STRICT CONVEXITY AND THE REGULARITY OF SOLUTIONS TO VARIATIONAL PROBLEMS *

Arrigo Cellina ${ }^{1}$

Abstract. We consider the problem of minimizing

$$
\int_{\Omega}[L(\nabla v(x))+g(x, v(x))] d x \quad \text { on } \quad u^{0}+W_{0}^{1,2}(\Omega)
$$

where Ω is a bounded open subset of \mathbb{R}^{N} and L is a convex function that grows quadratically outside the unit ball, while, when $|\nabla v|<1$, it behaves like $|\nabla v|^{p}$ with $1<p<2$. We show that, for each $\omega \subset \subset \Omega$, there exists a constant H, depending on ω but not on p, such that both

$$
\|\nabla u\|_{W^{1,2}(\omega)} \leq H \text { and }\left\|\frac{\nabla u}{|\nabla u|^{2-p}}\right\|_{W^{1,2}(\omega)} \leq \frac{H}{(p-1)^{2}}
$$

in particular, for every $i=1, \ldots N$, we have $\max \left\{\frac{\left|u_{x_{i}}\right|}{|\nabla u|^{2}-p},\left|u_{x_{i}}\right|\right\} \in W_{l o c}^{1,2}(\Omega)$.

Mathematics Subject Classification. 49K10.

Received December 12, 2014.

1. Introduction

This paper is concerned with the regularity properties of solutions to variational problems and, more precisely, with their properties of higher differentiability. We consider the problem of minimizing

$$
\begin{equation*}
\int_{\Omega}[L(\nabla v(x))+g(x, v(x))] \mathrm{d} x \quad \text { on } \quad w^{0}+W_{0}^{1,2}(\Omega) \tag{1.1}
\end{equation*}
$$

where L is a convex function and Ω a bounded open subset of \mathbb{R}^{N}. We wish to explore the effect of an increase of the strict convexity of the Lagrangian, with respect to the variable gradient, on the regularity of the solution; more precisely, we consider a problem where L grows quadratically outside the unit ball, while, when $|\nabla v|<1$,

[^0]it behaves like $|\nabla v|^{p}$ with $1<p<2$; hence, near the origin, the norm of the matrix of the second derivatives of L diverges, making the problem very strictly convex when $|\nabla v|$ is small. Our Theorem 2.2 below describes how this increasing in the strict convexity of L affects the higher differentiability of the solution u, when $|\nabla u|$ is small.

Regularity results in the sense of u being in $C^{1, \alpha}$ for $L(\xi)=|\xi|^{p}$ with $p>1$ have been proved by Uhlenbeck [8], Lewis [6] and Tolksdorf [7] for $g=0$ and by Di Benedetto [2], Acerbi and Fusco [1] in the general case; very recently functionals with different conditions on $\{|\xi|>1\}$ and on $\{|\xi|<1\}$, (with $g=f u$) have been considered by Colombo and Figalli [5] and the regularity $C^{1, \alpha}$ of the solution established; these results and techniques are different from ours.

2. Statement of the Theorem

The integrand L of (1.1) is described as follows: for some $1<p<2$, we shall consider the function

$$
l(t)= \begin{cases}\frac{1}{2}|t|^{2}+1 & \text { for }|t| \geq 1 \tag{2.1}\\ \frac{1}{p}|t|^{p}+\frac{3}{2}-\frac{1}{p} & \text { for }|t| \leq 1\end{cases}
$$

and set $L(\xi)=l(|\xi|)$. We have that, calling $H_{L}(\xi)$ the matrix of second derivatives of L computed at ξ,

$$
H_{L}(\xi)= \begin{cases}(p-2)|\xi|^{p-4} \xi \otimes \xi+|\xi|^{p-2} I & \text { for }|\xi|<1 \tag{2.2}\\ I & \text { for }|\xi|>1\end{cases}
$$

so that $z^{T} H_{L}(\xi) z \geq|z|^{2}$ for all ξ, while $\left|H_{L}(\xi)\right| \rightarrow \infty$ as $|\xi| \rightarrow 0$.
The assumptions on g are:

Assumption 2.1.

i) There exist $\tau \in L^{1}(\Omega)$ and a non-negative $\lambda_{g} \in L_{\text {loc }}^{2}(\Omega)$ such that for a.e. $x \in \Omega$ and every u, we have $g(x, u) \geq \tau(x)-\lambda_{g}|u|$.
ii) There exist non-negative $\lambda_{2} \in L_{\mathrm{loc}}^{2}(\Omega)$ and $\lambda_{\infty} \in L_{\mathrm{loc}}^{\infty}(\Omega)$, such that $\left|g_{u}(x, u)\right| \leq \lambda_{2}(x)+\lambda_{\infty}(x)|u|$.

Functions like $g(x, u)=\lambda_{2}(x) u$ or $g(x, u)=\left(\sin \left(x_{1}\right) u\right)^{2}$ satisfy Assumption 2.1.
The map l, and the map l_{r} to be defined, are not really C^{2} everywhere, but their gradients are Lipschitzian, and, by a simple modification of results that go back to [3], one proves that a solution u to the problem of minimizing (1.1), with L and g described above, is such that $\nabla u \in W_{\operatorname{loc}}^{1,2}(\Omega)$.

The purpose of this paper is to prove the following result:
Theorem 2.2. Let Ω be a bounded open subset of \mathbb{R}^{N}, let l be as in (2.1) and let g satisfy Assumption 2.1. Then, there exist u, a solution to the Euler-Lagrange equation, i.e. such that

$$
\int_{\Omega}\left[\langle\nabla L(\nabla u(x)), \nabla \eta(x)\rangle+g_{u}(x, u(x)) \eta(x)\right] \mathrm{d} x=0
$$

for every $\eta \in C_{c}^{1}(\Omega)$, and, for each $\omega \subset \subset \Omega$, a constant H, depending on ω but not on p, such that both

$$
\|\nabla u\|_{W^{1,2}(\omega)} \leq H \text { and }\left\|\frac{\nabla u}{|\nabla u|^{2-p}}\right\|_{W^{1,2}(\omega)} \leq \frac{H}{(p-1)^{2}}
$$

in particular, for every $i=1, \ldots N$, we have $\max \left\{\frac{\left|u_{x_{i}}\right|}{|\nabla u|^{2-p}},\left|u_{x_{i}}\right|\right\} \in W_{\mathrm{loc}}^{1,2}(\Omega)$.

Under some additional assumptions, mainly when g is convex in the variable v, a solution to the Euler-Lagrange equation is actually a solution to the minimization problem (1.1).

