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ASYMPTOTIC QUANTIZATION FOR PROBABILITY MEASURES
ON RIEMANNIAN MANIFOLDS

Mikaela Iacobelli
1,2

Abstract. In this paper we study the quantization problem for probability measures on Riemannian
manifolds. Under a suitable assumption on the growth at infinity of the measure we find asymptotic
estimates for the quantization error, generalizing the results on R

d. Our growth assumption depends
on the curvature of the manifold and reduces, in the flat case, to a moment condition. We also build
an example showing that our hypothesis is sharp.
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1. Introduction

The problem of quantization of a d-dimensional probability distribution deals with constructive methods to
find atomic probability measures supported on a finite number of points, which best approximate a given diffuse
probability measure. The quality of this approximation is usually measured in terms of the Wasserstein metric,
and up to now this problem has been studied in the flat case and on compact manifolds.

The quantization problem arises in several contexts and has applications in signal compression, stochastic
processes, numerical integration, optimal location of service centers, and kinetic theory. For a complete list
of references, we refer to the monograph [5] and references therein. In this paper we study it for probability
measures on general Riemannian manifolds.

We now introduce the setting of the problem. Let (M, g) be a complete Riemannian manifold, and fixed
r ≥ 1, consider μ a probability measure on M. Given N points x1, . . . , xN ∈ M, one wants to find the best
approximation of μ, in the Wasserstein distance Wr, by a convex combination of Dirac masses centered at
x1, . . . , xN . Hence one minimizes

inf
{

Wr

( ∑
i

miδxi , μ

)r

: m1, . . . , mN ≥ 0,
∑

i

mi = 1
}

,
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with

Wr(ν1, ν2) := inf
{(∫

M×M
d(x, y)rdγ(x, y)

)1/r

: (π1)#γ = ν1, (π2)#γ = ν2

}
,

where γ varies among all probability measures on M×M, πi : M×M → M (i = 1, 2) denotes the canonical
projection onto the ith factor, and d(x, y) denotes the Riemannian distance; see [10] for more details on the
Wasserstein distance between probability measures.

The best choice of the masses mi is explicit and can be expressed in terms of the so-called Voronoi cells ([5],
Chap. 1.4). Also, as shown for instance in ([5], Chap. 1, Lems. 3.1 and 3.4), the following identity holds:

inf
{

Wr

( ∑
i

miδxi , μ

)r

: m1, . . . , mN ≥ 0,
∑

i

mi = 1
}

= FN,r(x1, . . . , xN ),

where
FN,r(x1, . . . , xN ) :=

∫
M

min
1≤i≤N

d(xi, y)r dμ(y).

Hence, the main question becomes: Where are the “optimal points” (x1, . . . , xN ) located? To answer to this
question, at least in the limit as N → ∞, let us first introduce some definitions.

Definition 1.1. Let μ be a probability a probability measure on M, N ∈ N and r ≥ 1. Then, we define the N
quantization error of order r, VN,r(μ) as follows:

VN,r(μ) := inf
α⊂M:|α|≤N

∫
M

min
a∈α

d(a, y)r dμ(y), (1.1)

where |α| denotes the cardinality of a set α.
Let us notice that, the functional FN,r being decreasing with respect to the number of points N, an equivalent

definition of VN,r is:
VN,r(μ) := inf

x1,...,xN∈M
FN,r(x1, . . . , xN ).

Let us observe that the above definitions make sense for general positive measures with finite mass. In the
sequel we will sometimes consider this class of measures in order to avoid renormalization constants.

A quantity that plays an important role in our result is the following:

Definition 1.2. Let dx be the Lebesgue measure and χ[0,1]d the characteristic function of the unit cube [0, 1]d.
We set

Qr

(
[0, 1]d

)
:= inf

N≥1
N r/dVN,r

(
χ[0,1]ddx

)
.

As proved in ([5], Thm. 6.2), Qr([0, 1]d) is a positive constant. The following result describes the asymptotic
distribution of the minimizing configuration in Rd, answering to our question in the flat case (see [4,5], Chap. 2,
Thms. 6.2 and 7.5):

Theorem 1.3. Let μ = h dx + μs be a probability measure on R
d, where μs denotes the singular part of μ.

Assume that μ satisfies ∫
Rd

|x|r+δ dμ(x) < ∞. (1.2)

Then

lim
N→∞

N r/dVN,r(μ) = Qr

(
[0, 1]d

) (∫
Rd

hd/(d+r) dx

)(d+r)/d

. (1.3)

In addition, if μs ≡ 0 and x1, . . . , xN minimize the functional FN,r : (Rd)N → R+, then

1
N

N∑
i=1

δxi ⇀
hd/d+r∫

Rd hd/d+r(y)dy
dx as N → ∞. (1.4)
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It is worth to mention that the problem of the quantization of measure has been studied also with a Γ -
convergence approach in [1–3,7]. It is reasonable that, using the results in [7], the convergence of the empirical
measure to a certain power of the measure h in Theorem 1.3 holds whenever the measure μ has an absolutely
continuous part. Nevertheless, we do not investigate this question since this paper is focused on the extension
of the first statement in Theorem 1.3 to the case of probability measures on general Riemannian manifolds.
Such a statement has been generalized to the case of absolutely continuous probability measures on compact
Riemannian manifolds in [6]. The aim of this paper is twofold: we first give an alternative proof of Theorem 1.3
for general probability measures on compact manifolds, and then we extend it to arbitrary measures on non-
compact manifolds. As we shall see, passing from the compact to the non-compact setting presents nontrivial
difficulties. Indeed, while the compact case relies on a localization argument that allows one to mimic the proof
in Rd, the non-compact case requires additional new ideas. In particular one needs to find a suitable analogue
of the moment condition (1.2) to control the growth at infinity of our given probability measure. We will prove
that the needed growth assumption depends on the curvature of the manifold (and more precisely, on the size
of the differential of the exponential map).

