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LINEAR QUADRATIC STOCHASTIC TWO-PERSON ZERO-SUM
DIFFERENTIAL GAMES IN AN INFINITE HORIZON ∗

Jingrui Sun1, Jiongmin Yong2 and Shuguang Zhang3

Abstract. This paper is concerned with a linear quadratic stochastic two-person zero-sum differential
game with constant coefficients in an infinite time horizon. Open-loop and closed-loop saddle points are
introduced. The existence of closed-loop saddle points is characterized by the solvability of an algebraic
Riccati equation with a certain stabilizing condition. A crucial result makes our approach work is the
unique solvability of a class of linear backward stochastic differential equations in an infinite horizon.
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1. Introduction

Let (Ω,F , F, P) be a complete filtered probability space on which a one-dimensional standard Brownian
motion W (·) is defined with F = {Ft}t≥0 being its natural filtration augmented by all the P-null sets in
F [11, 19]. Consider the following controlled linear stochastic differential equation (SDE, for short) on the
infinite time horizon [0,∞):⎧⎪⎨⎪⎩

dX(t) =
[
AX(t) + B1u1(t) + B2u2(t) + b(t)

]
dt

+
[
CX(t) + D1u1(t) + D2u2(t) + σ(t)

]
dW (t), t ≥ 0,

X(0) = x,

(1.1)

where A, C ∈ R
n×n and Bi ∈ R

n×mi (i = 1, 2) are given (deterministic) matrices; b(·) and σ(·) are R
n-valued,

F-progressively measurable, square integrable processes. In the above, X(·), valued in R
n, is called the state

process with initial state x ∈ R
n; for i = 1, 2, ui(·), valued in R

mi , is called the control process of Player i. Let H
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be a Euclidean space and T > 0, we introduce the following:

L2
F
(H) =

{
ϕ : [0,∞) × Ω → H

∣∣ ϕ(·) is F-progressively measurable, E

∫ ∞

0

|ϕ(t)|2dt < ∞
}

,

X [0, T ] =
{

X : [0,∞) × Ω → R
n
∣∣ X(·) is F-adapted, continuous, E

(
sup

0≤t≤T
|X(t)|2

)
< ∞

}
,

Xloc[0,∞) =
⋂

T>0

X [0, T ], X [0,∞) =
{

X(·) ∈ Xloc[0,∞)
∣∣ E

∫ ∞

0

|X(t)|2dt < ∞
}

.

By a standard argument using contraction mapping theorem, one can show that for any initial state x ∈ R
n

and control pair (u1(·), u2(·)) ∈ L2
F
(Rm1) × L2

F
(Rm2), state equation (1.1) admits a unique solution X(·) ≡

X(· ; x, u1(·), u2(·)) ∈ Xloc[0,∞). Next, we introduce the following performance functional:

J(x; u1(·), u2(·))

� E

∫ ∞

0

⎡⎣〈⎛⎝Q ST
1 ST

2
S1 R11 R12

S2 R21 R22

⎞⎠⎛⎝X(t)
u1(t)
u2(t)

⎞⎠ ,

⎛⎝X(t)
u1(t)
u2(t)

⎞⎠〉+ 2

〈⎛⎝ q(t)
ρ1(t)
ρ2(t)

⎞⎠ ,

⎛⎝X(t)
u1(t)
u2(t)

⎞⎠〉⎤⎦dt,
(1.2)

where

Q ∈ S
n, Si ∈ R

mi×n, Rii ∈ S
mi , RT

21 = R12 ∈ R
m1×m2 , q(·) ∈ L2

F
(Rn), ρi(·) ∈ L2

F
(Rmi); i = 1, 2.

In the above, S
k is the set of all (k × k) symmetric matrices, and MT is the transpose of M (a matrix or a

vector); X(·) = X(· ; x, u1(·), u2(·)) on the right hand side of (1.2) is the corresponding state process. Note that
in general, for (x, u1(·), u2(·)) ∈ R

n×L2
F
(Rm1)×L2

F
(Rm2), the solution X(·) ≡ X(· ; x, u1(·), u2(·)) of (1.1) might

just be in Xloc[0,∞) and the above performance functional J(x; u1(·), u2(·)) might not be defined. Therefore,
we introduce the following set:

Uad(x) �
{
(u1(·), u2(·)) ∈ L2

F
(Rm1) × L2

F
(Rm2)

∣∣ X(· ; x, u1(·), u2(·)) ∈ X [0,∞)
}
, x ∈ R

n.

Any element (u1(·), u2(·)) ∈ Uad(x) is called an admissible control pair for the initial state x and the correspond-
ing X(·) = X(· ; x, u1(·), u2(·)) is called an admissible state process with the initial state x. Roughly speaking, in
the game, Player 1 wishes to minimize (1.2) by selecting a control u1(·), and Player 2 wishes to maximize (1.2)
by selecting a control u2(·). Therefore, (1.2) represents the cost for Player 1 and the payoff for Player 2. The
problem is to find an admissible control pair (u∗

1(·), u∗
2(·)) that both players can accept, and we refer to such

a problem as a linear quadratic (LQ, for short) stochastic two-person zero-sum differential game, denoted by
Problem (LQG). There are basically two types of controls for both players: open-loop controls and closed-loop
controls. An open-loop control usually depends on the initial state as well as all the information, including those
of the opponent, over the whole time duration [0,∞), whereas a closed-loop control is required to be indepen-
dent of the initial state, and the future information. Thus, in reality, it is more meaningful and convenient to
using closed-loop controls rather than open-loop controls. However, mathematically, open-loop controls are still
meaningful and they are actually helpful in finding “optimal” closed-loop controls.

Let us briefly recall some relevant history. In 1965, deterministic LQ two-person zero-sum differential games in
finite horizon (LQDG problem, for short) were introduced and studied by Ho et al. [8]. In 1970, Schmitendorf [15]
studied both open-loop and closed-loop strategies for LQDG problems. Among other things, it was shown
that the existence of a closed-loop saddle point may not imply that of an open-loop saddle point. In 1979,
Bernhard [5] carefully investigated LQDG problems from closed-loop point of view; see also the book by Basar
and Bernhard [3] in this aspect. In 2005, Zhang [20] proved that for an LQDG problem, the existence of the
open-loop value is equivalent to the finiteness of the corresponding open-loop lower and upper values, which is
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also equivalent to the existence of an open-loop saddle point. Along this line, there were a couple of follow-up
works [6, 7] appeared afterwards. In 2006, Mou and Yong [12] studied a stochastic LQ two-person zero-sum
differential game in finite horizon from an open-loop point of view, by means of Hilbert space method. On the
other hand, in 1976, Ichikawa [10] studied a deterministic LQ two-person zero-sum differential game on [0,∞)
in a Hilbert space and deduced some sufficient conditions for the existence of closed-loop saddle points. In 2000,
Ait Rami et al. [1] studied an LQ stochastic optimal control problem on [0,∞), followed by the work of Wu and
Zhou [17]. Recently, based on the work of Yong [18], Huang et al. [9] studied a mean–field LQ optimal control
problem on [0,∞).

The rest of the paper is organized as follows. In Section 2, we collect some preliminary results. Section 3
is devoted to the unique solvability of a linear backward stochastic differential equation (BSDE, for short) on
[0,∞). In Section 4, we discuss closed-loop optimal controls of Problem (LQ) and deduce a necessary condition
for the existence of a closed-loop optimal control via the solvability of an algebraic Riccati equation (ARE, for
short). In Section 5, we pose our differential game problem and characterize closed-loop saddle points by means
of algebraic Riccati equations. Some examples are presented in Section 6.

2. Preliminary results

Let us begin by considering a stochastic optimal control problem. The state equation takes the following
form: {

dX(t) =
[
AX(t) + Bu(t) + b(t)

]
dt +

[
CX(t) + Du(t) + σ(t)

]
dW (t), t ≥ 0,

X(0) = x,
(2.1)

with cost functional

J(x; u(·)) = E

∫ ∞

0

[〈(
Q ST

S R

)(
X(t)
u(t)

)
,

(
X(t)
u(t)

)〉
+ 2

〈(
q(t)
ρ(t)

)
,

(
X(t)
u(t)

)〉]
dt, (2.2)

where A, C ∈ R
n×n, B, D ∈ R

n×m, Q ∈ S
n, R ∈ S

m, S ∈ R
m×n, and b(·), σ(·), q(·) ∈ L2

F
(Rn), ρ(·) ∈ L2

F
(Rm).

The solution of (2.1) is denoted by X(· ; x, u(·)). For any given x ∈ R
n, the set of admissible controls is defined

by the following:

Uad(x) �
{
u(·) ∈ L2

F
(Rm)

∣∣ X(· ; x, u(·)) ∈ X [0,∞)
}
.

Clearly, Uad(x) is a convex subset of L2
F
(Rm), but not necessarily a subspace of L2

F
(Rm) in general. We pose the

following problem.

Problem (LQ). For given x ∈ R
n, find a ū(·) ∈ Uad(x), such that

V (x) � J(x; ū(·)) = inf
u(·)∈Uad(x)

J(x; u(·)). (2.3)

Any ū(·) ∈ Uad(x) satisfying (2.3) is called an open-loop optimal control of Problem (LQ), and the corresponding
X̄(·) ≡ X(· ; x, ū(·)) is called an optimal state process. The function V (·) is called the value function of Problem
(LQ). The following notions are similar to those introduced in [19].

Definition 2.1.

(i) Problem (LQ) is said to be finite if

V (x) > −∞, ∀x ∈ R
n. (2.4)

(ii) Problem (LQ) is said to be (uniquely) solvable if it has a (unique) open-loop optimal control.
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When b(·) = σ(·) = 0, we briefly denote the system (2.1) by [A, C; B, D]. We also denote by [A, C] the following
uncontrolled system: {

dX(t) = AX(t)dt + CX(t)dW (t), t ≥ 0,

X(0) = x.
(2.5)

When b(·), σ(·), q(·), ρ(·) = 0, we denote the corresponding Problem (LQ) by Problem (LQ)0. The corresponding
cost functional and value function are denoted by J0(x; u(·)) and V 0(x), respectively.

We note that, in general, the admissible control set Uad(x) may be empty for some x ∈ R
n. To avoid such a

case, we introduce the following definition.

Definition 2.2.

(i) System [A, C] is said to be L2-exponentially stable if for any x ∈ R
n, the solution X(·) ≡ X(· ; x) ∈

Xloc[0,∞) of (2.5) satisfies the following:

lim
t→∞ eλt

E|X(t)|2 = 0, for some λ > 0.

(ii) System [A, C] is said to be L2-globally integrable if for any x ∈ R
n, the solution X(·) ≡ X(· ; x) ∈ Xloc[0,∞)

of (2.5) is in X [0,∞).