The additional regularity of the solution, provided by Theorem 1 , is actually lost in the limit as $p \rightarrow 1$, as the statement of Theorem 2.2 itself suggests. In fact, the limit problem consists in minimizing (1.1) where $L(\xi)=l_{*}(|\xi|)$ with

$$
l_{*}(t)= \begin{cases}\frac{1}{2}|t|^{2}+1 & \text { for }|t| \geq 1 \tag{2.3}\\ |t|+\frac{1}{2} & \text { for }|t| \leq 1\end{cases}
$$

here we have at once that $l_{*}^{\prime \prime}(0)=\infty$ while $l_{*}^{\prime \prime}(t)=0$ for $0<|t|<1$. When $g(x, u)=u$, a (radial) solution to problem (1.1) is

$$
u_{*}(x)= \begin{cases}0 & \text { for }|x| \leq 1 \\ \frac{1}{2}\left(|x|^{2}-1\right) & \text { for }|x| \geq 1\end{cases}
$$

whose gradient is

$$
\nabla u_{*}(x)= \begin{cases}0 & \text { for }|x|<1 \\ x & \text { for }|x|>1\end{cases}
$$

so that the gradient is discontinuous along $|x|=1$, preventing ∇u_{*} from being a Sobolev function.

3. Proof of Theorem 2.2

We shall use the following notations. The measure of $A \subset \mathbb{R}^{N}$ is $|A| ; a^{T}$ is the transpose of a; for a fixed coordinate direction e_{s}, we set $\delta_{h e_{s}} u$ to be the difference quotient of the function u, defined by $\delta_{h e_{s}} u(x)=$ $\frac{u\left(x+h e_{s}\right)-u(x)}{h}$. For a variation η to be defined, D_{η} is such that $|\nabla \eta(x)| \leq D_{\eta}$.

For the proof of the main result we shall need l_{r}, a regularization of l, defined to be

$$
l_{r}(t)= \begin{cases}\frac{1}{2} r^{p-2} t^{2}+\left(\frac{1}{p}-\frac{1}{2}\right) r^{p}+\frac{3}{2}-\frac{1}{p} & \text { for }|t| \leq r \tag{3.1}\\ l(t) & \text { otherwise }\end{cases}
$$

so that

$$
l_{r}^{\prime}(t)= \begin{cases}r^{p-2} t & \text { for } 0 \leq t \leq r \\ l^{\prime}(t) & \text { otherwise }\end{cases}
$$

We have that l_{r}^{\prime} is continuous and increasing, hence l_{r} is convex; moreover, for $t \notin\{r, 1\}, l_{r}^{\prime \prime}(t)$ exists and

$$
l_{r}^{\prime \prime}(t)= \begin{cases}r^{p-2} & \text { for }|t|<r \\ (p-1)|t|^{p-2} & \text { for } r<|t|<1 \\ 1 & \text { otherwise } .\end{cases}
$$

In particular, l_{r}^{\prime} is (globally) Lipschitzian with constant r^{p-2}. Set $L_{r}(\xi)=l_{r}(|\xi|)$ so that ∇L_{r} is Lipschitzian with Lipschitz constant r^{p-2}. In addition, we have that $\nabla L_{r} \rightarrow \nabla L$ uniformly as $r \rightarrow 0$.

Besides Problem 1.1, we shall also consider the problem of minimizing

$$
\begin{equation*}
\int_{\Omega}\left[L_{r}(\nabla v(x))+g(x, v(x))\right] \mathrm{d} x \quad \text { on } \quad w^{0}+W_{0}^{1,2}(\Omega) \tag{3.2}
\end{equation*}
$$

and call u^{r} its solution. By known regularity results, the function u^{r} is in $W_{\operatorname{loc}}^{2,2}(\Omega)$.
Lemma 3.1. Let Ω and g as in Theorem 2.2; let u^{r} be a solution to the minimization of (3.2); let $\phi \in W^{1,2}(\Omega)$ with support compactly contained in Ω. Then, for $s=1, \ldots, N$, we have

$$
\int_{\Omega}\left\langle\frac{\mathrm{d}}{\mathrm{~d} x_{s}} \nabla L_{r}\left(\nabla u^{r}\right), \nabla \phi\right\rangle=\int_{\Omega} g_{u}\left(\cdot, u^{r}\right) \phi_{x_{s}}
$$

Proof.
a) First, we claim that the map $\nabla L_{r}\left(\nabla u^{r}\right)$ is in $W^{1,2}(\Omega)$; we have that $\nabla L_{r}(\xi)=l_{r}^{\prime}(|\xi|) \frac{\xi}{|\xi|}$ and that $\left|\nabla u^{r}\right|$ is in $W^{1,2}(\Omega)$, with $\frac{\mathrm{d}}{\mathrm{d} x_{i}}\left|\nabla u^{r}\right|=\left\langle\frac{\nabla u^{r}}{\left|\nabla u^{r}\right|}, \nabla u_{x_{i}}^{r}\right\rangle$. The map

$$
\frac{l_{r}^{\prime}(t)}{t}= \begin{cases}r^{p-2} & \text { for } 0 \leq|t| \leq r \\ |t|^{p-2} & \text { for } r \leq|t| \leq 1 \\ 1 & \text { for }|t| \geq 1\end{cases}
$$

is (uniformly) Lipschitzian and it is not differentiable only at at $|t|=r$ and $|t|=1$; then, as it is known, $x \rightarrow \frac{l_{r}^{\prime}\left(\left|\nabla u^{r}(x)\right|\right)}{\left|\nabla u^{r}(x)\right|}$ is a Sobolev function with

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} x_{i}} \frac{l_{r}^{\prime}\left(\left|\nabla u^{r}(x)\right|\right)}{\left|\nabla u^{r}(x)\right|} & =\left[\left(\frac{l_{r}^{\prime}(t)}{t}\right)^{\prime} \circ\left|\nabla u^{r}(x)\right|\right]\left\langle\frac{\nabla u^{r}}{\left|\nabla u^{r}\right|}, \nabla u_{x_{i}}^{r}\right\rangle \\
& = \begin{cases}0 & \text { for }\left|\nabla u^{r}(x)\right| \leq r \text { or }\left|\nabla u^{r}(x)\right| \geq 1 \\
(p-2)\left|\nabla u^{r}(x)\right|^{p-3}\left\langle\frac{\nabla u^{r}}{\left|\nabla u^{r}\right|}, \nabla u_{x_{i}}^{r}\right\rangle & \text { otherwise. }\end{cases} \tag{3.3}
\end{align*}
$$