To state in detail our main result we need to introduce some notation: given a point x0 ∈ M, we can consider
polar coordinates (ρ, ϑ) on Tx0M � Rd induced by the constant metric gx0 , where ϑ denotes a vector on the
unit sphere Sd−1 and ρ is the the value of the norm in the metric gx0 . Then, we can define the following quantity
that measures the size of the differential of the exponential map when restricted to a sphere Sd−1

ρ ⊂ Tx0M of
radius ρ:

Ax0(ρ) := sup
v∈S

d−1
ρ , w∈TvS

d−1
ρ , |w|x0=ρ

∣∣∣dv expx0
[w]

∣∣∣
expx0

(v)
. (1.5)

To prove asymptotic quantization, we shall impose an analogue of (1.2) which involves the above quantity.

Theorem 1.4. Let (M, g) be a complete Riemannian manifold without boundary, and let μ = h dvol + μs be a
probability measure on M. Assume there exist a point x0 ∈ M and δ > 0 such that∫

M
d(x, x0)r+δ dμ(x) +

∫
M

Ax0

(
d(x, x0)

)r dμ(x) < ∞. (1.6)

Then (1.3) holds.

Once this theorem is obtained, by the very same argument as in ([5], Proof of Thm. 7.5) one gets the following:

Corollary 1.5. Let (M, g) be a complete Riemannian manifold without boundary, μ = h dvol an absolutely
continuous probability measure on M and let x1, . . . , xN minimize the functional FN,r : M⊗N → R+. Assume
there exist a point x0 ∈ M and δ > 0 for which (1.6) is satisfied. Then (1.4) holds.

Notice that the quantity Ax0 is related to the curvature of M, being linked to the size of the Jacobi fields (see
for instance [8], Chap. 10). In particular, if M = Hd is the hyperbolic space then Ax0(ρ) = sinh ρ, while on Rd

we have Ax0(ρ) = ρ. Hence the above condition on H
d reads as(

1 +
∫

Hd

d(x, x0)r+δ dμ(x) +
∫

Hd

sinh
(
d(x, x0)

)r dμ(x)
)

≈
∫

Hd

er d(x,x0) dμ(x),

and on Rd as (
1 +

∫
Rd

d(x, x0)r+δ dμ(x) +
∫

Rd

d(x, x0)
r dμ(x)

)
≈

∫
Rd

d(x, x0)r+δ dμ(x).

Hence (3.2) holds on Hd for any probability measure μ satisfying∫
Hd

er d(x,x0) dμ(x) < ∞
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for some x0 ∈ Hd, while on Rd we only need the finiteness of some (r + δ)-moments of μ, therefore recovering
the assumption in Theorem 1.3. More in general, thanks to Rauch Comparison Theorem ([8], Thm. 11.9), the
size of the Jacobi fields on a manifold M with sectional curvature bounded from below by −K (K ≥ 0) is
controlled by the Jacobi fields on the hyperbolic space with sectional curvature −K. Hence in this case

Ax0(ρ) ≤ sinh(Kr) ≈ eKr,

and Theorem 1.4 yields the following:

Corollary 1.6. Let (M, g) be a complete Riemannian manifold without boundary, and let μ = h dvol + μs be
a probability measure on M. Assume that the sectional curvature of M is bounded from below by −K for some
K ≥ 0, and that there exist a point x0 ∈ M and δ > 0 such that∫

M
d(x, x0)r+δ dμ(x) +

∫
M

eKr d(x,x0) dμ(x) < ∞.

Then (1.3) holds. In addition, if μs ≡ 0 and x1, . . . , xN minimize the functional FN,r : (Rd)N → R
+, then (1.4)

holds.

Let us observe that, by the argument in the proof of Theorem 1.7 in the Corollary above the moment condition
does not depend on the choice of the point x0.

Finally, we show that the moment condition (1.2) required on Rd is not sufficient to ensure the validity of
the result on Hd. Indeed we can provide the following counter example on H2.

Theorem 1.7. There exists a measure μ on H2 such that∫
H2

d(x, x0)p dμ < ∞ ∀ p > 0, ∀x0 ∈ H
2,

but
N r/2VN,r(μ) → ∞ as N → ∞.

The paper is structured as follows: first, in Section 2 we prove Theorem 1.4 for compactly supported prob-
ability measures. Then, in Section 3 we deal with the non-compact case concluding the proof of Theorem 1.4.
Finally, in Section 4 we prove Theorem 1.7.

2. Proof of Theorem 1.4: The compact case

This section is concerned with the study of asymptotic quantization for probability distributions on compact
Riemannian manifolds as the number N of points tends to infinity. Although the problem depends a priori on
the global geometry of the manifold (since VN,r involves the Riemannian distance), we shall now show how a
localization argument allows us to prove the result.

