N,1, . . . , ẑ
k
N,N)T ∈ R

N .
A Galerkin projection of the infinite dimensional Kalman filter from (2.14)–(2.18) on ZN results in the algebraic
RBKF formulation: we define the projected operator matrices and projected linear forms by

(AN (μ))i,j := a (ϕj , ϕi; μ) , (MN (μ))i,j := m (ϕj , ϕi ; μ)

(BN (μ))i := Δt b(ϕi; μ), (CN )i := s(ϕi)
(Rηη,N )i,j := (ϕi, Rηηϕj) , (P 0

N )i,j :=
(
ϕi,E

[
z̃0 ◦ z̃0

]
ϕj

)
(3.3)

for all i, j = 1, . . . , N and obtain the RBKF state estimations by solving

AN ẑk
N = MN ẑk−1

N + Bk
Nu

k + Lk
N

(
yk

h − CT
N ẑk

N,p

)
(3.4)

for all k ∈ K with initial condition ẑ0
N satisfying

(
ẑ0

N , vN

)
=
(
E
[
z0
]
, vN

) ∀vN ∈ ZN and the propagation

AN ẑk
N,p = MN ẑk−1

N + Bk
Nu

k (3.5)

with ẑ0
N,p = ẑ0

N . The RBKF gain vector can be calculated via

Lk
N = P k

N,pCN

(
CT

NA−T
N P k

N,pCN +Rϑϑ

)−1

(3.6)

with
P k

N,p := MNP k−1
N MNA−1

N + Rηη,NA−1
N (3.7)

and the covariance matrix of the estimation error

P k
N = A−T

N P k
N,p − A−T

N Lk
NCT

NA−T
N P k

N,p. (3.8)

As all involved vectors and matrices are only of low dimension N , the whole reduced order Kalman filter scheme
can be calculated considerably faster than in the high dimensional case. It is of importance to point out, that
the measurement output yk

h from the true system (3.2) is used in the RBKF formulation (3.4).

Remark 3.1. It can be shown, that the projection of the infinite dimensional optimal filter onto a finite
dimensional space ZN results in an optimal filter for the finite dimensional system resulting from a projection
of (2.4) onto ZN . For proving this statement it suffices to show that the finite dimensional filter obtained by
projection satisfies Lemma 2.2.

3.1. Basis generation

The wise choice of the reduced basis approximation space ZN is crucial in model reduction using the reduced
basis method, as it determines the overall quality of the approximation procedure. The space should be chosen
optimally regarding two main criteria: (I) the reduced space is supposed to be of very low dimension in order to
allow rapid solves; and (II) the reduced space should provide the necessary degrees of freedom to find accurate
solutions with low approximation errors.
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One of the most common methods in reduced basis methods is to create a reduced approximation space using
a Greedy algorithm [55], or in time dependent problems the POD-Greedy algorithm [28]. Convergence rates
of these basis construction methods have been shown in [3, 7, 26]. There exist also various adaptive extension
techniques as elaborated in [18, 20, 27].

In our case of a stochastically forced problem, the solution is deformed and disturbed by additive white noise.
It is crucial to take this noise effect into account during the basis generation process. In the experiments in
Section 5.1 we will demonstrate numerically the advantage for the following basis generation technique for the
model reduction of systems corrupted by white noise.

A crucial ingredient to the construction of the reduced basis is the Karhunen–Loève (KL) expansion to
reformulate the noise term. For details on the KL expansion we refer to [56]. We assume that ξi ∈ Z with
i = 1, . . . , d, d ∈ N ∪ {∞}, are the eigenfunctions of the white noise covariance operator Rηη, so that

Rηηξi = λiξi

for eigenvalues λi ∈ R. Then the white noise random function ηk can be reformulated as

ηk =
d∑

i=1

√
λiξiν

k
i (3.9)

with νk
i � N(0, 1) a normally distributed R-valued random variable (cf . [56]). We assume, that the eigenfunc-

tions and eigenvalues are hierarchically ordered, so that λ1 ≥ λ2 ≥ . . . ≥ 0. In the following we will choose a
number nKL ∈ N where the KL-expansion is cut off, so that we approximate ηk ≈ ∑nKL

i=1

√
λiξiν

k
i . Note, that

the number of KL-modes used for the approximation of the noise characteristics has to be chosen carefully.
The idea behind our basis generation approach is the following: if we plug in the KL-expansion from (3.9)

into the stochastically forced PDE from (2.4), it gets obvious that we actually have a linear time invariant (LTI)
system with deterministic input uk and random inputs νk

i . Hence, the “noisy” part ηk ≈∑nKL

i=1

√
λiξiν

k
i can be

interpreted as a (random) input to our linear system. Duhamel’s principle states, that the solution of an LTI
system to any input can be found by a convolution of the impulse response of the system with the given input.
Consequently, if we design the reduced basis space in a way so that it approximates well the impulse solutions,
then it will be possible to represent well solutions for any input – deterministic and random.

To obtain those deterministic and random impulse solutions for the basis generation, we first define the
“detailed” impulse solution zk

h,imp(μ, n) ∈ Zh with impulse number n = 1, . . . , nKL + 1 as solution to

a
(
zk

h,imp(μ, n), v; μ
)

= m
(
zk−1

h,imp(μ, n), v ; μ
)

+Δt b(v; μ)uk
imp(n) +

nKL∑
i=1

√
λi (v, ξi) νk

i,imp(n) (3.10)

for all v ∈ Zh with initial condition z0
h,imp(μ, n) = 0 and impulse inputs uk

imp(n) := δk,1 · δn,1, νk
i,imp(n) :=

δk,1 · δn−1,i. While the reduced impulse solution zk
N,imp(μ, n) ∈ ZN is the Galerkin projection of (3.10) onto

ZN . Note, that in the RB approximation of the impulse response, we use the same number of KL-modes
as in the detailed impulse response. Next, we assume the existence of a rapidly computable error bound
Δ(μ;n) ≥ maxk∈K ‖zk

h,imp(μ, n)− zk
N,imp(μ, n)‖. There exist various approaches to derive these kind of bounds

(e.g. [25, 28]). Also, we will present such an error bound later in Section 4.3.
The “Noise-POD-Greedy” basis generation algorithm for stochastically forced models works as follows: we

start with an initial set of reduced basis functions Φ = Φ0. We also choose a training set of parameters Mtrain ⊂
P and the number of KL-modes nKL we wish to consider for basis generation. To control the quality of
the reduced basis space, we fix an approximation tolerance εtol > 0 and a maximal basis size Nmax ∈ N.
We start the procedure by calculating the error estimate Δ(μ, n) for all impulse solutions for all μ ∈ P
and n = 1, . . . , nKL + 1 (impulses on the deterministic input u and the first nKL modes). It is important
to mention, that for computing Δ(μ, n) only low dimensional calculations are required in order to enable a
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quick search over all parameters and inputs. Here, we choose the pair of parameter μ∗ and n∗ producing the
highest error estimate Δ(μ∗, n∗). For this pair of parameter and impulse number, we calculate the detailed
impulse solution zh,imp(μ∗, n∗). Via a projection ΠΦ(zh,imp(μ∗, n∗)) onto span{Φ} and subsequently building
the orthogonal complement zk

⊥ = zh,imp(μ∗, n∗)−ΠΦ(zh,imp(μ∗, n∗)) we pull out the novelty that this impulse
solution trajectory can bring to the existing reduced basis. To compress this new information in an optimal
way, we perform a POD (cf . [35], Sect. 2) over this orthogonal complement of the solution trajectory and take
the first POD mode to enrich the reduced basis. Now that we have added a new basis function to the reduced
basis Φ, we restart searching for the pair (μ∗, n∗) maximizing Δ(μ, n) using the new enhanced reduced basis
Φ and we verify if the quality constraints are fulfilled, i.e. if Δ(μ∗, n∗) ≤ εtol. We continue until one of the
constraints is satisfied and we ultimately obtain a reduced basis space ZN = span{Φ} suited to approximate
well the solutions of the stochastically forced partial differential equation. The basis generation algorithm is
summarized in Algorithm 1.

Algorithm 1. The Noise-POD-Greedy procedure for building up reduced basis spaces in case of stochastically forced

problems.

Noise-POD-Greedy(Φ0,Mtrain, εtol, Nmax, nKL)
1 Φ := Φ0

2 repeat
3 (μ∗, n∗) := argmaxμ∈Mtrain,n=1,...,nKL+1Δ(μ, n)
4 if Δ(μ∗, n∗) > εtol

5 then
6 zh,imp(μ∗, n∗) := CalculateDetailedImpulseSolution(μ∗, n∗)
7 Φ = Φ ∪POD(zh,imp(μ∗, n∗) −ΠΦzh,imp(μ∗, n∗), 1)
8 until Δ(μ∗, n∗) ≤ εtol or |Φ| ≥ Nmax

9 return Φ

3.2. Computational procedure and offline-online decomposition

The computational procedure for the RBKF is divided into a preparing offline phase and an online phase,
where the calculations for the state estimations are performed. The objective of this separation is to have the
actual calculations for the RBKF independent of the size of the high dimensional space Zh and only depending
on the number of dimensions of the low dimensional space ZN . Thereby, rapid state estimations – or even
real-time state estimations – can be assured.

In the offline phase the reduced basis is constructed as described in Section 3.1. Furthermore, the param-
eter independent components of the bilinear and linear forms are projected onto the reduced space ZN by
computing (Aqa

0,N )i,j := aqa

0 (ϕj , ϕi), (M qm

N )i,j := mqm(ϕj , ϕi), (Bqb

N )i := Δt bqb(ϕi) for all i, j = 1 . . . , N and
qa = 1, . . . , Qa, qm = 1, . . . , Qm and qb = 1, . . . , Qb.

Then, in the online phase, the required matrices AN (μ),MN (μ) and the vector BN (μ) can be assembled
quickly for a given parameter μ by taking advantage of the parameter affinity of the bilinear and linear forms
via

AN (μ) =
Qm∑
q=1

Θq
m(μ)M q

N +Δt

Qa∑
q=1

Θq
a(μ)Aq

0,N , (3.11)

MN (μ) =
Qm∑
q=1

Θq
m(μ)M q

N , BN (μ) =
Qb∑
q=1

Θq
b (μ)Bq

N . (3.12)

After having assembled the parameter dependent quantities, RBKF estimations can be performed. Note,
that this technique even allows to treat the more general situation of time-varying parameters. The assem-
bling (3.11), (3.12) is then performed at every time step.
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Note also, that the offline phase can be computationally expensive. On the other hand, after having completed
the preparations, the computations in the online phase are independent of high dimensional quantities and
provide rapid state estimations even for varying parameters.

4. Error estimation

Let us first discuss, why it is necessary and useful to handle the issue of error estimation for the RBKF.
When re-examining the filtering problem we see, that it is formulated for a specific combination of a system and
measurement data from the system. It becomes obvious that an “optimal filter” is only optimal considering this
combination of system and data. Hence, the time discrete Kalman filter in weak formulation in Proposition 2.4
is an optimal filter for the semi-discrete system (2.4) with outputs yk from (2.7). As pointed out in Remark 3.1,
also the projection of the infinite dimensional Kalman filter onto the space Zh would be an optimal filter for the
finite dimensional system (3.1) with outputs yk

h. However, the reduced basis Kalman filter being steered by the
measurement outputs yk

h from the true system (3.1) does not give optimal state estimations for the true noisy
system. It only provides an approximation of an optimal filter for that system.

The fact that the RBKF is not an optimal filter has an impact on the evolution of the estimation error.
While in the optimal filter case, the mean of the estimation error is known to be zero and the error covariance
operator P k is explicitly provided by the Kalman filter scheme, we can not assume the mean estimation error
E
[
zk

h − ẑk
N

]
of the RBKF to be zero and the estimation error covariance of the RBKF cov(zk

h − ẑk
N) to be given

by P k
N in (3.8). This problem of having only an approximative Kalman filter can cause divergence in the state

estimations and even lead to unstable filters (cf . [23, 46]).
At the end of this section we will show, how the stability of the RB Kalman filter can be verified a priori. But

first, we consider a finite time horizon and derive an upper bound for the expectation of the estimation error of
the output of interest E

[
o(zk

h − ẑk
N )
]

and the variance of this estimation error Var
(
o(zk

h − ẑk
N )
)
. For computing

these bounds only low dimensional calculations will be needed, hence, a certification of the RB Kalman filter
estimations is possible in the online phase. This clearly is an advantage compared to other reduced order filters.
Note, that we assumed the high dimensional “true” model to be accurate and the error between the analytic
solution zk and the high dimensional approximation zk

h to be negligible. Hence, in the following we will only be
interested in the error between the truth solution zk

h and the RBKF estimations ẑk
N .

As this section is rather long, we will give a short overview of its structure. In order to have a tight error
bound we will apply primal dual error estimation techniques, which are based mainly on [25], where primal-dual
error estimation was introduced for time-dependent RB problems. The dual problems as well as a virtual noisy
RB model will be introduced in Section 4.1. Then, the estimation error will be decomposed into four parts
in Section 4.2 and in the subsequent sections a bound for the expectation and the variance of all four error
components will be derived. Then we will comment on possible simplifications for the error estimator. Finally,
in Section 4.6 we will see, how the stability of the RBKF can be verified a priori via an observability criterion.

4.1. Preliminaries

For the error analysis of the RB Kalman filter we introduce the noisy reduced basis model

m
(
zk

N(μ, ω), vN ; μ
)

+Δt a0

(
zk

N(μ, ω), vN ; μ
)

= (4.1)

m
(
zk−1

N (μ, ω), vN ; μ
)

+Δt b(vN ; μ)uk +
(
ηk(ω), vN

)
for all vN ∈ ZN and for all k ∈ K resulting from a Galerkin projection of (2.4) onto ZN and initial condition z0

N

defined via
(
z0

N − z0
h, vN

)
= 0 for all vN ∈ ZN . We define the measurement output and the output of interest

of the reduced system as
yk

N := s(zk
N ) + ϑk and yk

N,int := o(zk
N ). (4.2)
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Note, that (4.1) can not be practically computed, as the noise is inaccessible. Therefore, we denote this system
to be “virtual” and it will only be involved in the error analysis. The same holds for the residual defined as

Resk(v) := −a (zk
N , v; μ

)
+m

(
zk−1

N , v ; μ
)

+Δt b(v; μ)uk +
(
ηk, v

)
. (4.3)

Next, we introduce an optimal (and also virtual) RB Kalman filter estimation ẑk
N (yN ) :=

∑N
i=1(ẑ

k
N (yN ))iϕi

with coefficient vector ẑk
N (yN ) ∈ R

N obtained by solving

AN ẑk
N (yN ) = MN ẑk−1

N (yN ) + Bk
Nu

k + L̄
k
N

(
yk

N − CT
N (A−1

N MN ẑk−1
N (yN ) + A−1

N Bk
Nu

k)
)

(4.4)

and

L̄
k
N = P̄

k
N,pCN

(
CT

NA−T
N P̄

k
N,pCN +Rϑϑ

)−1

(4.5)

P̄
k
N,p := MN P̄

k−1
N MNA−1

N + Rηη,NA−1
N (4.6)

P̄
k
N = A−T

N P̄
k
N,p − A−T

N L̄
k
NCT

NA−T
N P̄

k
N,p (4.7)

iteratively for all k ∈ K, with initial estimation (ẑ0
N (yN ))i =

(
E
[
z0

h

]
, ϕi

)
and P̄

0
N = P 0

N . As this reduced basis
Kalman filter estimation is steered by the reduced outputs yk

N , we denote ẑk
N (yN ) as a function of the reduced

data yN . Hence, we distinguish two different RB Kalman filter estimations. Firstly, the real RB Kalman filter
estimation, now noted ẑk

N (yh) solution of (3.4)–(3.8) and steered by the true measurement output yk
h from (3.2).