Then

$$
\frac{\mathrm{d}}{\mathrm{~d} x_{i}}\left[\frac{l_{r}^{\prime}\left(\left|\nabla u^{r}(x)\right|\right)}{\left|\nabla u^{r}(x)\right|} \cdot \nabla u^{r}(x)\right]=\frac{l_{r}^{\prime}\left(\left|\nabla u^{r}(x)\right|\right)}{\left|\nabla u^{r}(x)\right|} \nabla u_{x_{i}}^{r}(x)+\left(\frac{\mathrm{d}}{\mathrm{~d} x_{i}} \frac{l_{r}^{\prime}\left(\left|\nabla u^{r}(x)\right|\right)}{\left|\nabla u^{r}(x)\right|}\right) \nabla u^{r}(x) .
$$

Both terms above are in $L_{\text {loc }}^{2}(\Omega)$: in fact, $\frac{l_{r}^{\prime}(t)}{t}$ is bounded and, from (3.3), the absolute value of the second term is at most $\left|\nabla u_{x_{i}}\right|$. Hence, $\nabla L^{r}\left(\nabla u^{r}\right)$ is in $W_{\mathrm{loc}}^{1,2}(\Omega)$.
b) Under the assumptions of the Lemma, the Euler-Lagrange equation holds for u^{r} in the sense that for $\psi \in W_{0}^{1,2}(\Omega)$ we have

$$
\int_{\Omega}\left[\left\langle\nabla L_{r}\left(\nabla u^{r}\right), \nabla \psi\right\rangle+g_{u}(x, u) \psi\right] \mathrm{d} x=0
$$

For h sufficiently small, consider the variation $\psi=\delta_{-h e_{s}} \phi$ to obtain

$$
\begin{equation*}
\int_{\Omega}\left\langle\frac{\nabla L^{r}\left(\nabla u^{r}\left(x+h e_{s}\right)\right)-\nabla L^{r}\left(\nabla u^{r}(x)\right)}{h}, \nabla \phi(x)\right\rangle \mathrm{d} x=\int_{\Omega} g_{u}\left(x, u^{r}(x)\right) \frac{\phi\left(x-h e_{s}\right)-\phi(x)}{-h} \mathrm{~d} x . \tag{3.4}
\end{equation*}
$$

Since $\nabla L^{r}\left(\nabla u^{r}\right)$ is in $W_{\mathrm{loc}}^{1,2}(\Omega)$, the family $\left(\frac{\nabla L^{r}\left(\nabla u^{r}\left(x+h e_{i}\right)\right)-\nabla L^{r}\left(\nabla u^{r}(x)\right)}{h}\right)_{h}$ is bounded in $L_{\text {loc }}^{2}(\Omega)$ and we can assume the existence of a sequence $\left(h_{n}\right)$ such that

$$
\frac{\nabla L^{r}\left(\nabla u^{r}\left(x+h_{n} e_{i}\right)\right)-\nabla L^{r}\left(\nabla u^{r}(x)\right)}{h_{n}} \rightharpoonup \frac{\mathrm{~d}}{\mathrm{~d} x_{i}} \nabla L^{r}\left(\nabla u^{r}\right)
$$

so that the left hand side of (3.4) converges to $\int_{\Omega}\left\langle\frac{\mathrm{d}}{\mathrm{d} x_{s}} \nabla L^{r}\left(\nabla u^{r}\right), \nabla \phi\right\rangle$.
We also have

$$
\begin{gathered}
\int_{\Omega} g_{u}\left(x, u^{r}(x)\right) \frac{\phi\left(x-h e_{s}\right)-\phi(x)}{-h} \mathrm{~d} x=\int_{0}^{1} \int_{\operatorname{supp}(\phi)+t h e_{s}} g_{u}\left(x, u^{r}(x)\right) \phi_{x_{s}}\left(x-t h e_{s}\right) \mathrm{d} x \mathrm{~d} t \\
=\int_{0}^{1} \int_{\operatorname{supp}(\phi)} g_{u}\left(x+t h e_{s}, u^{r}\left(x+t h e_{s}\right)\right) \phi_{x_{s}}(x) \mathrm{d} x \mathrm{~d} t \\
=\int_{\Omega} g_{u}\left(x, u^{r}(x)\right) \phi_{x_{s}}(x) \mathrm{d} x+\int_{0}^{1} \int_{\Omega}\left[g_{u}\left(x+h e_{s}, u^{r}\left(x+h e_{s}\right)\right)-g_{u}\left(x, u^{r}(x)\right] \phi_{x_{s}}(x) \mathrm{d} x \mathrm{~d} t\right.
\end{gathered}
$$

By Assumption 2.1, ii), we obtain that the map $x \rightarrow g_{u}\left(x, u^{r}(x)\right)$ is in $L_{\text {loc }}^{2}(\Omega)$, so that $\| g_{u}\left(\cdot+h e_{s}, u^{r}\left(\cdot+h e_{s}\right)\right)-$ $g_{u}\left(\cdot, u^{r}(\cdot)\right) \|_{L^{2}(\operatorname{supp}(\phi))} \rightarrow 0$, thus proving the lemma.

Lemma 3.2. There exists K, depending neither on r nor on p, such that $\left\|\nabla u^{r}\right\|_{L^{2}(\Omega)} \leq K$ and $\left\|u^{r}\right\|_{L^{2}(\Omega)} \leq K$.
Proof. Set $L^{0}(\xi)=\frac{1}{2}|\xi|^{2}+1$, so that, for any $1<p<2$ and any $r \leq 1$, we have $L^{r}(\xi) \leq L^{0}(\xi)+1$.
Let u^{0} be a solution to the problem of minimizing

$$
\begin{equation*}
\int_{\Omega}\left[L^{0}(\nabla v(x))+1+g(x, v(x))\right] \mathrm{d} x \quad \text { on } \quad w^{0}+W_{0}^{1,2}(\Omega) \tag{3.5}
\end{equation*}
$$

and set $V=\int_{\Omega}\left[L^{0}\left(\nabla u^{0}(x)\right)+1+g\left(x, u^{0}(x)\right)\right] \mathrm{d} x$. Then

$$
V \geq \int_{\Omega}\left[L^{r}\left(\nabla u^{0}\right)+g\left(x, u^{0}\right)\right] \geq \int_{\Omega}\left[L^{r}\left(\nabla u^{r}\right)+g\left(x, u^{r}\right)\right] \geq \int_{\Omega}\left[\frac{1}{2}\left|\nabla u^{r}\right|^{2}+g\left(x, u^{r}\right)\right] ;
$$

on the other hand, recalling Assumption 2.1, for a constant α to be fixed, from $\int \lambda_{g}|u| \leq \frac{1}{2} \alpha^{2} \int\left(\lambda_{g}\right)^{2}+\frac{1}{2} \frac{1}{\alpha^{2}} \int|u|^{2}$ we obtain

$$
\int_{\Omega} g\left(x, u^{r}(x)\right) \mathrm{d} x \geq \int \tau-\frac{1}{2} \alpha^{2} \int\left(\lambda_{g}\right)^{2}-\frac{1}{2} \frac{1}{\alpha^{2}} \int\left|u^{r}\right|^{2} .
$$

