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TIME-DEPENDENT MEAN-FIELD GAMES IN THE SUPERQUADRATIC CASE

Diogo A. Gomes1, Edgard Pimentel2 and Héctor Sánchez-Morgado3

Abstract. We investigate time-dependent mean-field games with superquadratic Hamiltonians and
a power dependence on the measure. Such problems pose substantial mathematical challenges as key
techniques used in the subquadratic case, which was studied in a previous publication of the authors, do
not extend to the superquadratic setting. The main objective of the present paper is to address these
difficulties. Because of the superquadratic structure of the Hamiltonian, Lipschitz estimates for the
solutions of the Hamilton−Jacobi equation are obtained here through a novel set of techniques. These
explore the parabolic nature of the problem through the nonlinear adjoint method. Well-posedness is
proven by combining Lipschitz regularity for the Hamilton−Jacobi equation with polynomial estimates
for solutions of the Fokker−Planck equation. Existence of classical solutions is then established under
conditions depending only on the growth of the Hamiltonian and the dimension. Our results also add
to current understanding of superquadratic Hamilton−Jacobi equations.
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1. Introduction

The theory of mean-field games comprises a set of tools and methods, that aims at investigating differen-
tial games involving a (very) large number of rational, indistinguishable players. These were introduced in the
independent works of Lasry and Lions [37–40] and Huang et al. [34, 35]. Since then, there has been intense
research activity in this field, with several authors considering a variety of related problems. These include
numerical methods [2, 3, 36], applications in economics [32, 41] and environmental policy [36], finite state prob-
lems [17, 27, 28], explicit models [33, 45], obstacle-type problems [19], congestion [18, 25], extended mean-field
games [24, 29], probabilistic methods [13, 14], long-time behavior [8, 11] and weak solutions [9, 47, 48], to name
only a few. For additional results, see also recent surveys in [1,7,42], or [23] and the references therein, and the
College de France lectures by Lions [43, 44].
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Article published by EDP Sciences c© EDP Sciences, SMAI 2016

http://dx.doi.org/10.1051/cocv/2015029
http://www.esaim-cocv.org
http://www.edpsciences.org


TIME-DEPENDENT MEAN-FIELD GAMES IN THE SUPERQUADRATIC CASE 563

A model time-dependent mean-field game (MFG) problem is given by{
−ut + H(x, Du) = Δu + g(m)
mt − div(DpHm) = Δm,

(1.1)

equipped with the initial-terminal conditions:{
u(x, T ) = uT (x)
m(x, 0) = m0(x).

(1.2)

In the above, the terminal instant, T > 0, is fixed. To simplify the presentation, we consider the spatially
periodic problem. For that, let T

d be the d-dimensional torus, identified as usual with the set [0, 1]d. Then, we
regard u and m as real valued functions defined over T

d × [0, T ]. A typical Hamiltonian, H , and nonlinearity,
g, satisfying the assumptions that will be detailed in Section 2 are:

H(x, p) = a(x)
(
1 + |p|2) 2+μ

2 + V (x),

and
g(z) = zα,

where 0 ≤ μ < 1 and a, V ∈ C∞(Td), a, V > 0, are given.
A fundamental question about MFG systems regards the existence of solutions. In the stationary setting, the

first result in this direction was obtained in [37]. Smooth solutions were studied in [22] (see also [26] for a related
problem), [29, 31]. In [38], the authors addressed for the first time the question of existence of weak-solutions
to (1.1) and (1.2) for the first time. The planning problem was investigated in [47,48], also in the framework of
weak solutions. In the quadratic Hamiltonians case, existence of smooth solutions was established in [11]. We
emphasize that the proof in [11] relies on a Hopf–Cole transformation and does not seem to extend to more
general cases behaving like |p|2 at infinity. As presented in [44], mean-field games with quadratic or subquadratic
growth in the Hamiltonian, and the power nonlinearity g(m) = mα, have classical solutions under some bounds
on α. In [30], the authors extended and improved substantially these results in the subquadratic setting. Also
in the subquadratic setting, existence of smooth solutions was studied in [21] in the whole space, and in [20] for
logarithmic nonlinearities.

To the best of our knowledge, superquadratic time-dependent mean-field games have not been studied in
the literature before the present paper, nor can they be addressed by a minor extension of existing results. We
stress that previous arguments regarding the existence of weak solutions do not extend to the superquadratic
setting. Indeed, many of the key estimates for quadratic or subquadratic mean-field games are simply not
valid for superquadratic Hamiltonians. For instance, the Gagliardo−Nirenberg estimates combined with the
Crandall−Amann technique [4] are no longer valid due to the growth of the Hamiltonian. Consequently, in the
superquadratic case, estimates for Hamilton−Jacobi (H-J) equations are substantially more delicate and require
arguments quite distinct from the ones used in the quadratic or subquadratic cases. See, for instance, the recent
developments concerning Hölder estimates in [5,6,10]. To show the existence of smooth solutions for the case of
superquadratic Hamiltonians, we develop here a new class of Lipschitz estimates. These are proven by identifying
additional regularizing effects, which combine the parabolic structure of the Hamilton−Jacobi equations with
its stochastic optimal control origin. This is achieved by employing the nonlinear adjoint method [16] in a
novel way. Recently, after this paper was written, a very important development regarding existence of weak
solutions was obtained in [12]. In that paper, the existence of weak solutions for mean-field games which admit a
variational formulation was obtained, and these results apply to some superquadratic problems. However, that
our methods do not require a variational structure and can be easily modified to address a wide class of models.
Moreover, for variational mean-field games, our methods yield stronger results as they prove the existence of
smooth solutions to the corresponding variational problems which are convex but non-coercive.
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Our main result is the following:

Theorem 1.1. Assume that A1−A10 from Section 2 hold. Then there exists a C∞ solution (u, m) to (1.1)
under the initial-terminal conditions (1.2), with m > 0.

We observe that uniqueness of solutions to (1.1) and (1.2) follows from earlier results in [37, 38].
The key Assumptions A1 and A10 are discussed in Section 2.1. An outline of the proof of this theorem is

described in Section 2.2. The various steps of the proof are detailed in the remaining sections. In particular, in
Section 7, we establish Lipschitz regularity for H-J equations (see Thm. 2.3 stated in the next section).

2. Main assumptions and proof outline

We begin by discussing the main assumptions used in the present paper; these assumptions cover a range of
relevant problems. This section ends with the statement of the key theorems and lemmas, as well as an outline
of the proof of Theorem 1.1.