Secondly, the (virtual) optimal RB Kalman filter estimation ẑk
N(yN ) steered by the (virtual) output yk

N from the
noisy reduced basis model (4.2). Considering Remark 3.1, we know that the ẑk

N(yN ) for all k ∈ K are optimal
state estimations.

In order to obtain a sharp error bound for useful certification of the RBKF, we propose to apply a primal-dual
approach inspired by [25]. Therefor we introduce (finite dimensional) dual problems for the measurement output
and for the output of interest. The dual solutions zk

du := zdu(tk; μ) ∈ Zh and zk
du,o = zdu,o(tk,μ) ∈ Zh solve

m
(
zk
du, v ; μ

)
+Δta0

(
zk
du, v ; μ

)
= m

(
zk+1
du , v ; μ

)
and m

(
zk
du,o, w ; μ

)
+Δta0

(
zk
du,o, w ; μ

)
= m

(
zk+1
du,o, w ; μ

)
for time indices k = K, . . . , 1 with end time conditions

m
(
zK+1
du , v ; μ

)
= s(v) , m

(
zK+1
du,o , w ; μ

)
= o(w) (4.8)

for all v, w ∈ Zh. Note, that both dual solutions zk
du and zk

du,o are non-random functions.
Next, reduced basis approximations of the dual solutions in the low dimensional spaces ZN,du =

span{ϕdu,1, . . . , ϕdu,Ndu} and ZN,du,o = span{ϕdu,o,1, . . . , ϕdu,o,Ndu,o
} of dimensions dim(ZN,du) = Ndu and

dim(ZN,du,o) = Ndu,o are introduced (for building both reduced basis spaces, standard POD-Greedy pro-
cedures [28] can be performed). The reduced dual solutions zk

N,du := zN,du(tk; μ) ∈ ZN,du and zk
N,du,o :=

zN,du,o(tk; μ) ∈ ZN,du,o solve the reduced dual problems

m
(
zk

N,du, vN ; μ
)

+Δta0

(
zk

N,du, vN ; μ
)

= m
(
zk+1

N,du, vN ; μ
)

,

m
(
zk

N,du,o, wN ; μ
)

+Δta0

(
zk

N,du,o, wN ; μ
)

= m
(
zk+1

N,du,o, wN ; μ
)

for time indices k = K, . . . , 1 with final solutions

m
(
zK+1

N,du, vN ; μ
)

= s(vN ) and m
(
zK+1

N,du,o, wN ; μ
)

= o(wN ) (4.9)
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for all vN ∈ ZN,du and wN ∈ ZN,du,o. For the error analysis, the dual residuals

Resk
du(v) := m

(
zk+1

N,du − zk
N,du, v ; μ

)
−Δta0

(
zk

N,du, v ; μ
)

(4.10)

and
Resk

du,o(w) := m
(
zk+1

N,du,o − zk
N,du,o, w ; μ

)
−Δta0

(
zk

N,du,o, w ; μ
)

(4.11)

are defined for all v ∈ Zh and w ∈ Zh.
The error will be measured in a spatio-temporal energy norm (cf . [25]) defined as

|||(vi)k
i=1|||2 = m

(
vk, vk ; μ

)
+Δt

k∑
i=1

a0

(
vi, vi ; μ

)
(4.12)

for all (vi)k
i=1 ∈ (Z)k. Note, that instead of writing |||(vi)k

i=1||| we may also write |||vk||| and mean thereby the
energy norm over the trajectory up to vk. Using this formulation, the appropriate norm for trajectories in the
dual space is defined for all (w)K

i=k ∈ (Z)K−k+1 as:

|||wk|||2du = m
(
wk, wk ; μ

)
+Δt

K∑
i=k

a0

(
wi, wi ; μ

)
. (4.13)

4.2. Error decomposition

The key step in the error estimation of the RBKF is the decomposition of the estimation error. The basic
idea for this decomposition is the reformulation of the estimation error as

zk
h − ẑk

N(yh) = zk
h − zk

N︸ ︷︷ ︸
(I)

+ zk
N − ẑk

N(yN )︸ ︷︷ ︸
(II)

+ ẑk
N(yN ) − ẑk

N(yh)︸ ︷︷ ︸
(III)

. (4.14)

Hence, the estimation error can be written as a sum of: (I) the error between the noisy true system and the
(virtual) noisy reduced system, (II) the estimation error between the reduced noisy system and the reduced basis
Kalman filter steered by the reduced outputs yk

N and (III) the difference between two reduced basis Kalman
filters steered by the reduced outputs yk

N and the true outputs yk
h respectively.

Now, to quantify the quality of our RBKF estimation, we aim to find a statement about the estimation error
of the output of interest ek

o := o(zk
h − ẑk

N (yh)). As ek
o is a normally distributed random function in Zh, we seek

information about the expectation and the variance of ek
o . The following Lemma shows, how the expectation

and the variance of this estimation error can each be decomposed into four components.

Lemma 4.1. Let ek
o = o(zk

h − ẑk
N (yh)) be the RBKF estimation error of the output of interest. We define the

four components

ek
o,1 := o

(
zk

h − zk
N

)− k∑
i=1

Resi
(
zK−k+1

N,du,o

)
, ek

o,2 := o
(
zk

N − ẑk
N (yN )

)

ek
o,3 := o

(
ẑk

N(yN ) − ẑk
N (yh)

)
, ek

o,4 :=
k∑

i=1

Resi
(
zK−k+1

N,du,o

)

for all k ∈ K. Then the expectation of the estimation error can be decomposed into

E
[
ek

o

]
= E

[
ek

o,1

]
+ E

[
ek

o,2

]
+ E

[
ek

o,3

]
+ E

[
ek

o,4

]
(4.15)
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and the variance of the estimation error can be bounded by

Var
(
ek

o

) ≤ (1 + ρk
1

) (
1 + ρk

2

) (
1 + ρk

3

)
Var

(
ek

o,1

)
+
(
1 + ρk

1

) (
1 + ρk

2

)(
1 +

1
ρk
3

)
Var

(
ek

o,2

)
+
(
1 + ρk

1

)(
1 +

1
ρk
2

)
Var

(
ek

o,3

)
+
(

1 +
1
ρk
1

)
Var

(
ek

o,4

)
(4.16)

for any ρk
1 , ρ

k
2 , ρ

k
3 > 0 and for all k ∈ K.

Proof. Due to the linearity of the output of interest, it is obvious that ek
o = ek

o,1 + ek
o,2 + ek

o,3 + ek
o,4. From the

linearity of the expectation operator E [·] we conclude (4.15). For deriving the variance bound, we recall that if
a, b ∈ R then

(a+ b)2 ≤ (1 + ρ)a2 +
(

1 +
1
ρ

)
b2 (4.17)

for any ρ > 0 (see [17] for a proof). Recalling z̊ := z − E [z] the variance is reformulated as

Var
(
ek

o

)
= E

[(
ek

o − E
[
ek

o

])2]
= E

[(
ek

o,1 − E
[
ek

o,1

]
+ ek

o,2 − E
[
ek

o,2

]
+ ek

o,3 − E
[
ek

o,3

]
+ ek

o,4 − E
[
ek

o,4

])2]
= E

[(̊
ek

o,1 + e̊k
o,2 + e̊k

o,3 + e̊k
o,4

)2]
. (4.18)

Then, applying the identity (4.17) successively three times with coefficients ρk
1 , ρ

k
2 , ρ

k
3 > 0 we find

(̊
ek

o,1 + e̊k
o,2 + e̊k

o,3 + e̊k
o,4

)2 ≤ (1 + ρk
1

) (
1 + ρk

2

) (
1 + ρk

3

) (̊
ek

o,1

)2
+
(
1 + ρk

1

) (
1 + ρk

2

)(
1 +

1
ρk
3

) (̊
ek

o,2

)2
+
(
1 + ρk

1

)(
1 +

1
ρk
2

) (̊
ek

o,3

)2
+
(

1 +
1
ρk
1

) (̊
ek

o,4

)2
. (4.19)

Putting (4.19) in (4.18) and using the linearity of the expectation results in

Var
(
ek

o

) ≤ E
[(

1 + ρk
1

) (
1 + ρk

2

) (
1 + ρk

3

) (̊
ek

o,1

)2
+
(
1 + ρk

1

) (
1 + ρk

2

)(
1 +

1
ρk
3

) (̊
ek

o,2

)2
+
(
1 + ρk

1

)(
1 +

1
ρk
2

) (̊
ek

o,3

)2
+
(

1 +
1
ρk
1

) (̊
ek

o,4

)2]

=
(
1 + ρk

1

) (
1 + ρk

2

) (
1 + ρk

3

)
E
[(̊
ek

o,1

)2]
+
(
1 + ρk

1

) (
1 + ρk

2

)(
1 +

1
ρk
3

)
E
[(̊
ek

o,2

)2]
+
(
1 + ρk

1

)(
1 +

1
ρk
2

)
E
[(̊
ek

o,3

)2]
+
(

1 +
1
ρk
1

)
E
[(̊
ek

o,4

)2]
.

With the definitions of e̊k
o,1, e̊

k
o,2, e̊

k
o,3 and e̊k

o,4 this leads directly to the statement (4.16). �

Having this error decomposition, we will derive in the following sections error bounds for the expectations
and variances of all four error components.
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4.3. Error estimation for a noisy reduced basis model (Component ek
o,1)

While the approximation error ek
z := zk

h−zk
N between the true solution of a stochastically forced PDE and its

approximation via a reduced basis model is a crucial ingredient in the error estimation of the RB Kalman filter,
it can be regarded independently from the Kalman filter problem setting and could be of individual interest.

We start with deriving the equations describing the evolution of the true expected solution z̄k
h := E

[
zk

h

]
and

the reduced expected solution z̄k
N := E

[
zk

N

]
. By taking the expectation on both sides of (3.1) and (4.1), due to

the linearity of all terms and as E
[
ηk
]

= 0 for all k = 0, . . . ,K (white noise assumption) we obtain

a
(
z̄k

h, v; μ
)

= m
(
z̄k−1

h , v ; μ
)

+Δt b(v)uk ∀v ∈ Zh (4.20)

a
(
z̄k

N , vN ; μ
)

= m
(
z̄k−1

N , vN ; μ
)

+Δt b(vN )uk ∀vN ∈ ZN (4.21)

for all k ∈ K with initial conditions z̄0
h = E

[
z0

h

]
and z̄0

N = E
[
z0

N

]
. Note, that the solutions z̄k

h and z̄k
N are

non-random functions.
Next, the evolution schemes for the unbiased true solution z̊k

h := zk
h − z̄k

h and unbiased reduced solution
z̊k

N := zk
N − z̄k

N are obtained by subtracting (4.20) from (3.1) and (4.21) from (4.1) resulting in

a
(̊
zk

h, v; μ
)

= m
(
z̊k−1

h , v ; μ
)

+
(
ηk, v

) ∀v ∈ Zh (4.22)

a
(̊
zk

N , vN ; μ
)

= m
(
z̊k−1

N , vN ; μ
)

+
(
ηk, vN

) ∀vN ∈ ZN (4.23)

for all k ∈ K with initial conditions z̊0
h = z0

h − z̄0
h and z̊0

N = z0
N − z̄0

N . Furthermore, we define the mean residual
and the unbiased residual respectively as

R̄esk(v) := E
[
Resk(v)

]
= −a (z̄k

N , v; μ
)

+m
(
z̄k−1

N , v ; μ
)

+Δt b(v)uk (4.24)

R̊es
k
(v) := Resk(v) − E

[
Resk(v)

]
= −a (̊zk

N , v; μ
)

+m
(̊
zk−1

N , v ; μ
)

+
(
ηk, v

)
(4.25)

and their Riesz representations
(
r̄k, v

)
:= R̄esk(v),

(̊
rk, v

)
:= R̊es

k
(v) for all v ∈ Zh. Again, we omit the

parameter dependence of the residuals for better readability.

4.3.1. Expectation of the approximation error

We will first derive error bounds for the expectation of the solution approximation error and subsequently
derive a primal dual error bound for the expectation of the output approximation error.

Lemma 4.2. Assuming the initial error to be e0z = 0, the energy norm of the expected value of the approximation
error ek

z is bounded by

|||E [ek
z

] ||| ≤ Δk
RB,E :=

(
1

Δt ᾱ0

K∑
i=1

∥∥r̄i
∥∥2

) 1
2

(4.26)

for all k ∈ K.

Proof. By subtracting (4.21) from (4.20) we find the error evolution

m
(
ēk

z , v ; μ
)

+Δt a0

(
ēk

z , v ; μ
)

= m
(
ēk−1

z , v ; μ
)

+ R̄esk(v)

for the mean approximation error ēk
z := E

[
ek

z

]
. As this error evolution does not contain any random quantities,

but merely deterministic quantities, the proof can be continued in analogy to ([25], Prop. 4.1) (while considering
the slightly different definition for the residual). �
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Remark 4.3. We observe, that the expected value of the approximation error of a noisy linear system equals
the RB approximation error of the respective linear system without noise. There exist various other approaches
to bound this RB error, e.g. for general evolution equations [28] or in a space-time formulation [53], which could
also be applied here.

In this Lemma we assumed the initial error to be zero. This requirement can be fulfilled by including the initial
condition z̄0

h in the reduced space ZN during the basis generation. In case that the initial error can not be set to
zero, e.g. if the initial condition is parameter dependent, an upper bound for ē0 has to be added to (4.26). This
issue reappears when considering the error bound for the dual solutions. Here, the final condition is parameter
dependent via the parameter dependent bilinear form m (·, · ; μ) (cf . (4.8)). Hence, we cannot assume that the
final dual approximation error eK+1

du := zK+1
du −zK+1

N,du is zero. Therefore, the following lemma will provide an upper
bound for the final dual error. But first, we introduce a new scalar product (v, w)m := m(v, w; μ∗∗) and norm
‖v‖2

m = (v, v)m based on the bilinear form m and a second reference parameter μ∗∗. With respect to this norm
the bilinear form m is assumed to be coercive with coercivity constant σ̄ ≤ σ(μ) := infv∈Z m (v, v ; μ) / ‖v‖2

m.