2.1. Localization argument

Let (M, g) be a complete Riemannian manifold without boundary and let μ be a probability measure on M.
We consider {Ui, ϕi}i∈I an atlas covering M, and ϕi : Wi → Rd smooth charts, where Wi ⊃⊃ Ui for all i ∈ I.
As we shall see, in order to be able to split our measure as a sum of measures supported on smaller sets, we
want to avoid the mass to concentrate on the boundary of the sets Ui. Hence, up to slightly changing the sets Ui,
we may assume that

μ(∂Ui) = 0 ∀ i ∈ I. (2.1)
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MWiVi
ϕi  (Qi,j)

Qi,j
ϕi(Vi)

ϕi(Wi)

ϕi

RdI

-1

Figure 1. We use the map ϕ−1
i : ϕi(Wi) ⊂ R

d → Wi ⊂ M to send the partition in cubes
Qi,j of ϕi(Vi) on M.

We want to cover M with an atlas of disjoint sets, up to sets of μ-measure zero. To do that we define

Vi := Ui \
(i−1⋃

j=1

Uj

)
.

Notice that we still have Vi ⊂⊂ Wi.
Given an open subset of R

d, we can cover it with a countable partition of half-open disjoint cubes such that
the maximum length of the edges is a given number δ. We now apply this observation to each open subset

ϕi(
◦
V i) ⊂ Rd and we cover it with a family Gi of half-open cubes {Qi,j}j∈N with edges of length �j ≤ δ.
We notice that the “cubes” ϕ−1

i (Qi,j) ⊂ M are disjoint and⋃
i∈I

⋃
Qi,j∈Gi

Qi,j = M\
(⋃

i

∂Ui

)
.

Since by (2.1) the set ∪i∂Ui has zero μ-measure, we can decompose the measure μ as

μ =
∑
i∈I

μ1Vi =
∑
i∈I

∑
Qi,j∈Gi

μ1Vi∩ϕ−1
i (Qi,j)

.

We now set

αij :=
∫
Vi∩ϕ−1

i (Qi,j)

dμ, μij :=
μ1Vi∩ϕ−1

i (Qi,j)

αij
,

so that
μ =

∑
ij

αij μij ,

∫
M

dμij = 1, supp(μij) ⊂ Vi ∩ ϕ−1
i (Qi,j),

where, to simplify the notation, in the above formula the indices i, j implicitly run over i ∈ I, Qi,j ∈ Gi. We will
keep using this convention also later on.

The idea is now the following: by choosing δ small enough, each measure μij is supported on a very small set
where the metric is essentially constant and allows us to reduce ourselves to the flat case and apply Theorem 1.3
to each of these measures. A “gluing argument” then gives the result when μ =

∑
ij αijμij is compactly

supported, αij �= 0 for at most finitely many indices, and μij has constant density on ϕ−1
i (Qi,j). Finally, an

approximation argument yields the result for general compactly supported measures.
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2.2. The local quantization error

The goal of this section is to understand the behavior of VN,r(μ) when

μ = λ1ϕ−1(Q) dvol, (2.2)

where λ := 1
vol(ϕ−1(Q)) (so that μ has mass 1), Q is a δ-cube in Rd, ϕ : W → Rd is a diffeomorphism defined on

a neighborhood W ⊂ M of ϕ−1(Q).
We observe that, in the computation of VN,r(μ), if the size of the cube is sufficiently small then we can assume

that all the points belong to a Kδ-neighborhood of ϕ−1(Q), with K a large universal constant, that we denote
by ZKδ. Indeed, if dist(b, ϕ−1(Q)) > Kδ then dist(x, b) > dist(x, y) for all x, y ∈ ϕ−1(Q), which implies that,
in the definition of VN,r(μ), it is better to substitute b with an arbitrary point inside ϕ−1(Q).

Hence, denoting by β a family of N points inside a ZKδ, and by α a family of N points inside ϕ(ZKδ), we
have

VN,r(μ) = λ inf
β

∫
Q

min
a∈α

d
(
ϕ−1(x), ϕ−1(a)

)r √
det gk�(x) dx. (2.3)

We now begin by showing that d
(
ϕ−1(x), ϕ−1(a)

)
can be approximated with a constant metric. We use the

notation gk� to denote the metric in the chart, that is∑
k�

gk�(x)vkv� := gϕ−1(x)

(
dϕ−1(x)[v], dϕ−1(x)[v]

)
, ∀x ∈ ϕ(W), v ∈ R

d. (2.4)

Lemma 2.1. Let p be the center of the cube Q and let A be the matrix with entries Ak� := gk�(p). There exists
a universal constant Ĉ such that, for all x ∈ Q and a ∈ ϕ(ZKδ), it holds

(1 − Ĉδ) 〈A(x − a), x − a〉 ≤ d
(
ϕ−1(x), ϕ−1(a)

)2 ≤ (1 + Ĉδ) 〈A(x − a), x − a〉.
Proof. We begin by recalling that 3

d
(
ϕ−1(x), ϕ−1(a)

)2 = inf
γ(0)=ϕ−1(x),

γ(1)=ϕ−1(a)

∫ 1

0

gγ(t)

(
γ̇(t), γ̇(t)

)
dt.