2.1. Assumptions

We assume our problem satisfies the following general hypotheses:

Assumption 1. The Hamiltonian H : T
d × R

d → R is C∞ and

1. For fixed x, the map p �→ H(x, p) is strictly convex;
2. Additionally, H satisfies the coercivity condition

lim
|p|→∞

H(x, p)
|p| = +∞,

and, without loss of generality, we require further that H(x, p) ≥ 1.

Assumption 2. The function g : R
+
0 → R is non-negative and increasing.

Finally, u0, m0 ∈ C∞(Td) with m0 ≥ 0 and
∫

Td m0 = 1.

Since g is increasing and non-negative, it follows that there exists a convex increasing function, G : R
+
0 → R,

such that g(z) = G′(z).
The Legendre transform of H is given by L(x, v) = sup

p
(−p · v − H(x, p)). Then, if we set

L̂(x, p) = DpH(x, p)p − H(x, p), (2.1)

by standard properties of the Legendre transform, L̂(x, p) = L(x,−DpH(x, p)).

Assumption 3. For some c, C > 0
L̂(x, p) ≥ cH(x, p) − C.

For convenience and definiteness, we choose g to be a power nonlinearity.

Assumption 4. g(m) = mα, for some α > 0.

We observe that for this choice of g, our problems admit a variational structure that was explored in [12]
in order to construct weak solutions. Our results can be generalized easily to the setting in which g depends
simultaneously on m and x, or cases in which no variational structure exists, provided appropriate bounds on
the growth and derivatives of H and g are assumed. This will not be pursued here to keep the presentation
simple.
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Assumption 5. H satisfies the following bounds

|DxH |, |D2
xxH | ≤ CH + C,

and, for any symmetric matrix M , and any δ > 0, there exists Cδ such that

Tr(D2
pxHM) ≤ δ Tr(D2

ppHM2) + CδH.

Because H ≥ 1, the inequality in the previous assumption is equivalent to |DxH |, |D2
xxH | ≤ C̃H , for some

constant C̃.

Assumption 6. m0 ≥ κ0 for some κ0 ∈ R
+.

The preceding hypotheses are the same as the corresponding ones in [30]. The next group of assumptions is
distinct and encodes the superquadratic nature of the Hamiltonian.

Assumption 7. For some 0 < μ < 1, the Hamiltonian satisfies

c1|p|2+μ + C1 ≤ H ≤ c2|p|2+μ + C2,

where ci and Ci are non-negative constants.

Assumption 8. The following estimate holds:

|DpH(x, p)|2 ≤ C|p|μH(x, p) + C.

Assumption 9. H satisfies the following bounds:∣∣D2
xpH

∣∣2 ≤ CH
2+2μ
2+μ ,

and, for any symmetric matrix M , ∣∣D2
ppHM

∣∣2 ≤ CH
μ

2+μ Tr(D2
ppHMM),

where μ and C are given constants.

Note that, in particular, the previous hypothesis implies that for any function u, H(x, Du) satisfies the
following estimates: ∣∣ div(DpH(x, Du))

∣∣2 ≤ CH
μ

2+μ
(
TrD2

ppHD2uD2u
)

+ CH
2+2μ
2+μ . (2.2)

Assumption 10. The exponent α satisfies α <
2

d(1 + μ) − 2
.

2.2. Outline of the proof

The proof of Theorem 1.1 starts by considering a regularized version of (1.1). It consists of replacing g(m)
by

gε(m) = ηε ∗ g(ηε ∗ m), (2.3)

where ηε is a standard, symmetric, mollifying kernel. This yields the regularized model:{
−uε

t + H(x, Duε) = Δuε + gε(mε)
mε

t − div(DpHmε) = Δmε.
(2.4)

For convenience, we set g0 = g. The special structure of (2.3) makes it possible to prove estimates for (2.4) that
are uniform in ε. Existence of C∞ solutions for (2.4)−(1.2) follows from standard arguments using some of the
ideas in [7], as detailed in [46].
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The proof of Theorem 1.1 proceeds by considering polynomial estimates for gε(mε) in terms of Duε as stated
in the following theorem:

Theorem 2.1. Let (uε, mε) be a solution of (2.4). Assume that A1−A9 hold. Let θ > 1, 0 ≤ υ ≤ 1. For

β0 ∈
[
1,

d(1 + μ)
d(1 + μ) − 2

)
, let βυ,θ =

θβ0

θ + υ − θυ
and

rθ =
d(θ − 1) + 2

2
· (2.5)

Suppose that

pυ,θ =
βυ,θ

α
> 1. (2.6)

Then, for r = rθ and p = pυ,θ, we have

‖gε(mε)‖L∞(0,T ;Lp(Td)) ≤ C + C ‖Duε‖
(2+2μ)rυα

θβ0
L∞(0,T ;L∞(Td))

, (2.7)

where C is independent of ε.

Theorem 2.1 is proven in Section 4.3. Then, we establish L∞ bounds for uε in terms of gε(mε), as in the
following Lemma:

Lemma 2.2. Suppose (uε, mε) is a solution of (2.4) and H satisfies A1. Then, if p > d
2 ,

‖uε‖L∞(Td×[0,T ]) ≤ C + C‖gε(mε)‖L∞(0,T ;Lp(Td)), (2.8)

where C is independent of ε.

The proof of Lemma 2.2 is presented in Section 5. To estimate Duε in terms of gε(mε), we apply the nonlinear
adjoint method (see [16]), which yields the following estimate:

Theorem 2.3. Suppose that A1−A10 hold. Let (uε, mε) be a solution of (2.4) and assume that p > d. Then,

‖Duε‖L∞(0,T ;L∞(Td)) ≤C + C‖gε(mε)‖
1

1−μ

L∞(0,T ;Lp(Td))

+ C‖gε(mε)‖
1

1−μ

L∞(0,T ;Lp(Td))
‖u‖

1
1−μ

L∞(0,T ;L∞(Td))
, (2.9)

where C is independent of ε.

This Theorem is established in Section 6. To prove Theorem 1.1, we combine the estimates in Theorem 2.1,
Lemma 2.2 and Theorem 2.3, obtaining Lipschitz regularity for uε. This is done in Section 7. It follows from (2.7),
combined with (2.9), that

‖Duε‖L∞(Td×[0,T ]) ≤ C + C‖Duε‖ζ
L∞(Td×[0,T ])

,

where, if α is small enough, ζ < 1. The precise bound for α is the one given in Assumption A10. Lastly, we
obtain Lipschitz regularity in the following theorem:

Theorem 2.4. Let (uε, mε) be a solution of (2.4)−(1.2). Suppose that A1−10 hold. Then, Duε ∈ L∞(Td ×
[0, T ]), with bounds uniform in ε.