Lemma 4.4. The final approximation errors eK+1
du (μ) := zK+1

du (μ) − zK+1
N,du(μ) and eK+1

du,o (μ) := zK+1
du,o (μ) −

zK+1
N,du,o(μ) are bounded by ∥∥eK+1

du (μ)
∥∥

m
≤ Δdu,final(μ) :=

‖rfinal(μ)‖m

σ̄

and ∥∥∥eK+1
du,o (μ)

∥∥∥
m

≤ Δdu,final,o(μ) :=
‖rfinal,o(μ)‖m

σ̄

where the Riesz representations of the final residuals are defined as

(rfinal(μ), v)m := s(v) −m
(
zK+1

N,du, v ; μ
)

and (rfinal,o(μ), w)m := o(w) −m
(
zK+1

N,du,o, w ; μ
)

for all v ∈ Zdu and w ∈ Zdu,o.

Proof. With (4.8) we obtain for the final error

m
(
eK+1
du (μ), v ; μ

)
= s(v) −m

(
zK+1

N,du, v ; μ
)

= (rfinal(μ), v)m .

Setting v = eK+1
du (μ), invoking the coercivity σ̄ of m and applying Cauchy–Schwarz results in the expression for

the bound. Similar arguments hold for the output of interest. �

Note, in case of the bilinear form m (·, ·) being parameter independent, the final solution can be added to the
reduced spaces, so that zK+1

du ∈ ZN,du and zK+1
du,o ∈ ZN,du,o resulting in zero final errors eK+1

du = 0 and eK+1
du,o = 0.

Lemma 4.5. The energy norm of the dual approximation errors ek
du(μ) := zk

du(μ) − zk
N,du(μ) and ek

du,o(μ) :=
zk
du,o(μ) − zk

N,du,o(μ) is bounded by

|||ek
du(μ)|||du ≤ Δk

du(μ) :=

(
1

ᾱ0Δt

K∑
i=k

∥∥ri
du

∥∥2
+ σ̄Δdu,final(μ)2

) 1
2

,

|||ek
du,o(μ)|||du ≤ Δk

du,o(μ) :=

(
1

ᾱ0Δt

K∑
i=k

∥∥ri
du,o

∥∥2
+ σ̄Δdu,final,o(μ)2

) 1
2

for all k ∈ K where the residuals’ Riesz representations are defined as
(
ri
du, v

)
:= Resk

du(v) and
(
ri
du,o, w

)
:=

Resk
du,o(w) for all v ∈ Zdu and w ∈ Zdu,o.
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Proof. The proof can be found in [25]. �

Next, we define the modified reduced measurement output

y∗,k
N := yk

N +
k∑

i=1

Resi
(
zK−k+i

N,du

)
(4.27)

and derive an error bound for the expectation between this and the true measurement output.

Proposition 4.6. The expected value of the error in the measurement output is bounded by

|E
[
yk

h − y∗,k
N

]
| ≤ Δk

E[y](μ) := Δk
RB,E(μ)Δk

du(μ) (4.28)

for all k ∈ K and the expected value of the error in the modified output of interest, being the expectation of the
first error component ek

o,1, is bounded for all k ∈ K by

|E [ek
o,1

] | ≤ Δk
E[eo1]

(μ) := Δk
RB,E(μ)Δk

du,o(μ) (4.29)

where Δk
RB,E(μ), Δk

du(μ) and Δk
du,o(μ) are the error bounds from Lemma 4.2 and Lemma 4.5.

Proof. For the expectation of the difference in the measurement outputs we find

E
[
yk

h − y∗,k
N

]
= E

[
yk
]− E

[
y∗,k

N

]
= s(z̄k

h) − s(z̄k
N) −

k∑
i=1

R̄esi(zK−k+i
N,du )

where all terms are non random quantities. The same holds for

E

[
o(zk

h) − o(zk
N ) −

k∑
i=1

Resi(zK−k+i
N,du,o )

]
= o(z̄k

h) − o(z̄k
N ) −

k∑
i=1

R̄esi(zK−k+i
N,du,o )

From here, we refer to the proof from ([25], Prop. 4.4) for concluding the statement. �

Although the whole error estimation procedure seems to be quite excessive, it will turn out in Section 4.4 that
this error bound for the measurement output plays a crucial rule in the complete Kalman filter error estimation
and that we have an interest in keeping this error bound tight.

One result of this subsection is, that in case of systems disturbed by white noise, the approximation error
behaves in the mean exactly like the approximation error of a system without any noise.

4.3.2. Variance of the approximation error

In order to derive an error estimator for the variance of the approximation error, information about the
covariance of the reduced solution is needed. Plugging the ansatz for the unbiased reduced solution z̊k

N :=∑N
i=1 (̊z

k
N )iϕi with coefficient vector z̊k

N ∈ R
N in (4.23) results in

AN z̊k
N = MN z̊k−1

N + ηk
N (4.30)

for all k ∈ K and with ηk
N defined element-wise through (ηk

N )i :=
(
ηk, ϕi

)
for all i = 1, . . . , N . Now, with the

definition of the auto-covariance matrix cov(zk
N ) := Qk

N := E
[̊
zk

N (̊zk
N )T

]
, we can derive the evolution scheme

for the reduced solution’s autocovariance

ANQk
NAT

N = MNQk−1
N MT

N + Rηη,N (4.31)
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with Rηη,N ∈ R
N×N , (Rηη,N )i,j := (ϕi, Rηηϕj) for all i, j = 1, . . . , N . This evolution scheme is low dimensional,

so that the covariance matrix of the reduced solution can be calculated online.
In analogy to the error estimator for the expectation, we will need a residual norm for bounding the variance,

namely the expression E[
∥∥̊rk
∥∥2], where r̊k is the Riesz representation of the unbiased residual R̊es

k
. The following

Lemma shows how to rapidly calculate this value online.

Lemma 4.7. The expectation of the squared norm of the unbiased residual E
[∥∥̊rk

∥∥2
]

can be calculated via

E
[∥∥̊rk

∥∥2
]

= tr
(
Qk

NKI

)
+ tr

(
Qk−1

N KII

)
+ traceZh

(Rηη)

−tr
(
A−1

N MNQk−1
N KIII

)
− tr

(
A−1

N KηA

)
(4.32)

for all k ∈ K with low dimensional matrices (KI)i,j := (Aϕi, Aϕj), (KII)i,j := (Mϕi,Mϕj), (KIII)i,j :=
(Aϕi,Mϕj), (KηA)i,j = (ϕi, RηηAϕj) for all i, j = 1, . . . , N .

Proof. The proof can be found in Appendix A.3 �

We can now derive an upper bound for the variance of the approximation errors in both outputs.

Proposition 4.8. Assuming the initial error e0 = z0
h − z0

N to be zero, the variance of the approximation error
of the measurement output is bounded by

Var
(
yk

h − y∗,k
N

)
≤ Δk

Var(y) :=
1

ᾱ0Δt

(
k∑

i=1

E
[∥∥̊r2∥∥2

]) (
ΔK−k+1

du

)2
(4.33)

and the approximation error of the first error component is bounded by

Var
(
ek

o,1

) ≤ Δk
Var(eo1) :=

1
ᾱ0Δt

(
k∑

i=1

E
[∥∥̊r2∥∥2

])(
ΔK−k+1

du,o

)2

. (4.34)

The sum
∑k

i=1 E
[∥∥̊r2∥∥2

]
is rapidly computable as shown in Lemma 4.7.

Proof. The proof can be found in Appendix A.4. �

In case, that the initial value is also a random function, an additional term including the initial covariance
cov(̊e0) has to be added.

In this section we derived error bounds to quantify the quality of reduced basis approximations of linear
systems disturbed by white noise. The primal-dual technique provides us with sharp error bounds for linear
outputs. In Section 4.4, those error bounds will play a crucial role in deriving an overall error estimator for the
RBKF.

4.4. Error bounds for the deviation (components ek
o,2, ek

o,3, ek
o,4)

In this subsection we will derive error bounds for the last three error components ek
o,2, e

k
o,3 and ek

o,4 of
Lemma 4.1. As the solutions zk

N , ẑk
N (yh) and ẑk

N(yN ) – appearing in the two error components ek
o,2 = o(zk

N −
ẑk

N (yN )) and ek
o,3 = o(ẑk

N (yh) − ẑk
N (yN )) – are all elements of the low dimensional space ZN , we can expect

them to be rapidly computable.
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4.4.1. The optimal reduced order filter (ek
o,2)

The second error component ek
o,2 = o(zk

N −ẑk
N(yN )) contains the difference between the reduced system’s state

zk
N and the reduced order Kalman filter estimation ẑk

N (yN ) steered by the reduced system’s outputs. As stated
in Remark 3.1, ẑk

N (yN ) is an optimal filter estimation for zk
N . Consequently, statements about the estimation

error are well known and are summarized in the following Lemma. In the following, we denote by Co ∈ R
N the

vector evaluating the output of interest, defined as (Co)i := o(ϕi) for all i = 1, . . . , N .

Lemma 4.9. The expected value of the second error component equals zero

E
[
ek

o,2

]
= E

[
zk

N − ẑk
N (yN )

]
= 0 (4.35)

and the variance of the second error component is given by

Var
(
ek

o,2

)
= CT

o P k
NCo. (4.36)

Proof. The statement (4.35) results from standard Kalman filter analysis (cf . [31]). For (4.36) consider (2.1)
and the fact that P k

N = cov(zk
N − ẑk

N ). �

Note, that all quantities in (4.35) and (4.36) are independent of the high dimensional approximation space
Zh and can be calculated online.

4.4.2. Expectation of the third error component ek
o,3

Now we want to address the third error component ek
o,3 = o(ẑk

N (yh)− ẑk
N (yN )), the deviation in the output of

interest between the two differently steered Kalman filters. Therefor we first derive the error evolution scheme
for the error ek

N := ẑk
N (yh) − ẑk

N (yN ). Note, that ek
N ∈ ZN . By subtracting (4.4) from (3.4) and defining

GN := A−1
N (MN − Lk

NCT
NA−1

N MN ) we obtain

ek
N = GNek−1

N + A−1
N Lk

N

(
yk

h − yk
N

)
(4.37)

where ek
N ∈ R

N is the coefficient vector, so that ek
N =

∑N
i=1(e

k
N )iϕi. The initial error is e0

N = 0 as ẑ0
N (yh) =

ẑ0
N (yN ). To benefit from the primal dual error estimator, we rewrite (4.37) as

ek
N = GNek−1

N + A−1
N Lk

N

(
yk

h − y∗,k
N +

k∑
i=1

Resi
(
zK−k+i

N,du

))
(4.38)

with y∗,k
N the modified output from (4.27).

Obviously, this error system is stable (hence, the error is bounded), if the eigenvalues of GN are inside the
unit disc. We will learn in Section 4.6, that this is the case, if the reduced system is completely observable.
To bound the error system (4.38), we derive an enveloping system. This enveloping system is found by a
coordinate transformation and taking absolute values of all vector and matrix entries: for every matrix GN an
invertible matrix T can be found so that D := T−1GNT is in Jordan normal form (cf . [30]). Then, we can
rewrite (4.38) as:

ẽk
N = Dẽk−1

N + T−1A−1
N Lk

N

(
yk

h − y∗,k
N +

k∑
i=1

Resi
(
zK−k+i

N,du

))
. (4.39)

with ẽk
N := T−1ek

N . Now, we define the enveloping system of (4.38) as

ẽk
N,env = |D|ẽk−1

N,env + |B̃k

N |
∣∣∣∣∣yk

h − y∗,k
N +

k∑
i=1

Resi
(
zK−k+i

N,du

)∣∣∣∣∣ (4.40)
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with ẽ0
N,env = |T−1e0

N | and B̃
k

N := T−1A−1
N Lk

N . Note, that taking the absolute value of a matrix means, that
we take the absolute values of all matrix entries, e.g. the absolute value of D ∈ R

N×N is defined as |D| ∈ R
N×N

with (|D|)i,j = |(D)i,j | for all i, j = 1, . . . , N . We define the enveloping solution as ek
N,env := |T |ẽk

N,env. Now,
ek

N,env envelopes the error system in the sense that ek
N ≤ ek

N,env. Here (and in the following when used with
vectors and matrices) “≤” means an element-wise comparison, e.g. (ek

N )i ≤ (ek
N,env)i for all i = 1, . . . , N .

Using an enveloping system to bound the error ek
N has one major advantage: if the eigenvalues of the original

error system (4.38) are in the unit disc, then the eigenvalues of the enveloping system (4.40) will also be in the
unit disc, and hence, the enveloping system will be stable.

Having found the enveloping system, we are now ready to derive an error bound for the expected value of the
third component ek

o,3 of the output estimation error (note, that writing in upper case after brackets or dashes
symbolizes the raise to the power, e.g. (D)i or |D|i, while simply writing in upper case signifies an indexing,
e.g. Li).

Proposition 4.10. The expected value of the error ek
o,3 = o(ẑk

N (yN ) − ẑk
N(yh)) can be bounded by

E
[
ek

o,3

] ≤ Δk
E[eo3] (4.41)

for all k ∈ K with

Δk
E[eo3] :=

∣∣∣CT
o T
∣∣∣
⎛
⎝|D|k ∣∣T−1E

[
e0

N

]∣∣+ k∑
i=1

|D|k−i
∣∣∣B̃i

N

∣∣∣
⎛
⎝Δi

E[y] +

∣∣∣∣∣∣
i∑

j=1

R̄esj
(
zK−i+j

N,du

)∣∣∣∣∣∣
⎞
⎠
⎞
⎠ (4.42)

with B̃
i

N = T−1A−1
N Li

N and with the measurement output error bound Δi
E[y] from (4.28).

Proof. In the following we define the expectation of the Kalman deviation error as ēk
N := E[ek

N ] and the
expectation of the outputs as ȳh

k := E[yk
h] and ȳ∗,k

N := E[y∗,k
N ]. Now, we take the expectation on both sides

of (4.38) and find

ēk
N = (GN )kē0

N +
k∑

i=1

(GN )k−iA−1
N Li

N

⎛
⎝ȳi

h − ȳ∗,i
N +

i∑
j=1

R̄esj
(
zK−i+j

N,du

)⎞⎠

= T (D)kT−1ē0
N + T

k∑
i=1

(D)k−iT−1A−1
N Li

N

⎛
⎝ȳi

h − ȳ∗,i
N +

i∑
j=1

R̄esj
(
zK−i+j

N,du

)⎞⎠ . (4.43)

Knowing that ek
o,3 = CT

o ek
N , we multiply (4.43) on both sides with CT

o and derive the upper bound

CT
o ēk

N = CT
o T

⎛
⎝(D)kT−1ē0

N +
k∑

i=1

(D)k−iT−1A−1
N Li

N

⎛
⎝ȳi − ȳ∗,i

N +
i∑

j=1

R̄esj
(
zK−i+j

N,du

)⎞⎠
⎞
⎠

≤ |CT
o T |

⎛
⎝(|D|)k|T−1ē0

N | +
k∑

i=1

|D|k−i
∣∣∣B̃i

N

∣∣∣
⎛
⎝Δi

E[y] +

∣∣∣∣∣∣
i∑

j=1

R̄esj
(
zK−i+j

N,du

)∣∣∣∣∣∣
⎞
⎠
⎞
⎠

leading to the statement in (4.42). �

Note, that although a sum of the residual sum appears in the error estimation, the error bound will turn out
to be very sharp, cf . the experiments in Section 5.
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4.4.3. Variance of the third error component ek
o,3

Before deriving the variance of the third error component, we will have a look at some quantities helping us to
describe and calculate this desired error variance. Firstly, we will extend the formulation of the autocovariance
of the reduced solution Qi

N to a general covariance Qi,j
N := cov(zi

N , z
j
N ). The following Lemma will help us to

calculate these covariances.