Call P the Poincaré constant in $W^{1,2}(\Omega)$; from $\int\left|u^{r}\right|^{2}=\int\left|w^{0}-\left(u^{r}-w^{0}\right)\right|^{2} \leq 2 \int\left|w^{0}\right|^{2}+2 P \int\left|\nabla\left(u^{r}-w^{0}\right)\right|^{2} \leq$ $2 \int\left|w^{0}\right|^{2}+4 P \int\left|\nabla u^{r}\right|^{2}+4 P \int\left|\nabla w^{0}\right|^{2}$, we obtain

$$
\int_{\Omega} g\left(x, u^{r}\right) \geq \int \tau-\frac{1}{2} \alpha^{2} \int\left(\lambda_{g}\right)^{2}-\frac{1}{2} \frac{1}{\alpha^{2}}\left[4 P \int\left|\nabla u^{r}\right|^{2}+\int\left|\nabla w^{0}\right|^{2}(2+4 P)\right] .
$$

Hence,

$$
\int_{\Omega} \frac{1}{2}\left|\nabla u^{r}\right|^{2} \leq V-\int_{\Omega} g\left(x, u^{r}\right) \leq V-\int \tau+\frac{1}{2} \alpha^{2} \int\left(\lambda_{g}\right)^{2}+\frac{2 P}{\alpha^{2}} \int\left|\nabla u^{r}\right|^{2}+\frac{1}{2 \alpha^{2}} \int\left|\nabla w^{0}\right|^{2}(2+4 P) .
$$

Choose α such that $\frac{2 P}{\alpha^{2}}=\frac{1}{4}$ to obtain $\int\left|\nabla u^{r}\right|^{2} \leq 4\left[V+\int\left(-\tau+\frac{1}{2} \alpha^{2}\left(\lambda_{g}\right)^{2}+\frac{2+4 P}{2 \alpha^{2}}\left|\nabla w^{0}\right|^{2}\right)\right]=k_{1}$.
From this, making use of $w^{0} \in W^{1,2}$ and of Poincare's inequality, we infer that for some k_{2}, we also have $\int_{\Omega}\left|u^{r}\right|^{2} \leq k_{2}$ for all $r \leq 1$.

A similar estimate was proved in [4].
Proof of Theorem 2.2.
a) Consider the function

$$
\gamma_{r}(t)=\frac{l_{r}^{\prime}(t)}{t}= \begin{cases}r^{p-2} & \text { for }|t| \leq r \\ |t|^{p-2} & \text { for } r<|t|<1 \\ 1 & \text { otherwise }\end{cases}
$$

then, as in the Proof of Lemma 3.1, the map $x \rightarrow \gamma_{r}\left(\left|\nabla u^{r}(x)\right|\right)$ is in $W_{l o c}^{1,2}$ and

$$
\frac{\mathrm{d}}{\mathrm{~d} x_{s}} \gamma_{r}\left(\left|\nabla u^{r}(x)\right|\right)= \begin{cases}0 & \text { for }\left|\nabla u^{r}\right| \leq r \text { or }\left|\nabla u^{r}\right| \geq 1 \\ (p-2)\left|\nabla u^{r}\right|^{p-3}\left\langle\frac{\nabla u^{r}}{\left|\nabla u^{r}\right|}, \nabla u_{x_{s}}^{r}\right\rangle & \text { for } r<\left|\nabla u^{r}\right|<1 .\end{cases}
$$

Moreover, $1 \leq \gamma_{r} \leq r^{p-2}$ and $\left|\frac{\mathrm{d}}{\mathrm{d} x_{s}} \gamma_{r}\left(\left|\nabla u^{r}\right|\right)\right| \leq(2-p) r^{p-3}\left|\nabla u_{x_{s}}^{r}\right|$. Then, the map $x \rightarrow \gamma_{r}\left(\left|\nabla u^{r}(x)\right|\right) u_{x_{i}}(x)$ is in $W_{\text {loc }}^{1,2}(\Omega)$ and, setting $H_{u^{r}}$ to be the Hessian matrix of u^{r}, we obtain

$$
\nabla\left(\gamma_{r}\left(\left|\nabla u^{r}\right|\right) u_{x_{i}}^{r}\right)= \begin{cases}\gamma_{r}\left(\left|\nabla u^{r}\right|\right) \nabla u_{x_{i}}^{r} & \text { for }\left|\nabla u^{r}\right| \leq r \text { or }\left|\nabla u^{r}\right| \geq 1 \tag{3.6}\\ (p-2)\left|\nabla u^{r}\right|^{p-2} H_{u^{r}} \frac{\nabla u^{r}}{\left|\nabla u^{r}\right|} \frac{u_{x_{i}}^{r}}{\left|\nabla u^{r}\right|}+\gamma_{r}\left(\left|\nabla u^{r}\right|\right) \nabla u_{x_{i}}^{r} & \text { for } r \leq\left|\nabla u^{r}\right| \leq 1 .\end{cases}
$$

b) Let x^{0} and δ^{0} be such that $B\left(x^{0}, 4 \delta^{0}\right) \subset \subset \Omega$. Let $\eta \in C_{0}^{\infty}\left(B\left(x^{0}, 2 \delta^{0}\right)\right)$ be such that $0 \leq \eta \leq 1$ and that $\eta(x)=1$ for $x \in B\left(x^{0}, \delta^{0}\right)$; we recall that $D_{\eta}=\sup \{|\nabla \eta(x)|\}$. Then, the function $\phi=\left[\eta^{2} \gamma_{r}\left(\left|\nabla u^{r}\right|\right) u_{x_{i}}^{r}\right]$ is in $W_{0}^{1,2}\left(B\left(x^{0}, 3 \delta^{0}\right)\right)$ and from Lemma 3.1 we have

$$
\int_{\Omega}\left\langle\frac{\mathrm{d}}{\mathrm{~d} x_{i}} \frac{l_{r}^{\prime}\left(\left|\nabla u^{r}\right|\right)}{\left|\nabla u^{r}\right|} \nabla u^{r}, \nabla \phi\right\rangle=\int_{\Omega} g_{u}\left(\cdot, u^{r}\right) \phi_{x_{i}}
$$