(iii) System [A, C] is said to be L2-asymptotically stable if for any x ∈ R
n, the solution X(·) ≡ X(· ; x) ∈

Xloc[0,∞) of (2.5) satisfies the following:

lim
t→∞ E|X(t)|2 = 0.

The following result will be used frequently in this paper. For a proof, see [9].

Lemma 2.3. The following are equivalent:

(i) System [A, C] is L2-exponentially stable;
(ii) System [A, C] is L2-globally integrable;
(iii) For any Λ > 0, the following Lyapunov equation admits a solution P > 0:

PA + AT P + CT PC + Λ = 0; (2.6)

(iv) There exists a P > 0 such that PA + AT P + CT PC < 0;
(v) System [A, C] is L2-asymptotically stable, and there exists a P ∈ S

n such that

PA + AT P + CT PC < 0.

In this case, we simply say that the system [A, C] is L2-stable.

Next, we present a result concerning the L2-integrability of the solution to the following system:{
dX(t) =

[
AX(t) + b(t)

]
dt +

[
CX(t) + σ(t)

]
dW (t), t ≥ 0,

X(0) = x.
(2.7)

Proposition 2.4. Let A, C ∈ R
n×n and b(·), σ(·) ∈ L2

F
(Rn). Let X(·) ≡ X(· ; x) be the solution to the

SDE (2.7). If [A, C] is L2-stable, then X(·) ∈ X [0,∞).
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Proof. Since [A, C] is L2-stable, by Lemma 2.3, there exists a P > 0 such that

PA + AT P + CT PC ≡ −Λ < 0.

Applying Itô’s formula to s �→ 〈PX(s), X(s) 〉, one has

E 〈PX(t), X(t)〉 − 〈Px, x〉

= E

∫ t

0

[ 〈(
PA + AT P + CT PC

)
X(s), X(s)

〉
+2
〈
Pb(s) + CT Pσ(s), X(s)

〉
+ 〈Pσ(s), σ(s)〉

]
ds

= E

∫ t

0

[
−〈ΛX(s), X(s)〉 + 2

〈
Pb(s) + CT Pσ(s), X(s)

〉
+ 〈Pσ(s), σ(s)〉

]
ds, ∀t ≥ 0.

Therefore
d
dt

E

〈
P

1
2 X(t), P

1
2 X(t)

〉
=

d
dt

E 〈PX(t), X(t)〉
= −E 〈ΛX(t), X(t)〉 + 2E

〈
Pb(t) + CT Pσ(t), X(t)

〉
+ E 〈Pσ(t), σ(t)〉

= −E

〈
ΓP

1
2 X(t), P

1
2 X(t)

〉
+ 2E

〈
η(t), P

1
2 X(t)

〉
+ E 〈Pσ(t), σ(t)〉 ,

where
Γ � P− 1

2 ΛP− 1
2 > 0, η(·) = P

1
2 b(·) + P− 1

2 CT Pσ(·).
Let λ > 0 be the smallest eigenvalue of Γ . By Cauchy–Schwarz’s inequality, we have

d
dt

E 〈P
1
2 X(t), P

1
2 X(t) 〉

≤ −λE 〈P
1
2 X(t), P

1
2 X(t) 〉+

λ

2
E 〈P

1
2 X(t), P

1
2 X(t) 〉+

2
λ

E|η(t)|2 + E 〈Pσ(t), σ(t) 〉

= −λ

2
E 〈P

1
2 X(t), P

1
2 X(t) 〉+

2
λ

E|η(t)|2 + E 〈Pσ(t), σ(t) 〉 .

Let μ > 0 be the smallest eigenvalue of P . By Gronwall’s inequality, we obtain

μE|X(t)|2 ≤ E 〈P
1
2 X(t), P

1
2 X(t) 〉

≤ e−
λ
2 t 〈Px, x 〉+

∫ t

0

e−
λ
2 (t−s)

[
2
λ

E|η(s)|2 + E 〈Pσ(s), σ(s) 〉
]

ds,

which, together with Young’s inequality, implies that E|X(·)|2 is integrable over [0,∞). �

Definition 2.5. System [A, C; B, D] is said to be L2-stabilizable if there exists a Θ ∈ R
m×n such that [A +

BΘ, C +DΘ] is L2-stable. In this case, Θ is called a stabilizer of [A, C; B, D]. We denote the set of all stabilizers
of [A, C; B, D] by S ≡ S [A, C; B, D].

We now introduce the following assumption.
(H1) System [A, C; B, D] is L2-stabilizable, i.e.,

S [A, C; B, D] �= ∅. (2.8)

By Proposition 2.4, we see that under (H1), Uad(x) is nonempty for any x ∈ R
n. Moreover, we have the

following proposition.
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Proposition 2.6. Let (H1) hold. Then for any x ∈ R
n, u(·) ∈ Uad(x) if and only if

u(·) = ΘX(·) + v(·), (2.9)

for some Θ ∈ S [A, C; B, D] and v(·) ∈ L2
F
(Rm), where X(·) is the solution of the following SDE:⎧⎪⎨⎪⎩

dX(t) =
[
(A + BΘ)X(t) + Bv(t) + b(t)

]
dt

+
[
(C + DΘ)X(t) + Dv(t) + σ(t)

]
dW (t), t ≥ 0,

X(0) = x.

(2.10)

Proof. Let v(·) ∈ L2
F
(Rm) and X(·) be the solution of (2.10). Since [A + BΘ, C + DΘ] is L2-stable, by Proposi-

tion 2.4, X(·) ∈ X [0,∞). Set
u(·) � ΘX(·) + v(·) ∈ L2

F
(Rm).

By uniqueness, X(·) also solves the following SDE:{
dX(t) =

[
AX(t) + Bu(t) + b(t)

]
dt +

[
CX(t) + Du(t) + σ(t)

]
dW (t), t ≥ 0,

X(0) = x.
(2.11)

Thus, u(·) ∈ Uad(x).
On the other hand, suppose u(·) ∈ Uad(x). Let X(·) ∈ X [0,∞) be the solution of (2.11). Pick any Θ ∈

S [A, C; B, D] and set
v(·) � u(·) − ΘX(·) ∈ L2

F
(Rm).

By uniqueness, X(·) also solves (2.10). Thus, u(·) = ΘX(·) + v(·) with X(·) being the solution of (2.10). �

Now, we introduce the following notations:

M (P )=PA+AT P +CT PC+Q, L (P )=PB+CT PD+ST , N (P )=R+DT PD, ∀P ∈ S
n,

and define the following convex set:

P �
{

P ∈ S
n

∣∣∣∣ (M (P ) L (P )
L (P )T N (P )

)
≥ 0

}
.

The following result, found in [1], characterizes the finiteness of Problem (LQ)0.

Lemma 2.7. Problem (LQ)0 is finite if and only if P �= ∅. In this case, P has a maximal element P ∈ P

(i.e., P ≥ P̃ , for all P̃ ∈ P). Moreover, we have

V 0(x) = 〈Px, x 〉, ∀x ∈ R
n.

3. Linear BSDEs in an infinite horizon

In this section, we consider the following BSDE in the infinite time horizon [0,∞):

dY (t) = −[AT Y (t) + CT Z(t) + ϕ(t)
]
dt + Z(t)dW (t), t ∈ [0,∞). (3.1)

Definition 3.1. An L2-stable adapted solution of (3.1) is a pair (Y (·), Z(·)) ∈ X [0,∞) × L2
F
(Rn) satisfying

Y (t) = Y (0) −
∫ t

0

[
AT Y (s) + CT Z(s) + ϕ(s)

]
ds +

∫ t

0

Z(s)dW (s), ∀t ∈ [0,∞), a.s. (3.2)
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Note that by (3.2), for any T ∈ [0,∞),

Y (t) = Y (T ) +
∫ T

t

[
AT Y (s) + CT Z(s) + ϕ(s)

]
ds −

∫ T

t

Z(s)dW (s), t ∈ [0, T ], a.s. (3.3)

Hence, letting T → ∞, we have

Y (t) =
∫ ∞

t

[
AT Y (s) + CT Z(s) + ϕ(s)

]
ds −

∫ ∞

t

Z(s)dW (s), t ∈ [0,∞), a.s. (3.4)

This is a familiar form of linear BSDE on [0,∞). In 2000, Peng and Shi considered the following BSDE:

dY (t) = −[G(t, Y (t), Z(t)) + ϕ(t)
]
dt + Z(t)dW (t), t ∈ [0,∞), (3.5)

and it was shown that, under some mild conditions, equation (3.5) admits a unique adapted solution (Y (·), Z(·))
(see [13], Thm. 4). In terms of L2-stable adapted solutions of (3.1), we can restate the result of [13] as follows.

Proposition 3.2. Suppose
A + AT + CT C < 0. (3.6)

Then for any ϕ(·) ∈ L2
F
(Rn), BSDE (3.1) admits a unique L2-stable adapted solution (Y (·), Z(·)).

Instead of the above, we have the following result which gives the unique solvability of BSDE (3.5) under a
weaker condition.

Theorem 3.3. Suppose that [A, C] is L2-stable. Then for any ϕ(·) ∈ L2
F
(Rn), BSDE (3.1) admits a unique

L2-stable adapted solution (Y (·), Z(·)).
Before proving the above result, let us make an observation. By Lemma 2.3, part (iv), taking P = I, we see

that condition (3.6) implies the L2-stability of [A, C]. On the other hand, let

A =
(−1 1
−1 0

)
, C =

(√
2

2 0
0

√
2

2

)
, P =

(
2 −1
−1 2

)
> 0.

One has

PA + AT P + CT PC =
(−1 1

2
1
2 −1

)
< 0.

By Lemma 2.3, part (iv), [A, C] is L2-stable. However,

A + AT + CT C =
(− 3

2 0
0 1

2

)
,

which is indefinite. Thus, (3.6) fails. Hence, the condition assumed in Theorem 3.3 is weaker than that assumed
in Proposition 3.2. In order to prove Theorem 3.3, we need the following a priori estimates.

Proposition 3.4. Suppose that [A, C] is L2-stable and ϕ(·) ∈ L2
F
(Rn). Let (Y (·), Z(·)) be an L2-stable adapted

solution of BSDE (3.1). Then

E

(
sup

0≤t<∞
|Y (t)|2

)
+ E

∫ ∞

0

|Z(t)|2dt ≤ KE

∫ ∞

0

|ϕ(t)|2dt. (3.7)

Hereafter, K > 0 represents a generic constant which can be different from line to line.
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Proof. Since [A, C] is L2-stable, by Lemma 2.3, there exists a P > 0 such that PA+AT P +CT PC < 0. Hence,
one can choose ε > 0 such that

PA + AT P + (1 + ε)CT PC ≡ −Λε < 0.