Let γ̄ : [0, 1] → M denote a minimizing geodesic4. Then the speed of γ̄ is constant and equal to the distance
between the two points, that is

‖ ˙̄γ(t)‖g :=
√

gγ̄(t)

(
˙̄γ(t), ˙̄γ(t)

)
= d

(
ϕ−1(x), ϕ−1(a)

)
. (2.5)

We can bound from above d
(
ϕ−1(x), ϕ−1(a)

)
by choosing a curve γ obtained by the image via ϕ−1 of a segment:

d
(
ϕ−1(x), ϕ−1(a)

)2 ≤
∫ 1

0

gσ(t)

(
σ̇(t), σ̇(t)

)
dt, σ(t) := ϕ−1

(
(1 − t)x + ta

)
.

3Recall that there are two equivalent definition of the distance between two points:

d(x, y) = inf
γ(0)=x,
γ(1)=y

∫ 1

0

√
gγ(t)

(
γ̇(t), γ̇(t)

)
dt = inf

γ(0)=x,
γ(1)=y

√∫ 1

0
gγ(t)

(
γ̇(t), γ̇(t)

)
dt.

In this paper we will make use of both definitions.
4Notice that the hypothesis of completeness on M ensures the existence of minimizing geodesics.
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Observe that this formula makes sense since (1 − t)x + ta ∈ ϕ(W) provided δ is sufficiently small.
Since √∫ 1

0

gσ(t)

(
σ̇(t), σ̇(t)

)
dt ≤ C′|x − a| (2.6)

for some universal constant C′, combining (2.5) and (2.6) we deduce that

‖ ˙̄γ(t)‖g ≤ C′|x − a| ≤ C′′δ ∀ t ∈ [0, 1].

In particular
d(γ̄(t), x) = d(γ̄(t), γ̄(0)) ≤ C′′δ for all t ∈ [0, 1],

which implies that γ̄ belongs to the Kδ-neighborhood of ϕ−1(Q), that is γ̄ ⊂ ZC′′δ.
Thanks to this fact we deduce that in the definition of the distance we can restrict to curves contained inside

ZC′′δ. Since ZC′′δ ⊂ W for δ sufficiently small, all such curves can be seen as the image through ϕ−1 of a curve
contained inside ϕ(W) ⊂ Rd. Notice that, by (2.4), if σ(t) := ϕ(γ(t)) =

(
σ1(t), . . . , σn(t)

) ∈ Rd then

gγ(t)

(
γ̇(t), γ̇(t)

)
=

∑
k�

gk�(σ(t))σ̇k(t)σ̇�(t),

therefore

d
(
ϕ−1(x), ϕ−1(a)

)2 ≤ (
1 + Ĉδ

)
inf

σ(0)=x, σ(1)=a,
σ⊂ϕ(ZC′′δ)

∫ 1

0

∑
k�

Ak�σ̇
k(t)σ̇�(t) dt,

where we used that, by the Lipschitz regularity of the metric and the fact that gk� is positive definite, we have

∑
k�

gk�(z)vkv� ≤ (1 + Ĉδ)
∑
k�

Ak�v
kv� ∀ z ∈ ϕ(ZC′′δ), ∀ v ∈ R

d.

Using now that the minimizer for the problem

inf
σ(0)=x, σ(1)=a

∫ 1

0

∑
k�

Ak�σ̇
k(t)σ̇�(t) dt

is given by a straight segment, and since this segment is contained inside ϕ(ZC′′δ), we obtain

inf
σ(0)=x, σ(1)=a,

σ⊂ϕ(ZC′′δ)

∫ 1

0

∑
k�

Ak�σ̇
k(t)σ̇�(t) dt = 〈A(x − a), x − a〉,

which proves

d
(
ϕ−1(x), ϕ−1(a)

)2 ≤ (
1 + Ĉδ

)〈A(x − a), x − a〉.
The lower bound is proved analogously using that

∑
k�

gk�(z)vkv� ≥ (1 − Ĉδ)
∑
k�

Ak�v
kv� ∀ z ∈ ϕ(ZC′′δ), ∀ v ∈ R

d,

concluding the proof. �
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Applying now this lemma, we can estimate VN,r(μ) both from above and below. Since the argument in both
cases is completely analogous, we just prove the upper bound.

Notice that, by the Lipschitz regularity of the metric and the fact that det gk� is bounded away from zero,
we have √

det gk�(x) ≤ (1 + Cδ)
√

det gk�(p) = (1 + Cδ)
√

det A ∀x ∈ Q.

Combining this estimate with (2.3) and Lemma 2.1, we get

VN,r(μ) ≤ (1 + C′δ)λ inf
α

∫
Q

min
a∈α

〈A(x − a), x − a〉r/2
√

det Adx

= (1 + C′δ)λ inf
α

∫
A1/2(Q)

min
a∈α

|z − a|r dz,

where | · | denotes the Euclidean norm.
We now apply Theorem 1.3 to the probability measure 1

|A1/2(Q)|1A1/2(Q) dz to get

lim sup
N→∞

N r/dVN,r(μ) ≤ (1 + C′δ)λQr

(
[0, 1]d

) |A1/2(Q)|(d+r)/d.