We now present the proof of Theorem 1.1.
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Proof of Theorem 1.1. By Theorem 2.4, we have Lipschitz regularity for uε, uniformly in ε. Thus, the growth
of the Hamiltonian plays no role in any further gain of regularity. Then, a number of additional estimates can
be derived, see [30]. These ensure, in particular, that uε and mε are Hölder continuous, uniformly in ε. Thus,
through some subsequence, we have that uε → u in C0,γ(Td × [0, T ]) and mε → m in C0,γ(Td × [0, T ]), as ε → 0.
This shows that u is a (viscosity) solution of the first equation in (1.1). Furthermore, additional bounds on D2uε

provide enough compactness to conclude that m solves

mt − div(DpH(x, Du)m) = Δm,

as a weak solution, i.e., ∫ T

0

∫
Td

(−φt + DpHDφ − Δφ)mdxdt = 0,

for every φ ∈ C∞
c (Td). By the results in [30], we have uniform bounds in every Sobolev space for (uε, mε). Finally,

observing that (u, m) satisfies the same estimates as (uε, mε), we obtain existence of smooth solutions. �

The rest of this paper is organized as follows: the next Section presents some elementary estimates from [30].
In Section 4, we obtain higher integrability for mε, see Theorem 4.1. The proof of Theorem 2.1 is presented
in Section 4.3. In Sections 5 and 6, we establish Lemma 2.2 and Theorem 2.3. Lipschitz regularity for the
Hamilton−Jacobi equation is established in Section 7.

3. Elementary estimates

Next we recall several estimates for solutions of (2.4). These have appeared (either in the present form or in
related versions) in [11, 15, 37, 38, 44]. For ease of presentation, we omit the proofs, which can be found in [30].

Proposition 3.1 (Stochastic Lax−Hopf estimate). Suppose that A1 holds. Let (uε, mε) be a solution to (2.4).
Then, for any smooth vector field b : T

d × (t, T ) → R
d, and any solution to

ζs + div(bζ) = Δζ, (3.1)

with ζ(x, t) = ζ0, we have the following upper bound:∫
Td

uε(x, t)ζ0(x)dx ≤
∫ T

t

∫
Td

(
L(y, b(y, s)) + gε(mε)(y, s)

)
ζ(y, s)dyds (3.2)

+
∫

Td

uε
T (y)ζ(y, T ).

We notice that, for b = −DpH(x, Du), the inequality in (3.2) is attained.

Proposition 3.2 (First-order estimate). Assume that A1−3 hold. Let (uε, mε) be a solution of (2.4). Then,∫ T

0

∫
Td

cH(x, Dxuε)mε + G(ηε ∗ mε)dxdt ≤ CT + C ‖uε(·, T )‖L∞(Td) , (3.3)

where G′ = g.

Proposition 3.3 (Second-order estimate). Assume that A1−6 hold. Let (uε, mε) be a solution of (2.4).∫ T

0

∫
Td

g′(ηε ∗ mε)|Dx(ηε ∗ mε)|2 + Tr(D2
ppH(D2

xxuε)2)mε ≤ C.

Corollary 3.4. Assume that A1−6 hold. Let (uε, mε) be a solution of (2.4). Then,∫ T

0

‖ηε ∗ mε‖α+1

L
2∗
2 (α+1)(Td)

dt ≤ C.
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4. Regularity for the Fokker−Planck equation

Next, building upon the second-order estimate of Proposition 3.3, we obtain improved integrability for mε.
In Section 4.2, the integrability of mε is controlled in terms of Lp norms of DpH(x, Duε(x)).

In the superquadratic case, further arguments yield uniform estimates for Duε in L∞(Td × [0, T ]) rather than
in Lr(0, T ; Lp(Td)), which was the space used in the subquadratic setting.

In this Section, the function H and its derivatives will be evaluated at (x, Duε(x)); however, to ease the
notation, we omit the argument.

4.1. Regularity by the second-order estimate

We begin by addressing the regularity of the Fokker−Planck equation by applying the second-order estimate
from the previous section.

Theorem 4.1. Assume that A1−6 and A9 hold. Let (uε, mε) be a solution of (2.4). Then, for d ≥ 2,
‖mε(·, t)‖L∞(0,T ;Lr(Td)) is bounded for any 1 ≤ r < d(1+μ)

d(1+μ)−2 , uniformly in ε.

Proof. We omit the ε to simplify the notation. We start by defining an increasing sequence, βn, such that
‖m(·, t)‖L1+βn(Td) is bounded. We set β0 = 0 so that ‖m(·, t)‖L1+β0(Td) = 1 ≤ C.

At this point, it is critical to control
∫

Td div(DpH)mβ+1dx. This will be done using Assumption A9. In fact,
using (2.2), we have: ∫

Td

div(DpH)mβ+1dx

≤
∫

Td

CH
μ

2(2+μ) m
μ

2(2+μ) Tr
(
D2

ppHD2uD2u
)1/2

m1/2mβ+ 1
(2+μ)

+
∫

Td

CH
1+μ
2+μ m

1+μ
2+μ mβ+ 1

(2+μ)

≤ Cδ

∫
Td

Hm + Cδ

∫
Td

Tr
(
D2

ppHD2uD2u
)
m + δ

∫
Td

m(2+μ)β+1. (4.1)

We note that the time integral of the first two terms on the right-hand side of the previous inequalities is
bounded by Propositions 3.2 and 3.3. Because of Sobolev’s theorem, we proceed by examining the cases d > 2
and d = 2 separately.