Applying Itô’s formula to s �→ 〈P−1Y (s), Y (s) 〉, one has that for any 0 ≤ t < T < ∞ (suppressing s in the
functions),

〈
P−1Y (T ), Y (T )

〉− 〈P−1Y (t), Y (t)
〉

= −
∫ T

t

{
2
〈
P−1

(
AT Y + CT Z + ϕ

)
, Y
〉− 〈P−1Z, Z

〉}
ds + 2

∫ T

t

〈
Z, P−1Y

〉
dW (s)

= −
∫ T

t

{〈
PAP−1Y, P−1Y

〉
+
〈
AT PP−1Y, P−1Y

〉
+ 2

〈
CT Z, P−1Y

〉
+2
〈
ϕ, P−1Y

〉− 〈P−1Z, Z
〉}

ds + 2
∫ T

t

〈
Z, P−1Y

〉
dW (s)

= −
∫ T

t

{〈(
PA + AT P

)
P−1Y, P−1Y

〉
+ 2

〈
ϕ, P−1Y

〉
+2
〈
Z, CP−1Y

〉− 〈P−1Z, Z
〉}

ds + 2
∫ T

t

〈
Z, P−1Y

〉
dW (s)

= −
∫ T

t

{〈−ΛεP
−1Y, P−1Y

〉
+ 2

〈
ϕ, P−1Y

〉− (1 + ε)
〈
PCP−1Y, CP−1Y

〉
+2
〈
Z, CP−1Y

〉− 〈P−1Z, Z
〉}

ds + 2
∫ T

t

〈
Z, P−1Y

〉
dW (s)

= −
∫ T

t

{〈−ΛεP
−1Y, P−1Y

〉
+ 2

〈
ϕ, P−1Y

〉
−(1 + ε)

〈
P

[
CP−1Y − 1

1 + ε
P−1Z

]
, CP−1Y − 1

1 + ε
P−1Z

〉
− ε

1 + ε

〈
P−1Z, Z

〉}
ds + 2

∫ T

t

〈
Z, P−1Y

〉
dW (s).

Let λ > 0 be the smallest eigenvalue of Λε > 0. By Cauchy–Schwarz’s inequality, we have

〈P−1Y (t), Y (t) 〉− 〈P−1Y (T ), Y (T ) 〉+
∫ T

t

ε

1 + ε
〈P−1Z(s), Z(s) 〉ds

=
∫ T

t

{
〈 −ΛεP

−1Y, P−1Y 〉+2 〈ϕ, P−1Y 〉−(1 + ε)
∣∣∣∣P 1

2

[
CP−1Y − 1

1 + ε
P−1Z

] ∣∣∣∣2
}

ds

−2
∫ T

t

〈Z, P−1Y 〉dW (s)

≤
∫ T

t

{
−λ|P−1Y (s)|2 + λ|P−1Y (s)|2 +

1
λ
|ϕ(s)|2

}
ds − 2

∫ T

t

〈Z(s), P−1Y (s) 〉dW (s)

=
1
λ

∫ T

t

|ϕ(s)|2ds − 2
∫ T

t

〈Z(s), P−1Y (s) 〉dW (s).

(3.8)
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Since Y (·) ∈ X [0,∞), we must have limT→∞ E|Y (T )|2 = 0. Taking expectation on both sides of (3.8), and
letting T → ∞, one has (noting that P > 0)

E|Y (t)|2 + E

∫ ∞

t

|Z(s)|2ds ≤ KE

∫ ∞

t

|ϕ(s)|2ds, ∀t ∈ [0,∞). (3.9)

On the other hand, by Burkholder–Davis–Gundy’s inequality, we have (noting (3.9))

E

{
sup

0≤t≤T

∣∣∣∣ ∫ T

t

〈Z(s), P−1Y (s) 〉dW (s)
∣∣∣∣
}

≤ 2E

{
sup

0≤t≤T

∣∣∣∣ ∫ t

0

〈Z(s), P−1Y (s) 〉 dW (s)
∣∣∣∣ }

≤ KE

{∫ T

0

∣∣ 〈Z(s), P−1Y (s) 〉 ∣∣2ds

} 1
2

≤ KE

{∫ T

0

∣∣P− 1
2 Z(s)

∣∣2∣∣P− 1
2 Y (s)

∣∣2ds

} 1
2

≤ KE

⎧⎨⎩
(

sup
0≤t≤T

∣∣P− 1
2 Y (t)

∣∣2) 1
2
(∫ T

0

∣∣P− 1
2 Z(s)

∣∣2ds

) 1
2

⎫⎬⎭
≤ 1

4
E

(
sup

0≤t≤T

∣∣P− 1
2 Y (t)

∣∣2)+ KE

∫ T

0

∣∣Z(s)
∣∣2ds

≤ 1
4

E

(
sup

0≤t≤T

∣∣P− 1
2 Y (t)

∣∣2)+ KE

∫ ∞

0

|ϕ(s)|2ds.

(3.10)

Consequently, from (3.8), we obtain (using (3.9) and (3.10))

E

(
sup

0≤t≤T

∣∣P− 1
2 Y (t)

∣∣2) = E

(
sup

0≤t≤T
〈P−1Y (t), Y (t) 〉

)
≤ E 〈P−1Y (T ), Y (T ) 〉+

1
λ

E

∫ T

0

|ϕ(s)|2ds + 2E

{
sup

0≤t≤T

∣∣∣∣ ∫ T

t

〈Z(s), P−1Y (s) 〉 dW (s)
∣∣∣∣
}

≤ KE

∫ ∞

0

|ϕ(s)|2ds + 2E

{
sup

0≤t≤T

∣∣∣∣ ∫ T

t

〈Z(s), P−1Y (s) 〉dW (s)
∣∣∣∣
}

≤ 1
4

E

(
sup

0≤t≤T

∣∣P− 1
2 Y (t)

∣∣2)+ KE

∫ ∞

0

|ϕ(s)|2ds.

Therefore (noting P > 0 again),

E

(
sup

0≤t≤T
|Y (t)|2

)
≤ KE

∫ ∞

0

|ϕ(s)|2ds, ∀T ∈ [0,∞). (3.11)

Combining (3.9) and (3.11), making use of Fatou’s Lemma, yields (3.7). �

Proposition 3.5. Under the hypotheses of Proposition 3.4, we have

E

∫ ∞

0

|Y (t)|2dt ≤ KE

∫ ∞

0

|ϕ(t)|2dt. (3.12)
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Proof. Let P > 0 be the matrix in the proof of Proposition 3.4. Applying Itô’s formula to s �→ 〈P−1Y (s), Y (s) 〉,
one has that for any 0 ≤ t < ∞,

E
〈
P−1Y (t), Y (t)

〉− E
〈
P−1Y (0), Y (0)

〉
= E

∫ t

0

{
− 〈P−1

[
AT Y + CT Z + ϕ

]
, Y
〉− 〈P−1Y, AT Y + CT Z + ϕ

〉
+
〈
P−1Z, Z

〉}
ds

= E

∫ t

0

{
− 〈PAP−1Y, P−1Y

〉− 〈AT PP−1Y, P−1Y
〉− 2

〈
CT Z + ϕ, P−1Y

〉
+
〈
P−1Z, Z

〉}
ds

≥ E

∫ t

0

{
− 〈[PA + AT P

]
P−1Y, P−1Y

〉− 2
〈
CT Z + ϕ, P−1Y

〉}
ds.

Let μ > 0 be the smallest eigenvalue of −(PA + AT P ) > 0. By Cauchy–Schwarz’s inequality, we have

E 〈P−1Y (t), Y (t) 〉 −E 〈P−1Y (0), Y (0) 〉

≥ E

∫ t

0

{
μ|P−1Y (s)|2 − μ

2
|P−1Y (s)|2 − 4

μ
|CT Z(s)|2 − 4

μ
|ϕ(s)|2

}
ds, ∀t ∈ [0,∞).

(3.13)

Letting t → ∞ in (3.13), one has

E 〈P−1Y (0), Y (0) 〉+
μ

2
E

∫ ∞

0

|P−1Y (s)|2ds ≤ 4
μ

E

∫ ∞

0

(
|CT Z(s)|2 + |ϕ(s)|2

)
ds.

Combining the a priori estimate (3.7) we obtain the desired estimate (3.12). �

Proof of Theorem 3.3. The uniqueness is an immediate consequence of the a priori estimate (3.7). We now
prove the existence. For k = 1, 2, . . ., we set

ϕk(t) � 1[0,k](t)ϕ(t), t ∈ [0,∞).

Clearly, {ϕk(·)}∞k=1 converges to ϕ(·) in L2
F
(Rn).

We now consider, for each k, the L2-stable adapted solution (Yk(·), Zk(·)) of the following BSDE:

dYk(t) = −[AT Yk(t) + CT Zk(t) + ϕk(t)
]
dt + Zk(t)dW (t), t ∈ [0,∞). (3.14)

The above can be solved as follows: on [0, k], (Yk(·), Zk(·)) is the adapted solution to the following BSDE:{
dYk(t) = −[AT Yk(t) + CT Zk(t) + ϕk(t)

]
dt + Zk(t)dW (t), t ∈ [0, k],

Yk(k) = 0,

and on (k,∞), it is identically equal to zero. By Proposition 3.4 and 3.5, we have

E

(
sup

0≤t<∞

∣∣Yk(t) − Yj(t)
∣∣2)+ E

∫ ∞

0

|Yk(t) − Yj(t)|2dt + E

∫ ∞

0

∣∣Zk(t) − Zj(t)
∣∣2dt

≤ KE

∫ ∞

0

∣∣ϕk(t) − ϕj(t)
∣∣2dt, ∀k, j.

Therefore, there exists a (Y (·), Z(·)) ∈ X [0,∞) × L2
F
(Rn) such that

E

(
sup

0≤t<∞

∣∣Yk(t) − Y (t)
∣∣2)+ E

∫ ∞

0

∣∣Zk(t) − Z(t)
∣∣2dt → 0, as k → ∞,

which implies that (Y (·), Z(·)) is an L2-stable adapted solution of (3.1). �
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4. Closed-loop optimal controls

In this section we discuss the closed-loop optimal controls of Problem (LQ). Let us first recall that for
any M ∈ R

m×n, there exists a unique matrix M † ∈ R
n×m, called the (Moore–Penrose) pseudo-inverse of M ,

satisfying the following ([14]):

MM †M = M, M †MM † = M †, (MM †)T = MM †, (M †M)T = M †M.

In addition, if M ∈ S
n, then M † ∈ S

n, and

MM † = M †M ; M ≥ 0 ⇐⇒ M † ≥ 0.

Lemma 4.1 (Extended Schur’s Lemma [2]). Let M ∈ S
n, N ∈ S

m, L ∈ R
n×m. Then the following conditions

are equivalent:
(i) M − LN †LT ≥ 0, N ≥ 0, and L(I − NN †) = 0.

(ii)
(

M L
LT N

)
≥ 0.