i.e.,

$$
\begin{align*}
& \int_{B\left(x^{0}, 3 \delta^{0}\right)}\left\langle\frac{l_{r}^{\prime}\left(\left|\nabla u^{r}\right|\right)}{\left|\nabla u^{r}\right|} \nabla u_{x_{i}}^{r}+\left(\frac{\mathrm{d}}{\mathrm{~d} x_{i}} \frac{l_{r}^{\prime}\left(\left|\nabla u^{r}\right|\right)}{\left|\nabla u^{r}\right|}\right) \nabla u^{r}, \quad 2 \eta \nabla \eta \gamma_{r}\left(\left|\nabla u^{r}\right|\right) u_{x_{i}}^{r}+\eta^{2} \nabla\left(\gamma_{r}\left(\left|\nabla u^{r}\right|\right) u_{x_{i}}\right)\right\rangle \mathrm{d} x \\
& =\int_{B\left(x^{0}, 3 \delta^{0}\right)} g_{u}\left(\cdot, u^{r}\right)\left[2 \eta \eta_{x_{i}} \gamma_{r}\left(\left|\nabla u^{r}\right|\right) u_{x_{i}}^{r}+\eta^{2} \frac{\mathrm{~d}}{\mathrm{~d} x_{i}}\left(\gamma_{r}\left(\left|\nabla u^{r}\right|\right) u_{x_{i}}^{r}\right)\right] \mathrm{d} x \tag{3.7}
\end{align*}
$$

We shall call G_{i} the term at the right hand side.
Since the above equality holds for every i, we obtain

$$
\begin{align*}
& \sum_{i} \int_{B\left(x^{0}, 3 \delta^{0}\right)}\left\langle\frac{\mathrm{d}}{\mathrm{~d} x_{i}} \frac{l_{r}^{\prime}\left(\left|\nabla u^{r}\right|\right)}{\left|\nabla u^{r}\right|} \nabla u^{r}, \eta^{2} \nabla\left(\gamma_{r}\left(\left|\nabla u^{r}\right|\right) u_{x_{i}}^{r}\right)\right\rangle \mathrm{d} x \\
& \leq \sum_{i}\left|\int_{B\left(x^{0}, 3 \delta^{0}\right)}\left\langle\frac{\mathrm{d}}{\mathrm{~d} x_{i}} \frac{l_{r}^{\prime}\left(\left|\nabla u^{r}\right|\right)}{\left|\nabla u^{r}\right|} \nabla u^{r}, 2 \eta \nabla \eta \gamma_{r}\left(\left|\nabla u^{r}\right|\right) u_{x_{i}}^{r}\right\rangle\right| \mathrm{d} x+\sum_{i} G_{i} \tag{3.8}
\end{align*}
$$

c) For $j=1, \ldots, N$, we have

$$
\begin{gathered}
\left(\nabla_{x}\left(\frac{l_{r}^{\prime}\left(\left|\nabla u^{r}\right|\right)}{\left|\nabla u^{r}\right|} \nabla u^{r}\right)\right)_{i, j}=\frac{l_{r}^{\prime}\left(\left|\nabla u^{r}\right|\right)}{\left|\nabla u^{r}\right|} u_{x_{j} x_{i}}^{r}+\left(\frac{\mathrm{d}}{\mathrm{~d} x_{i}} \frac{l_{r}^{\prime}\left(\left|\nabla u^{r}\right|\right)}{\left|\nabla u^{r}\right|}\right) u_{x_{j}}^{r} \\
=\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|} u_{x_{j} x_{i}}^{r}+\left\langle\frac{\nabla u^{r}}{\left|\nabla u^{r}\right|}, \nabla u_{x_{i}}^{r}\right\rangle\left(l_{r}^{\prime \prime}-\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right) \frac{u_{x_{j}}^{r}}{\left|\nabla u^{r}\right|}
\end{gathered}
$$

i.e.,

$$
\nabla_{x}\left(\frac{l_{r}^{\prime}\left(\left|\nabla u^{r}\right|\right)}{\left|\nabla u^{r}\right|} \nabla u^{r}\right)=\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|} H_{u^{r}}+\left(l_{r}^{\prime \prime}-\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right)\left(\frac{\nabla u^{r}}{\left|\nabla u^{r}\right|} H_{u^{r}}\right) \otimes \frac{\nabla u^{r}}{\left|\nabla u^{r}\right|}
$$

and we obtain

$$
\begin{gathered}
\left|\nabla_{x}\left(\frac{l_{r}^{\prime}\left(\left|\nabla u^{r}\right|\right)}{\left|\nabla u^{r}\right|} \nabla u^{r}\right)\right|^{2} \\
=\left(\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right)^{2}\left|H_{u^{r}}\right|^{2}+\left(l_{r}^{\prime \prime}-\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right)^{2}\left|\frac{\nabla u^{r}}{\left|\nabla u^{r}\right|} H_{u^{r}}\right|^{2}+2\left(l_{r}^{\prime \prime}-\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right) \frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\left|\frac{\nabla u^{r}}{\left|\nabla u^{r}\right|} H_{u^{r}}\right|^{2} \\
=\left(\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right)^{2}\left|H_{u^{r}}\right|^{2}+\left(\left(l_{r}^{\prime \prime}\right)^{2}-\left(\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right)^{2}\right)\left|\frac{\nabla u^{r}}{\left|\nabla u^{r}\right|} H_{u^{r}}\right|^{2}
\end{gathered}
$$

so that

$$
\begin{equation*}
\inf \left\{\left(l_{r}^{\prime \prime}\right)^{2},\left(\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right)^{2}\right\}\left|H_{u^{r}}\right|^{2} \leq\left|\nabla_{x}\left(\frac{l_{r}^{\prime}\left(\left|\nabla u^{r}\right|\right)}{\left|\nabla u^{r}\right|} \nabla u^{r}\right)\right|^{2} \leq \sup \left\{\left(l_{r}^{\prime \prime}\right)^{2},\left(\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right)^{2}\right\}\left|H_{u^{r}}\right|^{2} \tag{3.9}
\end{equation*}
$$