Consider the case d > 2. Let βn+1 = 2
d(1+μ) (βn + 1). Then, βn is the nth partial sum of a geometric series

with term
2n

dn(1 + μ)n
. Therefore, lim

n→∞βn =
2

d(1 + μ) − 2
. We define qn = 2∗

2 (βn+1 +1), where 2∗ is the critical

Sobolev exponent given by

2∗ =
2d

d − 2
·

Hence, we have
‖m‖L(2+μ)βn+1+1(Td) ≤ ‖m‖1−λn

L1+βn(Td)
‖m‖λn

Lqn(Td)
,

where λn

qn
+ 1−λn

1+βn
= 1

(2+μ)βn+1+1 , and thus:

λn =
qn

qn − βn − 1
(2 + μ)βn+1 − βn

1 + (2 + μ)βn+1
· (4.2)

Since ‖m‖L1+βn(Td) ≤ C, we get∫
Td

m(2+μ)βn+1+1dx = ‖m‖(2+μ)βn+1+1

L(2+μ)βn+1+1(Td)
≤ C‖m‖λn((2+μ)βn+1+1)

Lqn(Td)
. (4.3)
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Setting β = βn+1, from (4.1) and (4.3), we get for any τ ∈ [0, T ]∫
Td

mβn+1+1(x, τ)dx +
4βn+1

βn+1 + 1

∫ τ

0

∫
Td

|Dxm
βn+1+1

2 (x, t)|2dxdt

=
∫

Td

mβn+1+1(x, 0)dx + β

∫ τ

0

∫
Td

div(DpH)mβn+1+1dxdt

≤
∫

mβn+1+1(x, 0)dx + Cδ

∫ τ

0

∫
Td

Hm

+ Cδ

∫ τ

0

∫
Td

(
Tr D2

ppHD2uD2u
)
m + δ

∫ τ

0

‖m‖λn((2+μ)βn+1+1)

Lqn(Td)
dt. (4.4)

From the definition of βn+1, it follows that λn((2 + μ)βn+1 + 1) = 1 + βn+1. Hence,

‖m‖λn((2+μ)βn+1+1)

Lqn(Td)
= ‖m

βn+1+1
2 ‖2

L2∗(Td)

≤ C + C

(∫
Td

|Dxm
βn+1+1

2 |2 +
∫

Td

mβn+1+1

)
. (4.5)

Using elementary inequalities and
∫

mdx = 1, we have for any ζ > 0 that
∫

Td mβn+1+1 ≤ Cζ + ζ‖m‖βn+1+1

Lqn(Td)
.

Thus, it follows that

‖m‖βn+1+1

Lqn(Td)
≤ Cζ + C

∫
Td

|Dxm
βn+1+1

2 |2 + ζ‖m‖βn+1+1

Lqn(Td)
.

From (4.4) and (4.5), with small enough δ and ζ, it follows that for some δ1 > 0,∫
Td

mβn+1+1(x, τ)dx + δ1

∫ τ

0

‖m‖βn+1+1

Lqn(Td)
dt ≤C + C

∫
Td

mβn+1+1(x, 0)dx

+ C

∫ τ

0

∫
Td

Hm + C

∫ τ

0

∫
Td

(
TrD2

ppHD2uD2u
)
m.

Because the last two terms on the right-hand side are bounded by Propositions 3.2 and 3.3, we have the
result.

Consider now the case d = 2. Let 1 < p < 1 +
1
μ

. As before, we inductively define βn, starting with β0 = 0.

Letting βn+1 :=
p − 1

p
(βn+1), we have that βn is the nth partial sum of the geometric series with term

(p − 1)n

pn

and thus lim
n→∞βn = p − 1. Let qn = p(βn+1+1)

1+μ−μp . For λn as in (4.2), we have

‖m‖L(2+μ)βn+1+1(Td) ≤ ‖m‖1−λn

L1+βn(Td)
‖m‖λn

Lqn(Td)
.

From the previous definitions, it follows that λn((2 + μ)βn+1 + 1) = 1 + βn+1. Since ‖m‖1+βn ≤ C, we get∫
Td

m(2+μ)βn+1+1dx = ‖m‖(2+μ)βn+1+1

L(2+μ)βn+1+1(Td)
≤ C‖m‖λn((2+μ)βn+1+1)

Lqn(Td)
= C‖m‖1+βn+1

Lqn(Td)
. (4.6)

As in (4.4), using (4.1), and (4.6) we get for any τ ∈ [0, T ]∫
Td

mβn+1+1(x, τ)dx +
4βn+1

βn+1 + 1

∫ τ

0

∫
Td

|Dxm
βn+1+1

2 (x, t)|2dxdt

≤
∫

Td

mβn+1+1(x, 0)dx + Cδ

∫ τ

0

∫
Td

Hm

+ Cδ

∫ τ

0

∫
Td

(
Tr D2

ppHD2uD2u
)
m + δ

∫ τ

0

‖m‖1+βn+1

Lqn(Td)
dt. (4.7)
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By Sobolev’s theorem, we get

‖m‖1+βn+1

Lqn(Td)
= ‖m

βn+1+1
2 ‖2

L
2qn

βn+1+1 (Td)

≤ C

∫
Td

|Dxm
βn+1+1

2 |2dx + Cζ + ζ‖m‖βn+1+1

Lqn(Td)
. (4.8)

From (4.7) and (4.8), with small enough δ and ζ, we have for some δ1 > 0 that∫
Td

mβn+1+1(x, τ)dx + δ1

∫ τ

0

‖m‖βn+1+1

Lqn(Td)
dt ≤C + C

∫
Td

mβn+1+1(x, 0)dx + C

∫ τ

0

∫
Td

Hm

+ C

∫ τ

0

∫
Td

(
TrD2

ppHD2uD2u
)
m.

Notice that the last two terms on the right-hand side are bounded because of Propositions 3.2 and 3.3. We have
then established the result. �

4.2. Regularity by Lp estimates

Now we bound mε in L∞([0, T ], Lp(Td)) with estimates depending polynomially on the L∞-norm of DpH .
Because explicit expressions will be needed, we prove them in detail. For ease of presentation, we omit the ε in
the proofs of this section.

We start by setting 1 ≤ β0 < d(1+μ)
d(1+μ)−2 , and we consider β1

.= θβ0 for some fixed θ > 1.

Lemma 4.2. Assume that (uε, mε) is a solution of (2.4) and let β ≥ β0 for β0 > 1 fixed. Then

d
dt

∫
Td

(mε)β (t, x)dx ≤ C
∥∥∥|DpH |2

∥∥∥
L∞(Td)

∫
Td

(mε)β (t, x)dx − c

∫
Td

∣∣∣Dx

(
(mε)

β
2

)∣∣∣2 dx. (4.9)

Lemma 4.3. We have that

∫
Td

(mε)β1(τ, x)dx ≤
(∫

Td

(mε)β0 (τ, x) dx

)θκ (∫
Td

(mε)
2∗β1

2 (τ, x) dx

) 2(1−κ)
2∗

,

where κ is given by

κ =
2

d (θ − 1) + 2
· (4.10)

Proof. Hölder’s inequality gives

(∫
Td

mβ1

) 1
β1 ≤

(∫
Td

mβ0

) κ
β0

(∫
Td

m
2∗
2 β1

) (1−κ)
2∗
2 β1

,

where 1
θβ0

= κ
β0

+ 2(1−κ)
2∗θβ0

. By rearrangement of the exponents, the inequality in the statement follows. The
expression for κ follows from the previous identity. �

Lemma 4.4. Let κ be defined by (4.10). Then,

(∫
Td

(mε)β1

)(1−κ)

≤ C + δ
∥∥∥(mε)

β1
2

∥∥∥2(1−κ)

L2∗ (Td)
.