Note that L(I − NN †) = 0 is equivalent to R(LT ) ⊆ R(N), where R(Λ) is the range of a matrix Λ. We now
introduce the following notion.

Definition 4.2. A pair (Θ∗, u∗(·)) ∈ S × L2
F
(Rm) is called a closed-loop optimal control of Problem (LQ) if

J(x; Θ∗X∗(·) + u∗(·)) ≤ J(x; ΘX(·) + u(·)), ∀(x, Θ, u(·)) ∈ R
n × S × L2

F
(Rm). (4.1)

The following technical result, which is similar to Berkovitz’s equivalence lemma for LQDG problems found
in [4], can be shown by a simple adoption of ([16], Prop. 3.3).

Proposition 4.3. For (Θ∗, u∗(·)) ∈ S × L2
F
(Rm), the following statements are equivalent:

(i) (Θ∗, u∗(·)) is a closed-loop optimal control of Problem (LQ).
(ii) For any x ∈ R

n and u(·) ∈ L2
F
(Rm), the following holds:

J(x; Θ∗X∗(·) + u∗(·)) ≤ J(x; Θ∗X(·) + u(·)). (4.2)

Now we present a characterization of closed-loop optimal controls of Problem (LQ) in terms of infinite horizon
forward-backward stochastic differential equations (FBSDE, for short).

Theorem 4.4. A pair (Θ∗, u∗(·)) ∈ S × L2
F
(Rm) is a closed-loop optimal control of Problem (LQ) if and only

if for any x ∈ R
n, the following FBSDE admits an adapted solution (X∗(·), Y ∗(·), Z∗(·)) ∈ X [0,∞)×X [0,∞)×

L2
F
(Rn): ⎧⎪⎨⎪⎩

dX∗(t) =
[
(A + BΘ∗)X∗ + Bu∗ + b

]
dt +

[
(C + DΘ∗)X∗ + Du∗ + σ

]
dW (t), t ≥ 0,

dY ∗(t) = −[AT Y ∗ + CT Z∗ + (Q + ST Θ∗)X∗ + ST u∗ + q
]
dt + Z∗dW (t), t ≥ 0,

X∗(0) = x,

(4.3)

such that the following stationarity condition holds:

Ru∗ + BT Y ∗ + DT Z∗ + (S + RΘ∗)X∗ + ρ = 0, a.e. a.s. (4.4)

and

E

∫ ∞

0

〈(
Q ST

S R

)(
X0

Θ∗X0 + u

)
,

(
X0

Θ∗X0 + u

)〉
dt ≥ 0, ∀u(·) ∈ L2

F
(Rm), (4.5)

where X0(·) is the solution of{
dX0(t) =

[
(A + BΘ∗)X0(t) + Bu(t)

]
dt +

[
(C + DΘ∗)X0(t) + Du(t)

]
dW (t), t ≥ 0,

X0(0) = 0.
(4.6)
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Proof. Consider the state equation⎧⎪⎨⎪⎩
dX(t) =

[
(A + BΘ∗)X(t) + Bu(t) + b(t)

]
dt

+
[
(C + DΘ∗)X(t) + Du(t) + σ(t)

]
dW (t), t ≥ 0,

X(0) = x,

with the cost functional

J̃(x; u(·)) ≡ J(x; Θ∗X(·) + u(·))
= E

∫ ∞

0

[〈(
Q ST

S R

)(
X

Θ∗X + u

)
,

(
X

Θ∗X + u

)〉
+ 2

〈(
q
ρ

)
,

(
X

Θ∗X + u

)〉]
dt

= E

∫ ∞

0

[〈(
Q̃ S̃T

S̃ R

)(
X
u

)
,

(
X
u

)〉
+ 2

〈(
q̃
ρ

)
,

(
X
u

)〉]
dt,

where
Q̃ = Q + (Θ∗)T S + ST Θ∗ + (Θ∗)T RΘ∗, S̃ = S + RΘ∗, q̃ = q + (Θ∗)T ρ.

By Proposition 4.3, (Θ∗, u∗(·)) is a closed-loop optimal control of Problem (LQ) if and only if for any x ∈ R
n,

u∗(·) is an open-loop optimal control for the problem with the above state equation and cost functional. For
any u(·) ∈ L2

F
(Rm) and ε ∈ R, let Xε(·) be the solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩

dXε(t) =
{

(A + BΘ∗)Xε(t) + B
[
u∗(t) + εu(t)

]
+ b(t)

}
dt

+
{
(C + DΘ∗)Xε(t) + D

[
u∗(t) + εu(t)

]
+ σ(t)

}
dW (t), t ≥ 0,

Xε(0) = x.

Thus, X0(·) ≡ Xε(·)−X∗(·)
ε is independent of ε and satisfies (4.6). Then

J̃(x; u∗(·) + εu(·)) − J̃(x; u∗(·))

= εE

∫ ∞

0

[〈(
Q̃ S̃T

S̃ R

)(
2X∗(t) + εX0(t)
2u∗(t) + εu(t)

)
,

(
X0(t)
u(t)

)〉
+ 2

〈(
q̃(t)
ρ(t)

)
,

(
X0(t)
u(t)

)〉]
dt

= 2εE

∫ ∞

0

[〈
Q̃X∗, X0

〉
+
〈
S̃X∗, u

〉
+
〈
S̃X0, u

∗
〉

+ 〈Ru∗, u〉 + 〈q̃, X0〉 + 〈ρ, u〉
]
dt

+ ε2
E

∫ ∞

0

[ 〈
Q̃X0(t), X0(t)

〉
+ 2

〈
S̃X0(t), u(t)

〉
+ 〈Ru(t), u(t)〉

]
dt

= 2εE

∫ ∞

0

[ 〈
Q̃X∗ + S̃T u∗ + q̃, X0

〉
+
〈
S̃X∗ + Ru∗ + ρ, u

〉]
dt

+ ε2
E

∫ ∞

0

[ 〈
Q̃X0(t), X0(t)

〉
+ 2

〈
S̃X0(t), u(t)

〉
+ 〈Ru(t), u(t)〉

]
dt.

Since [A + BΘ∗, C + DΘ∗] is L2-stable, by Theorem 3.3, the following BSDE:

dY ∗ = −
{
(A + BΘ∗)T Y ∗ + (C + DΘ∗)T Z∗ + Q̃X∗ + S̃T u∗ + q̃

}
dt + Z∗dW (t)

= −
{
AT Y ∗ + CT Z∗ + QX∗ + ST (Θ∗X∗ + u∗) + q

+(Θ∗)T
[
BT Y ∗ + DT Z∗ + (S + RΘ∗)X∗ + Ru∗ + ρ

]}
dt + Z∗dW (t), t ≥ 0



LINEAR QUADRATIC STOCHASTIC TWO-PERSON ZERO-SUM DIFFERENTIAL GAMES IN AN INFINITE HORIZON 755

admits a unique L2-stable adapted solution (Y ∗(·), Z∗(·)). By Itô’s formula, we have

E 〈Y ∗(t), X0(t) 〉 = E

∫ t

0

[
− 〈(A + BΘ∗)T Y ∗ + (C + DΘ∗)T Z∗ + Q̃X∗ + S̃T u∗ + q̃ ), X0 〉

+ 〈Y ∗, (A + BΘ∗)X0 + Bu 〉+ 〈Z∗, (C + DΘ∗)X0 + Du 〉
]
ds

= E

∫ t

0

[
− 〈 Q̃X∗ + S̃T u∗ + q̃, X0 〉+ 〈BT Y ∗ + DT Z∗, u 〉

]
ds, ∀t ≥ 0.

(4.7)

Note that
lim

t→∞ |E 〈Y ∗(t), X0(t) 〉 |2 ≤ lim
t→∞ E|Y ∗(t)|2E|X0(t)|2 = 0.

Letting t → ∞ in (4.7), one has

E

∫ ∞

0

〈 Q̃X∗ + S̃T u∗ + q̃, X0 〉 ds = E

∫ ∞

0

〈BT Y ∗ + DT Z∗, u 〉ds.

Hence,

J̃(x; u∗(·) + εu(·)) − J̃(x; u∗(·))
= 2εE

∫ ∞

0

[ 〈
Q̃X∗ + S̃T u∗ + q̃, X0

〉
+
〈
S̃X∗ + Ru∗ + ρ, u

〉]
dt

+ε2
E

∫ ∞

0

[ 〈
Q̃X0(t), X0(t)

〉
+ 2

〈
S̃X0(t), u(t)

〉
+ 〈Ru(t), u(t)〉

]
dt

= 2εE

∫ ∞

0

〈
BT Y ∗ + DT Z∗ + S̃X∗ + Ru∗ + ρ, u

〉
dt

+ε2
E

∫ ∞

0

〈(
Q ST

S R

)(
X0

Θ∗X0 + u

)
,

(
X0

Θ∗X0 + u

)〉
dt.

Therefore, (Θ∗, u∗(·)) is a closed-loop optimal control of Problem (LQ) if and only if (4.4) and (4.5) hold.
Consequently, (Y ∗(·), Z∗(·)) solves the following BSDE:

dY ∗ = − [AT Y ∗ + CT Z∗ + QX∗ + ST (Θ∗X∗ + u∗) + q
]
dt + Z∗dW (t), t ≥ 0.

This completes the proof. �

As a consequence, we have the following result.

Corollary 4.5. If (Θ∗, u∗(·)) is a closed-loop optimal control of Problem (LQ), then (Θ∗, 0) is a closed-loop
optimal control of Problem (LQ)0.

Proof. Let (Θ∗, u∗(·)) be a closed-loop optimal control of Problem (LQ). Then, by Theorem 4.4, (4.5) holds, and
for any x ∈ R

n, FBSDE (4.3) admits an adapted solution (X∗(·), Y ∗(·), Z∗(·)) ∈ X [0,∞) × X [0,∞) × L2
F
(Rn)

satisfying (4.4). Since FBSDE (4.3) admits a solution for each x ∈ R
n, and (Θ∗, u∗(·)) is independent of x, by

subtracting solutions corresponding x and 0, the later from the former, we see that for any x ∈ R
n, the following

FBSDE: ⎧⎪⎨⎪⎩
dX = (A + BΘ∗)Xdt + (C + DΘ∗)XdW (t), t ≥ 0,

dY = −[AT Y + CT Z + (Q + ST Θ∗)X
]
dt + ZdW (t), t ≥ 0,

X(0) = x,

admits an adapted solution (X(·), Y (·), Z(·)) ∈ X [0,∞) ×X [0,∞) × L2
F
(Rn) satisfying

BT Y + DT Z + (S + RΘ∗)X = 0, a.e. a.s.

Again, by Theorem 4.4, we see that (Θ∗, 0) is a closed-loop optimal control of Problem (LQ)0. �



756 J. SUN ET AL.

The following theorem gives a necessary condition for the existence of a closed-loop optimal control of
Problem (LQ).