We also have, computing $l_{r}^{\prime}, l_{r}^{\prime \prime}, \gamma_{r}$ and γ_{r}^{\prime} at $\left|\nabla u^{r}\right|$,

$$
\sum_{i}\left\langle\frac{\mathrm{~d}}{\mathrm{~d} x_{i}} \frac{l_{r}^{\prime}\left(\left|\nabla u^{r}\right|\right)}{\left|\nabla u^{r}\right|} \nabla u^{r}, \nabla\left(\gamma_{r} u_{x_{i}}^{r}\right)\right\rangle
$$

$$
\begin{aligned}
& =\sum_{i} \sum_{j}\left(\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|} u_{x_{j} x_{i}}^{r}+\left(\sum_{s} \frac{u_{x_{s}}^{r}}{\left|\nabla u^{r}\right|} u_{x_{i} x_{s}}^{r}\right)\left(l_{r}^{\prime \prime}-\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right) \frac{u_{x_{j}}^{r}}{\left|\nabla u^{r}\right|}\right) \\
& \cdot\left(\gamma_{r} u_{x_{j} x_{i}}^{r}+\left(\gamma_{r}\right)^{\prime}\left(\sum_{l} u_{x_{j} x_{l}}^{r} \frac{u_{x_{l}}^{r}}{\left|\nabla u^{r}\right|}\right) u_{x_{i}}^{r}\right) \\
& =\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|} \gamma_{r}\left|H_{u^{r}}\right|^{2}+\left(l_{r}^{\prime \prime}-\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right) \gamma_{r}^{\prime}\left|\nabla u^{r}\right|\left(\sum_{i, s} \frac{u_{x_{i}}^{r}}{\left|\nabla u^{r}\right|} \frac{u_{x_{s}}^{r}}{\left|\nabla u^{r}\right|} u_{x_{i} x_{s}}^{r}\right) \\
& \cdot\left(\sum_{j, l} \frac{u_{x_{j}}^{r}}{\left|\nabla u^{r}\right|} \frac{u_{x_{l}}^{r}}{\left|\nabla u^{r}\right|} u_{x_{j} x_{l}}^{r}\right) \\
& +\gamma_{r}\left(l_{r}^{\prime \prime}-\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right) \sum_{i}\left(\sum_{j} \frac{u_{x_{j}}^{r}}{\left|\nabla u^{r}\right|} u_{x_{j} x_{i}}^{r}\right)\left(\sum_{s} \frac{u_{x_{s}}^{r}}{\left|\nabla u^{r}\right|} u_{x_{i} x_{s}}^{r}\right) \\
& +\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|} \gamma_{r}^{\prime}\left|\nabla u^{r}\right|\left(H_{u^{r}} \frac{\nabla u^{r}}{\left|\nabla u^{r}\right|}\right)^{2} \\
& =\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|} \gamma_{r}\left|H_{u^{r}}\right|^{2}+\left(l_{r}^{\prime \prime}-\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right) \gamma_{r}^{\prime}\left|\nabla u^{r}\right|\left(\frac{\nabla u^{r}}{\left|\nabla u^{r}\right|} H_{u^{r}} \frac{\nabla u^{r}}{\left|\nabla u^{r}\right|}\right)^{2} \\
& +\gamma_{r}\left(l_{r}^{\prime \prime}-\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right)\left|H_{u^{r}} \frac{\nabla u^{r}}{\left|\nabla u^{r}\right|}\right|^{2}+\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|} \gamma_{r}^{\prime}\left|\nabla u^{r}\right|\left|H_{u^{r}} \frac{\nabla u^{r}}{\left|\nabla u^{r}\right|}\right|^{2} \\
& =\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|} \gamma_{r}\left|H_{u^{r}}\right|^{2}+\left(l_{r}^{\prime \prime}-\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right) \gamma_{r}\left|H_{u^{r}} \frac{\nabla u^{r}}{\left|\nabla u^{r}\right|}\right|^{2} \\
& +\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|} \gamma_{r}^{\prime}\left|\nabla u^{r}\right|\left[\left|H_{u^{r}} \frac{\nabla u^{r}}{\left|\nabla u^{r}\right|}\right|^{2}-\left(\frac{\nabla u^{r}}{\left|\nabla u^{r}\right|} H_{u^{r}} \frac{\nabla u^{r}}{\left|\nabla u^{r}\right|}\right)^{2}\right] \\
& +l_{r}^{\prime \prime} \gamma_{r}^{\prime}\left|\nabla u^{r}\right|\left(\frac{\nabla u^{r}}{\left|\nabla u^{r}\right|} H_{u^{r}} \frac{\nabla u^{r}}{\left|\nabla u^{r}\right|}\right)^{2} \\
& \geq \gamma_{r}\left[\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\left|H_{u^{r}}\right|^{2}+\left(l_{r}^{\prime \prime}-\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right)\left|H_{u^{r}} \frac{\nabla u^{r}}{\left|\nabla u^{r}\right|}\right|^{2}\right] \\
& \geq \gamma_{r}\left[\inf \left\{l_{r}^{\prime \prime}, \frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right\}\right]\left|H_{u^{r}}\right|^{2}
\end{aligned}
$$

where

$$
\gamma_{r}(t) \inf \left\{l_{r}^{\prime \prime}(t), \frac{l_{r}^{\prime}(t)}{t}\right\}= \begin{cases}r^{2(p-2)} & \text { for }|t| \leq r \\ (p-1)|t|^{2(p-2)} & \text { for } r \leq|t| \leq 1 \\ 1 & \text { otherwise }\end{cases}
$$

Hence we have obtained

$$
\int_{B\left(x^{0}, 3 \delta^{0}\right)} \eta^{2} \gamma_{r}\left[\inf \left\{l_{r}^{\prime \prime}, \frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right\}\right]\left|H_{u^{r}}\right|^{2} \mathrm{~d} x \leq \sum_{i} \int_{B\left(x^{0}, 3 \delta^{0}\right)} \eta^{2}\left\langle\frac{\mathrm{~d}}{\mathrm{~d} x_{i}} \frac{l_{r}^{\prime}\left(\left|\nabla u^{r}\right|\right)}{\left|\nabla u^{r}\right|^{r}} \nabla u^{r}, \nabla\left(\gamma_{r}\left(\left|\nabla u^{r}\right|\right) u_{x_{i}}\right)\right\rangle \mathrm{d} x
$$

so that, from (3.8),

$$
\begin{align*}
\int_{B\left(x^{0}, 3 \delta^{0}\right)} \eta^{2} \gamma_{r}\left[\inf \left\{l_{r}^{\prime \prime}, \frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right\}\right] & \left|H_{u^{r}}\right|^{2} \mathrm{~d} x \\
& \leq \sum_{i}\left|\int_{B\left(x^{0}, 3 \delta^{0}\right)}\left\langle\frac{\mathrm{d}}{\mathrm{~d} x_{i}} \frac{l_{r}^{\prime}\left(\left|\nabla u^{r}\right|\right)}{\left|\nabla u^{r}\right|} \nabla u^{r}, 2 \eta \nabla \eta \gamma_{r}\left(\left|\nabla u^{r}\right|\right) u_{x_{i}}^{r}\right\rangle\right| \mathrm{d} x+\sum_{i} G_{i} \tag{3.10}
\end{align*}
$$