Observing that

|A1/2(Q)| =
∫

Q

√
detA dx ≤ (1 + Cδ)

∫
Q

√
det gk�(x) dx = (1 + Cδ)

1
λ

,

we conclude that
lim sup
N→∞

N r/dVN,r(μ) ≤ (
1 + C̄ δ

)
Qr

(
[0, 1]d

)
vol(ϕ−1(Q))r/d. (2.7)

Arguing similarly for the lower bound, we also have

lim inf
N→∞

N r/dVN,r(μ) ≥ (1 − C̄δ)Qr

(
[0, 1]d

)
vol(ϕ−1(Q))r/d, (2.8)

which concludes the local analysis of the quantization error for μ as in (2.2).

2.3. Upper bound for VN,r

We consider a compactly supported measure μ =
∑

ij αijμij where αij �= 0 for at most finitely many indices,
and μij is of the form λij1ϕ−1

i (Qi,j)
d vol with

ϕ−1
i (Qi,j) ∩ ϕ−1

i′ (Qj′) = ∅, ∀ i, i′, ∀ j �= j′,

and λij := 1
vol(ϕ−1

i (Qi,j))
(so that each measure μij has mass 1).

To estimate VN,r(μ) we first observe that, for any choice of Nij such that
∑

ij Nij ≤ N the following inequality
holds:

VN,r(μ) ≤
∑
ij

αij VNij ,r(μij).

We want to chose the Nij in an optimal way. As it will be clear from the estimates below, the best choice is to
set 5

tij :=

(
αij vol(ϕ−1

i (Qi,j))r/d
)d/(d+r)

∑
k�

(
αk� vol(ϕ−1

k (Q�))r/d
)d/(d+r)

,

5Notice that, if we were on Rd and ϕi were just the identity map, then the formula for tij simplifies to

tij =
(αij)

d/(d+r)∑
k� (αk�)

d/(d+r)
,

that is the exact same formula used in ([5], Proof of Thm. 6.2, Step 2).
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and define
Nij := [tijN ].

Notice that Nij satisfy
∑

ij Nij ≤ N and
∑

ij
Nij

N → 1 as N → ∞. We observe that each measure μij is
a probability measure supported in only one “cube” with constant density. Hence we can apply the local
quantization error (2.7) to each measure μij to get that

lim sup
Nij→∞

N
r/d
ij VNij ,r(μij) ≤ (1 + C̄δ)Qr

(
[0, 1]d

)
vol(ϕ−1

i (Qi,j))r/d.

Recalling our choice of Nij ,

lim sup
N→∞

N r/dVN,r(μ) ≤ (1 + C̄δ)Qr

(
[0, 1]d

) ∑
ij

αijt
−r/d
ij vol(ϕ−1

i (Qi,j))r/d,

and observing that ∑
ij

αij t
−r/d
ij vol(ϕ−1

i (Qi,j))r/d =
(∫

M
hd/(d+r) dvol

)(d+r)/d

,

we get

lim sup
N→∞

N r/dVN,r(μ) ≤ (1 + C̄δ)Qr

(
[0, 1]d

) (∫
M

hd/(d+r) dvol
)(d+r)/d

.

2.4. Lower bound for VN,r

We consider again a compactly supported measure μ =
∑

ij αijμij where αij �= 0 for at most finitely many
indices, and μij is of the form λij1ϕ−1

i (Qi,j)
d vol with

ϕ−1
i (Qi,j) ∩ ϕ−1

i′ (Qj′) = ∅, ∀ i, i′, ∀ j �= j′,

and λij := 1
vol(ϕ−1

i (Qi,j))
(so that

∫
M μij = 1). Fix ε > 0 with ε � δ, and consider the cubes Qj,ε given by

Qj,ε := {y ∈ Qi,j : dist(y, ∂Qi,j) > ε}.
Also, consider a set γij consisting of Kij points such that

min
a∈γij

d(x, a) ≤ inf
z∈M\ϕ−1

i (Qi,j)
d(x, z) ∀x ∈ ϕ−1

i (Qj,ε) s.t. ϕ−1
i (Qi,j) ∩ supp(μ) �= ∅.

Notice that the property of μ being compactly supported ensures that

K := max
{

Kij : ϕ−1
i (Qi,j) ∩ supp(μ) �= ∅

}
< ∞.

Then, if β is a set of N points optimal for VN,r(μ) and βij := β ∩ ϕ−1
i (Qj),

VN,r(μ) ≥
∑
ij

∫
ϕ−1

i (Qj,ε)

min
b∈β∪γij

d(x, b)r dμ ≥
∑
ij

αε
ij VNij+Kij ,r(με

ij), (2.9)

where

αε
ij :=

∫
Vi∩ϕ−1

i (Qj,ε)

dμ, με
ij :=

1Vi∩ϕ−1
i (Qj,ε) dvol

vol
(
ϕ−1

i (Qj,ε)
) , Nij := #βij .

We notice that αε
ij → αij as ε → 0.
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Let L := lim infN→∞ N r/dVN,r(μ). Notice that L < ∞ by the upper bound proved in the previous step.
Choose a subsequence N(k) such that

N(k)r/dVN(k),r(μ) → L as k → ∞

and, for all i, j,
Nij(k)
N(k)

→ vij ∈ [0, 1] as k → ∞.