Theorem 4.6. Suppose Problem (LQ) admits a closed-loop optimal control. Then the following ARE:

PA + AT P + CT PC + Q − (PB + CT PD + ST
)
(R + DT PD)†

(
BT P + DT PC + S

)
= 0 (4.8)

admits a solution P ∈ S
n such that

R + DT PD ≥ 0, R(BT P + DT PC + S
) ⊆ R(R + DT PD

)
, (4.9)

and there exists a Π ∈ R
m×n such that

−(R + DT PD)†(BT P + DT PC + S) +
[
I − (R + DT PD)†(R + DT PD)

]
Π (4.10)

is a stabilizer of [A, C; B, D].

Proof. Let (Θ∗, u∗(·)) be a closed-loop optimal control of Problem (LQ). Then, by Corollary 4.5, (Θ∗, 0) is a
closed-loop optimal control of Problem (LQ)0, and hence Problem (LQ)0 is finite. Lemma 2.7 yields that the
set P has a maximal element P ∈ P such that V 0(x) = 〈Px, x 〉, and(

M (P ) L (P )
L (P )T N (P )

)
≥ 0. (4.11)

Applying Lemma 4.1 to (4.11), we have

M (P ) − L (P )N (P )†L (P )T ≥ 0, (4.12)

N (P ) ≥ 0, L (P )
[
I − N (P )N (P )†

]
= 0. (4.13)

Note that (4.13) is equivalent to (4.9). Let X∗(·) be the solution of{
dX∗(t) = (A + BΘ∗)X∗(t)dt + (C + DΘ∗)X∗(t)dW (t), t ≥ 0,

X(0) = x.

Applying Itô’s formula to t → 〈PX(t), X(t) 〉, one has

〈Px, x 〉 = −E

∫ ∞

0

{
〈 [P (A + BΘ∗) + (A + BΘ∗)T P

]
X, X 〉+ 〈P (C + DΘ∗)X, (C + DΘ∗)X 〉

}
dt

= −E

∫ ∞

0

〈 [(PA + AT P + CT PC) + (PB + CT PD)Θ∗

+ (Θ∗)T (BT P + DT PC) + (Θ∗)T DT PDΘ∗]X, X 〉dt

= −E

∫ ∞

0

〈 [M (P ) + L (P )Θ∗ + (Θ∗)T L (P )T + (Θ∗)T N (P )Θ∗]X, X 〉dt

+E

∫ ∞

0

〈 [Q + ST Θ∗ + (Θ∗)T S + (Θ∗)T RΘ∗]X, X 〉dt.

Then we have (noting (4.13))

V 0(x) = J0(x, Θ∗X(·)) = E

∫ ∞

0

〈 [Q + ST Θ∗ + (Θ∗)T S + (Θ∗)T RΘ∗]X, X 〉 dt

= 〈Px, x 〉+E

∫ ∞

0

〈 [M (P ) + L (P )Θ∗ + (Θ∗)T L (P )T + (Θ∗)T N (P )Θ∗]X, X 〉dt

= 〈Px, x 〉+E

∫ ∞

0

〈 [M (P ) − L (P )N (P )†L (P )T
]
X, X 〉dt

+E

∫ ∞

0

〈N (P )
[
Θ∗ + N (P )†L (P )T

]
X, [Θ∗ + N (P )†L (P )T

]
X 〉dt.

(4.14)
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Due to the equality V 0(x) = 〈Px, x 〉 and (4.12)–(4.14), each of the two integrands on the right-hand side
of (4.14) must be zero almost everywhere. Hence, we obtain

M (P ) − L (P )N (P )†L (P )T = 0,

that is, P is a solution of (4.8), and

N (P )
1
2
[
Θ∗ + N (P )†L (P )T

]
= 0,

which, together with (4.13), gives
N (P )Θ∗ + L (P )T = 0. (4.15)

Since N (P )N (P )† is an orthogonal projection, we have

Θ∗ = −N (P )†L (P )T +
[
I − N (P )†N (P )

]
Π ∈ S ,

for some Π ∈ R
n×m. �

We point out that the sufficiency of the above result can also be stated and proved, which is a special case
of the corresponding result for two-person zero-sum differential games (see the next section). Hence, to avoid a
repeating presentation, we prefer not to give the details here.

5. Open-loop and closed-loop saddle points

We now return to our differential games. For notational simplicity, we let m = m1 + m2 and denote

B = (B1, B2), D = (D1, D2),

S =
(

S1

S2

)
, R =

(
R11 R12

R21 R22

)
≡
(

R1

R2

)
, ρ(·) =

(
ρ1(·)
ρ2(·)

)
, u(·) =

(
u1(·)
u2(·)

)
.

With such notations, the state equation becomes{
dX(t) =

[
AX(t) + Bu(t) + b(t)

]
dt +

[
CX(t) + Du(t) + σ(t)

]
dW (t), t ≥ 0,

X(0) = x,
(5.1)

and the performance functional becomes

J(x; u1(·), u2(·)) = J(x; u(·)) = E

∫ ∞

0

[〈(
Q ST

S R

)(
X(t)
u(t)

)
,

(
X(t)
u(t)

)〉
+ 2

〈(
q(t)
ρ(t)

)
,

(
X(t)
u(t)

)〉]
dt. (5.2)

Also, when b(·), σ(·), q(·), ρ(·) = 0, we denote the corresponding Problem (LQG) by Problem (LQG)0 and the
corresponding performance functional by J0(x; u1(·), u2(·)). Similar to Problem (LQ), we will assume (H1) for
the system [A, C; B, D], and we also denote

M (P ) = PA + AT P + CT PC + Q, L (P ) = PB + CT PD + ST , N (P ) = R + DT PD; ∀P ∈ S
n.

Moreover, for Θi ∈ R
mi×n, i = 1, 2, we let

S1(Θ2) =
{

Θ1 ∈ R
m1×n

∣∣ (ΘT
1 , ΘT

2 )T is a stabilizer of [A, C; B, D]
}

,

S2(Θ1) =
{

Θ2 ∈ R
m2×n

∣∣ (ΘT
1 , ΘT

2 )T is a stabilizer of [A, C; B, D]
}

.

Note that in general, say, S1(Θ2) is not necessarily non-empty for some Θ2 ∈ R
m2×n. However, if Θ ≡

(ΘT
1 , ΘT

2 )T ∈ S [A, C; B, D], then both S1(Θ2) and S2(Θ1) are non-empty. Also, for any x ∈ R
n, we let Uad(x)

be the set of all u(·) ≡ (u1(·), u2(·)) ∈ L2
F
(Rm) such that the corresponding state X(·) ≡ X(· ; x, u(·)) ∈ X [0,∞).
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Definition 5.1. For any given x ∈ R
n, a pair (ū1(·), ū2(·)) ∈ Uad(x) is called an open-loop saddle point of

Problem (LQG) if
J(x; ū1(·), u2(·)) ≤ J(x; ū1(·), ū2(·)) ≤ J(x; u1(·), ū2(·)), (5.3)

for any (u1(·), u2(·)) ∈ L2
F
(Rm) such that J(x; ū1(·), u2(·)) and J(x; u1(·), ū2(·)) are defined.

Definition 5.2. A 4-tuple (Θ∗
1 , u∗

1(·); Θ∗
2 , u∗

2(·)) ∈ R
m1×n ×L2

F
(Rm1)×R

m2×n ×L2
F
(Rm2) is called a closed-loop

saddle point of Problem (LQG) if
(i) Θ∗ ≡ ((Θ∗

1)T , (Θ∗
2)T )T ∈ S [A, C; B, D],

(ii) for any x ∈ R
n, (Θ1, Θ2) ∈ S1(Θ∗

2) × S2(Θ∗
1) and (u1(·), u2(·)) ∈ L2

F
(Rm1) × L2

F
(Rm2),

J(x; Θ∗
1X(·) + u∗

1(·), Θ2X(·) + u2(·)) ≤ J(x; Θ∗
1X∗(·) + u∗

1(·), Θ∗
2X∗(·) + u∗

2(·))
≤ J(x; Θ1X(·) + u1(·), Θ∗

2(·)X(·) + u∗
2(·)).

(5.4)

Remark 5.3.

(a) Although both players are non-cooperative, when choosing Θi (i = 1, 2), they prefer to at least work together
so that Θ = ((Θ1)T , (Θ2)T )T is a stabilizer of [A, C; B, D] (and the system will not be crashed). Thus, in
Definition 5.2, we only require Θ∗ being a stabilizer of [A, C; B, D] rather than Θ∗

i being a stabilizer of
[A, C; Bi, Di].

(b) By a similar method used in [16], one can show that condition (ii) in Definition 5.2 is equivalent to the
following:
(ii)′ for any x ∈ R

n and (u1(·), u2(·)) ∈ L2
F
(Rm1) × L2

F
(Rm2),

J(x; Θ∗
1X(·) + u∗

1(·), Θ∗
2X(·) + u2(·)) ≤ J(x; Θ∗

1X∗(·) + u∗
1(·), Θ∗

2X∗(·) + u∗
2(·))

≤ J(x; Θ∗
1X(·) + u1(·), Θ∗

2(·)X(·) + u∗
2(·)).

(5.5)

Let Θ∗ = ((Θ∗
1)T , (Θ∗

2)T )T ∈ S [A, C; B, D] and u∗(·) = (u∗
1(·)T , u∗

2(·)T )T ∈ L2
F
(Rm). We look at the following

state equation:{
dX(t) =

[
(A + BΘ∗)X(t) + Bu(t) + b(t)

]
dt +

[
(C + DΘ∗)X(t) + Du(t) + σ(t)

]
dW (t), t ≥ 0,

X(0) = x,

and the following performance functional:

J̃(x; u1(·), u2(·)) ≡ J(x; Θ∗
1X(·) + u1(·), Θ∗

2X(·) + u2(·))

= E

∫ ∞

0

[〈(
Q̃ S̃T

S̃ R

)(
X
u

)
,

(
X
u

)
〉+2 〈

(
q̃
ρ

)
,

(
X
u

)〉]
dt,

where
Q̃ = Q + (Θ∗)T S + ST Θ∗ + (Θ∗)T RΘ∗, S̃ = S + RΘ∗, q̃ = q + (Θ∗)T ρ.