Proof. Let λ = 2
d(β1−1)+2 . Then,

∫
Td

∣∣mβ1
∣∣ dx ≤

(∫
Td

mdx

)β1λ (∫
Td

m
2∗β1

2 dx

) 2(1−λ)
2∗

.
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Because m is a probability measure for every t ∈ [0, T ], we obtain(∫
Td

mβ1dx

)(1−κ)

≤
∥∥∥m

β1
2

∥∥∥2(1−κ)(1−λ)

L2∗ (Td)
.

Finally, because (1 − λ) < 1, a further application of Young’s inequality weighted by δ establishes the result. �
Proposition 4.5. We have that∫

Td

(mε)β1 dx ≤
[∫

Td

(mε)β0 dx

]θκ
[
C + C

(∫
Td

∣∣∣Dx

(
(mε)

β1
2

)∣∣∣2 dx

)(1−κ)
]

,

where κ is given by (4.10).

Proof. Sobolev’s theorem implies that∥∥∥(m)
β1
2

∥∥∥2(1−κ)

L2∗ (Td)
≤ C

(∫
Td

∣∣∣Dx

(
(m)

β1
2

)∣∣∣2)(1−κ)

+ C

(∫
Td

∣∣∣(m)β1
∣∣∣)(1−κ)

. (4.11)

Using Lemma 4.4, we obtain(∫
Td

m
2∗
2 β1 (τ, x) dx

) 2
2∗ (1−κ)

=
∥∥∥m

β1
2

∥∥∥2(1−κ)

L2∗(Td)

≤ C

(∫
Td

∣∣∣Dx

(
m

β1
2

)∣∣∣2)(1−κ)

+ C. (4.12)

By combining inequality (4.12) with Lemma 4.3, the result follows. �

Next, we control the derivative with respect to the time of ‖mε‖β1

Lβ1(Td)
.

Proposition 4.6. Let (uε, mε) be a solution of (2.4). If κ is given as in (4.10), then

d
dt

∫
Td

(mε)β1dx ≤ C + C
∥∥∥|DpH |2

∥∥∥r

L∞(Td)

(∫
Td

(mε)β0dx

)θ

, (4.13)

where r = 1
κ .

Proof. Using Lemma 4.2 with β ≡ β1, and applying Proposition 4.5, we have

d
dt

∫
Td

mβ1 ≤C
∥∥∥|DpH |2

∥∥∥
L∞(Td)

(∫
Td

mβ0

)θκ
[
C

(∫
Td

∣∣∣Dx

(
m

β1
2

)∣∣∣2 dx

)(1−κ)

+ C

]

− c

∫
Td

∣∣∣Dx

(
m

β1
2

)∣∣∣2

≤C
∥∥∥|DpH |2

∥∥∥
L∞(Td)

(∫
Td

mβ0

)θκ (∫
Td

∣∣∣Dx

(
m

β1
2

)∣∣∣2)(1−κ)

+ C
∥∥∥|DpH |2

∥∥∥
L∞(Td)

(∫
Td

mβ0

)θκ

− c

∫
Td

∣∣∣Dx

(
m

β1
2

)∣∣∣2

≤C
∥∥∥|DpH |2

∥∥∥
L∞(Td)

(∫
Td

mβ0

)θκ

+ C
∥∥∥|DpH |2

∥∥∥r

L∞(Td)

(∫
Td

mβ0

)θ

≤C + C
∥∥∥|DpH |2

∥∥∥r

L∞(Td)

(∫
Td

mβ0

)θ

,

where the last two inequalities follow by applying Young’s inequality with ε for the conjugate exponents r and
s given by s = 1

1−κ and r = 1
κ . �
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Corollary 4.7. Suppose that (uε, mε) is a solution of (2.4). Let r be given as in Proposition 4.6. Then,
∫

Td

mβ1(τ, x)dx ≤ C + C
∥∥∥|DpH |2

∥∥∥r

L∞(Td)
.

Proof. Integrate (4.13) in time over (τ, T ). This yields

∫
Td

mβ1 (τ, x) dx ≤ C
∥∥∥|DpH |2

∥∥∥r

L∞(Td)

∫ τ

0

(∫
Td

mβ0dx

)θ

dt + C. (4.14)

From Proposition 4.1, we have
∫

Td mβ0 (τ, x) dx ≤ C. The result is then established. �

4.3. Interpolated bounds

We now obtain estimates for mε in terms of the L∞-norm of Duε by interpolating previous results.

Lemma 4.8. Let (uε, mε) be a solution of (2.4). Assume that A1−6 and A9 hold. Assume further that θ, p, r >

1, 0 ≤ υ ≤ 1 are such that (2.5)−(2.6). Let βυ = θβ0
θ+υ−θυ , where β0 ∈

[
1, d(1+μ)

d(1+μ)−2

)
. Then,

‖g(mε)‖L∞(0,T ;Lp(Td)) ≤ C + C
∥∥∥|DpH |2

∥∥∥ rυα
θβ0

L∞(0,T ;L∞(Td))
.

Proof. As before, we omit the ε in the proof. Hölder’s inequality gives

(∫
Td

mβυ

) 1
βυ ≤

(∫
Td

mβ0

) 1−υ
β0

(∫
Td

mθβ0

) υ
θβ0

,

since 1
βυ

= 1−υ
β0

+ υ
θβ0

.
Theorem 4.1 ensures that ∫

Td

mβυ ≤ C

(∫
Td

mθβ0

) υ
θ+υ−θυ

.

On the other hand, Corollary 4.7 gives∫
Td

mθβ0 ≤ C + C
∥∥∥|DpH |2

∥∥∥r

L∞(0,T ;L∞(Td))
,

which in turn leads to ∫
Td

mβυ ≤ C + C
∥∥∥|DpH |2

∥∥∥ rυ
(θ+υ−θυ)

L∞(0,T ;L∞(Td))
.