Since
∑

ij Nij(k) = N(k) we have
∑

ij vij = 1.
Moreover Nij(k) → ∞ for every i, j. Indeed, if not, it would contradict the finiteness of L, see also ([5],

Thm. 6.2, Step 2).
Thanks to this fact, we can now apply the local quantization error (2.8) to deduce that

lim inf
k→∞

Nij(k)r/dVNij(k)+Kij(k),r(με
ij) ≥ (1 − C̄δ)Qr

(
[0, 1]d

)
vol(ϕ−1

i (Qj,ε))r/d,

which implies that (recalling (2.9))

L ≥ (1 − C̄δ)Qr

(
[0, 1]d

) ∑
ij

αε
ij v

−r/d
ij vol(ϕ−1

i (Qj,ε))r/d.

Letting ε → 0 and applying ([5], Lem. 6.8) we finally obtain

L ≥ (1 − C̄δ)Qr

(
[0, 1]d

)(∫
M

hd/(d+r) dvol
)(d+r)/d

.

2.5. Approximation argument: general compactly supported measures

In the previous two sections we proved that if μ is compactly supported and it is of the form

μ =
∑
ij

αij

1ϕ−1
i (Qi,j)

vol
(
ϕ−1

i (Qi,j)
) d vol

where Qi,j is a family of cubes in Rd of size at most δ and αij �= 0 for finitely many indices, then

(1 − C̄δ)Qr

(
[0, 1]d

) (∫
M

hd/(d+r) dvol
)(d+r)/d

≤ lim inf
N→∞

N r/dVN,r(μ)

≤ lim sup
N→∞

N r/dVN,r(μ) ≤ (1 + C̄δ)Qr

(
[0, 1]d

) (∫
M

hd/(d+r) dvol
)(d+r)/d

. (2.10)

To prove the quantization result for general measures with compact support, we need three approximation steps.
First, given a compactly supported measure μ = h dvol, we can approximate it with a sequence {μk}k∈N of

measures as above where the size of the cubes δk → 0, and this allows us to prove that

N r/dVN,r(μ) → Qr

(
[0, 1]d

)(∫
M

hd/(d+r) dvol
)(d+r)/d

(2.11)

for any compactly supported measure of the form h dvol. Then, given a singular measure with compact support
μ = μs, we show that

N r/dVN,r(μ) → 0.

Finally, given an arbitrary measure with compact support μ = h dvol + μs, we show that (2.11) still holds true.
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The proofs of these three steps is performed in detail in ([5], Thm. 6.2, Step 3, Step 4, Step 5) for the case
of Rd. As it can be easily checked, such a proof applies immediately also in our case, so we will not repeat here
for the sake of conciseness.

This concludes the Proof of Theorem 1.4 when μ is compactly supported (in particular, whenever M is
compact).

3. Proof of Theorem 1.4: The non-compact case

The aim of this section is to study the case of non-compactly supported measures. As we shall see, this
situation is very different with respect to the flat case as we need to deal with the growth at infinity of μ.

To state our result, let us recall the notation we already presented in the introduction: given a point x0 ∈ M,
we can consider polar coordinates (ρ, ϑ) on Tx0M � Rd induced by the constant metric gx0 , where ϑ denotes a
vector on the unit sphere Sd−1 and ρ is the value of the norm in the metric gx0 . Then we define the quantity
Ax0(ρ) as in (1.5). Our goal is to prove the following result which implies Theorem 1.4.

Theorem 3.1. Let (M, g) be a complete Riemannian manifold, and let μ = h dvol+μs be a probability measure
on M. Then, for any x0 ∈ M and δ > 0, there exists a constant C = C(δ) > 0 such that

N rVNd,r(μ) ≤ C

(
1 +

∫
M

d(x, x0)r+δ dμ(x) +
∫
M

Ax0

(
d(x, x0)

)r dμ(x)
)

. (3.1)

If there exists a point x0 ∈ M and δ > 0 for which the right hand side is finite, we have

N r/dVN,r(μ) → Qr

(
[0, 1]d

) (∫
M

hd/(d+r) dvol
)(d+r)/d

. (3.2)

3.1. Proof of Theorem 3.1

We begin by the proof of (3.1). For this we will need the following result, whose proof is contained in ([5],
Lem. 6.6).

Lemma 3.2. Let ν be a probability measure on R. Then

N rVN,r(ν) ≤ C

(
1 +

∫
R

|t|r+δ dν(t)
)

. (3.3)

To simplify the notation, given v ∈ Tx0M we use |v|x0 to denote
√

gx0(v, v).

In order to construct a family of Nd points on M, we argue as follows: first of all we consider polar coordinates
(ρ, ϑ) on Tx0M � Rd induced by the constant metric gx0 , where ϑ denotes a vector on the unit sphere Sd−1, and
then we consider a family of “radii” 0 < ρ1 < . . . < ρN < ∞ and a set of Nd−1 points {ϑ1, . . . , ϑNd−1} ⊂ Sd−1

distributed in a “uniform” way on the sphere so that

min
k

dθ(ϑ, ϑk) ≤ C

N
∀ϑ ∈ S

d−1, (3.4)

where dθ(ϑ, ϑk) denotes the distance on the sphere induced by gx0.
We then define the family of points pi,k on the tangent space Tx0M that, in polar coordinates, are given by

pi,k := (ρi, ϑk), and we take the family of points on M given by

xi,k := expx0
(pi,k) i = 1, . . . , N ; k = 1, . . . , Nd−1.