From (ii)′ of Remark 5.3, we see that (Θ∗
1 , u∗

1(·); Θ∗
2 , u∗

2(·)) is a closed-loop saddle point of Problem (LQG)
if and only if (u∗

1(·), u∗
2(·)) is an open-loop saddle point for the problem with the above state equation and

performance functional. Applying the idea used in the proof of Theorem 4.4 (see also [16], Thm. 4.1), we see
that (Θ∗

1 , u∗
1(·); Θ∗

2 , u∗
2(·)) is a closed-loop saddle point of Problem (LQG) if and only if for any x ∈ R

n, the
adapted solution (X∗(·), Y ∗(·), Z∗(·)) ∈ X [0,∞) ×X [0,∞) × L2

F
(Rn) of the following FBSDE:⎧⎪⎨⎪⎩

dX∗(t) =
[
(A + BΘ∗)X∗ + Bu∗ + b

]
dt +

[
(C + DΘ∗)X∗ + Du∗ + σ

]
dW (t), t ≥ 0,

dY ∗(t) = −[(A + BΘ∗)T Y ∗ + (C + DΘ∗)T Z∗ + Q̃X∗ + S̃T u∗ + q̃
]
dt + Z∗dW (t), t ≥ 0,

X∗(0) = x,

(5.6)
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satisfies the following stationarity condition:

Ru∗ + BT Y ∗ + DT Z∗ + S̃X∗ + ρ = 0, a.e. a.s. (5.7)

and the following convexity-concavity conditions hold: For i = 1, 2,

(−1)i−1
E

∫ ∞

0

〈(
Q̃ S̃T

i

S̃i Rii

)(
Xi

ui

)
,

(
Xi

ui

)〉
dt ≥ 0, ∀ui(·) ∈ L2

F
(Rmi), (5.8)

where S̃i = Si + RiΘ
∗ and Xi(·) is the solution of{

dXi(t) =
[
(A + BΘ∗)Xi(t) + Biui(t)

]
dt +

[
(C + DΘ∗)Xi(t) + Diui(t)

]
dW (t), t ≥ 0,

Xi(0) = 0.
(5.9)

Applying the method used in the proof of Corollary 4.5, we obtain the following result.

Proposition 5.4. If (Θ∗
1 , u∗

1(·); Θ∗
2 , u∗

2(·)) is a closed-loop saddle point of Problem (LQG), then (Θ∗
1 , 0; Θ∗

2 , 0)
is a closed-loop saddle point of Problem (LQG)0.

Next, we consider the following algebraic Riccati equation:⎧⎪⎨⎪⎩
PA + AT P + CT PC + Q − (PB + CT PD + ST

)
(R + DT PD)†

(
BT P + DT PC + S

)
= 0,

R(BT P + DT PC + S
) ⊆ R(R + DT PD

)
,

R11 + DT
1 PD1 ≥ 0, R22 + DT

2 PD2 ≤ 0.

(5.10)

Definition 5.5. A P ∈ S
n is called a stabilizing solution of (5.10) if P is a solution to (5.10) and there exists

a Π ∈ R
m×n such that

−N (P )†L (P )T +
[
I − N (P )†N (P )

]
Π ∈ S [A, C; B, D].

Now we give a necessary condition for the existence of closed-loop saddle points of Problem (LQG)0.

Proposition 5.6. Suppose Problem (LQG)0 admits a closed-loop saddle point. Then ARE (5.10) admits a
stabilizing solution P .

Proof. We assume without loss of generality that (Θ∗
1 , 0; Θ∗

2 , 0) is a closed-loop saddle point of Problem (LQG)0.
Set

V 0(x) � J0(x; Θ∗
1X∗(·), Θ∗

2X∗(·)).
It is easily seen that V 0(·) is a quadratic form, that is, there is a P ∈ S

n such that

V 0(x) = 〈Px, x 〉, ∀x ∈ R
n.

Consider the state equation{
dX1(t) =

[
(A + B2Θ

∗
2)X1(t) + B1u1(t)

]
dt +

[
(C + D2Θ

∗
2)X1(t) + D1u1(t)

]
dW (t), t ≥ 0,

X1(0) = x,

with the cost functional

J1(x; u1(·)) ≡ J0(x; u1(·), Θ∗
2X1(·)) = E

∫ ∞

0

〈⎛⎝Q ST
1 ST

2

S1 R11 R12

S2 R21 R22

⎞⎠⎛⎝ X1

u1

Θ∗
2X1

⎞⎠ ,

⎛⎝ X1

u1

Θ∗
2X1

⎞⎠〉 dt

= E

∫ ∞

0

{
〈 [Q + (Θ∗

2)T R22Θ
∗
2 + (Θ∗

2)T S2 + ST
2 Θ∗

2

]
X1, X1 〉+ 〈R11u1, u1 〉+2 〈(S1 + R12Θ

∗
2)X1, u1 〉

}
dt.
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Then (Θ∗
1 , 0) is a closed-loop optimal control of Problem (LQ)0 with the above state equation and cost functional,

and the value function of the above problem is given by 〈Px, x 〉. By Theorem 4.6, P solves the following ARE:

PÃ1+ÃT
1 P +C̃T

1 PC̃1+Q̃1−
(
PB1+C̃T

1 PD1+S̃T
1

)
(R11+DT

1 PD1)†
(
BT

1 P +DT
1 PC̃1+S̃1

)
= 0, (5.11)

and (noting (4.15))

R11 + DT
1 PD1 ≥ 0, (R11 + DT

1 PD1)Θ∗
1 +

(
BT

1 P + DT
1 PC̃1 + S̃1

)
= 0, (5.12)

where

Ã1 = A + B2Θ
∗
2 , C̃1 = C + D2Θ

∗
2 , Q̃1 = Q + (Θ∗

2)T R22Θ
∗
2 + (Θ∗

2)T S2 + ST
2 Θ∗

2 , S̃1 = S1 + R12Θ
∗
2 .

Similarly, by considering the state equation{
dX2(t) =

[
(A + B1Θ

∗
1)X2(t) + B2u2(t)

]
dt +

[
(C + D1Θ

∗
1)X2(t) + D2u2(t)

]
dW (t), t ≥ 0,

X2(0) = x,

with the cost functional J2(x; u2(·)) ≡ −J0(x; Θ∗
1X2(·), u2(·)), we have

R22 + DT
2 PD2 ≤ 0, (R22 + DT

2 PD2)Θ∗
2 +

(
BT

2 P + DT
2 PC̃2 + S̃2

)
= 0, (5.13)

where
C̃2 = C + D1Θ

∗
1 , S̃2 = S2 + R21Θ

∗
1 .

Let Θ∗ = ((Θ∗
1)T , (Θ∗

2)T )T . Combining (5.12) and (5.13), one has

(R + DT PD)Θ∗ +
(
BT P + DT PC + S

)
= 0, (5.14)

which implies
R(BT P + DT PC + S

) ⊆ R(R + DT PD
)
.

Since N (P )†N (P ) is an orthogonal projection, there exists a Π ∈ R
m×n such that

Θ∗ = −N (P )†L (P )T +
[
I − N (P )†N (P )

]
Π ∈ S [A, C; B, D]. (5.15)

Using (5.11)–(5.14), we have

0 = PÃ1 + ÃT
1 P + C̃T

1 PC̃1 + Q̃1 −
(
PB1 + C̃T

1 PD1 + S̃T
1

)
(R11 +DT

1 PD1)†
(
BT

1 P +DT
1 PC̃1+S̃1

)
= PÃ1 + ÃT

1 P + C̃T
1 PC̃1 + Q̃1 − (Θ∗

1)T (R11 + DT
1 PD1)Θ∗

1

= PA + AT P + CT PC + Q + (Θ∗
2)T (R22 + DT

2 PD2)Θ∗
2 − (Θ∗

1)T (R11 + DT
1 PD1)Θ∗

1

+
(
PB2 + CT PD2 + ST

2

)
Θ∗

2 + (Θ∗
2)T

(
BT

2 P + DT
2 PC + S2

)
= PA + AT P + CT PC + Q − (Θ∗

1)T (R11 + DT
1 PD1)Θ∗

1 − (Θ∗
2)T (R22 + DT

2 PD2)Θ∗
2

+
[
(Θ∗

2)T (R22 + DT
2 PD2) +

(
PB2 + CT PD2 + ST

2

)]
Θ∗

2

+ (Θ∗
2)

T
[(

BT
2 P + DT

2 PC + S2

)
+ (R22 + DT

2 PD2)Θ∗
2

]
= PA + AT P + CT PC + Q − (Θ∗

1)T (R11 + DT
1 PD1)Θ∗

1 − (Θ∗
2)T (R22 + DT

2 PD2)Θ∗
2

− (Θ∗
1)

T
(
DT

1 PD2 + R12

)
Θ∗

2 − (Θ∗
2)T

(
DT

2 PD1 + R21

)
Θ∗

1

= PA + AT P + CT PC + Q − (Θ∗)T (R + DT PD)Θ∗

= PA + AT P + CT PC + Q − (PB + CT PD + ST
)
(R + DT PD)†

(
BT P + DT PC + S

)
.

(5.16)

Therefore, P is a stabilizing solution of ARE (5.10). �
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The following result, which is the main result of this paper, gives a characterization for closed-loop saddle
points of Problem (LQG).

Theorem 5.7. Problem (LQG) admits a closed-loop saddle point (Θ∗, u∗(·)) ∈ R
m×n × L2

F
(Rm) with Θ∗ ≡

((Θ∗
1)T , (Θ∗

2)T )T and u∗(·) ≡ (u∗
1(·)T , u∗

2(·)T )T if and only if the following hold:

(i) ARE (5.10) admits a stabilizing solution P ;

(ii) The following BSDE:

dη = −
{[

AT − L (P )N (P )†BT
]
η +

[
CT − L (P )N (P )†DT

]
ζ

+
[
CT − L (P )N (P )†DT

]
Pσ − L (P )N (P )†ρ + Pb + q

}
dt + ζdW (t), t ≥ 0,

(5.17)

admits an L2-stable adapted solution (η(·), ζ(·)) such that

BT η(t) + DT ζ(t) + DT Pσ(t) + ρ(t) ∈ R(N (P )
)
, a.e. t ∈ [0,∞), a.s. (5.18)

In this case, the closed-loop saddle point (Θ∗, u∗(·)) admits the following representation:{
Θ∗ = −N (P )†L (P )T +

[
I − N (P )†N (P )

]
Π,

u∗(·) = −N (P )†
[
BT η(·) + DT ζ(·) + DT Pσ(·) + ρ(·)]+

[
I − N (P )†N (P )

]
ν(·),

(5.19)

where Π ∈ R
m×n is chosen such that Θ∗ ∈ S [A, C; B, D], and ν(·) ∈ L2

F
(Rm).

Further, the value function admits the following representation:

V (x) = 〈Px, x 〉+ E

{
2 〈 η(0), x 〉+

∫ ∞

0

[ 〈Pσ, σ 〉+2 〈 η, b 〉+2 〈 ζ, σ 〉

− 〈(R + DT PD)†(BT η + DT ζ + DT Pσ + ρ), BT η + DT ζ + DT Pσ + ρ 〉 ]dt

}
.