Lemma 4.11. Be Qj
N the autocovariance given by (4.31), then the covariance Qi,j

N = cov(zi
N , z

j
N ) for i > j is

given by
Qi,j

N =
(
A−1

N MN

)i−j
Qj

N . (4.44)

Proof. For time indices i > j the time evolution of the unbiased reduced solution in (4.30) can be reformulated to

z̊i
N =

(
A−1

N MN

)i−j
z̊j

N +
i∑

l=j+1

(
A−1

N MN

)i−l
A−1

N ηl
N . (4.45)

Knowing that cov(ηl, zj
N ) = 0 for l > j (noise independent of former states) we find

Qi,j
N = E

[̊
zi

N (̊zj
N )T

]
= E

[(
A−1

N MN

)i−j
z̊j

N

(
z̊j

N

)T
]
.

Due to the linearity of the operators, this results in the equation stated in the lemma. �

Note, that if j > i then the solution is simply found by transposing Qj,i
N .

In the error evolution for ek
N in (4.38) appears the residual sum

∑k
i=1 Resi(zK−k+i

Ndu
). It will be important

to find a way to rapidly calculate this sum for the variance error estimator. Defining the coefficient vector
zk

N,du ∈ R
N via (zk

N,du)i :=
(
zk

N,du, ϕdu,i

)
, we find

Lemma 4.12. The variance of the residual sum Var
(

k∑
i=1

Resi(zK−k+i
N,du )

)
is given by

Var

(
k∑

i=1

Resi
(
zK−k+i

N,du

))
=

k∑
i=1

k∑
j=1

(
zK−k+i

N,du

)T

Ri,j
rr zK−k+j

N,du (4.46)

where the matrix Ri,j
rr ∈ R

Ndu×Ndu is given by

Ri,j
rr = KAQi,j

N KT
A + KMQi−1,j−1

N KT
M + δi,jRηη,du − KAQi,j−1

N KT
M

−KAQj,i−1
N KT

M − KARi,j
zη − (Rj,i

zη

)T
KT

A + KMRi−1,j
zη +

(
Rj−1,i

zη

)T
KT

M (4.47)

with Qi,j
N the covariance of the reduced solution from Lemma 4.11, the covariance matrix

Ri,j
zη =

{(
A−1

N MN

)i−j
A−1

N Rηη,du i ≥ j

0 i < j

and the matrices KA,KM ∈ R
Ndu×N and Rηη,du ∈ R

N×Ndu are defined by

(KA)n,m := (Aϕdu,n, ϕm) , (KM )n,m := (Mϕdu,n, ϕm) , (Rηη,du)m,n := (ϕm, Rηηϕdu,n)

for all n = 1, . . . , Ndu and m = 1, . . . , N .

Proof. The proof can be found in Appendix A.5. �
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Remark 4.13. When treating problems with many time steps, calculating the expression in (4.46) can be
computationally very expensive, as the computational cost rises quadratically with the number of time steps.
In Section 4.5.1 we will propose a way to approximate the variance of the residual sum, which can accelerate
the error estimation procedure drastically.

We can now derive a bound for the variance of the third error component. In the following, taking the square
root of a vector means taking the square root of every entry of the vector.

Proposition 4.14. The variance of the third error component Var
(
ek

o,3

)
is for all k ∈ K bounded by

Var
(
ek

o,3

) ≤ Δk
Var(eo3)(μ) :=

∣∣∣CT
o T
∣∣∣P k

ẽN

∣∣∣T T Co

∣∣∣ (4.48)

where the matrix P k
ẽN

∈ R
N×N is calculated iteratively via

P k
ẽN

=|D|P k−1
ẽN

∣∣∣DT
∣∣∣+ ∣∣∣∣B̃k

(
B̃

k
)T
∣∣∣∣Δk

Var(y)(μ) (4.49)

+
∣∣∣∣B̃k

(
B̃

k
)T
∣∣∣∣Var

(
k∑

i=1

Resi
(
zK−k+i

N,du

))
+
√
Δk

Var(y)(μ)

{
|D|
√

diag
(
P k−1

ẽN

) ∣∣∣B̃T
∣∣∣

+
∣∣∣B̃∣∣∣

√
diag

(
P k−1

ẽN

)T ∣∣∣DT
∣∣∣+ 2

∣∣∣∣B̃k
(
B̃

k
)T
∣∣∣∣
√√√√Var

(
k∑

i=1

Resi
(
zK−k+i

N,du

))}

+

√√√√Var

(
k∑

i=1

Resi
(
zK−k+i

N,du

)){
|D|
√

diag
(
P k−1

ẽN

) ∣∣∣∣(B̃k
)T
∣∣∣∣+ ∣∣∣B̃k

∣∣∣
√

diag
(
P k−1

ẽN

)T ∣∣∣DT
∣∣∣
}

with initial matrix P 0
ẽN

= |T−1E
[̊
e0

N (̊e0
N )T

]
T−T | and the vector B̃

k
:= T−1A−1Lk

N . The variance of the

residual sum Var
(

k∑
i=1

Resi(zK−k+i
N,du )

)
can be calculated with Lemma 4.12.

Proof. The proof can be found in Appendix A.6. �

4.4.4. Expectation and variance of the fourth error component ek
o,4

To use the primal dual error estimator, we had to add the residual sum
∑k

i=1 Res(zK−k+i
N,du,o ) to the reduced

output of interest o(zk
N ). Therefore, we must now in a final step elaborate an expression for the expectation and

the variance of this residual sum.

Lemma 4.15. The expectation of the fourth error component ek
o,4 =

k∑
i=1

Resi(zK−k+1
N,du,o ) is given by

E
[
ek
0,4

]
=

k∑
i=1

R̄esi
(
zK−k+i

N,du,o

)
(4.50)

with the mean residual R̄esi from (4.24).

Proof. As the dual solution zk
N,du,o is a non-random function and taking the expectation is a linear operation,

finding (4.50) is straightforward. �

Next, we derive the variance of the fourth error component eo,4.
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Lemma 4.16. The variance of the residual sum Var
(

k∑
i=1

Resi(zK−k+i
N,du,o )

)
is given by

Δk
V ar(eo4)

(μ) := Var

(
k∑

i=1

Resi
(
zK−k+i

N,du,o

))
=

k∑
i=1

k∑
j=1

(
zK−k+i

N,du,o

)T

Ri,j
rr,oz

K−k+i
N,du,o (4.51)

where the matrix Ri,j
rr,o ∈ R

Ndu,o×Ndu,o is given by

Ri,j
rr,o = KA,oQ

i,j
N KT

A,o + KM,oQ
i−1,j−1
N KT

M,o + δi,jRηη,du,o − KA,oQ
i,j−1
N KT

M,o

+KA,oQ
j,i−1
N KT

M,o − KA,oR
i,j
zη,o −

(
Rj,i

zη,o

)T
KT

A,o + KM,oR
i−1,j
zη,o +

(
Rj−1,i

zη,o

)T
KT

M,o

with Qi,j
N the covariance of the reduced solution from Lemma 4.11, the covariance matrix

Ri,j
zη,o =

{(
A−1

N MN

)i−j
A−1

N Rηη,du,o i ≥ j

0 i < j

and the matrices KA,o,KM,o ∈ R
Ndu,o×N and Rηη,du,o ∈ R

N×Ndu,o defined by

(KA,o)n,m := (Aϕdu,o,n, ϕm) , (KM )n,m := (Mϕdu,o,n, ϕm) , (Rηη,du,o)m,n := (ϕm, Rηηϕdu,o,n)

for all n = 1, . . . , Ndu,o and m = 1, . . . , N .

Proof. The proof is similar to the proof of Lemma 4.12, only that the dual solution zk
N,du,o and the dual basis

functions ϕdu,o,i of the output of interest are used instead of zk
N,du and ϕi

du,o. �

4.5. Complete RBKF output error estimation

Finally, we assemble all the upper bounds for the error components to derive an overall error bound for the
RBKF estimation error.

Proposition 4.17. The expectation and the variance of the RBKF output estimation error ek
o = o(zk

h− ẑk
N(yh))

are bounded by ∣∣E [ek
o

]∣∣ ≤ Δk
E[eo1](μ) +Δk

E[eo3](μ) +

∣∣∣∣∣
k∑

i=1

R̄esi
(
zK−k+i

N,du,o ,μ
)∣∣∣∣∣

and

Var
(
ek

o

) ≤ (1 + ρk
1

) (
1 + ρk

2

) (
1 + ρk

3

)
Δk

Var(eo1)(μ) +
(
1 + ρk

1

) (
1 + ρk

2

)(
1 +

1
ρk
3

)
CoP

k
N (μ)CT

o

+
(
1 + ρk

1

)(
1 +

1
ρk
2

)
Δk

Var(eo3)(μ) +
(

1 +
1
ρk
1

)
Δk

Var(eo4)(μ) (4.52)

with optimal coefficients

ρk
1 :=

√√√√ Δk
Var(eo4)

Δk
Var(eo1) + CT

o P k
NCo +Δk

Var(eo3)

,

ρk
2 :=

√√√√ Δk
Var(eo3)

Δk
Var(eo1) + CT

o P k
NCo

, ρk
3 :=

√√√√CT
o P k

NCo

Δk
Var(eo1)

minimizing the sum (4.52).
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Proof. The stated bound for the expectation |E [ek
o

] | is a direct consequence of Lemma 4.1, Proposition 4.6,
Lemma 4.9, Proposition 4.10 and Lemma 4.15.

For the variance bound we take the decomposition of Var
(
ek

o

)
from Lemma 4.1 and bound (4.16) us-

ing Var
(
eo,1(μ)k

) ≤ Δk
Var(eo1)(μ) from Proposition 4.8, the exact value for Var

(
ek

o,2(μ)
)

= CoP
k
NCT

o from
Lemma 4.9, the bound for Var

(
ek

o,3

) ≤ Δk
Var(eo3) from Proposition 4.14 and the bound Var

(
ek
0,4

) ≤ Δk
Var(eo4)

from Lemma 4.16. The optimal values for the coefficients ρ1, ρ2 and ρ3 in Lemma 4.1 are found by a standard
minimization. The function f : R

3 → R

f(ρk
1 , ρ

k
2 , ρ

k
3) = R.H.S.(4.52)

is a convex function for fixed positive values Δk
Var(eo1),CoP

k
NCT

o , Δ
k
Var(eo3), Δ

k
Var(eo4). The global minimum of

f can easily be found by a standard minimization. �

4.5.1. Simplifications of the error estimation procedure

All online calculations in the error estimation procedures are independent of the dimension of the discretiza-
tion space Zh (for the offline/online decomposition of the decomposition of the terms needed in the error
estimation, e.g. R̄esi(zK−k+i

N,du ,μ), KA(μ), etc., we refer to [25, 28]). However, in case of simulations involving
many time steps tk, the calculations of the reduced solution covariances Qi,j

N (see Lem. 4.11) and the calcu-
lation of the covariances Ri,j

rr (see Lem. 4.12) for all combination of time step indices i, j = 1, . . . ,K may be
computationally expensive.

Although the calculation and incorporation of all those quantities is inevitable to find a rigorous error bound,
one could content with a mathematically non-rigorous error estimator by neglecting the calculation of covariances
Qi,j

N , Ri,j
rr for some specific time steps |i − j| > εk and set them to zero, cf . [11] where a similar reduction

technique has been applied earlier. This simplifies the calculations in (4.44) and (4.47) making the calculation
effort of those quantities independent of the overall number of time steps. In the numerical experiments in
Section 5 we will demonstrate, that calculating only a subset of covariances does not influence the value of the
error estimator greatly in the chosen example.

4.6. Link between observability and stability of the RBKF

It is well known, that when performing Kalman filter estimations using an incorrect model, the mean square
estimation error may become unbounded with time leading to an asymptotically unstable filter. This effect
is also known as the divergence problem of the Kalman filter (e.g. [23, 46, 52]). As the RBKF uses only an
approximative model, it could potentially turn out to be an unstable filter. It has been shown in previous works
(e.g. [12,23,46]) under which conditions the divergence of the Kalman filter is bounded and that such a bound
can be calculated. The error estimation procedure in Section 4 gives such an upper bound for the estimation
error – a posteriori and for finite time. Now, we aim at finding an a priori statement about the filter stability.

In the following proposition we will show, that the stability of the filter depends on the complete observability
of the reduced system. Note that the complete observability is not given a priori and, hence, has to be verified
for every new reduced basis. The reduced system (4.1) with outputs yk

N from (4.2) is said to be completely
observable, if for each time step tk, with k ∈ N sufficiently large, there exists a positive integer n such that the
state zk

N can be uniquely determined by the sequence of observations yk−n
N , yk−n+1

N , . . . , yk
N . There exist various

ways to verify the complete observability of discretized partial differential equations (see [12] for example).

Proposition 4.18. Assume that the reduced basis approximation error is bounded by
∥∥zk

h − zk
N

∥∥ < Cz for
all k ∈ N, then the RBKF is stable (i.e.

∥∥zk
h − ẑk

N(yh)
∥∥ is bounded for all k ∈ N) if and only if the reduced

system (4.1), (4.2)1 is uniformly completely observable.

Proof. We can decompose the estimation error zk
h − ẑk

N (yh) into three components, cf . (4.14). The norm of the
first component

∥∥zk
h − zk

N

∥∥ is bounded by assumption. Hence, also the approximation error of the measurement
output is bounded by |yk

h − yk
N | ≤ Cy.
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Figure 1. The problem setting is illustrated in (a). In (b) the output of interest of a system
with parameters (0.1, 10) without noise influence (black) and with an exemplary noise realization
(blue dashed line) are plotted over time. Also the RBKF output estimate for that output (red)
is plotted over time. (Color online).

The second component zk
N − ẑk

N(yN ) is the estimation error of a standard Kalman filter for a reduced system.
We know (e.g. from [31], Thm. 7.4) that the Kalman filter is stable, if the reduced system is uniformly completely
observable, which is given by assumption.