We notice the following estimate: given a point x ∈ M, we consider the vector p = (ρ, ϑ) ∈ Tx0M defined as
p := γ̇(0) where γ : [0, 1] → M is a constant speed minimizing geodesic arriving at x. By the definition of the
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(ρ,   )

(ρ,   k)

(ρi,   k)

Figure 2. The bold curve joining (ρ, ϑ) and (ρi, ϑk) provides an upper bound for the distance
between the two points.

exponential map we notice that x = expx0
(p) and ρ = |p|x0 = d(x, x0). Then, we can estimate the distance

between x := expx0
(p) and xi,k as follows: first we consider σ : [0, 1] → Sd−1 ⊂ Tx0M a geodesic (on the unit

sphere) connecting ϑ to ϑk and we define η := expx0
(ρ σ), and then we connect expx0

(
(ρ, ϑk)

)
to xi,k considering

γ|[ρ,ρi], where γ(s) := expx0

(
(s, ϑ)

)
is a unit speed geodesic (see Fig. 2).

Setting η := expx0
(ρ σ), this gives the bound

d(x, xi,k) ≤
∫ 1

0

∣∣η̇(t)
∣∣
η(t)

dt +
∣∣∣∣
∫ ρi

ρ

∣∣γ̇(s)
∣∣
γ(s)

ds

∣∣∣∣
≤ Ax0

(
d(x, x0)

)
dθ(ϑk, ϑ) + |d(x, x0) − ρi|,

where Ax0(ρ) is defined in (1.5), and we used that σ(t) is a geodesic (on the sphere) from ϑk to ϑ and that
ρ = d(x, x0).

Notice that, thanks to the estimate above and by (3.4),

min
i,k

d(x, xi,k)r ≤ min
i

[
Ax0

(
d(x, x0)

) C

N
+ |d(x, x0) − ρi|

]r

.

We can now estimate the quantization error:

N rVNd,r(μ) ≤ N r

∫
M

min
i,k

[
Ax0

(
d(x, x0)

) C

N
+ |d(x, x0) − ρi|

]r

dμ(x).

Using that (a + b)r ≤ 2r−1(ar + br) for a, b > 0 we get

N rVNd,r(μ) ≤ N r2r−1

∫
M

min
i

|d(x, x0) − ρi|r dμ(x) + Cr2r−1

∫
M

Ax0

(
d(x, x0)

)r dμ(x).

Let us now consider the map dx0 : M → R defined as dx0(x) := d(x, x0), and define the probability measure
on R given by μ1 := (dx0)#μ. In this way

∫
M

min
i

|d(x, x0) − ρi|r dμ(x) =
∫

R

min
i

|s − ρi|r dμ1(s).



782 M. IACOBELLI

We now choose the radii ρi to be optimal for the quantization problem in one dimension for μ1. Then the above
estimate and Lemma 3.2 yield

N rVNd,r(μ) ≤ C′
(

1 +
∫ ∞

0

sr+δ dμ1(s) +
∫
M

Ax0

(
d(x, x0)

)r dμ(x)
)

= C′
(

1 +
∫
M

d(x, x0)r+δ dμ(x) +
∫
M

Ax0

(
d(x, x0)

)r dμ(x)
)

,

that concludes the proof of (3.1).
To show why this bound implies (3.2) (and hence Thm. 1.4 in the general non-compact case), we first notice

that by (3.1) it follows that, for any M ≥ 1,

M r/dVM,r(μ) ≤ C

(
1 +

∫
M

d(x, x0)r+δ dμ(x) +
∫
M

Ax0

(
d(x, x0)

)r dμ(x)
)

. (3.5)

Indeed, for any M ≥ 1 there exists N ≥ 1 such that Nd ≤ M < (N +1)d, hence (since VM,r is decreasing in M)

M r/dVM,r(μ) ≤ (N + 1)rVNd,r(μ) =
(

1 +
1
N

)r

N rVNd,r(μ)

≤ C

(
1 +

∫
M

d(x, x0)r+δ dμ(x) +
∫
M

Ax0

(
d(x, x0)

)r dμ(x)
)

,

which proves (3.5).
We now prove (3.2). Observe that, as shown in ([5], Proof of Thm. 6.2, Step 5), once the asymptotic quan-

tization is proved for compactly supported probability measures, by the monotone convergence theorem one
always has

lim inf
N→∞

N r/dVN,r(μ) ≥ Qr

(
[0, 1]d

) (∫
M

hd/(d+r) dvol
)(d+r)/d

,

hence one only have to prove the limsup inequality.
For that, one splits the measure μ as the sum of μ1

R := χBR(x0)μ and μ2
R := χM\BR(x0)μ, where R � 1. Then

one applies ([5], Lem. 6.5(a)) to bound from above N r/dVN,r(μ) in terms of N r/dVN,r(μ1
R) and N r/dVN,r(μ2

R),
and uses the result in the compact case for N r/dVN,r(μ1

R), to obtain that, for any ε ∈ (0, 1)

lim sup
N→∞

N r/dVN,r(μ) ≤ (1 − ε)−r/d Qr

(
[0, 1]d

)(∫
BR(x0)

hd/(d+r) dvol
)(d+r)/d

+ μ(M\ BR(x0)) ε−r/d lim sup
N→∞

N r/dVN,r

(
1

μ(M\ BR(x0))
μ2

R

)
.