(5.20)

Proof.
Necessity. Let (Θ∗, u∗(·)) ∈ R

m×n × L2
F
(Rm) be a closed-loop saddle point of Problem (LQG) with Θ∗ ≡

((Θ∗
1)T , (Θ∗

2)T )T and u∗(·) ≡ (u∗
1(·)T , u∗

2(·)T )T . It follows from Proposition 5.4 that (Θ∗
1 , 0; Θ∗

2 , 0) is a closed-
loop saddle point of Problem (LQG)0. By Proposition 5.6, ARE (5.10) admits a stabilizing solution P , and Θ∗

is given by (5.15).

To determine u∗(·), let (X∗(·), Y ∗(·), Z∗(·)) be the solution of (5.6). Then

Ru∗ + BT Y ∗ + DT Z∗ + (S + RΘ∗)X∗ + ρ = 0, a.e. a.s. (5.21)

and hence,

dY ∗ = −
{
(A + BΘ∗)T Y ∗ + (C + DΘ∗)T Z∗ + Q̃X∗ + S̃T u∗ + q̃

}
dt + Z∗dW (t)

= −
{
AT Y ∗ + CT Z∗ + (Q + ST Θ∗)X∗ + ST u∗ + q

+ (Θ∗)T
[
BT Y ∗ + DT Z∗ + (S + RΘ∗)X∗ + Ru∗ + ρ

]}
dt + Z∗dW (t)

= −
{
AT Y ∗ + CT Z∗ + (Q + ST Θ∗)X∗ + ST u∗ + q

}
dt + Z∗dW (t), t ≥ 0.
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Define {
η(t) = Y ∗(t) − PX∗(t),
ζ(t) = Z∗(t) − P (C + DΘ∗)X∗(t) − PDu∗(t) − Pσ(t),

t ≥ 0.

Noting M (P ) + L (P )Θ∗ = 0, we have

dη = dY ∗ − PdX∗

= −[AT Y ∗ + CT Z∗ + (Q + ST Θ∗)X∗ + ST u∗ + q
]
dt + Z∗dW

−P
[
(A + BΘ∗)X∗ + Bu∗ + b

]
dt − P

[
(C + DΘ∗)X∗ + Du∗ + σ

]
dW

= −
{
AT (η + PX∗) + CT

[
ζ + P (C + DΘ∗)X∗ + PDu∗ + Pσ

]
+(Q + ST Θ∗)X∗ + ST u∗ + q + P

[
(A + BΘ∗)X∗ + Bu∗ + b

]}
dt + ζdW

= −
{
AT η + CT ζ + M (P )X∗ + L (P )Θ∗X∗ + L (P )u∗ + CT Pσ + Pb + q

}
dt + ζdW

= −[AT η + CT ζ + L (P )u∗ + CT Pσ + Pb + q
]
dt + ζdW.

According to (5.21), we have (noting L (P )T + N (P )Θ∗ = 0)

0 = BT Y ∗ + DT Z∗ + (S + RΘ∗)X∗ + Ru∗ + ρ

= BT (η + PX∗) + DT
[
ζ + P (C + DΘ∗)X∗ + PDu∗ + Pσ

]
+ (S + RΘ∗)X∗ + Ru∗ + ρ

=
[
L (P )T + N (P )Θ∗]X∗ + BT η + DT ζ + DT Pσ + ρ + N (P )u∗

= BT η + DT ζ + DT Pσ + ρ + N (P )u∗.

Hence,

BT η + DT ζ + DT Pσ + ρ ∈ R(N (P )
)
, a.e. a.s.

Since N (P )†(BT η + DT ζ + DT Pσ + ρ) = −N (P )†N (P )u∗, and N (P )†N (P ) is an orthogonal projection,
we have

u∗ = −N (P )†(BT η + DT ζ + DT Pσ + ρ) +
[
I − N (P )†N (P )

]
ν

for some ν(·) ∈ L2
F
(Rm). Consequently,

L (P )u∗ = −L (P )N (P )†(BT η + DT ζ + DT Pσ + ρ) + L (P )
[
I − N (P )†N (P )

]
ν

= −L (P )N (P )†(BT η + DT ζ + DT Pσ + ρ).

Then

AT η + CT ζ + L (P )u∗ + CT Pσ + Pb + q

= AT η + CT ζ − L (P )N (P )†(BT η + DT ζ + DT Pσ + ρ) + CT Pσ + Pb + q

=
[
AT − L (P )N (P )†BT

]
η +

[
CT − L (P )N (P )†DT

]
ζ

+
[
CT − L (P )N (P )†DT

]
Pσ − L (P )N (P )†ρ + Pb + q.

Therefore, (η, ζ) is an L2-stable solution to (5.17).
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Sufficiency. Let (Θ∗, u∗(·)) be given by (5.19), where Π ∈ R
m×n is chosen so that Θ∗ ∈ S [A, C; B, D]. Then

N (P )Θ∗ + L (P )T = 0, M (P ) + L (P )Θ∗ + (Θ∗)T L (P )T + (Θ∗)T N (P )Θ∗ = 0, (5.22)

BT η + DT ζ + DT Pσ + ρ = −N (P )u∗, (5.23)

and [
(Θ∗)T + L (P )N (P )†

]
(BT η + DT ζ + DT Pσ + ρ) = −ΠT

[
I − N (P )N (P )†

]
N (P )u∗ = 0. (5.24)

We take any u(·) = (u1(·)T , u2(·)T )T ∈ L2
F
(Rm1) × L2

F
(Rm2), and let X(·) ≡ X(· ; x, u(·)) be the solution of the

following closed-loop system:{
dX(t) =

[
(A + BΘ∗)X(t) + Bu(t) + b(t)

]
dt +

[
(C + DΘ∗)X(t) + Du(t) + σ(t)

]
dW (t), t ≥ 0,

X(0) = x.

Then

J(x; Θ∗X(·) + u(·)) = E

∫ ∞

0

[〈(
Q ST

S R

)(
X

Θ∗X + u

)
,

(
X

Θ∗X + u

)〉
+ 2

〈(
q
ρ

)
,

(
X

Θ∗X + u

)〉]
dt

= E

∫ ∞

0

{〈[
Q + ST Θ∗ + (Θ∗)T S + (Θ∗)T RΘ∗]X, X

〉
+ 2 〈(S + RΘ∗)X, u〉

+ 〈Ru, u〉 + 2
〈
q + (Θ∗)T ρ, X

〉
+ 2 〈ρ, u〉

}
dt.

(5.25)

Applying Itô’s formula to t �→ 〈PX(t), X(t) 〉, one has (noting (5.22))

〈Px, x〉 = −E

∫ ∞

0

{〈[
P (A+BΘ∗)+(A+BΘ∗)T P

]
X, X

〉
+〈P (C+DΘ∗)X, (C+DΘ∗)X〉

+2 〈PX, Bu + b〉 + 2 〈P (C + DΘ∗)X, Du + σ〉) + 〈P (Du + σ), Du + σ〉
}
dt

= −E

∫ ∞

0

{〈[
(PA + AT P + CT PC) + (PB + CT PD)Θ∗ + (Θ∗)T (BT P + DT PC)

+ (Θ∗)T DT PDΘ∗]X, X
〉

+ 2
〈
(BT P + DT PC + DT PDΘ∗)X, u

〉
+2 〈P (C + DΘ∗)X, σ〉 +

〈
DT PDu, u

〉
+ 2

〈
DT Pσ, u

〉
+ 2 〈PX, b〉 + 〈Pσ, σ〉

}
dt

= −E

∫ ∞

0

{〈[
M (P ) + L (P )Θ∗ + (Θ∗)T L (P )T + (Θ∗)T N (P )Θ∗]X, X

〉
− 〈[Q + ST Θ∗ + (Θ∗)T S + (Θ∗)T RΘ∗]X, X

〉
+2
〈[

L (P )T + N (P )Θ∗ − (S + RΘ∗)
]
X, u

〉
+2 〈P (C + DΘ∗)X, σ〉 +

〈
DT PDu, u

〉
+ 2

〈
DT Pσ, u

〉
+ 2 〈PX, b〉 + 〈Pσ, σ〉

}
dt

= −E

∫ ∞

0

[
2 〈P (C + DΘ∗)X, σ〉 +

〈
DT PDu, u

〉
+ 2

〈
DT Pσ, u

〉
+ 2 〈PX, b〉 + 〈Pσ, σ〉

]
dt

+E

∫ ∞

0

〈[
Q + ST Θ∗ + (Θ∗)T S + (Θ∗)T RΘ∗]X, X

〉
+ 2 〈(S + RΘ∗)X, u〉dt.

(5.26)
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Applying Itô’s formula to t �→ 〈 η(t), X(t) 〉, one has (noting (5.24))

E 〈η(0), x〉 = E

∫ ∞

0

{ 〈[
AT −L (P )N (P )†BT

]
η+
[
CT −L (P )N (P )†DT

]
ζ

+
[
CT − L (P )N (P )†DT

]
Pσ − L (P )N (P )†ρ + Pb + q, X

〉
−〈(A + BΘ∗)X + Bu + b, η〉 − 〈ζ, (C + DΘ∗)X + Du + σ〉

}
dt

= E

∫ ∞

0

{
− 〈[(Θ∗)T + L (P )N (P )†

]
BT η +

[
(Θ∗)T + L (P )N (P )†

]
DT ζ, X

〉
− 〈[(Θ∗)T + L (P )N (P )†

]
DT Pσ, X

〉
+ 〈P (C + DΘ∗)X, σ〉

− 〈L (P )N (P )†ρ, X
〉

+ 〈Pb + q, X〉 − 〈Bu + b, η〉 − 〈ζ, Du + σ〉
}
dt

= E

∫ ∞

0

{
− 〈[(Θ∗)T + L (P )N (P )†

]
(BT η + DT ζ + DT Pσ + ρ), X

〉
+ 〈P (C+DΘ∗)X, σ〉+〈(Θ∗)Tρ+Pb+q, X

〉−〈Bu+b, η〉 − 〈ζ, Du + σ〉
}

dt

= E

∫ ∞

0

{
〈P (C+DΘ∗)X, σ〉 +

〈
(Θ∗)T ρ + Pb + q, X

〉− 〈Bu + b, η〉 − 〈ζ, Du + σ〉
}
dt.

(5.27)

Combining (5.25)–(5.27) and noting (5.23), we have

J(x; Θ∗X(·) + u(·)) − 〈Px, x〉 − 2 E 〈η(0), x〉
= E

∫ ∞

0

{
〈N (P )u, u〉 + 2

〈
BT η + DT ζ + DT Pσ + ρ, u

〉
+ 2 〈b, η〉 + 2 〈ζ, σ〉 + 〈Pσ, σ〉

}
dt

= E

∫ ∞

0

{
〈N (P )u, u〉 − 2 〈N (P )u∗, u〉 + 2 〈b, η〉 + 2 〈ζ, σ〉 + 〈Pσ, σ〉

}
dt

= E

∫ ∞

0

{
〈N (P )(u − u∗), u − u∗〉 − 〈N (P )u∗, u∗〉 + 2 〈b, η〉 + 2 〈ζ, σ〉 + 〈Pσ, σ〉

}
dt.