Note that ‖g(m)‖Lp(Td) =
(∫

Td mαp
) 1

p . Because of (2.6), it follows that

‖g(m)‖Lp(Td) ≤ C + C
∥∥∥|DpH |2

∥∥∥ rυ
p(θ+υ−θυ)

L∞(0,T ;L∞(Td))
.

By noticing that p(θ + υ − θυ) = θβ0
α , because of (2.6), the Lemma is established. �

Proof of Theorem 2.1. Theorem 2.1 follows from Lemmas 4.8 and A8. �
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5. Bounds for the Hamilton−Jacobi equation

Next, we control ‖uε‖L∞(Td×[0,T ]) in terms of ‖gε(mε)‖L∞([0,T ],Lp(Td)). Because we already have lower bounds
for uε, since g ≥ 0, see [30], it suffices in what follows to obtain the upper bounds.

We start by presenting the proof of Lemma 2.2.

Proof of Lemma 2.2. For ease of notation, we omit the ε in mε. By using Proposition 3.1 with b = 0 and
ζ0 = θ(·, τ) = δx, 0 ≤ τ < T , we obtain the estimate

u(x, τ) ≤(T − τ)max
z∈Td

L(z, 0)

+
∫ T

τ

∫
Td

gε(m)(y, t)θ(y, t − τ)dydt +
∫

Td

u(y, T )θ(y, T − τ)dy.

The main issue is to control ∫ T

τ

∫
Td

gε(m)(y, t)θ(y, t − τ)dydt. (5.1)

For
1
p

+
1
q

= 1, the heat kernel satisfies

‖θ(·, t)‖q ≤ C

t
d
2p

·

Hence, ∫
Td

gε(m)(y, t)θ(y, t − τ)dy ≤ C

(t − τ)
d
2p

‖gε(m(·, t))‖Lp(Td).

Thus, if d < 2p, we have

∫ T

τ

∫
Td

gε(m)(y, t)θ(y, t − τ)dydt ≤ C‖gε(m)‖L∞(0,T ;Lp(Td)). �

6. Regularity by the adjoint method

The aim of this section is to obtain estimates for ‖Duε‖L∞(0,T ;L∞(Td)). The key tools are the adjoint
method [16] and the methods developed in [22] (see also [29]). In what follows, we obtain Lipschitz estimates
for the solutions of the Hamilton−Jacobi equation in terms of L∞(0, T ; Lp(Td)) norms of the nonlinearity g.
This result is important not only for its role in the realm of mean-field game theory, but it also adds to the
current understanding of the regularity of superquadratic Hamilton−Jacobi equations. For some related results,
see [5, 6, 10], where the authors investigate Hölder’s regularity.

Our main a priori estimate is the following:

Theorem 6.1. Suppose that A1−A9 hold. Let (uε, mε) be a solution of (2.4) and assume that p > d. Then,

‖Duε‖L∞(0,T ;L∞(Td)) ≤C + C‖uε‖L∞(0,T ;L∞(Td)) + C‖gε(mε)‖L∞(0,T ;Lp(Td))

×
(
‖Duε‖μ

L∞(0,T ;L∞(Td))
(1 + ‖uε‖L∞(0,T ;L∞(Td)))

)
,

where μ is the exponent given by Assumption A8.

Proof. For convenience, the proof of the theorem proceeds in the four steps below. �

We omit the superscript ε for the solution (uε, mε) in the following proofs.
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Step 1. The adjoint equation is the following partial differential equation

ρt − Δρ − div(DpHρ) = 0 (6.1)

for which we choose the initial data ρ(·, τ) = δx0 . Using this and the first equation in (2.4), we have the following
representation formula for u:

u(x0, τ) =
∫ T

τ

∫
Td

(DpHDxu − H + gε(m))ρ +
∫

Td

u(x, T )ρ(x, T ). (6.2)

Corollary 6.2. Suppose that A1−A9 hold. Let (uε, mε) be a solution of (2.4). Let ρ solve (6.1) with initial
data ρ(·, τ) = δx0 . Then,

∫ T

τ

∫
Td

Hρ +
∫ T

τ

∫
Td

gε(m)ρ ≤ C + C

[
u(x0, τ) −

∫
Td

u(x, T )ρ(x, T )
]

. (6.3)

Proof. It suffices to use Assumption A3 in (6.2). �

Corollary 6.3. Suppose that A1−A9 hold. Let (uε, mε) be a solution of (2.4). Let ρ solve (6.1) with initial
data ρ(·, τ) = δx0 . Then, ∫ T

τ

∫
Td

Hρ ≤ C + C‖uε‖L∞(0,T ;L∞(Td)). (6.4)

Proof. The result follows from Corollary 6.2 and the positivity of g. �

Step 2. We have, using the ideas from [22]:

Proposition 6.4. Suppose that A1−A9 hold. Let (uε, mε) be a solution of (2.4). Let ρ solve (6.1) with initial
data ρ(·, τ) = δx0 . Then, for 0 < ν < 1,

∫ T

τ

∫
Td

|Dρν/2|2dxdt ≤ C + C‖Duε‖μ
L∞(0,T ;L∞(Td))

(
1 + ‖uε‖L∞(0,T ;L∞(Td))

)
,

where μ is the exponent given in Assumption A8.

Proof. Multiply (6.1) by νρν−1. Then,

∂ρν

∂t
− νρν−1 div(DpH(x, Du)ρ) = νρν−1Δρ. (6.5)

We now integrate the previous identity on [τ, T ]×T
d. Since ρ(·, t) is a probability measure and we have 0 < ν < 1,

it follows that:
∫

Td ρν(x, t)dx ≤ 1. Consequently, the integral of the first term of the left-hand side of (6.5) is
bounded. We also have:∣∣∣∣∣

∫ T

τ

∫
Td

νρν−1 div(DpH(x, Du)ρ)dxdt

∣∣∣∣∣ = cν

∣∣∣∣∣
∫ T

τ

∫
Td

ρν/2ρν/2−1DρDpHdxdt

∣∣∣∣∣
≤ ζ

∫ T

τ

∫
Td

|D(ρν/2)|2dxdt + Cζ,ν

∫ T

τ

∫
Td

|DpH |2ρνdxdt,
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for any ζ > 0, with Cζ,ν depending only on ζ and ν. Because 0 < ν < 1, we have ρν ≤ Cδ + δρ, for any δ > 0
and suitable Cδ. Using Assumption A8, it follows from Proposition 3.2 and Corollary 6.3 that

C

∫ T

τ

∫
Td

|DpH |2ρνdxdt ≤ C + Cδ

∫ T

τ

∫
Td

|Du|μHdxdt + δ

∫ T

τ

∫
Td

|Du|μHρdxdt

≤ C + C‖Du‖μ
L∞(0,T ;L∞(Td))

(
1 + ‖u‖L∞(0,T ;L∞(Td))

)
.