Thanks to (3.5), we can bound the limsup in the right hand side by

ε−r/d

(
μ(M\ BR(x0)) +

∫
M

d(x, x0)r+δ dμ2
R(x) +

∫
M

Ax0

(
d(x, x0)

)r dμ2
R(x)

)
,

that tends to 0 as R → ∞ by dominated convergence. Hence, letting R → ∞ we deduce that

lim sup
N→∞

N r/dVN,r(μ) ≤ (1 − ε)−r/d Qr

(
[0, 1]d

) (∫
M

hd/(d+r) dvol
)(d+r)/d

,

and the result follows letting ε → 0.
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4. Proof of Theorem 1.7

We begin by noticing that if ∫
H2

d(x, x0)p dμ < ∞

for some x0 ∈ H2, then this holds for any other point: indeed, given x1 ∈ H2,∫
H2

d(x, x1)p dμ ≤ 2p−1

∫
H2

[
d(x, x0)p + d(x0, x1)p] dμ < ∞.

In particular, it suffices to check the moment condition at only one point.
We fix a point x0 ∈ H2 and we use the exponential map at x0 to identify H2 with (R2, d2ρ + sinh ρ d2ϑ).

Then, we define the measure
μ :=

∑
k∈N

e−(1+ε)kH1�S
1
k,

where H1�S1
R denotes the 1-dimensional Haudorff measure restricted to the circle around the origin of radius

R, and ε > 0 is a constant to be fixed.
We begin by noticing that∫

H2
d(x, x0)p dμ =

∑
k∈N

e−(1+ε)k

∫
S1

k

ρp dH1

=
∑
k∈N

e−(1+ε)kkp 2π sinh(k) ≈
∑
k∈N

e−εkkp < ∞

for all p > 0.
An important ingredient of the proof will be the following estimate on the quantization error for the uniform

measure on a circle around the origin.

Lemma 4.1. For any R ≥ 1 and M ∈ N we have

VM,r

(H1�S
1
R

)
�

(
eR

2R
− M

)
+

R.

Proof. To prove the above estimate, we find a good competitor for the minimization problem. Let us denote
with [·] the integer part, and define

L :=
[

eR

2R

]
·

We split S1
R in 2L arcs Σi,R of equal length. Notice that the following estimate holds: there exists a positive

constant c, independent of R, such that

d(Σ2j,R, Σ2j′,R) > c ∀ j �= j′ ∈ {1, . . . , L}. (4.1)

To show this fact, one argues as follows: consider a geodesic connecting a point x1 ∈ Σ2j,R to x2 ∈ Σ2j′,R.
Because j �= j′ any curve connecting them has to rotate by an angle of order at least R/eR. Now, two cases
arise: either the geodesic γ : [0, 1] → H2 is always contained inside Rd \ BR−1(0), or not. In the first case we
exploit that the metric is always larger than sinh2(R− 1)d2ϑ. More precisely, if we denote by (eρ, eθ) a basis of
tangent vectors in polar coordinates

d(x, y) =
∫ 1

0

√(
γ̇(t) · eρ

)2 + sinh2(ρ)
(
γ̇(t) · eθ

)
dt � eR−1 R

eR
≈ R ≥ 1,
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where we used that γ has to rotate by an angle of order at least R/eR. In the second case, to enter inside the ball
BR−1(0) the geodesic has to travel a distance at least 1, so its length is greater that 1. This proves the validity
of (4.1). We pick now a family of M points {x�}M

�=1. Then, by (4.1) and triangle inequality, we have that for
every index � there exists at most one index j(�) such that

d(x�, Σ2j,R) >
c

2
∀ j �= j(�).

Therefore there exists a family of indices J ∈ {1, . . . , L} of cardinality at least (L − M)+ such that

d(x�, Σ2j,R) >
c

2
∀j ∈ J, ∀� = 1, . . . , M.

We can now estimate the quantization error:

VM,r

(H1�S
1
R

) ≥ min
α⊂H2:|α|=M

L∑
j=1

∫
Σ2j,R

min
x�∈α

d(x, x�)r dH1

≥
∑
j∈J

∫
Σ2j,R

( c

2

)r

dH1 � (L − M)+R,

where at the last step we used that H1(Σ2j,R) ≈ R. �

We can now conclude the proof. Indeed, given a set of points {x�}1≤�≤N2 optimal for μ, these points are
admissible for the quantization problem of each measure H1�S1

k, therefore

VN2,r(μ) =
∑
k∈N

e−(1+ε)k

∫
S1

k

min
�

d(x, x�)r dH1(x)

≥
∑
k∈N

e−(1+ε)kVN2,r

(H1�S
1
k

)
�

∑
k∈N

e−(1+ε)k

(
ek

2k
− N2

)
+

k,

where at the last step we used Lemma 4.1. Noticing that, for N large,

ek

2k
− N2 ≥ 1

4
ek

k
for k ≥ log(N4),

we conclude that

N rVN2,r(μ) � N r

4

∑
k≥log(N4)

e−(1+ε)k ek

k
k =

N r

4

∑
k≥log(N4)

e−εk

� N r

∫ ∞

log(N4)

e−εt dt ≈ N rN−4ε

ε
→ ∞

as N → ∞ provided we choose ε < r/4.
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