Consequently,

J(x; Θ∗
1X(·) + u1(·), Θ∗

2X(·) + u∗
2(·)) − J(x; Θ∗X∗(·) + u∗(·))

= E

∫ ∞

0

〈(R11 + DT
1 PD1)(u1 − u∗

1), u1 − u∗
1 〉dt ≥ 0

since R11 + DT
1 PD1 ≥ 0. Similarly,

J(x; Θ∗
1X(·) + u∗

1(·), Θ∗
2X(·) + u2(·)) − J(x; Θ∗X∗(·) + u∗(·))

= E

∫ ∞

0

〈(R22 + DT
2 PD2)(u2 − u∗

2), u2 − u∗
2 〉dt ≤ 0

since R22 + DT
2 PD2 ≤ 0. Therefore, (Θ∗, u∗(·)) is a closed-loop saddle point of Problem (LQG). Finally,

noting (5.23), we have

〈N (P )u∗, u∗〉 =
〈
N (P )N (P )†N (P )u∗, u∗〉 =

〈
N (P )†N (P )u∗, N (P )u∗〉

=
〈
(R + DT PD)†(BT η + DT ζ + DT Pσ + ρ), BT η + DT ζ + DT Pσ + ρ

〉
,
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and hence,

V (x) = J(x; Θ∗X(·) + u∗(·))
= 〈Px, x〉 + 2 E 〈η(0), x〉 + E

∫ ∞

0

{
− 〈N (P )u∗, u∗〉 + 2 〈b, η〉 + 2 〈ζ, σ〉 + 〈Pσ, σ〉

}
dt

= 〈Px, x〉 + E

{
2 〈η(0), x〉 +

∫ ∞

0

[
〈Pσ, σ〉 + 2 〈η, b〉 + 2 〈ζ, σ〉

− 〈(R + DT PD)†(BT η + DT ζ + DT Pσ + ρ), BT η + DT ζ + DT Pσ + ρ
〉 ]

dt

}
.

This completes the proof. �

Note that the above result is reduced to that for Problem (LQ) if m2 = 0. It is not hard for us to state such
a result and we omit the details here.

6. Examples

In this section we present some examples illustrating how the “stabilizing solution” of AREs plays an impor-
tant role in the study of closed-loop saddle points.

The first example shows that the algebraic Riccati equation may only admits non-stabilizing solutions even
if the system [A, C; B, D] is stabilizable.

Example 6.1. Consider the following one-dimensional state equation⎧⎨⎩dX(t) = −1
2
X(t)dt +

[
u1(t) + u2(t)

]
dW (t), t ≥ 0,

X(0) = x,

(6.1)

with the performance functional

J(x; u1(·), u2(·)) = E

∫ ∞

0

〈⎛⎝ 1 1 −1
1 1 0
−1 0 −1

⎞⎠⎛⎝X(t)
u1(t)
u2(t)

⎞⎠ ,

⎛⎝X(t)
u1(t)
u2(t)

⎞⎠〉 dt. (6.2)

In this example, ⎧⎪⎪⎨⎪⎪⎩
A = −1

2
, B = (0, 0), C = 0, D = (1, 1),

Q = 1, S = (1,−1)T , R =
(

1 0
0 −1

)
.

By Lemma 2.3, part (iv), the system [A, C; B, D] is stabilizable, and Θ = (Θ1, Θ2)T ∈ S [A, C; B, D] if and
only if

−1 + (Θ1 + Θ2)2 = 2(A + BΘ) + (C + DΘ)2 < 0 ( i.e., − 1 < Θ1 + Θ2 < 1). (6.3)

Note that R + DT PD is invertible for all P ∈ R with

(R + DT PD)−1 =
(

P + 1 P
P P − 1

)−1

=
(−P + 1 P

P −P − 1

)
.

Then the corresponding ARE reads

0 = PA + AT P + CT PC + Q − (PB + CT PD + ST
)
(R + DT PD)†

(
BT P + DT PC + S

)
= −P + 1 − (1,−1)

(−P + 1 P
P −P − 1

)(
1
−1

)
= 3P + 1.

(6.4)
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Thus, P = −1/3 and

R11 + DT
1 PD1 =

2
3
≥ 0, R22 + DT

2 PD2 = −4
3
≤ 0. (6.5)

Also, the range condition
R(BT P + DT PC + S

) ⊆ R(R + DT PD
)

(6.6)

holds automatically since R + DT PD is invertible. However, we have

[
I − N (P )†N (P )

]
Π − N (P )†L (P )T ≡

(
−5

3
,−1

3

)T

, ∀Π ∈ R, (6.7)

which is not a stabilizer of the system [A, C; B, D]. Hence, by Theorem 5.7, the above problem does not admit
closed-loop saddle points. From this example, we see that ARE (5.10) may only admit non-stabilizing solutions.

Next we give an example of Problem (LQG)0 which admits uncountably many closed-loop saddle points. It
also tells us when the algebraic Riccati equation is solvable, −N (P )†L (P )T may not be a stabilizer of the
system [A, C; B, D] in general, and we should carefully choose Π so that

[
I−N (P )†N (P )

]
Π−N (P )†L (P )T

is a closed-loop saddle point of the game.

Example 6.2. Consider the following one-dimensional state equation⎧⎪⎨⎪⎩dX(t) = −
[

1
4
X(t) +

1
2
u2(t)

]
dt +

[− X(t) + u1(t)
]
dW (t), t ≥ 0,

X(0) = x,

(6.8)

with the performance functional

J(x; u1(·), u2(·)) = E

∫ ∞

0

〈⎛⎝ 1
2 −1 − 1

2−1 1 0
− 1

2 0 0

⎞⎠⎛⎝X(t)
u1(t)
u2(t)

⎞⎠ ,

⎛⎝X(t)
u1(t)
u2(t)

⎞⎠〉dt. (6.9)

In this example, ⎧⎪⎪⎪⎨⎪⎪⎪⎩
A = −1

4
, B =

(
0,−1

2

)
, C = −1, D = (1, 0),

Q =
1
2
, S =

(
−1,−1

2

)T

, R =
(

1 0
0 0

)
.

By Lemma 2.3, part (iv), Θ = (Θ1, Θ2)T ∈ S [A, C; B, D] if and only if

2
(
−1

4
− 1

2
Θ2

)
+ (−1 + Θ1)2 = 2(A + BΘ) + (C + DΘ)2 < 0,

that is,

Θ2
1 − 2Θ1 +

1
2

< Θ2. (6.10)

The corresponding ARE reads

0 = PA + AT P + CT PC + Q − (PB + CT PD + ST
)
(R + DT PD)†

(
BT P + DT PC + S

)
=

1
2
(P + 1) −

(
−(P + 1),−1

2
(P + 1)

)(
P + 1 0

0 0

)†( −(P + 1)
− 1

2 (P + 1)

)
=

1
2
(P + 1) − 1

4
(P + 1)2(2, 1)

(
P + 1 0

0 0

)†(
2
1

)
.

(6.11)
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It is easy to verify that P = −1 is the unique solution of (6.11). Thus,

N (P ) = (R + DT PD) =
(

0 0
0 0

)
, L (P ) = PB + CT PD + ST = (0, 0).

Hence, all the conditions

R11 + DT
1 PD1 ≥ 0, R22 + DT

2 PD2 ≤ 0, R(BT P + DT PC + S
) ⊆ R(R + DT PD

)
hold. By Theorem 5.7, we see that

(Θ1, ν1(·); Θ2, ν2(·)) with Θ2
1 − 2Θ1 +

1
2

< Θ2, ν1(·), ν2(·) ∈ L2
F
(R) (6.12)

are all the closed-loop saddle points of the above problem. However,

−N (P )†L (P )T = (0, 0)T �∈ S [A, C; B, D].

Also, from this example, we see that even if −N (P )†L (P )T is not a stabilizer of the system, Problem (LQG)
may still admit closed-loop saddle points, thanks to the fact that we can properly choose Π �= 0 so that the
term [I − N (P )†N (P )]Π could play a role.

Finally, we present an example showing that not all of the stabilizers are necessarily closed-loop saddle points
of the game. It may happens that the system [A, C; B, D] have more than one (uncountably many) stabilizer,
while the closed-loop saddle point is unique.

Example 6.3. Consider the following one-dimensional state equation{
dX(t) =

[− 8X(t) + u1(t) − u2(t)
]
dt +

[
u1(t) + u2(t)

]
dW (t), t ≥ 0,

X(0) = x,
(6.13)

with the performance functional

J(x; u1(·), u2(·)) = E

∫ ∞

0

[
12X(t)2 + u1(t)2 − u2(t)2

]
dt. (6.14)

In this example, ⎧⎪⎨⎪⎩
A = −8, B = (1,−1), C = 0, D = (1, 1),

Q = 12, S = (0, 0)T , R =
(

1 0
0 −1

)
.

By Lemma 2.3, part (iv), Θ = (Θ1, Θ2)T ∈ S [A, C; B, D] if and only if

−16 + 2(Θ1 − Θ2) + (Θ1 + Θ2)2 < 0. (6.15)

The corresponding ARE reads

0 = PA + AT P + CT PC + Q − (PB + CT PD + ST
)
(R + DT PD)†

(
BT P + DT PC + S

)
= −16P + 12 − P 2(1,−1)

(
P + 1 P

P P − 1

)†(
1
−1

)
= −16P + 12 − P 2(1,−1)

(−P + 1 P
P −P − 1

)(
1
−1

)
= 4P 3 − 16P + 12,

(6.16)
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which has three solutions:

P1 = 1, P2 =
−1 +

√
13

2
, P3 =

−1 −√
13

2
·

All of them satisfy the range condition

R(BT P + DT PC + S
) ⊆ R(R + DT PD

)
(6.17)

since R + DT PD is invertible for any P ∈ R. However, only P1 = 1 satisfies

R11 + DT
1 PD1 ≥ 0, R22 + DT

2 PD2 ≤ 0. (6.18)

For any Π ∈ R, [
I − N (P1)†N (P1)

]
Π − N (P1)†L (P1)T ≡ (1,−3)T , (6.19)

which satisfies (6.15) and hence is a stabilizer of the system [A, C; B, D]. By Theorem 5.7, the above problem
admits a unique closed-loop saddle point (1, 0;−3, 0).

On the other hand, by verifying (6.15), we see that

(Θ∗
1 , Θ∗

2) = (1,−3), (Θ̃1, Θ̃2) = (0, 0),

(Θ∗
1 , Θ̃2) = (1, 0), (Θ̃1, Θ

∗
2) = (0,−3)

are stabilizers of [A, C; B, D], but only (Θ∗
1 , Θ∗

2) is the closed-loop saddle point of the problem.
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