The integral of the right-hand side of (6.5) is

ν(1 − ν)
∫ T

τ

∫
Td

|Dρ|2ρν−2dxdt =
4(1 − ν)

ν

∫ T

τ

∫
Td

|D(ρν/2)|2dxdt.

Gathering the previous estimates, we get

4(1 − ν)
ν

∫ T

τ

∫
Td

|D(ρν/2)|2dxdt ≤ C + ζ

∫ T

τ

∫
Td

|D(ρν/2)|2dxdt

+ C‖Du‖μ
L∞(0,T ;L∞(Td))

(
1 + ‖u‖L∞(0,T ;L∞(Td))

)
.

By choosing small enough ζ, we obtain the result. �

Step 3. To finish the proof of Theorem 6.1, we now fix a unit vector, ξ ∈ R
d. We differentiate the first equation

of (2.4) in the ξ direction and multiply it by ρ. Integrating by parts and using (6.1), we obtain:

uξ(x0, τ) =
∫ T

τ

∫
Td

−DξHρ + (gε(m))ξρ +
∫

Td

uξ(x, T )ρ(x, T ).

Note that ∣∣∣∣
∫

Td

uξ(x, T )ρ(x, T )
∣∣∣∣ ≤ ‖uξ(·, T )‖L∞(Td).

Using Corollary 6.3 and Assumption A5, we have∫ T

τ

∫
Td

|DξH |ρ ≤ C + C

∫ T

τ

∫
Td

Hρ ≤ C + C‖u‖L∞(0,T ;L∞(Td)).

Thus it remains to bound ∫ T

τ

∫
Td

(gε(m))ξρ. (6.6)

This will be done in the next step.

Step 4. To bound (6.6), we integrate by parts, from which it follows that:∣∣∣∣∣
∫ T

τ

∫
Td

(gε(m))ξρ

∣∣∣∣∣ ≤
∫ T

τ

∫
Td

gε(m)ρ1−β |ρβ−1Dρ|

≤ C

∫ T

τ

‖gε(m)‖a‖ρ1−β‖b‖Dρβ‖2,

for any 2 ≤ a, b ≤ ∞ satisfying 1
a + 1

b + 1
2 = 1. From this, we get, for β = ν

2 , with 0 < ν < 1,∣∣∣∣∣
∫ T

τ

∫
Td

gε(m)ξρ

∣∣∣∣∣ ≤ C‖g(m)‖L∞(τ,T ;La(Td))‖ρ1− ν
2 ‖L2(τ,T ;Lb(Td))‖Dρ

ν
2 ‖L2(τ,T ;L2(Td)).
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From Proposition 6.4, we have a bound for ‖Dρ
ν
2 ‖L2(τ,T ;L2(Td)). Therefore, it suffices to estimate

‖ρ1− ν
2 ‖L2(τ,T ;Lb(Td)). We have now to estimate

∫ T

τ

(∫
Td

ρb(1− ν
2 )

) 2
b

.

Given 0 < κ < 1, we define b by
1

b(1 − ν
2 )

= 1 − κ +
κ

2∗ν
2

· (6.7)

We will choose κ appropriately so that b > 2 holds. Additionally, it follows trivially from (6.7) that 1 < b(1− ν
2 ) <

2∗
2 ν, and so by Hölder’s inequality, we have:

(∫
Td

ρb(1− ν
2 )

) 1
b(1− ν

2 )

≤
(∫

Td

ρ

)1−κ (∫
Td

ρ
2∗ν
2

) 2κ
2∗ν

.

Recall that by Sobolev’s inequality,
( ∫

Td ρ
2∗ν
2

) 2
2∗ ≤ C + C

∫
Td |Dρ

ν
2 |2. Choose now κ = ν

2−ν . Note that if
0 < ν < 1, we have 0 < κ < 1. Then,

∥∥∥ρ1− ν
2

∥∥∥
L2(0,T ;Lb(Td))

≤
[
C + C

∫ T

0

∫
Td

|Dρ
ν
2 |2

] 1
2

≤
[
C + C‖Du‖μ

L∞(0,T ;L∞(Td))

(
1 + ‖u‖L∞(0,T ;L∞(Td))

)] 1
2

.

Also, using Proposition 6.4, we have

‖Dρ
ν
2 ‖L2(0,T ;L2(Td)) ≤

[
C + C‖Du‖μ

L∞(0,T ;L∞(Td))

(
1 + ‖u‖L∞(0,T ;L∞(Td))

)] 1
2

.

It remains to check that it is possible to choose ν such that b > 2. Indeed, for d−1
d < ν < 1, we have

d−1
d+1 < κ < 1 and b = 2d

3d−2dν−2 > 2. Note that a is given by a = d
d(ν−1)+1 . Thus, if p > d, we have, for ν close

enough to 1, that p > a and, therefore, this ends the proof of Theorem 6.1.
The result in Theorem 6.1 can be further simplified, as stated in Theorem 2.3. We now present its proof.

Proof of Theorem 2.3. By referring to Lemma 2.2, Theorem 6.1 becomes

‖Du‖L∞(Td×[0,T ) ≤ C + C‖gε‖L∞(0,T ;Lp(Td))

+ C‖gε‖L∞(0,T ;Lp(Td))‖Du‖μ
L∞(Td×[0,T ])

+ C‖gε‖L∞(0,T ;Lp(Td))‖Du‖μ
L∞(Td×[0,T ])

‖uε‖L∞(Td×[0,T ]).

Young’s inequality then yields

‖Du‖L∞(Td×[0,T ]) ≤ C + C‖gε‖L∞(0,T ;Lp(Td)) + C‖gε‖
1

1−μ

L∞(0,T ;Lp(Td))

+ C‖gε‖
1

1−μ

L∞(0,T ;Lp(Td))
‖uε‖

1
1−μ

L∞(Td×[0,T ])
.

A further application of Young’s inequality implies the result. �
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7. Lipschitz regularity for the Hamilton−Jacobi equation

In what follows we combine the results of Section 4 with the arguments from Section 6 to obtain the Lipschitz
regularity for the Hamilton−Jacobi equation.