We recall, that the evolution of the third component ẑk
N(yN ) − ẑk

N (yh) is described by the system ek
N =

GNek−1
N + A−1

N Lk
N (yk

h − yk
N ) with ek

N = ẑk
N (yN ) − ẑk

N (yh) (see (4.37)). We learn from [12] or ([31], Thm. 7.4),
that if and only if the system (4.1) with outputs (4.2) is completely observable, then the eigenvalues of the
matrix GN are inside the unit disc. Hence, the error system (4.37) is stable. Therefore, the norm of the third
error component is bounded and its value depends on Cy. �

Finally we give a short comment on the error estimation. As mentioned earlier, we are examining and bounding
the error between the “true” noisy FEM solution and the RBKF estimation. When using the RBKF in practice,
one would feed the measurements from a real system into the RBKF and not the FEM model output yk

h. The
estimation error would then, of course, be different because the FEM model does probably not capture the
system’s behavior in every detail and the real noise disturbing the system would differ from the assumed noise.
However, the upper bound presented here still provides a reasonable error estimator and the stability of the
RBKF is still given as it depends solely on the complete observability of the reduced system.

5. Numerical experiments

We illustrate the performance of the RBKF with a numerical example. Therefor we consider the heat transfer
in a plate consisting of different materials with different heat conductivities. The plate is assumed to be subject
to a locally correlated noisy heat inflow on the whole domain (e.g. sun rays heating the plate) disturbing
randomly the temperature distribution. We take temperature measurements in one spot of the plate, which are
also corrupted by noise (e.g. because we bought cheap measurement instruments). The objective is to estimate
the actual average temperature on a subdomain of the plate via this measurement data and to gain information
on how reliable these estimates are.

Let x = (x1, x2)T ∈ R
2 be a point on the plate being described by the domain D = [0, 1]2. As depicted in the

left of Figure 1 the domain D is divided into three subdomains D1 := [0.25, 0.75]2, D2 := ([0, 1]×[0.5, 1])\D1 and
D3 := D\(D1∪D2). The three domains have different heat conductivities κ(x,μ) = 0.1 for x ∈ D3, κ(x,μ) = μ1

for x ∈ D1 and κ(x,μ) = μ2 for x ∈ D2 depending on the parameters (μ1, μ2) = μT ∈ P := [0.1, 10]2.
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The time interval [0, T ] with T = 1 is divided into K = 50 equally spaced time steps and we are interested
in the temperature distribution zk(μ) = z(tk,μ) ∈ Z for all time steps tk in this interval. Here, Z = Z(D) :=
{v| ∫D v2 +

∫
D ∇v · ∇v < ∞} and the scalar product is defined as (v, w) := a0(v, w; (1, 1)). The plate has

insulating boundaries with ∂x1z
k(μ) = 0 on ΓNeu0 = {x1 = 0 ∧ 0 ≤ x2 ≤ 1} ∪ {x1 = 1 ∧ 0 ≤ x2 ≤ 1}, a cooling

boundary with a constant temperature zk(μ) = 0 on ΓDir0 := {x2 = 0 ∧ 0 ≤ x1 ≤ 1} and an oscillating heat
inflow ∂x2z

k(μ) = sin2(2πftk) on the boundary Γin := {x2 = 1, 0 ≤ x1 ≤ 1} for all time indices k = 0, . . . ,K.
We assume the non-random initial condition z0(μ) = 0.

Modeling the heat transfer (cf . [6]) in a time-discrete weak formulation, z is solution to the stochastically
forced PPDE (2.4) with bilinear forms m (v, w ; μ) =

∫
D vw and a0 (v, w ; μ) =

∫
D κ(μ,x)∇v · ∇w. The linear

form is given by b(v,μ) =
∫

Γin
v and the input is uk := sin2(2πftk) with frequency f = 1. Hence, the lower

bound for the coercivity constant is ᾱ0 = 0.1. Obviously, m and b are parameter independent. The bilinear
form a0 is parameter affine as required in (2.5) with coefficients Θ1

a = μ1, Θ2
a = μ2, Θ3

a = 0.1 and components
aq
0(v, w) =

∫
Dq

∇v · ∇w with q = 1, . . . , 3.

In this experiment we will generate synthetic noise influencing the temperature distribution on the plate.
To that purpose the additive white noise stochastic process η in (2.4) is defined via the covariance operator
(Rηηw)(x1) :=

∫
D K(x1, x2)w(x2)dx2 with a kernel K(x1, x2) := σ2

ηe
−(x1−x2)

2/c and constants ση = 0.02 and
c = 5. Hence, we assume a spatial correlation of the noise.

As we use a synthetic random process for the noise, we, of course, know the exact solution to the stochastically
forced problem. However, in a real world problem we would not be aware of the noise disturbing the system
and, hence, would have no knowledge about the actual temperature distribution. In this example, we measure
the average temperature s(zk) = 1

|Dm|
∫
Dm

zk(μ) on the small measurement domain Dm := {x ∈ D|‖x −
(0.5, 0.9)‖2 ≤ 0.025}. We assume the measurement data to be subject to synthetic noise, so that the measurement
data at time step k is yk

h := s(zk
h) + ϑk, with ϑ a Gaussian white noise R-valued stochastic process with

variance Rϑϑ = 1 × 10−4 (that is a standard deviation of about 2% compared to the measurement values).
Using this measurement information, we will use the RBKF to obtain state estimates. In particular, we are
interested in estimating the average temperature on the domain D1. Thus, we define the output of interest
yk

int = o(zk
h) :=

∫
D1
zk(μ).

To obtain a numerical “true” solution we apply a finite element method on a regular triangular grid with
linear ansatz functions spanning the high dimensional space Zh. This results in a discrete model with H = 1681
degrees of freedom. Exemplary solutions to the problem without noise for two different parameters are illustrated
in Figure 2. The evolution of the not measurable – hence in real world unknown – output of interest is depicted in
Figure 1b for an exemplary realization of the stochastically forced model and for comparison an evolution of the
output for the same model without noise is plotted. We see, that both outputs deviate remarkably. Hence, there
is the need to find a close estimate to the actual solution and the actual output of interest. To that purpose we
set up a RBKF. First, we generate a reduced basis space ZN using the Noise-POD-Greedy Algorithm described
in Section 3.1 with nKL = 5 KL-modes and with a parameter training set Mtrain of 25 training points being
the vertices of a regular rectangular grid over P . As error estimator we use the energy-norm error bound for
the primal solution from (4.26). Having ZN , we obtain the RBKF by projection and can subsequently perform
rapid state estimations. An exemplary estimation of the output of interest is depicted in Figure 1b (red line).As
can be seen here, the RBKF provides quite good estimates of the output of interest. Note that we verified the
observability of the discretized PDE with the outputs yk

h via the procedure described in ([12], Thm. 3).
Now, we will analyze this performance in more detail. Because first of all, the RBKF – as well as the

ordinary Kalman filter – provides estimates of the noisy solution, we will have a closer look on the performance
considering the state estimates before focusing on the output of interest. We will compare the quality of the
solution estimates of the RBKF using reduced bases of different sizes to a high dimensional “true” Kalman
filter. For this we conducted simulations for a sample of 50 randomly chosen parameters in P . As the system
and the RBKF behave in the mean like as if there was no noise, we obtain the expectations by setting ηk = 0
for all k = 0, . . . ,K. For estimating the variance we calculated 50 realizations of noise corrupted simulations
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Figure 2. Exemplary solutions to the problem without noise disturbances for parameters (a)
μ = (0.1, 10)T and (b) μ = (10, 0.1)T at times t = 0.5, t = 0.8 and t = 1 (from left to right).

for each of the randomly chosen parameters. From the results in Table 1 we see that, the mean relative error
of the state estimation error converges to zero for an increasing number N of basis functions. The relative
error is below 1% for N ≥ 30 in the energy norm and the L2-norm. Considering the time needed to perform
the state estimation, we see in the third column of Table 1 that the low dimensional RBKF is more than a
thousand times faster than the high dimensional Kalman filter, even for a relatively low dimensional “true”
model with 1681 degrees of freedom. We see, that evaluating the error bound can be quite expensive in our
example, yet, including the rigorous error bound calculation we are still about ten times faster than the full
dimensional Kalman filter. However, when using the simplified and not rigorous error estimator described in
Section 4.5.1 we are still considerably faster while in practice, we actually do not lose validity of the bound,
as we will see later. When applying the method to more complex, and hence higher dimensional problems, the
gain in simulation time will be considerably higher, also for the Kalman filter including error estimation.

Next, we analyze the performance of the RBKF focusing on the estimations of the output of interest and
the error bounds for the according estimation errors. The results in Table 2 show, that the mean estimation
error for the output of interest is below 1% when using 30 basis functions. The same holds for the maximum
relative error over the parameter test set. For higher numbers of basis functions N = Ndu = Ndu,o the effectivity
ρE = Δk

Exp[eo]/E
[
o(zk

h − ẑk
N)
]

of the error estimator decreases indicating that we obtain a sharp error bound.
The results in the table also show, that the bound is rigorous as the minimum effectivity over all parameters
and time steps is greater than 1.

While the reduced basis approximation has an influence on the mean of the output estimation error, the
variance of this error is not affected by the RB approximation in comparison to the true FEM model, which
can be seen in Table 3. This is a desirable property for reduced order filters, as frequently in reduced rank
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Table 1. In the first two columns the mean over a sample of 50 randomly chosen parameters
of the relative expected estimation errors in the energy norm and the L2-norm can be seen.
In the last three columns are noted the average computation time needed to perform RBKF
or full Kalman filter estimates without the error bound (tKF ), including computation of the
rigorous error bound (tKFΔ) and including the non rigorous error estimator (tKFΔ,nonrig).

N mean
μ,k

|||E[zk
h−ẑk

N ]|||
|||E[zk

h]||| mean
μ,k

‖E[zk
h−ẑk

N ]‖
L2

‖E[zk
h]‖

L2

tKF [s] tKF Δ[s] tKF Δ,nonrig[s]

10 0.0880 0.0234 0.112 1.336 0.470
30 0.00758 0.00107 0.170 12.98 1.77
50 0.00169 0.000216 0.258 26.07 3.80
70 0.000933 0.000103 0.319 38.69 5.04

1681(FEM) 0 0 478.4 – –

Table 2. Mean relative expected output estimation error and mean and minimum effectivities
using basis sizes N = Ndu = Ndu,o.

N Mean
μ,k

E[o(zk
h−ẑk

N )]
E[o(zk

h
)]

Max
μ

mean
k

E[o(zk
h−ẑk

N )]
E[o(zk

h
)]

Mean
μ,k

ρE Min
μ,k

ρE

10 0.0233 0.105 313 1.74
30 3.72 × 10−4 5.82 × 10−3 142 1.54
50 1.05 × 10−4 2.08 × 10−3 45.2 1.32
70 3.19 × 10−5 5.76 × 10−4 6.55 1.26

Table 3. Mean and maximum relative variance of the output estimation error. Furthermore
the mean and minimum effectivities with the rigorous and the non rigorous error estimator are
indicated.

Mean
μ,k

Max
μ

mean
k

Rigorous Nonrigorous

N
Var(o(zk

h−ẑk
N ))

E[o(zk
h
)]

Var(o(zk
h−ẑk

N ))
E[o(zk

h
)]

mean
μ,k

ρV ar min
μ,k

ρV ar mean
μ,k

ρV ar min
μ,k

ρV ar

10 1.93 × 10−3 1.46 × 10−2 4251 477 4750 476
30 1.75 × 10−3 0.972 × 10−2 2.89 1.95 2.87 1.94
50 1.77 × 10−3 0.946 × 10−2 1.70 1.28 1.70 1.28
70 1.81 × 10−3 0.908 × 10−2 1.57 1.22 1.57 1.22

1681 1.82 × 10−3 1.41 × 10−2 – – – –

approaches divergence can occur, cf . [52]. For the variance we again find rapidly computable rigorous error
bounds with very good effectivities ρV ar := ΔVar(eo)/Var

(
o(zk

h − ẑk
N)
)
, as can be seen in Table 3. Hence, one of

the advantages of the RBKF compared to other reduced order Kalman filters is, that there is no divergence in
the variance and that this fact can be verified using the rapidly computable bounds. Furthermore, if the reduced
order system is observable, the error variance is bounded over time. Although, there is the divergence effect of
the RBKF considering the mean estimation error, it can be controlled via the error bound.

5.1. Experiment considering the basis generation

With a short experiment we will illustrate the advantages of the Noise-POD-Greedy basis generation proce-
dure described in Section 3.1. We generate different reduced bases using the Noise-POD-Greedy algorithm with
different numbers of considered KL-modes nKL ∈ {0, 2, 5, 20}. Note, that the algorithm with nKL = 0 equals
the standard POD-Greedy algorithm from [28].



A REDUCED BASIS KALMAN FILTER FOR PARAMETRIZED PDES 653

10 15 20 25 30 35 40 45 50 55 60
10

−2

10
−1

Basis size

M
ea

n 
E

ne
rg

y 
N

or
m

 o
f t

he
 E

rr
or

 

 
POD−Greedy
Noise−POD−Greedy (2KL)
Noise−POD−Greedy (5KL)
Noise−POD−Greedy (20KL)

(a)

10 20 30 40 50 60 70
10

−4

10
−3

10
−2

10
−1

T
ra

ce
 o

f E
rr

or
 C

ov
ar

ia
nc

e

Basis size

 

 
POD−Greedy
Noise−POD−Greedy (1KL)
Noise−POD−Greedy (2KL)
Noise−POD−Greedy (20KL)

(b)

10 20 30 40 50 60 70
10

−9

10
−8

10
−7

10
−6

Basis size

E
rr

or
 V

ar
ia

nc
e 

E
st

im
at

or

 

 

POD−Greedy

Noise−POD−Greedy (2KL)

Noise−POD−Greedy (5KL)

Noise−POD−Greedy (20KL)

(c)

Figure 3. For a sample of 50 parameter and 50 noise samples we evaluated (a) the energy
norm of the mean error at final time (b) the the trace of the error covariance at final time
(c) the variance output error estimator at final time using different basis sizes and for different
basis generation procedures using 0, 2, 5 and 20 KL-modes.

Then we investigate on the performance of the respective reduced basis models by running true and reduced
order simulations for a sample of 50 randomly chosen test parameters and for each using a sample of 50 noise
realizations. Then we investigated on the approximation error by evaluating (a) the energy norm of the mean
approximation error, (b) the trace of the error covariance traceZh

(
(zK

h − zK
N ) ◦ (zK

h − zK
N )
)

and (c) the error
bound ΔK

Var(eo1) for the output of interest. We see in Figure 3, that when the models are disturbed by a stochastic
forcing, the models generated using the Noise-POD-Greedy perform better than the models generated with the
standard POD-Greedy. Particularly remarkable is the performance improvement on the variance output error
bound. While the standard model stagnates, the error bound decreases with increasing basis size.