d) From (3.6) we have that

$$
\begin{align*}
\sum_{i} G_{i}= & \int_{B\left(x^{0}, 3 \delta^{0}\right)}\left[g_{u}\left(x, u^{r}\right) 2 \eta \gamma_{r}\left(\left|\nabla u^{r}\right|\right)\left\langle\nabla \eta, \nabla u^{r}\right\rangle+\eta^{2} g_{u}\left(x, u^{r}\right) \Delta u^{r}\right] \mathrm{d} x \\
& +\int_{B\left(x^{0}, 3 \delta^{0}\right) \cap\left\{r \leq\left|\nabla u^{r}(x)\right| \leq 1\right\}} g_{u}\left(x, u^{r}\right) \eta^{2}(p-2)\left|\nabla u^{r}\right|^{p-2}\left(\frac{\nabla u^{r}}{\left|\nabla u^{r}\right|}\right)^{T} H_{u^{r}} \frac{\nabla u^{r}}{\left|\nabla u^{r}\right|} \mathrm{d} x \\
& \leq \int_{B\left(x^{0}, 3 \delta^{0}\right)}\left[\eta^{2} g_{u}^{2}+|\nabla \eta|^{2}+\frac{4}{p-1} \eta^{2} g_{u}^{2}+\frac{p-1}{4} \eta^{2}\left|H_{u^{r}}\right|^{2}\right] \mathrm{d} x \\
& +\int_{B\left(x^{0}, 3 \delta^{0}\right) \cap\left\{r \leq\left|\nabla u^{r}(x)\right| \leq 1\right\}}\left[\frac{4}{p-1} \eta^{2} g_{u}^{2}+\eta^{2} \frac{p-1}{4}\left|\nabla u^{r}\right|^{2(p-2)}\left|H_{u^{r}}\right|^{2}\right] \mathrm{d} x \tag{3.11}
\end{align*}
$$

By Assumption 2.1, $g_{u}\left(x, u^{r}\right)^{2} \leq 2\left[\left(\lambda_{2}\right)^{2}+\left(\lambda_{\infty}\left|u^{r}\right|\right)^{2}\right]$; hence, applying Lemma 3.2 we infer that there exists a constant K^{0}, independent of r and p, such that the right hand side of (3.11) is bounded above by

$$
\frac{K^{0}}{p-1}+\frac{1}{2} \int_{B\left(x^{0}, 3 \delta^{0}\right)} \eta^{2}(p-1)\left|\nabla u^{r}\right|^{2(p-2)}\left|H_{u^{r}}\right|^{2} \mathrm{~d} x
$$

Then, from $\inf \left\{l_{r}^{\prime \prime}, \frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right\} \geq p-1$, (3.10) gives

$$
\begin{align*}
& \frac{1}{2} \int_{B\left(x^{0}, 3 \delta^{0}\right)} \eta^{2} \gamma_{r}\left[\inf \left\{l_{r}^{\prime \prime}, \frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right\}\right]\left|H_{u^{r}}\right|^{2} \mathrm{~d} x \\
& \leq \frac{1}{p-1} K^{0}+\sum_{i}\left|\int_{B\left(x^{0}, 3 \delta^{0}\right)}\left\langle\frac{\mathrm{d}}{\mathrm{~d} x_{i}} \frac{l_{r}^{\prime}\left(\left|\nabla u^{r}\right|\right)}{\left|\nabla u^{r}\right|} \nabla u^{r}, 2 \eta \nabla \eta \gamma_{r}\left(\left|\nabla u^{r}\right|\right) u_{x_{i}}^{r}\right\rangle\right| \mathrm{d} x \\
& \leq \frac{1}{p-1} K^{0}+\int_{B\left(x^{0}, 3 \delta^{0}\right)}\left[\frac{p-1}{4}\left|\nabla_{x}\left(\nabla L\left(\nabla u^{r}\right)\right)\right|^{2} \eta^{2}+\frac{4}{p-1} N|\nabla \eta|^{2}\right] \mathrm{d} x \\
& \leq \frac{1}{p-1} K^{0}+\int_{B\left(x^{0}, 3 \delta^{0}\right)}\left[\frac{1}{4} \gamma_{r} \inf \left\{l_{r}^{\prime \prime}, \frac{l_{r}^{\prime}}{|t|}\right\}\left|\nabla_{x}\left(\nabla L\left(\nabla u^{r}\right)\right)\right|^{2} \eta^{2}+\frac{4}{p-1} N|\nabla \eta|^{2}\right] \mathrm{d} x \tag{3.12}
\end{align*}
$$

and we obtain

$$
\frac{p-1}{4} \int_{B\left(x^{0}, 3 \delta^{0}\right)} \eta^{2} \left\lvert\, \nabla_{x}\left(\left.\nabla L_{r}\left(\nabla u^{r}\right)\right|^{2} \mathrm{~d} x \leq \frac{1}{4} \int_{B\left(x^{0}, 3 \delta^{0}\right)} \eta^{2} \gamma_{r}\left[\inf \left\{l_{r}^{\prime \prime}, \frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right\}\right]\left|H_{u^{r}}\right|^{2} \mathrm{~d} x \leq \frac{K^{1}}{p-1}\right.\right.
$$

f) In particular,

$$
\begin{equation*}
\int_{B\left(x^{0}, \delta^{0}\right)}\left|\nabla_{x} \nabla L_{r}\left(\nabla u^{r}\right)\right|^{2} \leq \frac{4}{(p-1)^{2}} K^{1} \tag{3.13}
\end{equation*}
$$

hence, the family $\left(\nabla_{x} \nabla L_{r}\left(\nabla u^{r}\right)\right)_{r}$ is bounded in $L^{2}\left(B\left(x^{0}, \delta^{0}\right)\right)$. The arbitrariness of x^{0} and of δ^{0} then shows that, for every $\omega \subset \subset \Omega$, there exists H, independent of r and p, such that $\left(\left\|\nabla_{x} \nabla L_{r}\left(\nabla u^{r}\right)\right\|_{L^{2}(\omega)}\right)_{r} \leq \frac{H}{(p-1)^{2}}$. Then, from (3.9) and since $\inf \left\{\left(l_{r}^{\prime \prime}\right)^{2},\left(\frac{l_{r}^{\prime}}{\left|\nabla u^{r}\right|}\right)^{2}\right\} \geq(p-1)^{2}$, we infer that

$$
\begin{equation*}
\int_{\omega}\left|H_{u^{r}}\right|^{2} \leq \frac{1}{(p-1)^{2}} \int_{\omega}\left|\nabla_{x} \nabla L_{r}\left(\nabla u^{r}\right)\right|^{2} \leq \frac{1}{(p-1)^{4}} H^{2} \tag{3.14}
\end{equation*}
$$