Lemma 7.1. Let (uε, mε) be a solution of (2.4)−(1.2). Suppose that A1−10 hold. Let θ, θ̃, > 1, 0 ≤ υ, υ̃ ≤ 1.
Let r = rθ, r̃ = rθ̃ be given by (2.5) and pυ,θ, pυ̃,θ̃ be given by (2.6). Suppose that pυ,θ > d, pυ̃,θ̃ > d

2 . Then,

‖Duε‖L∞(0,T ;L∞(Td)) ≤ C + C ‖Duε‖
2(1+μ)α
(1−μ)β0

( rυ
θ + r̃υ̃

θ̃
)

L∞(0,T ;L∞(Td))

Proof. For ease of presentation, we remove the ε. Theorem 2.3 implies that

‖Du‖L∞(0,T ;L∞(Td)) ≤C + C‖g(m)‖
1

1−μ

L∞(0,T ;Lp(Td))

+ C‖g(m)‖
1

1−μ

L∞(0,T ;Lp(Td))
‖u‖

1
1−μ

L∞(0,T ;L∞(Td))
·

Because p̃ > d
2 , we have from Lemma 2.2 that

‖u‖L∞(0,T ;L∞(Td)) ≤ C + C ‖g(m)‖L∞(0,T ;Lp̃(Td)) .

By combining these, we obtain

‖Du‖L∞(0,T ;L∞(Td)) ≤ C + C ‖g(m)‖
1

1−μ

L∞(0,T ;Lp(Td))

+ C ‖g(m)‖
1

1−μ

L∞(0,T ;Lp(Td))
‖g(m)‖

1
1−μ

L∞(0,T ;Lp̃(Td))
.

From Theorem 2.1, it follows that

‖Du‖L∞(0,T ;L∞(Td)) ≤ C + C ‖Du‖
2(1+μ)α
(1−μ)β0

( rυ
θ + r̃υ̃

θ̃
)

L∞(0,T ;L∞(Td))
,

which establishes the result. �
Proposition 7.2. Let (uε, mε) be a solution of (2.4)−(1.2). Assume that A1−10 hold. Let θ, θ̃ > 1, 0 ≤ υ, υ̃ ≤ 1.
Let r = rθ, r̃ = rθ̃ be given by (2.5) and pυ,θ, pυ̃,θ̃ be given by (2.6). Suppose that pυ,θ > d and pυ̃,θ̃ > d

2 and
that (7.2) is satisfied. Then, Duε ∈ L∞(Td × [0, T ]).

Proof. Lemma 7.1 ensures that

‖Duε‖L∞(0,T ;L∞(Td)) ≤ C + C ‖Duε‖
2(1+μ)α
(1−μ)β0

( rυ
θ + r̃υ̃

θ̃
)

L∞(0,T ;L∞(Td))
.

Because of (7.2), the result follows using Young’s inequality. �

The results in this section strongly depend on several constraints for the parameters in the various estimates.
It is critical to ensure that this set of constraints can be mutually satisfied. This is done in the following lemma:

Lemma 7.3. If 0 ≤ μ < 1, d > 2 and

α <
2

d(1 + μ) − 2
, (7.1)

then there exist β0 ∈
[
1, d(1+μ)

d(1+μ)−2

)
, 1 < θ, θ̃ and 0 ≤ υ, υ̃ ≤ 1 such that for r = rθ, r̃ = rθ̃ given by (2.5) and

p = pυ,θ, p̃ = pυ̃,θ̃ given by (2.6), we have that p > d, p̃ > d
2 and

2(1 + μ)α
(1 − μ)β0

(rυ

θ
+

r̃υ̃

θ̃

)
< 1 (7.2)

are satisfied.
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Proof. To simplify, we introduce the variables M = 1 + μ and w = α(dM − 2). Because 0 < μ < 1, we have
1 ≤ M < 2. According to (7.1), 0 ≤ w < 2. Moreover, β0 = dMλ

dM−2 , for some 0 < λ < 1.
We have

p =
dMθλ

(θ + υ − θυ)w
and p̃ =

dMθ̃λ

(θ̃ + υ̃ − θ̃υ̃)w
·

Since 2M ≥ 2 and w < 2, one easily verifies that 2Mθ̃ > (θ̃ + υ̃ − θ̃υ̃)w; hence, for λ sufficiently close to 1, we

have p̃ >
d

2
.

Inequality (7.2) becomes (
(2 + d(θ − 1))

υ

θ
+ (2 + d(θ̃ − 1))

υ̃

θ̃

)
w < λd(2 − M). (7.3)

Because d > 2, we also have 2 + d(θ − 1) ≤ dθ, 2 + d(θ̃ − 1) ≤ dθ̃. Therefore,(
(2 + d(θ − 1))

υ

θ
+ (2 + d(θ̃ − 1))

υ̃

θ̃

)
w < d(υ + υ̃)w.

Consequently, if there are θ > 1, υ, υ̃ ∈ (0, 1) such that

Mθ > (θ + υ − θυ)w, (7.4)
(υ + υ̃)w < 2 − M, (7.5)

then, for λ sufficiently close to 1, we have p > d, p̃ > d
2 and (7.3).

Since 2 − M ≤ M < 2, we consider 3 cases:

Case I. w ≤ 2 − M . For υ < 1

M + (υ − 1)w ≥ M + (υ − 1)(2 − M) = v(2 − M) + 2(M − 1) ≥ (2 − M)υ.

For θ > 1,
θ(M + (υ − 1)w) ≥ θ(2 − M)υ > (2 − M)υ ≥ wυ,

which gives (7.4).
For υ̃ < 1 − υ, (υ + υ̃)w < w ≤ 2 − M .

Case II. 2 − M < w ≤ M . Fix ν > 0 such that 0 < υw < 2 − M . For θ > 1,(M − w

υw
+ 1

)
θ >

(M − w

2 − M
+ 1

)
θ =

(2 − w)θ
2 − M

≥ θ > 1,

which gives (7.4).

Choosing υ̃ <
2 − M

w
− υ, we get (7.5).

Case III. M < w < 2. For w − M < υw < (2 − M), we get (7.4) by selecting

θ >
υw

M − w + υw
·

Choosing υ̃ <
2 − M

w
− υ, we get (7.5). �

Now, we close the paper with the Proof of Theorem 2.4:

Proof of Theorem 2.4. It remains to check that (2.5) as well as (2.6) and (7.2) hold simultaneously. In fact,
under A10, this simultaneous condition follows from Lemma 7.3. �
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