Note, as we used a rather high number for the correlation constant c in the design of the noise covariance
kernel K, we do not need many KL-modes in order to approximate well the noise characteristics of the distur-
bances. The number of KL-modes needed in the basis generation process will increase if we lower the spatial
correlation of the noise.
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6. Conclusion and outlook

We derived the low dimensional reduced basis Kalman filter, providing rapid state estimations for
parametrized partial differential equations with stochastic forcing. This low dimensional filter representation
is obtained by a projection of the semi-discretized infinite dimensional Kalman filter onto a low dimensional
reduced basis space. We presented the new Noise-POD-Greedy algorithm for building this reduced basis space
incorporating information about the assumed noise disturbing the system. In order to quantify the quality of
the RBKF estimates, we derived error bounds for the expectation and the variance of the estimation error of
arbitrary linear output functionals. The stability of the RBKF can be verified a priori. In the numerical ex-
periments we demonstrated, that the RBKF performs state estimations considerably faster than the full order
Kalman filter, while the loss in accuracy is negligible and can be controlled using the sharp error bounds.

The performance of the RBKF can be improved by applying time adaptive [18] or parameter adaptive [20,27]
reduced basis techniques. Thereby, real-time state estimation seems feasible even for complex problems. To
take full advantage of the reduced basis method’s potential treating parameter dependent problems, one could
extend the work presented here to derive parameter adaptive reduced basis extended Kalman filter (cf . [10],
p. 108ff. and [43]) to perform online parameter estimations. Identifying the exact relationship between the
here derived time-discrete Kalman filter and the time-continuous Kalman filter for PDEs (e.g. [14, 15, 21]), i.e.
deriving convergence results, is part of future work.

A weak point of Kalman filtering is, that the characteristics of the noise influencing the system have to
be known. To obtain this information noise adaptive strategies [41] can be applied. Another weakness is the
potential divergence caused by modeling errors in the FEM model. Applying model reduction to limited memory
filters [31] could be an interesting alternative.

Further alternatives to using a low dimensional representation of a Kalman filter could be the application
of the reduced basis method to other (time dependent) data assimilation techniques. For example a reduced
order 4D-variational formulation for including measurement data [8]. Also accelerating particle filters [47] using
reduced basis models could be worth an attempt.

Appendix. Proofs

A.1. Proof to Lemma 2.2

Proof. We begin with the definition of the Hilbert space Y k = span{y1, . . . , yk} which is spanned by all outputs
at time steps t1, . . . , tk and which has the inner product (v, w)Pr := E [vw] for v, w ∈ Y k. Having a finite dimen-
sional Hilbert space we can apply Gram–Schmidt orthogonalization to find an orthonormal basis {ξ1, . . . , ξk}
with (

ξi, ξj
)
Pr

= E
[
ξiξj

]
=

{
1 i = j

0 i �= j
(A.1)

so that Y k = span{ξ1, . . . , ξk}. The expression (2.8) of the solution estimation ẑk in this basis can be reformu-
lated as

ẑk =
k∑

i=1

aiξ
i. (A.2)

Here, ai ∈ Z and consequently ẑk is an element of the k-dimensional Hilbert space Y k(Ω,Pr;Z). To prove the
Lemma we have to show (I) that ẑk is uniquely determined by (2.10), (II) that this ẑk is a solution to the
filtering problem and (III) that this ẑk is the unique solution to the filtering problem.
(I) Assume that ẑk satisfies (2.10). Obviously we can replace the elements yj from Y k in (2.10) by ξi and
reformulate the requirement as

E
[(
zk − ẑk

)
ξi
]

= 0 (A.3)
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∀ξi ∈ Y k. Then we obtain from (A.3) by separation, multiplication on both sides with ξi and summing up from
i = 1 to k

k∑
i=1

E
[
zkξi

]
ξi =

k∑
i=1

E
[
ẑkξi

]
ξi. (A.4)

As E
[
ẑkξi

]
=
(
ẑk, ξi

)
Pr

is the projection of ẑk onto the basis vector ξi it is clear with (A.2) that

k∑
i=1

E
[
zkξi

]
ξi =

k∑
i=1

aiξ
i. (A.5)

Hence,
ai = E

[
zkξi

]
(A.6)

meaning the coefficients ai are the projection of zk onto the basis vector ξi and thereby the estimation ẑk is
uniquely determined and satisfies the constraint (2.8) of the filtering problem.
(II) Next we will show that ẑk minimizes the expression (2.9) from the filtering problem. For this, we look for
a w ∈ Y k(Ω,Pr, Z) that minimizes

min
w∈Y k(Ω,Pr;Z)

(
v,E

[
(zk − w) ◦ (zk − w)

]
v
) ∀v ∈ Z. (A.7)

We reformulate

E
[
(zk − w) ◦ (zk − w

)]
= E

[(
z̃k + ẑk − w

) ◦ (z̃k + ẑk − w
)]

= E
[
z̃k ◦ z̃k

]
+ E

[(
ẑk − w

) ◦ (ẑk − w
)]

(A.8)

+2 E
[
z̃k ◦ (ẑk − w

)]︸ ︷︷ ︸
T1

. (A.9)

As w ∈ Y k(Ω,Pr;Z) we can write w =
k∑

i=1

biξ
i for some coefficients bi ∈ Z and reformulate T1 as

T1 = E
[
z̃k ◦ ẑk

]− E
[
z̃k ◦ w]

=
k∑

i=1

aiE
[
z̃k ◦ ξi

]− k∑
i=1

biE
[
z̃k ◦ ξi

]
. (A.10)

From (2.10) and (A.3) we know that E
[
z̃k ◦ ξ] = 0 ∀ξ ∈ Y k, consequently T1 = 0. Putting this in (A.8) and

testing with v we obtain(
v,E

[
(zk − w) ◦ (zk − w)

]
v
)

=
(
v,E

[
z̃k ◦ z̃k

]
v
)

+
(
v,E

[
(ẑk − w) ◦ (ẑk − w)

]
v
)
. (A.11)

As the first term on the right hand side is independent of the choice of w, this expression is minimized for
w = ẑk. Hence, ẑk is a minimizer of (2.9).
(III) It remains to show that ẑk is the unique minimum of (2.9). Therefore, we first assume there would be
another function α ∈ Y k(Ω,Pr;Z) also minimizing (2.9) so that(

v,E
[
(zk − α) ◦ (zk − α)

]
v
) ≤ (v,E [(zk − w) ◦ (zk − w)

]
v
)

(A.12)

∀v ∈ Z and ∀w ∈ Y k(Ω,Pr;Z). But we assume that α does not fullfill condition (2.10) and

E
[
(zk − α)ξi

]
=
βi

nv
�= 0 (A.13)
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with βi ∈ Z and nv ∈ R a factor to be defined later. In the following the abbreviation E
[
(·)◦2] is noted for for

E [(·) ◦ (·)]. We can state that

E
[
(zk − α+ λξi)◦2

]
= E

[
(zk − α)◦2

]
+ E

[
(λξi)◦2

]
+ 2E

[
(zk − α) ◦ λξi

]
. (A.14)

Defining nv :=
√

(v,E [ξ◦2] v) =
√

(v, 1v) = ‖v‖Z and λ := − βi

nv
we reformulate (A.14) applied to v ∈ Z tested

with v ∈ Z while v �= 0:

(
v,E

[
(zk − α+ λξi)◦2

]
v
)

=
(
v,E

[
(zk − α)◦2

]
v
)

+
(
v,

(βi)2

n2
v

v

)
− 2

(
v,

(βi)2

n2
v

v

)
<
(
v,E

[
(zk − α)◦2

]
v
)
. (A.15)

Hence, α can not be a minimizer of (2.9) and we proved by contradiction that ẑk is the unique solution to the
filtering problem. �

A.2. Proof for Proposition 2.4

Proof. For the proof that ẑk from (2.14)–(2.18) is the unique solution to the filtering problem it is sufficient to
show that

E
[
z̃kyj

]
= 0 ∀j = 1, . . . , k (A.16)

with z̃k = zk − ẑk. This can be concluded from Lemma 2.2. This necessary and sufficient condition (A.16) holds
if and only if (

E
[
z̃kyj

]
, v
)

= 0 ∀j = 1, . . . , k ∀v ∈ Z. (A.17)

First we have a closer look at the estimation error z̃k. Subtracting (2.14) from (2.4) and due to linearity of
all terms, we obtain the evolution scheme of the estimation error z̃ in weak formulation:

m
(
z̃k, v ; μ

)
+Δt a0

(
z̃k, v; μ ; μ

)
=m

(
z̃k−1, v ; μ

)
+
(
ηk, v

)
− lk(v)

(
yk − s(ẑk

p )
)
. (A.18)

In the following we will often omit the parameter dependence of m, a and ā.
Secondly, we will reformulate the expression of the output yk using the Riesz representation s(zk) =

(
sr, z

k
)
.

Hence with the Riesz representation, (2.7), (2.11) and the fact that A is self adjoint we can reformulate the
expression for the output

yk = s(zk) + ϑk =
(
sr, z

k
)

+ ϑk =
(
AA−1sr, z

k
)

+ ϑk = a
(
zk, A−1sr; μ

)
+ ϑk

(2.4)
= m

(
zk−1, A−1sr ; μ

)
+Δt b(A−1sr)uk +

(
ηk, A−1sr

)
+ ϑk. (A.19)

In the same way we can state that

s(ẑk
p ) =

(
sr, ẑ

k
p

)
=
(
A−1sr, Aẑ

k
p

)
= a

(
ẑk

p , A
−1sr; μ

)
(2.15)
= m

(
ẑk−1, A−1sr ; μ

)
+Δt b(A−1sr)uk. (A.20)

With (A.19) and (A.20) we obtain

yk − s(ẑk
p ) = m

(
z̃k−1, A−1sr ; μ

)
+
(
ηk, A−1sr

)
+ ϑk. (A.21)

We assume that the state estimation in the preceding time step ẑk−1 was also obtained by an orthogonal
projection of zk−1 onto the approximation space Y k−1 = span{y1, . . . , yk−1}, hence, that E

[
z̃k−1yj

]
= 0 ∀j =
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1, . . . , k − 1. So, in the following we will show by induction, that if E
[
z̃k−1yj

]
= 0 ∀j = 1, . . . , k − 1, then

E
[
z̃kyj

]
= 0 ∀j = 1, . . . , k. Afterwards we will show that this same condition is fulfilled for the induction base

case k = 1. We now reformulate the left hand side of (A.17) to

(
E
[
z̃kyj

]
, v
)

=
(
E
[
z̃kyj

]
, AA−1v

)
=E

[(
Az̃k, A−1v

)
yj
]
=E

[
a
(
z̃k, A−1v; μ

)
yj
]

(A.18)
= E

[(
m
(
z̃k−1, A−1v ; μ

)
+
(
ηk, A−1v

)− lk(A−1v)
(
yk − s(ẑk

p )
))

(yj)
]

(A.21)
= E

[ (
m
(
z̃k−1, A−1v ; μ

)
+
(
ηk, A−1v

)

−lk(A−1v)
(
m
(
z̃k−1, A−1sr ; μ

)
+
(
ηk, A−1sr

)
+ ϑk

))
(yj)

]
(A.22)

∀v ∈ Z and for all j = 1, . . . , k. Now by assumption it is E
[
z̃k−1yj

]
= 0 ∀j = 1, . . . , k − 1 and as ηk, ϑk and

yj are uncorrelated for all j = 1, . . . , k − 1, consequently this expression is zero for all yj with j = 1, . . . , k − 1.
Hence, it remains to show that (A.22) is zero for j = k. We replace m

(
zk−1, A−1sr ; μ

)
= m

(
z̃k−1, A−1sr ; μ

)
+

m
(
ẑk−1, A−1sr ; μ

)
in (A.19) and obtain with (A.21) and (A.22)

(
E
[
z̃kyk

]
, v
)

= E
[ (
m
(
z̃k−1, A−1v ; μ

)
+
(
ηk, A−1v

)
− lk(A−1v)

(
m
(
z̃k−1, A−1sr ; μ

)
+
(
ηk, A−1sr

)
+ ϑk

))
× (m (zk−1, A−1sr ; μ

)
+Δt b(A−1sr)uk +

(
ηk, A−1sr

)
+ ϑk

) ]

= E
[ (
m
(
z̃k−1, A−1v ; μ

)
+
(
ηk, A−1v

)
(A.23)

− lk(A−1v)
(
m
(
z̃k−1, A−1sr ; μ

)
+
(
ηk, A−1sr

)
+ ϑk

))
× (m (z̃k−1, A−1sr ; μ

)
+m

(
ẑk−1, A−1sr ; μ

)
+Δt b(A−1sr)uk+

(
ηk, A−1sr

)
+ϑk

) ]

∀v ∈ Z. By assumption E
[
z̃k−1ẑk−1

]
= 0 (due to the fact that ẑk−1 ∈ Y k−1(Ω,Pr;Z)), knowing that E

[
z̃k
]

= 0
(this can easily be seen from (A.18)) and knowing furthermore that the following random functions and random
variables are uncorrelated

E
[
ẑk−1 ◦ ηk

]
= 0 E

[
z̃k−1 ◦ ηk

]
= 0 E

[
z̃k−1 ◦ ϑk

]
= 0 (A.24)

E
[
ηk ◦ ϑk

]
= 0 E

[
ẑk−1 ◦ ϑk

]
= 0
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we can express (A.23) as

(
E
[
z̃kyk

]
, v
)

= E
[
m
(
z̃k−1, A−1v ; μ

)
m
(
z̃k−1, A−1sr ; μ

)
+
(
ηk, A−1v

) (
ηk, A−1sr

)
−lk(A−1v)

(
m
(
z̃k−1, A−1sr ; μ

)
m
(
z̃k−1, A−1sr ; μ

)
+
(
ηk, A−1sr

) (
ηk, A−1sr

)
+ ϑkϑk

) ]
= E

[(
MA−1v, z̃k−1

) (
MA−1sr, z̃

k−1
)]

+ E
[(
ηk, A−1v

) (
ηk, A−1sr

)]
−lk(A−1v)

(
E
[(
MA−1sr, z̃

k−1
) (
MA−1sr, z̃

k−1
)]

+ E
[(
ηk, A−1sr

) (
ηk, A−1sr

)]
+ E

[
ϑkϑk

])
=
(
MA−1v, P k−1MA−1sr

)
+
(
A−1v,RηηA

−1sr

)
(A.25)

−lk(A−1v)
((
MA−1sr, P

k−1MA−1sr

)
+
(
A−1sr, RηηA

−1sr

)
+Rϑϑ

)
∀v ∈ Z. If we now plug in the expression for the Kalman gain lk(v) from (2.16) in (A.25) we obtain(

E
[
z̃kyk

]
, v
)

= 0 (A.26)

for all v ∈ Z, proving that E
[
z̃kyj

]
= 0 ∀j = 1, . . . , k with the choice for lk(v) from (2.16) and in the case that

E
[
z̃k−1yj

]
= 0 ∀j = 1, . . . , k − 1.