Then, we can assume that, for $s=1, \ldots, N$, there exists a sequence $\left(r^{n}\right)_{n}$ such that $\frac{\mathrm{d}}{\mathrm{d} x_{s}} \nabla L_{r_{n}}\left(\nabla u^{r_{n}}\right)$ converges weakly in $L^{2}(\omega)$ to some d_{λ}, that $\nabla L_{r_{n}}\left(\nabla u^{r_{n}}\right)$ converges in $L^{2}(\omega)$ to a function λ, that $u^{r_{n}} \rightarrow u$ and, finally, that $\nabla u^{r_{n}} \rightarrow \nabla u$ in $L^{2}(\omega)$.
g) We claim that:
i) $\lambda=\nabla L(\nabla u) ; d_{\lambda}=\frac{\mathrm{d}}{\mathrm{d} x_{s}} \nabla L(\nabla u)$ and

$$
\left\|\frac{\mathrm{d}}{\mathrm{~d} x_{s}} \nabla L(\nabla u)\right\|_{L^{2}(\omega)} \leq \frac{1}{\left(p-1^{2}\right.} H .
$$

ii) u is a solution to the Euler Lagrange equation, i.e., that, for every $\eta \in C_{c}^{1}(\Omega)$,

$$
\int_{\Omega}\left[\langle\nabla L(\nabla u(x)), \nabla \eta(x)\rangle+g_{u}(x, u(x)) \eta(x)\right] \mathrm{d} x=0 .
$$

To prove the claim, notice that, possibly passing to a subsequence, we can assume that both $\nabla u^{r_{n}} \rightarrow \nabla u$ and $\nabla L_{r_{n}}\left(\nabla u^{r_{n}}\right) \rightarrow \lambda$ pointwise a.e.. Fix x such that the above holds and fix ε. By the continuity of ∇L, let δ be such that $|\nabla u(x)-\xi| \leq \delta$ implies $|\nabla L(\nabla u(x))-\nabla L(\xi)|<\frac{\varepsilon}{2}$; let n be so large that both $\left|\nabla u^{r_{n}}(x)-\nabla u(x)\right|<\delta$, and $\left\|\nabla L_{r_{n}}-\nabla L\right\|_{C}<\frac{\varepsilon}{2}$. Hence, for n large,

$$
\begin{gathered}
\left|\nabla L_{r_{n}}\left(\nabla u^{r_{n}}(x)\right)-\nabla L(\nabla u(x))\right| \\
\leq\left|\nabla L_{r_{n}}\left(\nabla u^{r_{n}}(x)\right)-\nabla L\left(\nabla u^{r_{n}}(x)\right)\right|+\left|\nabla L\left(\nabla u^{r_{n}}(x)\right)-\nabla L\left(\nabla u^{r_{n}}(x)\right)\right|<\varepsilon,
\end{gathered}
$$

so that $|\lambda(x)-\nabla L(\nabla u(x))| \leq \varepsilon$, and by the arbitrariness of ε, we obtain

$$
\lambda(x)=\nabla L(\nabla u(x)) .
$$

Moreover, $\nabla L_{r_{n}}\left(\nabla u^{r_{n}}\right) \rightarrow \lambda$ in $L^{2}(\omega)$ and $\frac{\mathrm{d}}{\mathrm{d} x_{s}} \nabla L_{r_{n}}\left(\nabla u^{r_{n}}\right) \rightharpoonup d_{\lambda}$ weakly, imply $d_{\lambda}=\frac{\mathrm{d}}{\mathrm{d} x_{s}} \nabla L(\nabla u)$, so that from $\left\|\frac{\mathrm{d}}{\mathrm{d} x_{s}} \nabla L_{r_{n}}\left(\nabla u^{r}\right)\right\|_{L^{2}(\omega)} \leq \frac{1}{(p-1)^{2}} H$ we obtain that $\left\|\frac{\mathrm{d}}{\mathrm{d} x_{s}} \nabla L(\nabla u)\right\|_{L^{2}(\omega)} \leq \frac{1}{(p-1)^{2}} H$, thus proving i).

To prove ii), fix $\eta \in C_{c}^{1}(\Omega)$. We have that

$$
\int_{\Omega}\left[\left\langle\nabla L_{r_{n}}\left(\nabla u^{r_{n}}(x)\right), \nabla \eta(x)\right\rangle+g_{u}\left(x, u^{r_{n}}(x)\right) \eta(x)\right] \mathrm{d} x=0
$$

since $u^{r_{n}} \rightarrow u$ in $L^{2}(\omega)$ and $\nabla L_{r_{n}}\left(\nabla u^{r_{n}}\right) \rightharpoonup \nabla L(\nabla u)$, we obtain

$$
\int_{\Omega}\left[\langle\nabla L(\nabla u(x)), \nabla \eta(x)\rangle+g_{u}(x, u(x)) \eta(x)\right] \mathrm{d} x=0 .
$$

Hence, we have obtained the existence of a solution u to the Euler-Lagrange equation such that, for every $s=1, \ldots, N$,

$$
\frac{\mathrm{d}}{\mathrm{~d} x_{s}} \nabla L(\nabla u)=\frac{\mathrm{d}}{\mathrm{~d} x_{s}} \begin{cases}\frac{\nabla u}{|\nabla u|^{2-p}} & \text { for }|\nabla u| \leq 1 \\ \nabla u & \text { for }|\nabla u| \geq 1\end{cases}
$$

belongs to $L^{2}(\omega)$; in particular, for every $i=1, \ldots, N$, both $u_{x_{i}}$ and $\frac{u_{x_{i}}}{|\nabla u|^{2-p}}$ belong to $W_{\text {loc }}^{1,2}$.

References

[1] E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals. The case $1<p<2$. J. Math. Anal. Appl. 140 (1989) 115-135.
[2] E. DiBenedetto, C1+ local regularity of weak solutions of degenerate elliptic equations. Nonlin. Anal. 7 (1983) $827-850$.
[3] L. Esposito and G. Mingione, Some remarks on the regularity of weak solutions of degenerate elliptic systems. Rev. Mat. Complut. 11 (1998) 203-219.
[4] A. Cellina, A case of regularity of solutions to non-regular problems. SIAM J. Control. Optim. 53 (2015) 2835-2845.
[5] M. Colombo and A. Figalli, An excess-decay result for a class of degenerate elliptic equations. Discr. Contin. Dyn. Syst. Ser. $S 7$ (2014) 631-652.
[6] J.L. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations. Indiana Univ. Math. J. $\mathbf{3 2}$ (1983) 849-858.
[7] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations. J. Differ. Eq. 51 (1984) 126-150.
[8] K.Ulhenbeck, Regularity for a class of non-linear elliptic systems. Acta Math. 138 (1977) 219-240.

[^0]: Keywords and phrases. Regularity of solutions, higher differentiability, strict convexity.

 * This work was partially supported by INDAM-GNAMPA.

 1 Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via R. Cozzi 53, 20125 Milano, Italy. arrigo.cellina@unimib.it