To conclude the proof it remains to show that E
[
z̃1y1

]
= 0. We can reformulate E

[
z̃1y1

]
= 0 like in the

general case until arriving at equation (A.23). This expression is zero for k = 1 if E
[
z̃1 ◦ ẑ1

]
= 0. Hence, we

have a closer look at

(
w,E

[
z̃1 ◦ ẑ1

]
v
)

= E
[(
w, z̃1

) (
ẑ1, v

)]
= E

[
a
(
A−1w, z̃1; μ

)
a
(
ẑ1, A−1v; μ

)]
= E

[(
m
(
z̃0, A−1w ; μ

)
+
(
η1, A−1w

)
− l1(A−1w)

(
m
(
z̃0, A−1sr ; μ

)
+
(
η1, A−1sr

)
+ ϑ1

) )
× (m (ẑ0, A−1v ; μ

)
+Δt b(A−1v; μ)

+ l1(A−1v)
(
m
(
z̃0, A−1sr ; μ

)
+
(
η1, A−1sr

)
+ ϑ1

) )]
(A.27)

where the last equation follows from (2.14) and (A.21). By multiplying out the two inner brackets, many product
terms appear. As some random quantities are uncorrelated, cf . (A.24), most of them cancel out, leading to(

w,E
[
z̃1 ◦ ẑ1

]
v
)

= E
[
m
(
z̃0, A−1w ; μ

)
m
(
ẑ0, A−1v ; μ

)] (
1 − l1(A−1w)

)
+l1(A−1v)

(
E
[
m
(
z̃0, A−1w ; μ

)
m
(
z̃0, A−1sr ; μ

)
+
(
η1, A−1w

) (
η1, A−1sr

)])
−l1(A−1w)l1(A−1v)

(
E
[
m
(
z̃0, A−1sr ; μ

)
m
(
z̃0, A−1sr ; μ

)
+
(
η1, A−1sr

) (
η1, A−1sr

)
+ ϑ1ϑ1

])
(A.28)

and if we put in for l1(A−1w) the definition from (2.16) into (A.28), the last three lines of (A.28) become
zero. And the term E

[
m
(
z̃0, A−1w ; μ

)
m
(
ẑ0, A−1v ; μ

)]
is zero as the initial estimation ẑ0 = E

[
z0
]

is just a
constant and E

[
z̃0
]

= E
[
z0 − ẑ0

]
= E

[
z0
] − E

[
z0
]

= 0. Hence, E
[
z̃1y1

]
= 0 and the proof that this ẑk is
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solution to the filtering problem is almost complete. It remains to determine the derivation of the propagation
of the error covariance operator P k. First, we recall the definition of the error covariance operator

P kv = E
[
z̃k
(
z̃k, v

)] ∀v ∈ Z. (A.29)

Now we can state that

(
w,P kv

)
=

(
w,E

[
z̃k
(
z̃k, v

)])
= E

[(
w, z̃k

) (
z̃k, v

)]
= E

[(
AA−1w, z̃k

) (
z̃k, AA−1v

)]
= E

[
a
(
z̃k, A−1w; μ

)
a
(
z̃k, A−1v; μ

)]
(A.18)

= E
[ (
m
(
z̃k−1, A−1w ; μ

)
+
(
ηk, A−1w

)− lk(A−1w)
(
yk − s(ẑk

p )
))

× (m (z̃k−1, A−1v ; μ
)

+
(
ηk, A−1v

)− lk(A−1v)
(
yk − s(ẑk

p )
)) ]

(A.21)
= E

[
m
(
z̃k−1, A−1w ; μ

)
m
(
z̃k−1, A−1v ; μ

)
+
(
ηk, A−1w

) (
ηk, A−1v

)
−lk(A−1w)

(
m
(
z̃k−1, A−1v ; μ

)
m
(
z̃k−1, A−1sr ; μ

)
+
(
ηk, A−1v

) (
ηk, A−1sr

))
−lk(A−1v)

(
m
(
z̃k−1, A−1w ; μ

)
m
(
z̃k−1, A−1sr ; μ

)
+
(
ηk, A−1w

) (
ηk, A−1sr

))
+lk(A−1v)lk(A−1w)

(
m
(
z̃k−1, A−1sr ; μ

)
m
(
z̃k−1, A−1sr ; μ

)
+
(
ηk, A−1sr

) (
ηk, A−1sr

)
+ ϑkϑk

) ]

∀v, w ∈ Z. The last three lines of this equation equal zero, which gets obvious if we plug in the expression for
lk(A−1w) from (2.16). This leaves us with

(
w,P kv

)
= E

[ (
MA−1w, z̃k−1

) (
z̃k−1,MA−1v

)
+
(
ηk, A−1w

) (
ηk, A−1v

)
−lk(A−1w)

((
MA−1v, z̃k−1

) (
z̃k−1,MA−1sr

)
+
(
ηk, A−1v

) (
ηk, A−1sr

)) ]
=
(
MA−1w,P k−1MA−1v

)
+
(
A−1w,RηηA

−1v
)

−lk(A−1w)
((
MA−1sr, P

k−1MA−1v
)

+
(
A−1sr, RηηA

−1v
))

(A.30)

∀v, w ∈ Z, resulting with (2.17) in the desired error covariance propagation (2.18). �

A.3. Proof of Lemma 4.7

Proof. First, we show very generally that if z ∈ Z, then E
[
‖z − E [z]‖2

]
= traceZ (cov(z)). We define the

unbiased random variable z̊ := z−E [z]. Be {ψi}H
i=1 an orthonormal basis for Z. With the definition of the trace

and the definition of the covariance we obtain

traceZ (cov(z)) =
H∑

i=1

(ψi,E [̊z ◦ z̊]ψi) =
H∑

i=1

(ψi,E [̊z (̊z, ψi)]) (A.31)

= E

[(
H∑

i=1

(̊z, ψi)ψi, z̊

)]
= E [(̊z, z̊)] = E

[
‖z̊‖2

]
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With (4.25) the covariance operator of the residual can be written as(
w, cov(rk, rk)v

)
=
(
w,E

[̊
rk ◦ r̊k

]
v
)

=
(
w,E

[
(−Az̊k

N +Mz̊k−1
N + ηk) ◦ (−Az̊k

N +Mz̊k−1
N + ηk)

]
v
)

=

(
w,
{

E
[
Az̊k

N ◦Az̊k
N

]︸ ︷︷ ︸
=:T1

+ E
[
Mz̊k−1

N ◦Mz̊k−1
N

]︸ ︷︷ ︸
=:T2

+Rηη

−E
[
Az̊k

N ◦Mz̊k−1
N

]︸ ︷︷ ︸
=:T3

−E
[
Mz̊k−1

N ◦Az̊k
N

]− E
[
Az̊k

N ◦ ηk
]︸ ︷︷ ︸

=:T4

−E
[
ηk ◦Az̊k

N

]
+ E

[
Mz̊k−1

N ◦ ηk
]
+ E

[
ηk ◦Mz̊k−1

N

]}
v

)
(A.32)

for all v, w ∈ Zh.
As ηk and z̊k−1

N are uncorrelated, the covariances E
[
Mz̊k−1

N ◦ ηk
]

and E
[
ηk ◦Mz̊k−1

N

]
are zero. Setting

v = w = ψi and summing up both sides of (A.32) from i = 1, . . . , H results in the trace of the residual
covariance operator

traceZh

(
cov(rk, rk)

)
=

H∑
i=1

(
ψi, cov(rk, rk)ψi

)
(A.33)

= traceZh

(
E
[
Az̊k

N ◦Az̊k
N

])
+ traceZh

(
E
[
Mz̊k−1

N ◦Mz̊k−1
N

])
+ traceZh

(Rηη)

−2traceZh

(
E
[
Az̊k

N ◦Mz̊k−1
N

])− 2traceZh

(
E
[
Az̊k

N ◦ ηk
])
.

We reformulate this expression term by term

traceZh

(
E
[
Az̊k

N ◦Az̊k
N

])
=

H∑
l=1

E

⎡
⎣ N∑

i=1

(Aϕi, ψl) (̊zk
N )i

N∑
j=1

(Aϕj , ψl) (̊zk
N )j

⎤
⎦

=
H∑

l=1

N∑
i=1

N∑
j=1

(Aϕi, ψl) (Aϕj , ψl) (Qk
N )i,j

=
N∑

i=1

N∑
j=1

(Qk
N )i,j

(
Aϕi,

H∑
l=1

(Aϕj , ψl)ψl

)

=
N∑

i=1

N∑
j=1

(Qk
N )i,j(KI)j,i =

N∑
i=1

(Qk
NKI)i,i

= tr
(
Qk

NKI

)
, (A.34)

and analogously traceZh

(
E
[
Mz̊k−1

N ◦Mz̊k−1
N

])
. Furthermore, we find

traceZh

(
E
[
Az̊k

N ◦Mz̊k−1
N

])
=

H∑
l=1

E

⎡
⎣ N∑

i=1

(Aϕi, ψl) (̊zk
N )i

N∑
j=1

(Mϕj , ψl) (̊zk−1
N )j

⎤
⎦ (A.35)

(4.30)
=

N∑
i=1

(A−1
N MNQk−1

N KIII)i,i = tr
(
A−1

N MNQk−1
N KIII

)
,
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traceZh

(
E
[
Az̊k

N ◦ ηk
])

=
H∑

l=1

(
ψl,E

[
Az̊k

N ◦ ηk
]
ψl

)
=

H∑
l=1

E
[(
ψl, Az̊

k
N

) (
ηk, ψl

)]

=
H∑

l=1

N∑
i=1

E
[
(̊zk

N )i (ψl, Aϕi)
(
ηk, ψl

)]
(4.30)
=

N∑
i=1

E
[
(A−1

N MN z̊k−1
N + A−1

N ηk
N )i

(
ηk, Aϕi

)]
and as z̊k−1

N and ηk are uncorrelated and (ηk
N )i =

(
ηk, ϕi

)
traceZh

(
E
[
Az̊k

N ◦ ηk
])

=
N∑

i=1

N∑
j=1

(A−1
N )i,jE

[(
ηk, ϕj

) (
ηk, Aϕi

)]

=
N∑

i=1

N∑
j=1

(A−1
N )i,j (ϕj , RηηAϕi) . (A.36)

Putting (A.34)–(A.36) in (A.33) and using (A.31) results in the expression in (4.32). �

A.4. Proof to Proposition 4.8

Proof. This proof is inspired by ([25], Prop. 4.4). Firstly, we will prove the bound for the measurement output.
Therefor we recall the definition of the unbiased solution z̊k

h = zk
h − E

[
zk

h

]
, the unbiased reduced solution

z̊k
N = zk

N − E
[
zk

N

]
and the unbiased residual R̊es

k
(v) = Resk(v) − E

[
Resk(v)

]
and find with the definition of

the variance

Var
(
yk

h − y∗,k
N

)
= Var

(
s(zk

h) − s(zk
N) −

k∑
i=1

Resi(zK−k+i
N,du )

)

= E

[(
s(zk

h) − s(zk
N ) −

k∑
i=1

Resi(zK−k+i
N,du )

−E

[
s(zk

h) − s(zk
N ) −

k∑
i=1

Resi(zK−k+i
N,du )

])2
⎤
⎦

= E

⎡
⎣(s(̊zk

h) − s(̊zk
N ) −

k∑
i=1

R̊es
i
(zK−k+i

N,du )

)2
⎤
⎦ . (A.37)

Next, we recall the dual problem for the measurement output

m
(
zl
du, v ; μ

)
+Δta0

(
zl
du, v ; μ

)
= m

(
zl+1
du , v ; μ

)
using the index l = 1, . . . ,K as time index and we recall the final condition
m
(
zK+1
du , v ; μ

)
= s(v). Now, we set the time index to l = K − k + i and set

v = e̊i := z̊i
h − z̊i

N to obtain

m
(
zK−k+i
du , e̊i ; μ

)
+Δta0

(
zK−k+i
du , e̊i ; μ

)
= m

(
zK−k+i+1
du , e̊i ; μ

)
and sum up from i = 1 to the actual time step i = k

k∑
i=1

m
(
zK−k+i
du , e̊i ; μ

)
+Δta0

(
zK−k+i
du , e̊i ; μ

)
=

k∑
i=1

m
(
zK−k+i+1
du , e̊i ; μ

)
. (A.38)
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As we assumed the initial approximation error to be zero e0 = 0, the unbiased initial error e̊0 is also zero. Then
we can rewrite (A.38) by an index shift on the right hand side and using the final condition as

k∑
i=1

m
(
zK−k+i
du , e̊i − e̊i−1 ; μ

)
+Δta0

(
zK−k+i
du , e̊i ; μ

)
= m

(
zK+1
du , e̊k ; μ

)
= s(̊ek). (A.39)

In a next step, we have a look at the error evolution of the unbiased error. From (4.22) we derive that

m
(̊
ei, v ; μ

)
+Δt a0

(̊
ei, v ; μ

)
= m

(̊
ei−1, v ; μ

)
+ R̊es

i
(v).

If we set v = zK−k+i
du and sum up on both sides from time index i = 1 to k we obtain

k∑
i=1

m
(̊
ei − e̊i−1, zK−k+i

du ; μ
)

+Δta0

(̊
ei, zK−k+i

du ; μ
)

=
k∑

i=1

R̊es
i
(zK−k+i

du ). (A.40)

From (A.39) and (A.40) we infer that

s(̊ek) =
k∑

i=1

R̊es
i
(zK−k+i

du ), (A.41)

hence,

s(̊zk
h) − s(̊zk

N ) −
k∑

i=1

R̊es
i
(zK−k+i

N,du ) =
k∑

i=1

R̊es
i
(eK−k+i

du ). (A.42)

Applying Cauchy–Schwarz and the Hölder’s inequality on the right hand side we find

s(̊zk
h) − s(̊zk

N ) −
k∑

i=1

R̊es
i
(zK−k+i

N,du ) ≤
(

k∑
i=1

∥∥r̊i
∥∥2

) 1
2
(

k∑
i=1

∥∥eK−k+i
du

∥∥2

) 1
2

. (A.43)

We will now reformulate the second term on the right hand side. Using the coercivity of the bilinear form a0

we derive that

k∑
i=1

∥∥eK−k+i
du

∥∥2 ≤
k∑

i=1

1
ᾱ0
a0

(
eK−k+i
du , eK−k+i

du ; μ
)

=
1

Δt ᾱ0

K∑
j=K−k+1

Δta0

(
ej
du, e

j
du ; μ

)

≤ 1
Δt ᾱ0

K∑
j=K−k+1

Δta0

(
ej
du, e

j
du ; μ

)
+m

(
eK−k+1
du , eK−k+1

du ; μ
)

=
1

Δt ᾱ0
|||eK−k+1

du |||2du. (A.44)

Plugging (A.44) in (A.43) results in

s(̊zk
h) − s(̊zk

N) −
k∑

i=1

R̊es
i
(zK−k+i

N,du ) ≤
(

1
Δt ᾱ0

k∑
i=1

∥∥r̊i
∥∥2

) 1
2

ΔK−k+1
du . (A.45)

Finally, using (A.45) in (A.37) and knowing that ΔK−k+1
du is non-random, leads to the statement in the propo-

sition. The error bound for the output of interest can be derived in the same way using the dual problem of the
output of interest. �
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A.5. Proof to Lemma 4.12

Proof. In a first step we reformulate the variance of the sum using the definition of the unbiased residual R̊es
i
(v)

from (4.25) and its Riesz representation r̊i to obtain

Var

(
k∑

i=1

Resi(zK−k+i
N,du )

)
= E

⎡
⎣( k∑

i=1

Resi(zK−k+i
N,du ) − E

[
k∑

i=1

Resi(zK−k+i
N,du )

])2
⎤
⎦

= E

⎡
⎣( k∑

i=1

R̊es
i
(zK−k+i

N,du )

)2
⎤
⎦ = E

⎡
⎣( k∑

i=1

(
r̊i, zK−k+i

N,du

))2
⎤
⎦

=
k∑

i=1

k∑
j=1

E
[(
r̊i, zK−k+i

N,du

)(
r̊j , zK−k+j

N,du

)]

=
k∑

i=1

k∑
j=1

(zK−k+i
N,du )T Ri,j

rr zK−k+j
N,du (A.46)

where in the last line the matrix Ri,j
rr ∈ R

Ndu×Ndu is defined element-wise as (Ri,j
rr )n,m :=

E
[(̊
ri, ϕdu,m

) (̊
rj , ϕdu,n

)]
. Next we show, that Ri,j

rr can be calculated as stated in (4.47). Therefor we first
aim to find an expression for the covariance of the residual, namely E

[(̊
ri, v

) (̊
rj , w

)]
. We obtain

E
[(̊
ri, v

) (̊
rj , w

)]
= E

[(−a (̊zi
N , v; μ

)
+m

(̊
zi−1

N , v ; μ
)
+
(
ηi, v

)) (−a(z̊j
N , w; μ

)
+m

(
z̊j−1

N , w ; μ
)
+
(
ηj , w

))]
= E

[(
Av, z̊i

N

)(
z̊j

N , Aw
)

+
(
Mv, z̊i−1

N

) (
z̊j−1

N ,Mw
)

+
(
v, ηi

) (
ηj , w

)
− (Av, z̊i

N

) (
z̊j−1

N ,Mw
)
− (Av, z̊i

N

) (
ηj , w

)− (Mv, z̊i−1
N

) (
z̊j

N , Aw
)

+
(
Mv, z̊i−1

N

) (
ηj , w

)− (v, ηi
) (
z̊j

N , Aw
)

+
(
v, ηi

) (
z̊j−1

N ,Mw
)]

=
(
Av,Qi,j

N Aw
)

+
(
Mv,Qi−1,j−1

N Mw
)

+
(
v, cov(ηi, ηj)w

) − (Av,Qi,j−1
N Mw

)
−
(
Mv,Qi−1,j

N Aw
)
− E

[(
Av, z̊i

N

) (
ηj , w

)]
+ E

[(
Mv, z̊i−1

N

) (
ηj , w

)]
−E

[(
Aw, z̊j

N

) (
ηi, v

)]
+ E

[(
Mv, z̊j−1

N

) (
ηi, w

)]
. (A.47)

with the covariance operator Qi,j
N : Z → ZN being defined as Qi,j

N v := E
[̊
zi

N

(
z̊j

N , v
)]

for all v ∈ Z and

i, j = 1, . . . ,K. Note, that (Qi,j
N )m,n =

(
ϕm, Q

i,j
N ϕn

)
.

Now, we will compare (4.47) and (A.47) term by term. We start with
(
Av,Qi,j

N Aw
)

to find

(
Av,Qi,j

N Aw
)

=
N∑

p=1

N∑
q=1

(Av, ϕp) (Qi,j
N )p,q (ϕq, Aw) . (A.48)

Setting v = ϕdu,n and w = ϕdu,m leads to
(
Aϕdu,m, Q

i,j
N Aϕdu,n

)
= (KAQi,j

N (KA)T )m,n for all m,n = 1, . . . , N .

In the same manner
(
Mv,Qi−1,j−1

N Mw
)
,
(
Av,Qi,j−1

N Mw
)

and
(
Mv,Qi−1,j

N Aw
)

in (A.47) are reformulated,
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leading to (
Mϕdu,m, Q

i−1,j−1
N Mϕdu,n

)
=
(
KMQi−1,j−1

N KT
M

)
m,n

,(
Aϕdu,m, Q

i,j−1
N Mϕdu,n

)
=
(
KAQi,j−1

N KT
M

)
m,n

and
(
Mϕdu,n, Q

i−1,j
N Aϕdu,m

)
=
(
KAQj,i−1

N KT
M

)
m,n

for all m,n = 1, . . . , N . As the white noise is uncorrelated in time, we find
(
v, cov(ηi, ηj)w

)
= δi,j (v,Rηηw).

Again, setting v = ϕdu,n and w = ϕdu,m leads to the term δi,jRηηdu in the Proposition. Finally, we reformulate

E
[(
Av, z̊i

N

) (
ηj , w

)]
=

N∑
m=1

(Av, ϕm) E
[
(̊zi

N )m

(
ηj , w

)]
(A.49)

using the dof vector z̊i
N of the reduced unbiased solution. First, we consider the case i ≥ j. We recall that if

i ≥ j then z̊i
N =

(
A−1

N MN

)i−j−1
z̊j−1

N +
∑i

l=j

(
A−1

N MN

)i−l
A−1

N ηl
N from (4.45). As cov(zj−1

N , ηj) = 0 and
cov(ηl, ηj) = 0 for l �= j, putting (4.45) in (A.49) and knowing that (ηl

N )m =
(
ϕm, η

l
)

leads to

E
[(
Av, z̊i

N

) (
ηj , w

)]
=

N∑
m=1

N∑
n=1

(Av, ϕm) ((A−1
N M)i−jA−1

N Rηη,N )m,n (ϕn, w) (A.50)

With Rηη,N defined via (Rηη,N )m,n := (ϕm, Rηηϕn) as in (3.3). When setting v = ϕdu,p and w = ϕdu,q and
varying from p, q = 1, . . . , Ndu this results in KARi,j

zη as stated in the proposition. In case that i < j it is clear
from the white noise assumption, that cov(zi

N , η
j) = 0, hence, that E

[(
Av, z̊i

N

) (
ηj , w

)]
= 0.

Similar arguments can be applied to E
[(
Mv, z̊i−1

N

) (
ηj , w

)]
, E
[(
Aw, z̊j

N

) (
ηi, v

)]
and

E
[(
Mv, z̊j−1

N

) (
ηi, w

)]
appearing in (A.47). �

A.6. Proof to Proposition 4.14

Proof. We recall, that the error ek
o,3 is the error between a reduced basis Kalman filter steered by reduced

outputs yk
N and a reduced basis Kalman filter steered by measurement outputs yk

h for k = 1, . . . ,K. It can be
written as

ek
o,3 = o

(
ẑk

N (yN ) − ẑk
N (yh)

)
= CT

o

(
ẑk

N (yN ) − ẑk
N (yh)

)
= CT

o ek
N

using the dof-vectors ẑk
N (yN ), ẑk

N (yh) and ek
N = ẑk

N (yN) − ẑk
N (yh). Then the error auto-covariance matrix is

cov(ek
N ) = E

[̊
ek

N (̊ek
N)T

]
with the unbiased error e̊k

N = ek
N − E

[
ek

N

]
. Hence, the variance of the output error

can be expressed as

Var
(
ek

o,3

)
= CT

o E
[̊
ek

N

(̊
ek

N

)T
]

Co = CT
o TE

[
T−1e̊k

N

(̊
ek

N

)T

T−T

]
T T Co

≤
∣∣∣CT

o T
∣∣∣ ∣∣∣∣E

[
˜̊ek

N

(
˜̊ek

N

)T
]∣∣∣∣ ∣∣∣T T Co

∣∣∣ (A.51)

using the definition ˜̊ek
N := T−1e̊k

N . We recall, that T is the transformation matrix from (4.39). Consequently,

to prove the bound stated in (4.48), we have to show that P k
ẽN

≥ |E
[
˜̊ek

N (˜̊ek
N )T

]
| for all k = 1, . . . ,K. We will

use induction to show, that this statement is true for all time steps.
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The base case k = 0 is true as P 0
ẽN

= |T−1E[̊e0
N (̊e0

N )T ]T−T | = |E[˜̊e0
N (˜̊e0

N )T ]|. In the induction step we show
that if P k−1

ẽN
≥ E[˜̊ek−1

N (˜̊ek−1
N )T ] then P k

ẽN
≥ E[˜̊ek

N (˜̊ek
N )T ]. First, we derive the evolution scheme of e̊k

N with the

evolution scheme of ek
N from (4.38) and knowing that e̊k

N = ek
N − E[ek

N ]. We then find

e̊k
N = GN e̊k−1

N + A−1
N Lk

N

(
ẙk − ẙ∗,k

N +
k∑

i=1

R̊es
i
(
zK−k+i

N,du

))

with the unbiased measurement outputs ẙk
h := yk

h−E[yk
h], ẙ∗,k

N := y∗,k
N −E[y∗,k

N ] and the unbiased residual defined
in (4.25). Hence, the propagation of the error covariance matrix is

E
[̊
ek

N

(̊
ek

N

)T
]

= GNE
[̊
ek−1

N

(̊
ek−1

N

)T
]

GT
N + A−1

N Lk
N

(
A−1

N Lk
N

)T

E
[(
ẙk

h − ẙ∗,k
N

)2
]

+ A−1
N Lk

N

(
A−1

N Lk
N

)T

Var

(
k∑

i=1

Resi
(
zK−k+i

N,du

))

+ GNE
[̊
ek−1

N

(
ẙk

h − ẙ∗,k
N

)](
A−1

N Lk
N

)T

+ A−1
N Lk

NE
[(
ẙk

h − ẙ∗,k
N

) (̊
ek−1

N

)T
]

GT
N

+ GNE

[
e̊k−1

N

k∑
i=1

R̊es
i
(
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N,du

)](
A−1

N Lk
N

)T

+ A−1
N Lk

NE

[
k∑

i=1

R̊es
i
(
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N,du

) (̊
ek−1

N

)T
]

GT
N

+ 2A−1
N Lk

N

(
A−1

N Lk
N

)T

E

[(
ẙk

h − ẙ∗,k
N

) k∑
i=1

R̊es
i
(
zK−k+i

N,du

)]
.

With the definition of ˜̊ek
N this can be transformed to

E
[
˜̊ek

N

(
˜̊ek

N

)T
]

= DE
[
˜̊ek−1

N

(
˜̊ek−1

N

)T
]

DT + T−1A−1
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N

(
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N

)T

E
[(
ẙk
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(
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(
ẙk
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N
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N
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N
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ẙk
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N
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i
(
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+ 2T−1A−1
N Lk

N

(
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N

)T
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[(
ẙk
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N
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(
zK−k+i

N,du

)]



666 M. DIHLMANN AND B. HAASDONK

Hence,

E
[
˜̊ek

N

(
˜̊ek

N

)T
]
≤ |D|

∣∣∣∣E
[
˜̊ek−1

N

(
˜̊ek−1

N

)T
]∣∣∣∣ ∣∣∣DT

∣∣∣+ ∣∣∣∣B̃k
(
B̃

k
)T
∣∣∣∣
∣∣∣∣E
[(
ẙk

h − ẙ∗,k
N

)2
]∣∣∣∣

+
∣∣∣∣B̃k

(
B̃

k
)T
∣∣∣∣Var

(
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i=1
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i
(
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N,du
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+ |D|
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N

(
ẙk

h − ẙ∗,k
N

)]∣∣∣︸ ︷︷ ︸
=:T1

∣∣∣∣(B̃k
)T
∣∣∣∣

+
∣∣∣B̃k

∣∣∣ ∣∣∣∣E
[(

˜̊ek−1
N

)T (
ẙk − ẙ∗,k

N
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∣∣∣+ |D|
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[
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N
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(
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(
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(
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where we used the definition B̃

k
:= T−1A−1Lk

N . The term T1 is a vector in R
N . Using Cauchy–Schwarz it can

be bounded element-wise by

(T1)i =
∣∣∣E [(˜̊ek−1

N

)
i

(
ẙk

h − ẙ∗,k
N

)]∣∣∣ ≤
√

E
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˜̊ek−1
N

)2

i

]
E
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ẙk
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)2
]

so that for the whole vector using the bound for the variance of the output (4.33) we have

T1 ≤
√

diag
(

E
[
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N

(
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N
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])√

Δk
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The other mixed expectation terms can be bounded in the same way, so that

E
[
˜̊ek

N

(
˜̊ek

N

)T
]
≤ |D|

∣∣∣∣E
[
˜̊ek−1

N

(
˜̊ek−1

N

)T
]∣∣∣∣ ∣∣∣DT

∣∣∣+ ∣∣∣∣B̃k
(
B̃

k
)T
∣∣∣∣Δk

Var(y)(μ)

+
∣∣∣∣B̃k

(
B̃

k
)T
∣∣∣∣Var

(
k∑

i=1

Resi
(
zK−k+i

N,du

))

+
√
Δk

Var(y)(μ)

{
|D|
√

diag
(∣∣∣∣E

[
˜̊ek−1

N

(
˜̊ek−1

N

)T
]∣∣∣∣
) ∣∣∣∣(B̃k

)T
∣∣∣∣

+
∣∣∣B̃k

∣∣∣
√

diag
(∣∣∣∣E

[
˜̊ek−1

N

(
˜̊ek−1

N

)T
]∣∣∣∣
)T ∣∣∣DT

∣∣∣
+ 2

∣∣∣∣B̃k
(
B̃

k
)T
∣∣∣∣
√√√√Var

(
k∑

i=1

Resi
(
zK−k+i

N,du

))}

+

√√√√Var

(
k∑

i=1

Resi
(
zK−k+i

N,du

)){
|D|
√

diag
(∣∣∣∣E

[
˜̊ek−1

N

(
˜̊ek−1

N

)T
]∣∣∣∣
) ∣∣∣∣(B̃k

)T
∣∣∣∣

+
∣∣∣B̃k

∣∣∣
√

diag
(∣∣∣∣E

[
˜̊ek−1

N

(
˜̊ek−1

N

)T
]∣∣∣∣
)T ∣∣∣DT

∣∣∣
}
.



A REDUCED BASIS KALMAN FILTER FOR PARAMETRIZED PDES 667

In the induction step we assumed, that P k−1
ẽN

≥ |E[˜̊ek−1
N (˜̊ek−1

N )T ]|, hence, we find

E
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= P k
ẽN
.

The result E[˜̊ek
N (˜̊ek

N )T ] ≤ P k
ẽN

concludes the induction. We have proven, that P k
ẽN

is an upper bound for the
error covariance matrix E[˜̊ek

N (˜̊ek
N )T ] for all time steps k ∈ K and with (A.51) we then know that (4.48) in the

proposition is a valid upper bound. �
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